S-ALE Recent Development

Progressive Mesh Spacing

25 nodes along each direction located in [0.0, 0.2]; first 7 elements [0.0,0.066666] increasing element length; 10 equally-spaced elements; last 7 elements increasing element length [0.1333333, 0.2].

Progressive Mesh Spacing

*ALE_STRUCTURED_MESH								
MSHID	PID	NBID	EBID					
1	1	200001	200001					
CPIDX	CPIDY	CPIDZ	NID0	LCSID				
1001	1001	1001	1	234				

*ALE_STRUCTU	JRED_MESH_CO	NTROL_POINTS	
1001			
NO	Х	Ratio	F
1	0.0	-0.10	ā
8	0.066666666	0.00	e
18	0.133333333	0.10	i
25	0.2		

Ratio > 0 increasing Ratio < 0 decreasing abs(ratio): from the smallest element, each element size increased by abs(ratio)

*IVFG – Tilted Box

A long rod projectile impacting an oblique steel plate (Fugelso & Taylor 1978).

- Steel plate is tilted box not aligning with global coordinates. Before we have to generate a Lagrange box using shell elements and then use PART/SEG option in *IVFG to convert material inside box to steel.
- Newly added LCSID (Local Coordinate System ID) for Box option. R9 release or dev version later than 107422.

*IVFG – Tilted Box (Before)

*INITIAL_	VOLUME_F	RACTION	GEOMETR	Y			
SID	IDTYP	BAMMG	NTRACE				
11	1	2					
TYPE	FILLOPT	FAMMG	VELX	VELY	<	"1=PART	/SEGSET"
1	1	3	-61.631	208.06			
PID	IDTYP						
101	1						
TYPE	FILLOPT	FAMMG	VELX			"4=Cone	/Cylinder"
4	0	1	1289				
X0	Y0	Z0	X1	Y1	Z1	R1	R2
-103.0	0.0	0.0	-26.33	0.0	0.0	3.835	3.835

- 1. First set all elements in PART 11 to vacuum (AMMG2)
- 2. Next switch vacuum (AMMG2) inside LAG part 101 to plate (AMMG3)
- 3. Finally switch vacuum (AMMG2) inside a cylinder to rod (AMMG1)

*IVFG – Tilted Box with LCSID

*INITIAL_	VOLUME_F		_GEOMETR	Y			
SID	IDTYP	BAMMG	NTRACE				
11	1	2					
TYPE	FILLOPT	FAMMG	VELX	VELY	<	"5=E	BOX"
5	0	3	-61.631	208.06			
X0	Y0	Z0	X1	Y1	Z1	LCSID	
-71.0026	-24.3693	-29.0000	70.0438	24.0854	29.0000	1	
TYPE	FILLOPT	FAMMG	VELX			"4=Cone	/Cylinder"
4	0	1	1289				
X0	Y0	Z0	X1	Y1	Z1	R1	R2
-103.0	0.0	0.0	-26.33	0.0	0.0	3.835	3.835

- 1. First set all elements in PART 11 to vacuum (AMMG2)
- 2. Next switch vacuum (AMMG2) inside a tilted box to plate (AMMG3)
- 3. Finally switch vacuum (AMMG2) inside a cylinder to rod (AMMG1)

*IVFG – Cylinder/Sphere Volume Corrections

Blast mine on two boxes; Three multi-materials in S-ALE mesh: HE, Soil and Air. HE is a cylinder 4mm long with radius=5.5cm.

- Volume fraction generated by *INITIAL_VOLUME_FRACTION_GEOMETRY card. For elements not fully enclosed in the cylinder/sphere, NxNxN sampling cells are constructed. If the center of a sub-cell lies in the cylinder/sphere, the volume of the cell is added to "volume inside".
- This algorithm leads to numerical errors in calculating material volume. → wrong material mass. For HE this error is not negligible.
- A correction algorithm is added in IVFG to cure this numerical error. In R9 release or Dev version later than 107883.

*IVFG – Cylinder/Sphere Volume Corrections

1. All to "Soil"; 2. Inside the cylinder h=4cm, r=5.5cm and buried 5cm under soil to "HE"; 3. Above the plane (z=45cm) to "Air"

*INITIAL_VOLUME_FRACTION_GEOMETRY							
SID	IDTYP	BAMMG	NTRACE				
101	1	2					
TYPE	FILLOPT	FAMMG				"4 = Cone	/Cylinder"
4	0	1					
X0	Y0	Z0	X1	Y1	Z1	R1	R2
0.0	0.0	36.0	0.0	0.0	40.0	5.5	5.5
TYPE	FILLOPT	FAMMG				"1 = PAR	RT/PSET"
3	0	3					
X0	Y0	Z0	XCOS	YCOS	ZCOS		
-3.5	-3.5	45.0	0	0	1		

HE mass = pi*5.5^2*(40-36)*1.63 = 619.6172 Without volume correction = 617.9374 (error=2.7e-3) With volume correction = 619.6163 (error=1.45e-6)

ALE Keyword Conversion

*ALE_STRUCTURED_MESH								
MSHID	PID	NBID	EBID					
1	5	100001	100001					
CPIDX	CPIDY	CPIDZ	NID0	LCSID				
Leave BLANK this Line								

- 1. Convert a rectilinear ALE mesh to S-ALE mesh
 - Automatically find the three axes and generate local coordinate system
 - Generate three CONTROL_POINTS by stripping from ALE element coordinates.
 - Convert *SET_NODE/SEGMENT/SOLID to use the S-ALE node/element numbering.
- 2. Map an existing initial volume fraction file to a new file using S-ALE element numbering.

ALE Keyword Conversion

- 1. Add *ALE_STRUCTURED_MESH card (second line blank) into a ALE keyword.
- 2. Run the modified ALE keyword for 1 cycle.
- 3. The generated keywords will be in the ascii file "saleconvrt.inc".
 - *ALE_STRUCTURED_MESH
 - *ALE_STRUCTURED_MESH_CONTROL_POINTS
 - *DEFINE_COORDINATE_SYSTEM_NODES and *NODE
 - *INITIAL_VOLUME_FRACTION_NALEGP
 - *SET_NODE/SET_SOLID/SET_SEGMENT
- 4. Delete the corresponding ALE keywords in the original input and include this "saleconvrt.inc' file and run the S-ALE analysis.

Dev Version 109219 or later

Thank You