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Abstract

An electromagnetism module is under development in the commercial software
LS-DYNA in order to perform coupled mechanical/thermal/electromagnetic sim-
ulations. The main part of the module is a so-called eddy current solver. This mod-
ule allows us to introduce source electrical currents into solid conductors, and to
compute the associated magnetic fields, electric fields, induced currents, Lorentz
forces, Joule heating and so forth. The Maxwell equations are solved using a Finite
Element Method (FEM) for the solid conductors coupled with a Boundary Ele-
ment Method (BEM) for the surrounding air (or insulators). Both the FEM and
the BEM are based on discrete differential forms (Nedelec-like elements). The
use of the BEM for the air allows to handle complex 3D geometries with multi-
ply connected conductors, very small air gaps, and motion of the conductors, due,
in particular, to the electromagnetic forces. The variable of the BEM is a so-called
surface current allowing the connection of the model to external current sources by
simple dirichlet constraints, as well as direct computations of the self and mutual
inductances of the system. In order to handle the large and dense BEM matrices,
a domain decomposition is performed and low rank approximations are done on
the off-diagonal blocks of the resulting block matrices. The diagonal blocks are
used as an efficient preconditioner when solving the BEM part of the system. The
singularities arising in the computation of the self and neighbor matrix elements
of the Galerkin BEM are taken into account using a method based on Duffy trans-
forms. The BEM method will be presented as well as benchmarks and real life
application examples.
Keywords: eddy current, finite element method, boundary element method, Nedelec
elements, contact, coupled mechanical/thermal/electromagnetic simulations



1 Introduction

LS-DYNA is a highly advanced general-purpose nonlinear finite element pro-
gram that is capable of simulating complex real world problems. It is suitable
to investigate phenomena that involve large deformations, sophisticated material
models and complex contact conditions. LS-DYNA allows running an analysis
explicitly or implicitly and combining different disciplines such as coupled ther-
mal analysis, fluid dynamics, fluid-structure interaction, SPH (smooth Particle
Hydrodynamics), EFG (Element Free Galerkin) [1]. An electromagnetism (EM)
module is under development in LS-DYNA in order to perform coupled mechan-
ical/thermal/electromagnetic simulations [2]. This module allows us to introduce
some source electrical currents into solid conductors, and to compute the associ-
ated magnetic field, electric field, induced currents, Joule heating and electromag-
netic (Lorentz) force. These fields are computed by solving the Maxwell equations
in the eddy current approximation. The eddy current solver is the main part of
the EM module, although an induced heating and resistive heating solvers have
also been added. Since the EM module is part of a commercial software, it is used
intensively in all sorts of geometries and with all kinds of meshes, some of them
being of rather poor quality. A lot of effort was thus spent making the numerical
method robust enough. On the bright side, we get extensive benchmarks and a lot
of feedback on the method. In order to best handle the motion of the conductors
without the need to remesh the air surrounding them, the electromagnetic fields are
solved using a Finite Element Method (FEM) coupled with a Boundary Element
Method (BEM). Since the FEM is based on differential forms, the BEM also is
based on this same representation, in order to have a correspondance between the
FEM and BEM basis functions at the surface of the FEM mesh, which corresponds
to the BEM mesh.

In this paper, we will first present the physical problem and give a brief overview
of the FEM used, and we will then focus in more details on the BEM, and in
particular on the FEM/BEM coupling, the treatment of the singular integrals, the
BEM matrices storage and solve and the contact. We will then show the different
capabilities of the BEM on industrial and academic examples.

2 Presentation of the problem

2.1 Physical problem

The following is a summary of what is presented in more details in [2]. Let Ω be a
set of multiply connected conducting regions. The surrounding insulator exterior
regions will be called Ωe. The boundary between Ω and Ωe is called Γ. In the
following, we will denote ~n as the outward normal to surfaces Γ. The electrical
conductivity, permeability and permittivity are called σ, µ and ε respectively. In
Ωe, we have σ = 0 and µ = µ0. For all our applications, we can use the low
frequency or “eddy current” approximation, valid for good enough conductors with



low frequency varying fields such that the condition

ε
∂ ~E

∂t
� σ ~E (1)

is satisfied, where ~E is the electric field. This approximation implies a divergence
free current density and no free charge accumulation. Also, in all our cases, the
permittivity is equal to the vacuum one: ε = ε0.

In the eddy current approximation, the Maxwell equations read:

~∇× ~E = −∂
~B

∂t
(Faraday) (2)

~∇×
~B

µ
= ~j (Ampere) (3)

∇ • ~B = 0 (Gauss−magnetism) (4)

∇ • ε ~E = 0 (Gauss− electricity) (5)

∇ •~j = 0 (Gauss) (6)

~j = σ ~E (Ohm) (7)

~B = µ ~H (Constitutive eq.) (8)

where ~B is the magnetic flux density and ~j the current density. The divergence
condition (4) allows to introduce the magnetic vector potential ~A such that

~B = ~∇× ~A (9)

Using equation (2), we can then write the electric field as:

~E = −~∇φ− ∂ ~A

∂t
(10)

where φ is the so-called electric scalar potential [3]. When using the Gauge condi-
tion:

∇ • σ ~A = 0 (11)

equations (3), (6), (7), (9), (10) and (11) imply:

∇ • σ~∇φ = 0 (12)

σ
∂ ~A

∂t
+ ~∇× 1

µ
~∇× ~A = −σ~∇φ (13)

These 2 equations, along with suitable boundary conditions give the time evolution
of ~A and φ, from which we get the electromagnetic fields by (10), (9) and (7).



2.2 General numerical method: FEM coupled with BEM

(12) is a Laplace equation and (13) a diffusion equation, hence the other name
“diffusion-induction”, sometimes used for the eddy current model (we shall see
later about the “induction” part). Since these equations mostly deal with exterior
derivatives of vector fields, we decided to use a finite element method based on dif-
ferential forms, often referred as “edge elements” or “Nedelec elements” [4]. More
precisely, we are using the FEMSTER library [5] which provides a discrete numer-
ical implementation of the exterior derivatives, gradient, curl and divergence, and
the corresponding elemental matrices on hexahedral, prismatic and tetrahedral ele-
ments [6]. In this representation, each electromagnetic field is represented by a
certain type of form, depending on how it appears in the equations, forming a
so-called “Tonti” diagram [7] [8]. Figure (1) represents the position of the differ-
ent fields of the eddy current model in a Tonti diagram, and table (1) gives some
details about the different forms. The basis functions define spaces with an exact
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Figure 1: Tonti diagram for the eddy current problem showing the different forms,
matrices and position of the EM fields

Form type : Associated with : DOFs : Basis :
0-form Nodes Nodal value W0

1-form Edges Line integral ~W1

2-form Faces Flux ~W2

3-form Cells Volume integral W3

Table 1: Definition of the l-forms, along with their Degrees Of Freedom (DOFs)



representation of the De-Rham sequence [6]. They also exactly satisfy numeri-
cal relations such as curl(grad)=0 or div(curl)=0. The basis functions associated
respectively with the 0, 1, 2, and 3- forms will be noted W0, ~W1, ~W2 , and W3.
Equation (12) is integrated against theW 0 forms and equation (13) against the ~W 1

forms giving, after integrating by part, the following weak formulations [9] :

∫
Ω

σ~∇φ · ~∇W 0dΩ = 0 (14)∫
Ω

σ
∂ ~A

∂t
· ~W 1dΩ+

∫
Ω

1

µ
(~∇× ~A) · (~∇× ~W 1)dΩ =

−
∫

Ω

σ~∇Φ · ~W 1dΩ +

∫
Γ

1

µ
[~n× (~∇× ~A)] · ~W 1dΓ (15)

which, after projecting φ on the W0 forms and ~A on the ~W1 forms, give the FEM
linear systems, which we write, with the same notations as in Figure (1), as:

S0(σ)φ = 0 (16)

M1(σ)
da

dt
+ S1(

1

µ
)a = −D01(σ)φ+ Sa (17)

3 Introduction of the BEM

3.1 Presentation of the method

The goal of the BEM is to compute the last surface term of (15), or (17), i.e. Sa.
This term represents the interactions between the different conductors through the
EM fields in the air surrounding them, which in the eddy current model is the
induction effect. So the diffusion part is solved by the FEM and the induction by
the BEM. In order to compute this term, we introduce an intermediate ”surface
current” ~k. This surface current, which is not a physical field, is chosen such that
it produces the same vector potential ~A, and thus magnetic field ~B in the air Ωe

surrounding the conductors, as the physical volume current ~j. This means that for
any point in the air, the knowledge of this surface current is strictly equivalent to
the knowledge of the actual electromagnetic fields inside the conductors. The use
of a surface vector field compared to a scalar one gives flexibility to have multiply
connected conductors with non simple topologies. From the Biot-Savart equation,
the vector potential generated by ~k reads:

~A(~x) =
µ0

4π

∫
Γy

1

|~x− ~y)|
~k(~y)dΓy (18)



∀x ∈ Ωe (and thus for x ∈ Γ).
It then can be shown that [10] :

[~n× (~∇× ~A)](~x) =
µ0

2
~k(~x)

+
µ0

4π

∫
Γy

1

|~x− ~y)|3
~n× [(~x− ~y)× ~k(~y)]dΓy (19)

In order to have a BEM with basis functions corresponding to the ones of the
FEM on the surface of the conductors, thus avoiding extra matching constraints on
the boundary, we still decompose ~A on the ~W1

′
s and introduce a set of “twisted”

1-form surface basis functions for ~k [10]:

~V 1 = ~n× ~W 1 (20)

~k =
∑

i=1,NE

ki~V
1
i (21)

where NE is the number of boundary edges. At first order, a twisted 1-form asso-
ciated with a surface edge represents a surface current flowing across the edge, i.e.
with a unit surface flux across the edge and a zero surface flux across all the other
surface edges. By projecting equation (18) and ~k on the ”twisted” 1-form basis and
equation (19) against ~W 1, we get a Galerkin BEM linear system which reads:

Pk = Da (22)

Sa = Qk = Qsk + Qdk (23)

where

D(i, j) =

∫
Γx

~Vi(~x) · ~Wj(~x) dΓx (24)

P(i, j) =

∫
Γx

∫
Γy

1

|~x− ~y|
~Vi(~x) · ~Vj(~y) dΓxdΓy (25)

Qs(i, j) =

∫
Γx

~Wi(x) · ~Vj(x) dΓx (26)

Qd(i, j) =

∫
Γx

∫
Γy

1

|~x− ~y|3
~Wi(x) ·

(
~nx ×

[
(~x− ~y)× ~Vj(y)

])
dΓxdΓy (27)

The coupled FEM+BEM system is solved at each time step by doing Richardson
iterations between the FEM (17)+(23) and the BEM (22) equations until conver-
gence:

Pkt+1
n+1 = Dat+1

n (28)

[M1(σ) + dtS1(
1

µ
)]at+1

n+1 = M1(σ)at − dtD01(σ)φt+1 + dtQkt+1
n+1 (29)



3.2 Divergence free surface current

As already mentioned, The surface current ~k is an equivalent boundary current
to the physical volume current ~j flowing through the volume of the conductors,
and needs to be divergence free [10]. However, the twisted 1-forms basis func-
tions (20) do not satisfy this divergence free constraint, since they create some net
flux entering the 2 faces that lie on each side of the edge they are associated with.
We first added the divergence free as an external constraint to the BEM system
(22). More recently, we introduced the so-called ”loop-star” solenoidal-irrotational
decomposition into the divergence free ”loop” basis functions and the other “star”
ones [11][12]. As shown in Figure (2), a loop basis function associated with a
node can be seen as a linear combination with coefficients +1 or -1 of twisted 1-
forms associated with all the edges originating from the node, so that it represents
a (divergence-free) surface current flowing around the node. One can show that

li

Vj

Vk

Vl

Vm

Figure 2: A loop vector basis function around node i, as the sum of the 4 twisted
1-forms ~Vj + ~Vk + ~Vl + ~Vm

when using first order basis functions, the loop basis functions associated with all
the nodes of the surface mesh (except one per connected part) form a complete
basis of the divergence free currents for topologically simple conductors, like a
sphere [11]. For non simple conductors, i.e. containing holes or ”handles”, a few
extra non-local basis functions that we call ”global currents” need to be added. For
example, in the case of a prismatic conductor connected to an external circuit on
each end, there is one global current representing a current flowing from one side to
the other of the prism (see Figure 3). In the case of a torus, two extra global currents
need to be added, one corresponding to a current flowing in the toroidal direction,
and one corresponding to a current flowing in the poloidal direction. An algorithm
based on the construction of a spanning tree on the surface mesh has been devel-
oped to automatically count the number of connected parts, get their topologies by
computing the ”Betti numbers” [13], and in particular the number of global cur-
rents, and then set the global current basis functions as linear combinations of the
1-form basis functions. As can be seen in Figure (3), contrarily to the loop basis
functions, the “global currents” are non-local basis functions (hence their name),
making the computation of the corresponding BEM matrices entries somewhat



Figure 3: Global current on a prismatic conductor connected to an external circuit
on each side, represented by the divergence free ~V1 + ~V2 + ~V3

cumbersome. But on the bright side, the degree of freedom associated with each
global current represents the total current flowing through the corresponding con-
ductor and can be used to impose current vs time constraints as a simple dirichlet
constraint in the BEM system (one dirichlet constraint per imposed current). This
method allows imposing currents in geometries where more traditional methods
using dirichlet conditions on the FEM system (16,17) would require the introduc-
tion of cuts and/or multi-valued degrees of freedom [14]. The above mentioned
toroidal current in a torus is such an example. The use of ”loop” + ”global current”
basis functions also gives an easy way to compute the self and mutual inductances,
by solving the BEM system (22) with simple dirichlet constraints. It also allows
to impose simple linear constraints between global currents like imposing that the
current flowing through one conductor is equal to the one flowing through another
one.

3.3 Numerical treatment of the singular integrals

As can be seen in (25) and (27), and as often is the case when dealing with a
BEM, some integrals are singular on self and neighbor faces. Different methods
to numerically treat these integrals have been proposed. For a long time, we used
the simple method presented in [15] for self faces, which gives 2 sets of gaussian
points as well as integration weights, hence a very simple integration scheme. We
also just used the standard gauss points for neighbor faces. This method proved
to be very efficient and fairly accurate for simple enough geometries with good
quality meshes. Soon enough, however, customers started to use the method with
elements (and hence boundary faces) with high aspect ratio, causing issues. We
thus had to improve the method in order to incorporate these elongated faces, as
well as handling triangular faces on top of the quadradic ones, since tetrahedra and
prisms were also introduced on top of the already used hexahedra in the FEM. We
are thus now using a method based on Duffy transforms [16][17], which gives sets
of integration points and weights for pairs of faces, either self (face against itself),
neighbors with common edge or neighbors with common node. The scheme is



slightly different depending on the type of each face (quadrilateral or triangle).
We also introduced a method based on [18] in order to split faces with very large
aspect ratio into better conformed ones for the computation of the corresponding
singular integrals. On typical cases (around 100,000 BEM faces), the computation
of the singular integrals can take up to 25 percent of the total assembly of the BEM
matrices, and this process has thus been parallelized.

3.4 Matrix storage and solve

In order to limit the memory requirement, a domain decomposition is done on
the BEM mesh, which splits the BEM matrices into blocks. On the non-diagonal
blocks, a low rank approximation based on a rank revealing QR decomposition is
performed, see Figure (4). For blocks corresponding to far away domains, the rank
can be significantly smaller than the size of the block, thus reducing the storage
of the block. We typically see reductions by factors around 20 or more between
the full dense matrix and the block matrix with low rank approximations, also-
called Block Low Rank, or BLR [19]. As the rest of LS-DYNA, the matrix assem-
bly is implemented in Massively Parallel Processing (MPP), where the blocks are
spread between processors using a method described in [20]. The BEM system
(22) is currently solved using an iterative method, Preconditioned Conjugate Gra-
dient (PCG), where the preconditioner usually used is the diagonal block of the
matrix [21]. The BLR representation of the matrix also speeds up considerably the
matrix times vector operation used intensively in the PCG. A direct factorization
of the BLR matrix in MPP is currently being developed at LSTC, which will allow
to use a direct solver instead of the PCG.

Figure 4: Domain decomposition of a BEM mesh (left) in 4 domains resulting in
a four by four block matrix (right). The diagonal blocks are kept dense, and low
rank approximations are performed on the others.



4 Features of the BEM and examples

4.1 Benchmark: the TEAM cases

Along with the development of the electromagnetism module, different series of
validation tests have been conducted. The TEAM (Testing Electromagnetic Anal-
ysis Methods) problems consist in a set of test-problems, with precisely defined
dimensions, constitutive laws of materials, excitations and so forth, with experi-
mental measurements on a real laboratory device [22]. The TEAM 3 problem is
a classic validation test case often studied ([10][23]) and consists of a conduct-
ing ladder with two holes, placed below a coil carrying a sinusoidal current [22].
The coil is made of multiple turns strongly stranded together producing a uniform
current while the induced current in the ladder diffuses through its thickness (the
full eddy current problem is solved). The main objective of this test case is to
study the behavior of the magnetic field along the symmetrical axis of the prob-
lem and between the coil and the ladder. On Figure (5), it can be observed that
the biggest part of the current flows around the hole directly located under the coil.
Good agreement between experimental and numerical results can also be observed.
More benchmarks on various TEAM problems are presented in [24].

Figure 5: Current Density Fringes and Bz magnitude variation along the center
line. Comparison between LS-DYNA (in Red) and reference experimental (in
Blue) results.

4.2 Small gaps and conductor motion

Electromagnetic Metal Forming (EMF) [25], bending or welding [26] are some of
the most common applications of the EM solver. EMF is a high velocity forming
process where the force deforming the workpiece is a magnetic one, generated by
an electrical current induced in the workpiece by a coil. Much work has shown
that the formability can be significantly increased, wrinkling can be mitigated and
springback can be reduced [27]. Forming of aluminum has been the main focus
of EMF, due to its potential as a means of reducing automobile weight [28]. A
typical forming setup involves one or several coils, a workpiece and a die. Strong



deformations happen over a very brief period of time which the electromagnetism
solver needs to be able to handle. The coil shapes are also often very complex, with
several turns and with sometimes only small gaps between them, further adding to
the difficulty. The case presented here features a spiral type coil and a 1 mm thick
Aluminum sheet forming on a conical die. The experiment was performed at the
Department of Mechanical Engineering, University of Waterloo, Ontario, Canada
[28]. Figure (6) shows the evolution of the shape of the plate. Figure (7) shows
a comparison between the numerical and experimental final shape of the sheet,
which shows a very good agreement. More details on the experimental/simulation
comparisons can be found in [2], and more quantitative benchmarks are in [29] and
[30]. More recently, the eddy current model was extended to an induced heating
solver. It is primarily used for industrial welding applications where the need to
have spatially and temporally controlled joule heating makes the use of a simula-
tion software very important, in order to design the heating coils, and generators
[31]. The study of the over-heating and possible deterioration of the coil as well as
ways to cool it down also represent an important use of the code. For slower vary-
ing fields, where the inductive effects can be neglected, a resistive heating solver
was also introduced.

Figure 6: Magnetic Metal Forming simulation results: 3D shape of the sheet (left,
only half of the sheet is represented), and current density in a cross section of the
sheet at various stages during the forming process. The scale in the z-direction has
been increased in the cross sections for better visibility

Figure 7: Magnetic Metal Forming: numerical (left) and experimental (right) final
shape of the sheet



4.3 Contact: local remeshing of the BEM mesh

Since the conductors are allowed to move and deform, some contact may occur.
Also, some applications like rail guns [32] need a sliding contact capability. In
the FEM, the contact is handled using “mortar” like constraints, i.e. by imposing
appropriate constraints on the Degrees Of Freedom (DOFs) between the 2 sides of
the contact [33]. We first tried the same kind of technique in the BEM, by replacing
the divergent matrix entries in the contact area by constraints between the corre-
sponding BEM DOFs. The different constraints we tried failed to give acurate
results or were not robust enough, so we finally decided to opt for a local remesh-
ing of the BEM mesh at each time step. More specifically, in the areas where
contact is detected (basically when the distance between 2 BEM faces becomes
small enough), the BEM faces in contact are removed from the BEM mesh and a
patented algorithm [34] allows to “stitch” the two open BEM surfaces together by
building a “skirt” made of triangular faces, in order to achieve a continuous closed
BEM mesh (see Figure (8)). The BEM system can then be solved on this regular
BEM mesh and appropriate constraints are added to connect the BEM DOFs to the
FEM ones in the skirt areas. Figure (9) presents a rail gun application with a sliding
contact. In a rail gun, the electromagnetic forces created by an electrical current
are used to accelerate a projectile sliding between two conductor rails. Since the
scheme depends on the current flowing between the rails and the projectile, it is a
very good test for electromagnetism contact capabilities. More results on rail gun
simulations are shown in [35].
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Figure 8: Remeshing of the BEM mesh around a contact area: a: The faces in
contact on each side are removed. b: The faces next to the contact are shrunk to
ensure a sufficient gap. c: Creation of the contact ”skirt” by adding triangle faces
between the 2 sides of the contact.



Figure 9: Railgun model showing the motion of the projectile between the 2 rails,
with iso-contours of the B field.

5 Conclusion

We presented a BEM that, coupled with a FEM, allows to efficiently solve the
Maxwell equation in the eddy current approximation, for a set of 3D multiply
connected conductors. A 2D axisymmetric version also is available where, on the
BEM side, the main change is in the kernel. Since it is used in a commercial code,
this method has been extensively tested on all sorts of cases with different geome-
tries and different type of meshes, and has proven very robust. The EM fields are
coupled with the mechanics and the thermal part of the code, thus allowing changes
in the conductor geometries and electrical conductivities, which, on the develop-
per side, allows testing the method on different geometries within the same run.
However, even with the MPP setting of the method, the BEM part of system still
takes more than half of the total computational time of the EM, so a BLR factor-
ization is being developped in order to reduce the solve time of the BEM system.
The plans for the near future are the extension of the method to magnetic as well as
to piezzo-electric materials, both of which should have some effect on the BEM.
Longer term projects may also include the investigation of other BEM based on
multipole methods.
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