
 1

 
Workshop on Recent Advances in Computational Structural 
Dynamics and High Performance Computing 
USAE Waterways Experiment Station 
April 24-26 1996 
 
 

CONCRETE MATERIAL MODELING 
IN EXPLICIT COMPUTATIONS 

 
L. Javier Malvar1 and Don Simons2 

1 Karagozian & Case, 620 North Brand Boulevard, Suite 300, Glendale, CA  91203 
2 LOGICON RDA, 6053 West Century Boulevard, Los Angeles, CA 90009 

 

ABSTRACT 

 Lagrangian finite element codes with explicit time integration are extensively used for 
the analysis of structures subjected to explosive loading.  Within these codes, numerous material 
models have been implemented.  However, the development of a realistic but efficient concrete 
material model has proven complex and challenging. 
 The plasticity concrete material model in the Lagrangian finite element code DYNA3D 
was assessed and enhanced.  In the first phase, the main modifications included the implementa-
tion of a third, independent yield failure surface; removal of the tensile cutoff and extension of 
the plasticity model in tension; shift of the pressure cutoff; implementation of a three invariant 
formulation for the failure surfaces; determination of the triaxial extension to triaxial compres-
sion ratio as a function of pressure; shear modulus correction; and implementation of a radial 
path strain rate enhancement.  These modifications insure that the response follows experimental 
observations for standard uniaxial, biaxial and triaxial tests in both tension and compression, as 
shown via single element analyses.  The radial path strain rate enhancement insures constant 
enhancement for all those tests.  As a full scale example, a standard dividing wall subjected to a 
blast load is analyzed and the effects of the modifications assessed. 
 Concrete subjected to shear stresses has been observed to dilate in the direction trans-
verse to the shear stress plane.  For reinforced concrete walls or slabs with in-plane restraints this 
can result in significant increases in load resistance due to arching.  In a second phase of the 
material model development shear dilation was implemented.  This latest model was used to 
model concrete cylinders wrapped with composite materials. 
 

INTRODUCTION 

 In the analysis of complex structures subjected to blast loading and large deformations, 
Lagrangian finite element codes with explicit time integration have become a necessary and 
efficient tool [1].  In these codes a limited element library including trusses, beams, shells and 
solids has proven sufficient.  However extensive material libraries have been required for 
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representation of the vast range of material behaviors.  In the case of reinforced concrete 
structures, implementation of a realistic but efficient concrete material model has proven 
complex. 
 Numerous analyses for prediction of small and full scale blast tests of reinforced concrete 
structures sponsored by the Defense Nuclear Agency have provided an opportunity to revisit the 
existing material models in the finite element code DYNA3D [1,2,3]. The models potentially 
suitable for representing concrete’s constitutive behavior were assessed over the full range from 
elastic response to failure.  The most robust one, material model 16, still contains several 
shortcomings.  In this report those deficiencies and the corresponding corrections are described. 
 

ORIGINAL MATERIAL MODEL 

 The Lagrangian finite element code DYNA3D was originally developed by the Lawrence 
Livermore National Laboratory (LLNL) [1].  Within DYNA3D, several material models have 
been used in the past to represent concrete, namely material models 5 (Soil and Crushable 
Foam), 16 (Concrete/Geological Material), 17 (Isotropic Elastic-Plastic with Oriented Cracks), 
25 (Extended Two Invariant Geologic Cap).  Materials 5, 17 and 25 have exhibited significant 
limitations in modeling concrete behavior [4].  Material model 16, however, appeared more 
appropriate and presented some attractive features which could be easily enhanced. 

OVERVIEW 
 
 The original material model 16 (subroutine f3dm16.f) decouples the volumetric and 
deviatoric responses.  An equation of state gives the current pressure as a function of current and 
previous minimum (most compressive) volumetric strain.  Once the pressure is known, a 
moveable surface - herein denominated a yield or failure surface - limits the second invariant of 
the deviatoric stress tensor.  The volumetric response is easily captured via a tabulated input 
such as the one in equation of state 8.  No changes were deemed necessary for this part of the 
response.  However, the deviatoric response did present some shortcomings which were 
addressed.  For example, due to the decoupling of volumetric and deviatoric responses, this 
original model has the limitation of not incorporating shear dilation which is observed with 
concrete.  For the case of significant structural lateral restraints and low damage levels this may 
result in responses softer than expected. 
 During initial loading or reloading, the deviatoric stresses remain elastic until the stress 
point reaches the initial yield surface.  The deviatoric stresses can then further increase until the 
maximum yield surface is reached. Beyond this stage the response can be perfectly plastic or 
soften to the residual yield surface (see Figure 1). Whenever the stress point is on the yield 
surface and the stress increment corresponds to loading on that surface, plastic flow occurs in 
accordance with a Prandtl-Reuss (volume preserving) flow rule, implemented by the well known 
“radial return” algorithm.  The model also incorporates a tensile cutoff and a pressure cutoff. 
 
ORIGINAL DEVIATORIC RESPONSE 

Stress Limits 
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 The function ∆σ which limits the deviatoric stresses is defined as a linear combination of 
two fixed three-parameter functions of pressure: 
  ∆ ∆ ∆σ η σ η σ= + −m r( )1  

where  
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and where p xx yy zz= − + +( )σ σ σ /3 is the pressure (stresses are positive in tension, pressure is 
positive in compression).  The parameter η is a user-defined function of a modified effective 
plastic strain measure λ. The function η(λ) is intended to first increase from some initial value 
up to unity, then decrease to zero representing softening.  Hence, the yield surface migrates 

between ∆σ r , representing the minimum 
or residual strength, and ∆σ m , the 
maximum strength.  The initial yield 
surface is given by 

∆ ∆ ∆σ η σ η σy y m y r= + −( )1  
where ηy = η(0)  is the initial value of η. 
   Available triaxial compression 
concrete data indicate that for the initial 
yield surface the principal stress difference 
∆σ y  should be about 45% of the 
maximum stress difference.  On the other 
hand, the residual strength should vanish 
for the unconfined compression test. 
Furthermore, because the two fixed 
surfaces become parallel for large values 
of p, they cannot properly represent the 
brittle-ductile transition point.  The 
original formulation, with the constraint 
that the initial, maximum, and residual 
yield surfaces be linearly related, cannot 
properly capture the experimental data.  
This suggests the need for a third fixed 
yield surface independent from the other 
two. 
Compressive Meridian 
 
 Data for the compressive meridian 
are usually obtained from an unconfined 
compression test and triaxial compression 
tests with various levels of confinement.  
For the original model 16, a minimum of 
two nonzero levels of confinement are 
needed since three parameters define the 

 
 

          Figure 1.  Three failure surfaces. 
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compressive meridian.  The usual tests provide no data for pressures below ′fc / 3 (failure in an 
unconfined compression test).  The three-parameter maximum failure surface just described will 
usually overestimate the strength when extrapolated to pressures below ′fc / 3.  Similarly this 
formulation would overestimate the principal stress difference for the biaxial tension test. 

Tensile Meridian 

 The tensile or extension meridian of the failure surface for concrete is usually lower 
(closer to the hydrostat at the same pressure) than the compressive meridian. Experimental data 
suggest that the ratio of the tensile to compressive meridian, herein denoted ψ, varies from about 
0.5 at negative (tensile) pressures to unity at high confinements.  Using equal meridians at low 
pressures will yield erroneous results (see Figure 2). 
 
Tensile Cutoff 
 
 In an attempt to alleviate the previously noted shortcoming at low pressures, the original 
material model incorporates a tensile cutoff which limits the maximum principal stress to the 
tensile strength ft (see Figure 2).  For intermediate pressures ( / )0 3< < ′p fc  this does not solve 
the problem.  In addition the 
tensile cutoff algorithm reduces 
the current stress state to zero in 
20 steps.  This arbitrary and 
abrupt stress decrease contrasts 
with the smooth decay offered by 
the plasticity model when 
transitioning between the 
maximum and residual failure 
surfaces. 
 
Pressure Cutoff 
 
 The original model also 
incorporates a pressure cutoff 
which prevents the pressure from 
going below ft / 3 (Figure 2). 
Although this does not affect the 
uniaxial tensile test, it does limit 
the principal stress difference to 
ft / 2 for a biaxial tensile test, and 
to ft / 3 for a triaxial tensile test.  
These limits disagree with 
experimental data showing that 
in both cases the principal stress 
difference should reach 
approximately ft .  In addition, 
whenever the pressure cutoff is 

 
 

Figure 2.  Original LLNL-DYNA3D failure surfaces. 
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reached in the original model, the current state of stress is maintained and no stress decay takes 
place upon further straining. 
 
Rate Enhancement 
 
 In the original model, at any given pressure, the failure surfaces are expanded by a rate 
enhancement factor which depends on the effective deviatoric strain rate.  Enhancing strength at 
a given pressure is inconvenient, because the rate enhancement factors available in the literature 
apply to the uniaxial unconfined compression and extension paths, not to a pure shear path.  It is 
possible to derive the following formula to relate the test data to the input data in compression: 

r
a r a r

a a a a rc
f f

f
=

′ + ′
+ + ′

3
3 1

1 2
2 2

0 1 0 2

f f
f

c c

c( )
 

where  rc = input to DYNA3D (rate enhancement factor at fixed pressure), and rf = experimental 
rate enhancement factor from an unconfined uniaxial compression test.  However the original 
program uses the same factor for enhancing stress states at negative pressures.  When calibrated 
to unconfined compression, this results in almost no enhancement for the uniaxial tension test. 
 
Elastic Behavior 
 
 The original LLNL material model 16 has two options for the elastic response, both 
isotropic. Both use the bulk modulus from the pressure-volume relation to compute a second 
elastic constant.  One assumes a constant Poisson’s ratio, the other a constant shear modulus.  
Although a constant shear modulus absolutely guarantees that no elastic energy can be gener-
ated, that option was dropped due to its inadequacy to represent known data. In the other option, 
the user specifies a value of Poisson’s ratio.  When used with equation of state 8, the model 
derives a shear modulus from the current unloading bulk modulus.  This method easily leads to 
inconsistencies such as negative Poisson ratios upon initial loading [5].  The assumption of 
constant Poisson’s ratio was retained, but the computation of the shear modulus was modified. 

 

ENHANCED PRANDTL-REUSS MATERIAL MODEL 

 The original material model 16 was significantly modified to correct most of the 
shortcomings noted in the previous section. 

NEW PRESSURE CUTOFF 
 
 The pressure cutoff  pc  now has an initial value of -ft (see Figure 3).  Together with 
changes in the maximum failure surface described below, both the biaxial and triaxial tensile 
tests can now reach a principal stress difference of  ft. 
 Upon failure in the negative pressure range, the parameter η is used not only to reduce 
the current failure surface from the maximum to the residual, but also to increase the pressure 
cutoff from -ft to zero in a smooth fashion.  This is done by checking the pressure returned by the 
equation of state subroutine, and resetting it to pc if it violates p ≥ pc , where  
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pc =
−
−

⎧
⎨
⎩

f  if the maximum failure surface has not been reached (hardening) ,
f  otherwise (softening)  .
t

t η
 

 
Note that although implemented in the concrete material model subroutine, this modification can 
override the pressure calculated in the equation of state.  This pressure cutoff is necessary as 
otherwise the equation of state would calculate very large negative pressures for large volumetric 
extensions beyond cracking, which would be physically incorrect. 

COMPRESSIVE MERIDIANS OF THE FIXED FAILURE SURFACES 
 
 A third, independent, fixed surface has been implemented with three new parameters (a0y, 
a1y, a2y).  This surface represents initial yielding and is given by 

∆σy y
y y

a
p

a a p
= +

+0
1 2

. 

 Since for concrete the residual strength in tension is zero, the pressure independent 
parameter in the formulation of the residual surface is not needed, i.e., a0f = 0.  To permit the 
residual and the maximum failure surfaces to intersect at a point representing the brittle-ductile 
transition, a new parameter a2f has been added.  The residual surface now takes the form 

∆σ r
f f

p
a a p

=
+1 2

 

 In the new model, after 
reaching the initial yield surface 
but before the maximum failure 
surface, the current surface is 
obtained as a linear interpolation 
between the two:  

∆ ∆ ∆ ∆σ η σ σ σ= − +( )m y y  
where η varies from 0 to 1 
depending on the accumulated 
effective plastic strain parameter λ. 
After reaching the maximum 
surface the current failure surface 
is similarly interpolated between 
maximum and residual: 

∆ ∆ ∆ ∆σ η σ σ σ= − +( )m r r     
 The function η λ( )  is input 
by the user as a series of ( , )η λ  
pairs.  This function would 
normally begin at 0 at λ=0 , 
increase to 1 at some value λ=λm , 
and then decrease to 0 at some 
larger value of λ .  Since λ is non-
decreasing, this would permit ∆σ 
sequentially to take on the values  

 
 
 

   Figure 3.  Willam Warnke failure surface. 
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∆σy , ∆σm , and ∆σf .  In fact, there are no internal checks to guarantee that the user’s input takes 
on these specific values.  Thus, at the beginning of the subroutine the value of λm is defined 
simply as the value of λ corresponding to the first relative maximum of η in the input table. 
Then, whenever λ ≤ λm the current surface is interpolated between the initial yield and the 
maximum; conversely, if λ > λm the current surface is interpolated between the maximum and 
the residual.  In summary a total eight parameters define the three fixed surfaces, as follows: 

∆

∆

∆

m

r
f f

y y
y y

 =  a  +  
p

a + a p
  

 =
p

a + a p
  

 =  a +
p

a + a p
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σ

σ

0
1 2

1 2

0
1 2

(maximum failure surface)   ,

(residual failure surface)   ,

(yield failure surface)   .

 

 At pressures above the brittle-ductile transition, ∆σr should be limited to ∆σm.  In the 
code this is ensured by resetting ∆σr to ∆σm(p) if ∆σr from the nominal formula exceeds ∆σm(p) . 
 The yield surface is similarly limited to ∆σm  [2]. 

 
DAMAGE ACCUMULATION 
 
New Shear Damage Accumulation 
 
 The current failure surface is interpolated from the maximum failure surface and either 
the yield or the residual failure surface as 

∆ ∆ ∆ ∆σ η σ σ σ= − +( )m min min  
where ∆σmin is either ∆σy or ∆σr depending on whether λ ≤ λm  or λ > λm  , and where η is a 
function of λ . In the original model 16, the modified effective plastic strain λ , is defined as 

( )
λ

εε
=

+∫
d
p

p

b

p

1 10 / ft

 

where the effective plastic strain increment is given by   ( )d p
ij
p

ij
pε ε ε= 2 3/    . 

 In the new model, two changes have been implemented.  First rate effects were included, 
and second, the parameter b1 is replaced by b2 for tensile pressure (p<0), as follows: 

( )λ εε
=

+
∫

d
r p r

p

f f
b

p

1 10 / ft
  for p ≥ 0 

( )
λ εε

=
+

∫
d

r p r

p

f f
b

p

1 20
/ ft

  for p < 0 

Note that at p = 0, the denominator is a continuous function.  In this way, the damage evolution 
can be different in tension and compression, if needed. 
 
Volumetric Damage  
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 With damage accumulation as just described, if a triaxial tensile test is modelled, 
wherein the pressure decreases from 0 to -ft with no deviators, then no damage accumulation 
occurs.  The parameter λ remains 0 and so does η.  The equation of state decreases the pressure 
to -ft  but keeps it at that level thereafter.  To implement a pressure decay after tensile failure, a 
volumetric damage increment can be added to the deviatoric damage whenever the stress path is 
“close” to the triaxial tensile test path, i.e., the negative hydrostatic axis.  The closeness to this 
path is measured by the ratio 3 2J p/  , which, for example, is 1.5 for the biaxial tensile test.  To 
limit the effects of this change to the paths close to the triaxial tensile path,  the incremental 
damage is multiplied by a factor fd  given by  fd = − ≤ <1 3 10 0 3 012 2J p for J p/ * / . , 

0 otherwise.  The modified effective plastic strain is incremented by ∆λ ε ε= −b f kd d v v yield3 ( ),  
where b3 = input scalar multiplier,  kd = internal scalar multiplier,   εv = volumetric strain, and 
εv,yield = volumetric strain at yield. 
 
Determination of Damage Evolution Parameters b2  and b3 
 
 The values of b2 and b3 govern the softening part of the unconfined uniaxial tension 
stress-strain curve as the stress point moves from the maximum to the residual failure surfaces.  
It is well known that, unless such softening is governed by a localization limiter or characteristic 
length, the results will not be objective upon mesh refinement, i.e. they will be mesh-dependent. 
 One way to eliminate this mesh dependency is to force the area under the stress-strain curve to 
be  Gf /h, where Gf = fracture energy and h = a characteristic length, which may be associated 
with a localization width.  The fracture energy usually varies from 40 to 175 N/m (0.23 to 1 
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     (a)  Parameter b2:  effect on uniaxial tension              (b) Parameter b3: effect on triaxial tensile  
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Figure 4.  Effects of parameters b2 and b3 on tension softening. 
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lbf/in) according to the European CEB-FIP model code (Section 2.1.3.3.2: Fracture Energy) [6]. 
 In a typical analysis, a localization width (width of the localization path transverse to the 
crack advance) is chosen together with Gf, and b2 and b3 are determined by iterative calculations. 
 An example of the effects of b2 and b3 on the stress-strain response of a single element subjected 
to uniaxial and triaxial tensile tests is shown in Figure 4.  If the analysis yields a different 
localization width than anticipated, this should be corrected and the calculation restarted.  These 
parameters will be of importance when the structure analyzed is lightly reinforced or is tension- 
or shear- critical.  In dynamic analyses the localization pattern may vary during the run, 
depending on the relative amount of damping.  The localization width can vary from one to 
several element widths.  Similar considerations should be brought to bear when selecting a value 
for b1 , which governs softening in compression. 

THREE-INVARIANT FAILURE SURFACE FORMULATION 
 
Development of a Three-Invariant Model 
 
 The previous ∆σ versus p relationships actually define only the compressive meridians of 
the failure surfaces in principal stress space.  The original material model 16 assumes the full 
failure surfaces are obtained by rotating these meridians around the hydrostatic axis, thereby 
forming circular cross sections in the deviatoric planes.  The surfaces are functions of pressure 
and the second invariant of the deviatoric stress tensor, J2 , whose square root is proportional to 
the radius of the circle.  A third invariant, such as J3 or Lode angle θ (angular offset in the 
deviatoric plane of the stress point from the image of a positive, i.e. tensile, principal stress axis) 
may be introduced to permit more general shapes in the deviatoric plane, such as the triangular 
curves with smooth corners shown in Figure 5a.  For concrete the deviatoric section typically 
transitions from this shape at low pressures to circular at high pressures.  Figures 5b and 5c show 
the large difference that can exist between the tensile and compressive meridians.  Moreover, the 
difference is amplified when considering failure levels under compressive, proportional loadings, 
represented by rays emanating from the origin in stress space.  These differences can be captured 
in the model only if a third invariant is included. 
 To introduce the third invariant, a dependence on the Lode angle θ (Figure 6a) is sought. 
The shape proposed by Willam and Warnke [7] is adopted, providing a smooth, convex 
triangular surface generated by elliptical segments as shown in Figure 6b.  If rc is the distance 
from the hydrostatic axis to the failure surface at the compressive meridian, and rt the distance at 
the tensile meridian, then at any intermediate position the distance r (rt < r < rc) will be given by 

( ) ( ) ( )
( ) ( )

r =  
2 r r - r + r 2r - r 4 r - r + 5r - 4r r

4 r - r + r - 2r
c c

2
t
2

c t c c
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t
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θ θ
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       (a)  Deviatoric sections for increasing pressure.                      (b)  Hydrostatic section. 
 

 
 

(c)  Typical tensile and compressive meridians. 
 

Figure 5.  Typical failure surface section for concrete from [7]. 
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By dividing both sides by rc , then dividing the numerator and denominator of the right hand side 
by rc

2 , we obtain 
( ) ( ) ( )

( ) ( )
′r  =  

2 1- + 2 - 1 4 1- + 5 - 4

4 1- + 1- 2

2 2 2 2

2 2 2

ψ θ ψ ψ θ ψ ψ

ψ θ ψ

cos cos

cos
 

where ′ = =r r r r rc t c/ /and ψ  .  Note that ′r  depends only on ψ and θ , and that in general ψ in 
turn depends on p. For θ = 0° the formula yields ′ =r ψ  corresponding to pure extension, and for 
θ = 60° it yields ′ =r 1 corresponding to pure compression.  The value of θ can be obtained from  

cosθ =  3
2

s
J
1

2
            or       cos /3 3 3

2
3 2θ =  3

2
J

J
 

where  s1 = first principal deviatoric stress = [ ] - p, - p, - p1 2 3max σ σ σ  ,  (σ1, σ2, σ3) are the 
principal stresses, and the stress invariants J2 and J3 are given by 

( )2 1
2

2
2
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x xy xz

yx y yz

zx zy z

J  =  1
2

s + s + s J s s s
s

s
s

, .3 1 2 3= =
τ τ

τ τ
τ τ

          

Once the value of ′r  is known, the original compressive meridians are multiplied by it to obtain 
the meridian at that location. 
 
 

             
 

           (a)  Angle of similarity θ.                        (b)  Elliptical approximation for 0 < θ < 60. 
 

Figure 6.  Deviatoric plan section in the Willam Warnke model adopted from [7]. 
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Migration Between Fixed Failure Surfaces in Triaxial Extension 
 
 Lacking guidance from laboratory data, the transition between fixed failure surfaces in 
triaxial extension was taken to be the same as in triaxial compression.  This transition is given by 
the λ-η relationship, which has been discussed in sections 3.3.1-2.  If a different transition were 
found for the triaxial extension cases, then a second, independent λ−η relationship would have to 
be implemented. 
 
New Compressive Meridian 
 
 Up to this point in the development it was implied that the compressive meridian is 
known and input to the code, and the extension meridian can be found as a fraction ψ of the 
compression one.  In fact, depending on data availability, in some pressure ranges it is more 
appropriate to define the tensile meridian, and then obtain the compressive meridian from the 
tensile one.  The specification built into the new model results from a combination of both 
approaches, as described here and in the following subsections. 
 For pressures in excess of ′fc / 3  , the input compressive meridian (determined by the 
parameters a0, a1 and a2) does serve as a basis for all the others. 
 For pressures below ′fc / 3  and above −ft  , we limit the maximum tensile stress on the 
extension meridian to ft  .  This uniquely defines the extension meridian as 
∆σ = +15. ( )p ft which passes through both the triaxial tensile test failure point at (p, ∆σ) = (-ft , 
0)  and the uniaxial tensile test point at (p, ∆σ) = (-ft /3, ft) .  At p = fc′ / 3 the two formulations 
are forced to coincide by determining the appropriate value of ψ.  The compressive meridian for 
pressures less than ′fc / 3 then follows as the image of the tensile meridian, i.e., the tensile 
meridian divided by ψ(p) at each pressure p.  The following subsections describe the determina-
tion of ψ(p) in detail.  All three compression failure surfaces (yield, maximum, residual) have 
corresponding tensile images. 
 Given this segmental failure surface formulation and the piecewise linear definition of ψ 
as a function of pressure, the failure surface will not be smooth.  This does not violate any 
fundamental theoretical requirement.  In fact, due to the use of a Prandtl-Reuss flow rule as 
implemented with the “radial return” algorithm, it creates no numerical difficulties either. 
 
Definition of ψ(p) 
 
 To complete the implementation of the three-invariant failure surface, the function ψ(p) 
has to be defined for the full range of possible pressures. 
 As mentioned earlier, for concrete ψ varies from 1/2 at negative (tensile) pressures to 
unity at high compressive pressures.  In order to satisfy various observations for specific triaxial 
stress paths, the values of ψ are preset within the code for several pressures, as follows. 
 
Case p ≤ 0 (tensile pressure). For  p ≤ 0  the tensile meridian has to include the points (p, -∆σ) = 
(-ft, 0) and (p,-∆σ) = (-ft /3, ft), which represent failure in triaxial and uniaxial tensile tests 
respectively.  At p = -2ft /3 the compressive meridian is  
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∆σ
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−

+⎛
⎝⎜

⎞
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2
t

t
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However, this should represent failure in the biaxial tensile test, which test data suggest is 
approximately  given by  ∆σ = ft.  By equating both stress differences, ψ = 1/2  at p = -2ft/3. 
 Another test of interest is the pure shear test in plane stress.  If the coordinates are rotated 
45° in plane, the resulting state of stress is (σ1, σ2, σ3) = (τ, 0, -τ).  Assuming that the maximum 
tensile stress is limited by ft, then τ = ft  at failure.  From  (σ1, σ2, σ3),  ∆σ can be found as: 

∆σ = =3 32J ft    . 

For this test, the principal stress difference is given by ′r  times the compressive meridian, i.e. 

∆σ
ψ ψ

= ′
+

= ′r
p

r
3

2
3
2

( )f ft t  

with ′ = ′ =r r ( , )ψ θ 30o  .  The two expressions are equal provided  ψ = 1/2  at  p = 0 , because 
′ =r ( / , ) /1 2 30 1 3.  Thus uniaxial, biaxial, and triaxial tensile failure and pure shear failure can 

all be plausibly represented with ψ = 1/2  for p ≤ 0.  For example, this gives the nominal 
maximum compressive failure surface the form ∆σm = 3(p+ft). 
 

Case p = fc′ / 3 (unconfined compression test).  At p = fc′ / 3  , the uniaxial unconfined compres-
sive test yields a principal stress difference of ′fc .  The corresponding point on the extension 
meridian is  ∆σ ψ= fc′ .  This should be equal to the defined extension meridian (Figure 7) 

∆σ = + =
′

+
⎛
⎝
⎜

⎞
⎠
⎟

3
2

3
2 3

( )p f
f

ft
c

t   

hence 

Ψ = +
′

1
2

3
2

f
f

t 

c
 . 

This expression actually represents an 
upper limit for ψ.  For example, if  
f ft c′ = 010.  (typical of concretes with 
′ ≤f psic 5000 ) then ψ = 0.65. 

 
Case p = 2 fcα ′ / 3 (biaxial compression 
test).  Biaxial compression tests conducted 
by Kupfer et al. [8] have shown failure 
occurring at (σ1, σ2, σ3) = 
(0, f f withc cα α α′ ′ ≈, ) .115.  The stress 
point lies on the tensile meridian at a 
pressure p = 2 f fc cα ′ ≈ ′/ . /3 2 3 3 and a 
stress difference ∆σ αtm = ′fc .  The 
corresponding point on the compressive 

 
 

Figure 7.  Derivation of ψ for p < 0. 
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meridian is given in terms of the input parameters as 

∆σ
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αcm a
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a a p
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a a
= +

+
= +

′
+ ′0

1 2
0

1 2

2 3
2 3
f

f
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/
( / )

   , 

so the ratio ψ σ σ= ∆ ∆tm cm/   is 

ψ
α

α
α

=
′

+
′

+ ′

f
f

f

c

c

c
a

a a0
1 2

2 3
2 3

/
/

             with  α = 1.15 

 

Completion of definition of ψ.  For computational purposes, the function ψ(p) is piecewise 
linear, using the previously defined values.  For higher compression pressures, two additional 
data points from existing databases were chosen, as follows: 

ψ = 0.753             at  p = 3fc′   , 

ψ = 1           for  p ≥ ′8.45fc    . 

The last entry represents the transition point beyond which the tension and compression 
meridians are equal, and the failure surface becomes a circle in the deviatoric plane.  In 
summary, 

ψ
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α
α
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/ / , / ,

/
/

, / ,

. , ,
, . ,
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p
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and the function is linear between the specified points. 

 
Comparison with previously reported values of ψ.   Based on various experimental data, 
Ahmad and Shah have proposed the following values for ψ [9]: 

    ψ = 0.686           if   1 3 175/ / . ,≤ ′ <p fc  

    ψ = +
′

0 61 0 0435. .
p
fc

  if   175 8 96. / .≤ ′ <p fc  

The proposed values of  ψ  for  p / ′ ≥fc 3 are based on this and additional data for SAC5 
concrete.  For p / /′ =fc 1 3 , using  ψ = 0.686  implies that, in some cases and while unloading 
uniaxially from an isotropic compression state, the failure surface would only be reached for 
σ 1 = ′0.124fc  .  This would probably only happen for concretes with low compressive strengths 
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( ′ ≤f psic 4000 ) , where f ft c/ .′ ≥ 010.  Based on several data sets, Chen [7] suggests that ψ = 0.5  
for p / ′ ≈fc 0 , ψ = 0.8  for p / ′ ≈fc 7. 

 
RADIAL RATE ENHANCEMENT  
 
 Since in typical experiments rate enhancements are obtained along radial paths from the 
origin in the principal stress difference versus pressure plane (via unconfined compressive and 
tensile tests), strength enhancement was implemented in general along radial stress paths. This is 
accomplished as follows. Let rf  be the enhancement factor and p the pressure after calling the 
equation of state subroutine.  The enhanced value ∆σe of the failure surface at pressure p is 
desired, assuming the enhancement factor is applied radially.  To get ∆σe  an “unenhanced” 
pressure  p/rf  is first obtained, then the unenhanced strength  ∆σ(p/rf)  is calculated for the 
specified failure surface.  Finally the unenhanced strength is multiplied by the enhancement 
factor to give 

∆ ∆σ σe f fr p r= ( / )  
This simple formulation presents the following advantages: (1) the code input is obtained 
directly from the test data at the same strain rate, and  (2) strength is equally enhanced along any 
radial stress path, including uniaxial and biaxial tension and compression.  This is far more 
consistent with data than the earlier formulation. 

COMPRESSIVE MERIDIAN IN THE SOFTENING REGIME 
 
Compressive Meridian For Negative Pressures 
 
 With the modifications discussed so far, if  p < 0  and softening is underway, there will 
be a vertical segment in the current 
failure surface (in the p versus ∆σ plane,) due to the reduction in minimum pressure pc.. In other 
words, the current failure surface is given by 

∆σ = η (∆σm - ∆σr) + ∆σr    for p > pc 

and a vertical segment at p = pc.. 

 To avoid this vertical segment but maintain the reduction in magnitude of pc, a 
modified maximum failure surface Y1(p,η) can be defined as follows when pressure is negative 
and softening is under way (λ > λm): 

Y p Y p
p p

p p
Y p p

m
f

c c
m c1 3( , ) ( )

( )
η

η η
= −

−

−
+

⎛
⎝
⎜

⎞
⎠
⎟( ) = ft   

where 

Ym = nominal maximum failure surface in compression = 3(p+ft) , 

pf = intersection of the residual surface with the pressure axis = 0 (for concrete), 

p p p pc m f m( ) ( )η η η η= + − =1   , 

pm = intersection of the maximum surface with the pressure axis = -ft  . 
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As defined, Y1 is continuous with Ym at p = pf = 0. The current failure surface in the softening 
range can then be defined as follows: 

Y p

p p p p

Y p Y
p p

p p
Y p p p p

m f f

m
f

f m
m c f

( , )

( ) ( ) ( ) , ,

( , ) ( ) .
η

η σ η σ

η η η η
=

+ − >

= −
−

−
+ ≤

⎧

⎨
⎪

⎩
⎪

∆ ∆1

31 ( ) = ft
 

 The formula above is uncorrected for rate enhancement.  The correction follows as 
outlined in Section 3.5. Given an updated pressure p (which implicitly includes effects of rate 
enhancement), the corresponding “unenhanced” state is denoted by pu = p/rf where rf is the 
enhancement factor.  The current unenhanced failure surface for negative pressures can be 
written as 

Y p Y p r p
r

p r p pu u f
f

f f f( , ) =  ( / , ) = f for / < (  for concrete)  tη η η η1 3 0+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =  

The corresponding enhanced failure surface follows by multiplying by rf : 

Y p r Y p r
p p r
p p

Y p p re f m f
f f

f m
m c f( , ) ( / )

/
( ) ( )η η η= −

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +3 ft    . 

Corrections to the Flow Rule 
 
 The foregoing modification has the undesirable effect of complicating the dependence of 
the failure surface on p and η.  The expressions for the updated stresses and the increment dλ of 
the damage parameter must be also modified.  The derivation, which is based on the assumption 
of Prandtl-Reuss (volume-preserving) plastic flow, is presented in Reference [2]. 
 

SHEAR MODULUS CORRECTION 
 
 With the constant Poisson’s ratio option and equation of state 8, the original model 16 
computes the elastic shear modulus from the specified constant Poisson’s ratio and the current 
unload/reload bulk modulus.  This can easily lead to a negative effective Poisson’s ratio on 
loading whenever there is a large enough disparity between loading and unload/reload bulk 
moduli.  In a first attempt at correcting this deficiency, the shear modulus was made dependent 
on whichever bulk modulus was currently in effect.  However, this method failed because even 
infinitesimal pressure oscillations, for example during an unconfined compressive loading, led to 
large shear modulus oscillations which did not reflect the nominally continuously increasing 
load.  In addition, these oscillations were encouraged by the fact that elastic energy could be 
generated whenever pressure increased while shear stress decreased. 
 A better approach is to compute the shear modulus based on a scaled bulk modulus, one 
which varies from the loading to the unload/reload value depending on how far the pressure is 
below the virgin curve.  A scaling factor which varies from zero to unity as pressure drops from 
the virgin loading curve to pf  is given by 

ϕ  = 
−

− + −
∆

∆
ε

ε ( ) /p p Kf U
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where ∆ε ε ε ε= −v v v,min , is volumetric strain, and  KU  is the unload/reload bulk modulus from 
equation of state 8.  If  KL  is the corresponding loading modulus, the scaled bulk modulus is 

 K′ = (KL - KU) e - 5.55ϕ  + KU 

where the constant 5.55 is chosen so that K′ will increase half way to the unload/reload value 
when p has dropped 1/8 of the way from the virgin curve to pf.  The shear modulus is then 
calculated as 

G = (1.5 - 3ν) K′ / (1+ ν) 
 
 
 

APPLICATION EXAMPLE:  SUBSTANTIAL DIVIDING WALLS  
 

 Substantial dividing walls (SDW’s) in munitions production, maintenance, and storage 
facilities are used to subdivide explosives to prevent sympathetic detonation and to provide 
operational shields for personnel.  They are 12 inch thick concrete walls with #4 reinforcing bars 
at 12 inch spacings on each face and in each direction, and without any shear reinforcing.  
Current Army and Air Force safety regulations assume that the 12 inch SDW’s will prevent 
propagation for up to 425 pounds of Class/Division 1.1 explosives.  This example was initially 
analyzed to provide a verification of the propagation prevention limits of the 12 inch SDW [10]. 
 Although both the mass and velocity of secondary fragments are used for their capability 
of detonating the acceptor charge, only their velocity is estimated in this example.  This is due to 
the difficulty for current analytical models to provide reliable estimates of fragment sizes. 
Established criteria indicates expected velocities of 400 to 500 feet per second for typical 
fragment sizes. 
 

LOAD DEFINITION 
 
 Definition of airblast loadings was performed using two widely used Navy codes: 
SHOCK [11] to produce the shock loading (early time airblast) resulting from the incident blast 
wave and FRANG [12] to compute the gas pressure (late time airblast) resulting from expansion 
of the detonation products and heating of the air within the room. The process adopted was to 
compute loads independently of the response of the wall, i.e., the walls were assumed to be rigid. 
The assumption of rigid boundary conditions is considered reasonable for this set of problems 
because the shock pressure pulse lasts less than a millisecond, in which time the wall has not yet 
moved significantly. 
 

TEST DESCRIPTION 
 
 A description of the selected test (C6) and the relevant design data was obtained from 
Reference [13]. This experiment was conducted in the early 1960’s at the Naval Ordnance Test 
Station (NOTS) in China Lake, California and consisted of a cased donor munition placed within 
a cubicle with three side walls (no roof) with numerous acceptor charges placed immediately 
outside the dividing walls.  The charge (272 lbs) was detonated, resulting in complete destruction 
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of the dividing wall but no sympathetic detonations.  Data from Reference [13] indicates that C-6 
fragments were measured at a velocity of 500 ft/sec. 
  
 

STRUCTURAL MODEL 
 
 The discretization used to represent a typical SDW in the parametric calculations is 
shown in Figure 8, which illustrates a model with three supported sides (one side wall is 
frangible).  The model for a wall with two supported sides (roof is also frangible) is similar, 
except that the stub along the roof line is omitted.  In both cases no significant in-plane restraints 
exist for the walls, hence no significant effects from shear dilation are expected.  The selected 
mesh has 6 brick elements through the thickness for the concrete, one for the cover on each side 
and four inside the rebar cage.  Reinforcing steel was modeled using truss elements at 12 inch 
spacings in each direction.  The model used for steel, identified in DYNA3D as Material 19, has 
similar features to the concrete model: inclusion of strain rate effects, non-linear post-yield 
hardening, and failure upon reaching a pre-defined level of strain.  This last property is essential 
as bar failure is observed in each one of the runs performed, and without accurate representation 

Table 1.  Summary of steel properties. 
 Yield Stress (ksi) Ultimate Stress (ksi) Fracture Strain

Steel Grade Static High Rate Static High Rate (%) 
40 40 52 110 128 12 
60 69 90 131 153 11 

                         
Figure 8. View of DYNA3D concrete and steel meshes (3-sided support). 
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of the breakage of reinforcing bars, the resulting 
secondary fragment velocity could not be adequately 
predicted. An example of the stress strain curves 
required as input for this material is presented in Figure 
9: one for static properties, one for infinite rate (limit 
case), and one for an intermediate value at which 
properties have been measured (see also Table 1). This 
allows independent scaling of yield and ultimate 
strengths as a function of strain rate. 

 
 

 
ANALYTICAL PREDICTIONS  VERSUS TEST 
RESULTS FOR TEST C-6 
 
 Two runs were performed for this case to assess the desirability of using finer meshes, 
one with a 2-inch element size (fine) and one with a 4-inch element (coarse). The resulting 
deformations were quite similar in shape, and the general type of failure was localized breaching 
in the immediate area of the charge, with shear failure along the floor and side wall.  Figure 10 
shows the deformed shapes for the original and current versions.  The original model’s sudden 
stress release upon uniaxial tensile fracture explains the backface spalling and large boundary 
deformations.   The original model excessive energy dissipation in biaxial tension explains the 

St
re

ss

Strain

ε = ∞

ε = 0.003 

ε = 0

Fracture
Strain  

Figure 9. Inputs to material 19 (steel). 

 
 (a) Original version.     (b)  Current version 
 

Figure 10.   Comparative results for original and current versions. 
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reduced deformations at the load level. 
 Figure 11 shows the horizontal 
velocity of a node on the front face of 
the slab located approximately one foot 
above the intersection of the dividing 
wall with the floor, in line with the 
charge.  This represents the location of 
maximum velocity and greatest 
damage.  The time histories indicate 
that the slab has clearly failed since 
there is little or no late time reduction 
in velocity due to failure of the 
concrete and reinforcing steel.  The 
calculations predicted fragment 
velocities 470 ft/s for the fine mesh.  
This compares well with the expected 
500 ft/s and is a clear improvement on 
the 170 ft/s prediction with the original 
model. 
 In conclusion, the tests results 
appear to confirm the validity of the 
analytical models, both with regard to the predicted secondary fragment velocity as well as the 
level and mode of damage incurred by the dividing walls.  Significant improvements were 
obtained with the enhanced version of the concrete material model. 
 

 IMPLEMENTATION OF SHEAR DILATION 

EXPERIMENTAL OBSERVATIONS 
 
 Concrete subjected to shear stresses exhibits dilation in the direction transverse to the 
shear stress plane.  Upon cracking the dilation is expected to continue due to aggregate interlock 
until the crack opening is large enough to clear the aggregates on both sides.  This implies there 
is a limit in the amount of dilatancy.   
 In the presence of a constraint normal to the shearing  plane, such as an external force or 
steel reinforcement across the plane, the shear capacity across the plane increases.  This can be 
observed in tests by K&C [14]  (Figure 12) and Reinhardt and Walraven [15] (Figure 13) among 
others [16].  In the tests by K&C the joint was tested both monolithically (uncracked) and 
precracked. 
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Figure 11. Velocity time histories. 
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Figure 12.  Effect of lateral pressure on shear transfer across a joint, from [14]. 
 

 
Figure 13.  Influence of shear reinforcement ratio ρ on shear stress and on crack opening [15]. 
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THEORY AND IMPLEMENTATION 
 
 In the original version, a constant 
volume Prandtl-Reuss model had been 
implemented.  This is a particular case of 
non-associative flow rule (θ=θN in 
Figure 14).  That model has the 
shortcoming of not being able to 
represent the dilatancy due to shearing.  
Other models have implemented 
associative flow, where the plastic strain 
increment is normal to the failure surface 
(Figure 14).  However it is known that 
this yields excessive dilation due to 
shear.  In the current version a general 
non-associative flow rule is implemented 
[17,18] where the amount of partial 
associativity is indicated by an input 

parameter ω. 
 

PRANDTL-REUSS (NON-DILATANT) FLOW RULE 
  
 To set the stage for the partially associated flow rule, the non-dilatant one is first derived. 
 In matrix symbolic notation, the decomposition of strain increments into elastic and plastic parts 
is 

d d d d Cdp eε ε ε σ µ σ= + = ′ +  
where σ′ is the deviatoric stress and C the (fourth order) elastic tensor, and where we have 
assumed Prandtl-Reuss (volume-preserving) plastic flow.  Premultiplying by C -1, 

C d C d d− −= ′ +1 1ε σ µ σ    . (1) 
The left-hand side of (1) is the “trial elastic stress increment” dσ * , and C G− ′ = ′1 2σ σ , where G 
is the shear modulus, so (1) simplifies to 

d G d dσ σ µ σ* = ′ +2    . (2) 
(In this discussion we regard the pressure change as part of the trial elastic increment, since with 
Prandtl-Reuss flow it can be computed immediately and completely once the strain is known.)  
Multiplying (2) by ∇σ f , the gradient with respect to stress of the failure function 

f J Y= ′ −3 2 ( , )σ λ   , 
( ) * ( ) ( )∇ = ∇ ′ + ∇σ σ σσ σ µ σf d G f d f d2    . (3) 

Here, Y is proportional to the radius of the failure surface measured normal to the hydrostatic 
axis in principal stress space, and λ is the hardening parameter.  Now by differentiating the 
consistency equation f ( , )σ λ = 0  (which ensures that the stress point remains on the failure 
surface during plastic flow), we have 

( ) ( ), , ,∇ + = ⇒ ∇ = − =σ λ σ λ λσ λ σ λ λf d f d f d f d Y d0  (4) 

 
 

Figure 14.  Associative and non-associative flow 
rule. 
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where the comma denotes a partial derivative.  Using (4) in (3) gives 
( ) * ( ) ,∇ = ∇ ′ +σ σ λσ σ µ λf d G f d Y d2    . (5) 

On the other hand, the increment in the hardening parameter λ will be related to the plastic strain 
increment: 
 d h d h d d h d g dp

ij
p

ij
pλ σ ε σ ε ε σ σ σ µ σ µ= = = ′ ′ =( ) ( ) ( / ) ( ) ( / ) : ( )2 3 2 3  (6) 

where we have defined g h( ) ( ) ( / ) :σ σ σ σ= ′ ′2 3 .  In this model we further define 

( )
( )

h
s r p r p

s r p r p

f f
b

f f
b

( )
[ ( / )( )] / , ,

[ ( / )( )] / , ,
σ =

+ − + >

+ − + <

⎧

⎨
⎪

⎩⎪

− −

− −

1 100 1 1 0

1 100 1 1 0

1

1

1

2

f

f

t

t

 

where the parameters are defined in Section 4.2.  By substituting dλ from (6) into (5) and solving 
for dµ, 

d f d
G f Y g

µ
σ

σ σ
σ

σ λ
=

∇
∇ ′ +
( ) *

( ) ( ),2
     . (7) 

 Equation (7) can be made more explicit by rewriting the failure function in terms of stress 
invariants.  The case of interest has 

f J Y p( , ) $( , , )σ λ θ λ= ′ −3 2     (8) 
where θ is the Lode angle, which satisfies 
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   . 

By the chain rule, the components of the gradient with respect to stress of (8) can be written 
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 (10) 

Now (9) and (10) can be used to write the first term of the denominator of (7) in the form 

2 2 3 2G f G J
ij

ij
∂

∂σ
σ′ = ′    . (11) 

It is very interesting to note that the gradient terms involving the Lode angle and pressure 
derivatives vanish.  There is a geometrical explanation for this:  In principal stress space, (11) is 
a dot product between two vectors, the gradient and the deviatoric stress.  At the current stress 
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point, decompose the gradient into three orthogonal components, in the directions of p, ′σ , and 
θ.  Only the component in the direction of ′σ , corresponding to the first term on the r.h.s. of (9), 
contributes to the dot product. 
 
 Using (11) in (7),  

d f d
G J Y g

µ
σ

σ
σ

λ

=
∇

′ +
( ) *

$ ( ),2 3 2
   . (12) 

From an analytical standpoint, equation (12) completes the incremental solution to the problem, 
since it could be used in (2) and (6) to give dσ and dλ in terms of dε.   

RADIAL RETURN IN THE NUMERICAL IMPLEMENTATION 
 
 In preparation for numerical implementation, (12) can be simplified somewhat by 
observing that if σn  is the stress at the beginning of the current time step, then f n( )σ = 0 , so a 
Taylor series expansion gives f f d f dn( *) ( *) ( ) *σ σ σ σσ= + ≅ ∇  .  But by definition, 

f J Y( *) * *σ = ′ −3 2   .  Thus 

d
J Y

G J Y g
µ

σλ

=
′ −
′ +

3
2 3

2

2

* *
( ),

   . (13) 

 For an accurate, efficient numerical solution, more work is required, in part because 
using just the first-order equations (2,6,12) would not leave the stress point precisely on the 
failure surface at the end of the time step.  Therefore the idea of “radial return” is introduced.  
Equation (2) shows that the stress increment dσ  can be regarded as consisting of two parts: the 
elastic trial increment and a second part which is collinear with the current deviatoric stress 
itself.  In principal stress space, any “stress vector” parallel to a purely deviatoric one is normal 
to the hydrostatic axis.  Since at the end of the time step the stress point must be on the failure 
surface, the second part of the stress increment can be considered a “radial return” to the failure 
surface in a plane normal to the hydrostat.  The difficulty is to know where the failure surface 
should be at the end of the time step, because it will have moved during the time step. Our 
function $Y  depends on pressure and Lode angle as well as hardening parameter.  However, 
neither of the first two changes during the radial return, so their effect on $Y  will be fully 
accounted for by the elastic trial stress increment, and it is only necessary to consider the 
hardening parameter’s effect on the failure surface location once the trial elastic increment is 
applied.  The procedure is therefore to locate the failure surface according to the trial elastic 
stresses, then to use essentially a first order approximation for the increment in the hardening 
parameter to further move the failure surface due to strain hardening, and finally to radially scale 
the deviatoric stress components back from the trial elastic point so that they lie exactly on the 
new surface. In fact the only reason for computing dµ is to use it in the first order approximation 
for the new failure surface location. The stress changes during the last step would of course 
agree to first order with those corresponding to the negative of the first term on the right-hand 
side of (2), but the radial return scheme guarantees that the stress point will be on the failure 
surface, to within machine accuracy, at the end of each finite time step. 
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 Now recall that Y* denotes the failure surface corresponding to the updated pressure and 
deviatoric stresses including the trial elastic stress increment, but the prior value of λ .  If Yn+1 
denotes the fully updated surface, the increment due to λ alone is approximated as 

Y Y Y d Y g d
Y g J Y

G J Y gn+ − = = =
′ −
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2

2

3
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λ σ µ
σ

σ
   .   (14) 

This is the update to the failure surface after the trial elastic part.  It only remains to scale back 
the trial stress by the factor that follows from (14): 
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FRACTIONALLY ASSOCIATED FLOW 
  
 If the plastic flow were fully associated, we would have 

d f dp assocε µσ
, ( ) ~= ∇  

where d~µ  is a proportionality constant.  Again, consider the components of the gradient in 
principal stress space, in the directions of p, ′σ , and θ.  Assume the θ-component does not 
produce plastic flow, and that the p-component produces only a fraction ω of that which would 
occur if fully associated.  With reference to (8,9,10), the plastic strain components are then 

d
J

J Y
p

p d
J

Y
d m dij

p

ij ij

ij p ij
ij ijε

∂
∂σ

ω
∂
∂

∂
∂σ

µ
σ ω δ

µ σ δ µω, ,$ ~ $ ~ ( )=
′

′
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

′

′
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ′ +

3
2 3

3
2 3 32

2

2
 

or, symbolically, 
 d m I dpε σ µ= ′ +( )  , (16) 

where m J Y p= ′2 3 92ω $ /,  ,  I is the identity tensor, and where the proportionality constant dµ is 
just a re-scaled version of d~µ  .  Proceeding analogously with the non-dilatant case, the full strain 
increment is 

d m I d Cdε σ µ σ= ′ + +( )   . (17) 
Noting that C I KI− =1 3  where K is the bulk modulus, (17) becomes 

d G mKI d dσ σ µ σ* ( )= ′ + +2 3    .  (18) 
Multiplying by the stress gradient, using (4) and (6), and solving for dµ , 

d f d
G f mK f I Y g

µ
σ

σ σ
σ

σ σ λ

=
∇

∇ ′ + ∇ +
( ) *

( ) ( ) $ ( ),2 3
   . (19) 

Noting that  

( ) $ $
, ,∇ = = − =σ

∂
∂σ

∂
∂σ

f I f Y p Y
kk

p
kk

p   , 

and using (11), the definition of m following (16), and the comments preceding (13), equation 
(19) simplifies to 
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   . (20) 

 Now assume the radius of the failure surface takes the form 
$( , , ) $[ ( ), ] $ ( , )Y p r p Y pcθ λ ψ θ λ=    , 

where $ ( , )Y pc λ  is the compressive meridian (i.e., the failure surface in conventional triaxial 
compression, at θ=60°),  ψ( )p  is the ratio of the failure surface radius in extension to compres-
sion, and $[ ( ), ]r pψ θ  is a dimensionless function giving the current radius of the failure surface as 
a fraction of the compressive meridian.  In the current K&C/LRDA version of DYNA3D model 
16, ψ( )p  varies from 1/2 to unity as pressure varies from the minimum allowable (set to the 
negative of the tensile strength) to positive infinity; while the function $( , )r ψ θ  is based on the 
Willam-Warnke failure surface and takes the form 

$( , )
( )cos ( ) ( )cos

( )cos ( )
r ψ θ

ψ θ ψ ψ θ ψ ψ
ψ θ ψ

=
− + − − + −

− + −
2 1 2 1 4 1 5 4

4 1 1 2

2 2 2 2

2 2 2    . 

 One effect of this formulation is to complicate the algebra needed to compute dµ (and 
subsequently − through equation (16) − the plastic volumetric strain increment).  The p-
derivative in (19) will involve not only the variation of the compressive meridian $ ( , )Y pc λ , but 
also the variation of $[ ( ), ]r pψ θ . 

IMPLEMENTATION OF FRACTIONAL ASSOCIATIVITY 
 
 Here, in order, is an outline of the numerical procedure for updating the stresses.  On 
entering the subroutine (f3dm16), the total strains will already have been updated according to 
the equation of motion.  Three successive stress states are involved: current, denoted with the 
subscript n , where the stresses are those from the previous time step; trial elastic, denoted by 
superscript * , where the stresses have been updated according to certain elastic moduli and 
strain increments to be detailed below; and final, denoted by subscript n+1, the fully updated 
state. 
 
1. Compute the bulk modulus K and trial elastic pressure p* from the EOS based on the 

difference between the total volume strain and the current plastic volume strain.  The latter 
must be stored and updated for each element throughout the course of the calculation.  The 
array epx5 is used for this purpose.  It had been used for the tensile cutoff in the original 
model 16, but is no longer needed for that purpose since now the tensile cutoff is incorpo-
rated in the failure surface.  The structure of DYNA3D requires that the strain difference be 
computed in subroutine sueos8, called from within f3dm16, so a minor change to the former 
is required. 

  
2. Compute the shear modulus based on bulk modulus, Poisson’s ratio, and the extent of 

unloading in the pressure-vs-elastic volume relationship 
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3. Compute the trial elastic deviatoric stress increments based on the shear modulus and total 
deviatoric strain increments.  Add them to the current deviatoric stresses and combine with 
the trial elastic pressure to give the full trial stress state σ*. 

  
4. Compute the Lode angle corresponding to the trial elastic state.  Since flow is nonassociated 

in deviatoric planes, this angle will not change any further.  It becomes θn+1  
  
5. Compute Von Mises effective stress 3 2′J * and failure surface radius Y Y p n n* $$( *, , )= +θ λ1  , 

the latter based on the trial elastic pressure, trial elastic Lode angle, and current damage 
parameter λn .  If  3 2′ <J Y* * , this increment is elastic, the trial state becomes the final 
state, and no further computation is required. 

  
6. Compute dµ  from (20), basing all stress-dependent terms on the trial elastic stresses.  As 

noted in the discussion following (20), the pressure derivative $,Y p  is complicated. 
  
7. The final failure surface Yn+1  will differ from Y * due both to a further change in pressure 

(from the trial elastic state) and to the increment dλ in the damage parameter.  Therefore, 
compute a final failure surface radius from 

Y Y Y dp Y dn p
p

+ = + +1 * $ $
, ,λ λ 

 The increments in this formula are computed as follows: from (18) the additional pressure 
increment dp p   is 3mKdµ .  From (6), using the trial elastic stress we have d g dλ σ µ= ( *) . 

  
8. Scale the deviatoric stress components back to the final failure surface according to 

′ = ′+ +σ σn nY Y1 1( / *) * 
9. Update the pressure, damage parameter, and plastic volumetric strain according to 

p p dp d mdn
p

n n n
pv

n
pv

+ + += + = + = +1 1 1 3* , ,λ λ λ ε ε µ  
 the latter following from (16). 
  

APPLICATION TO LATERALLY CONFINED CONCRETE CYLINDERS 

 Lateral confinement of circular columns via steel or composite jackets significantly 
enhances the columns ductility when subjected to strong motion earthquakes and blast loads.  
The column jacketing system is dependent on the lateral dilation of the concrete for development 
of the confining action.  Concrete in uniaxial unconfined compression exhibits a constant 
Poisson ratio of about 0.2 until approximately 75% of the compressive strength, corresponding 
to a volumetric compression phase.  At that point extensive internal cracking starts developing 
and the apparent Poisson ratio starts increasing to 0.5, where there is no further volume variation. 
 For increasing compression the apparent Poisson ratio keeps increasing until the overall 
volumetric strain becomes zero, then becomes positive (net volume increase).  This is shown in 
qualitatively in Figure 15a [19].  The ability of the numerical material model to reproduce the 
volumetric expansion phase is the key to the proper representation of the jacketing confinement 
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effect.  Figure 15b shows the corresponding output from the new concrete material model for a 
single concrete element. 

 
 ASTM C39 compression tests carried out on 6-inch (15.2 cm) diameter concrete 
cylinders jacketed with two layers of a carbon composite resulted in a strength increase of 20% 
at a peak strain of about 0.005.  Figure 16a shows the test results for plain and jacketed concrete 
cylinders.  Figure 16b shows the DYNA3D predictions for both cases.  It is apparent that the 
material model is able to properly represent the jacketing effects. 
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  (a) Typical test results            (b) numerical model predictions 
 

Figure 15.  Strain histories in an uniaxial unconfined compression test. 
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       (a)  Test results          (b) Numerical model 

Figure 16.  Compression test results on standard cylinders with and without wraps. 
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CONCLUSIONS 

 The concrete material model in DYNA3D was significantly modified to properly 
represent material behavior along multiple radial paths in the ∆σ versus p space, including 
uniaxial, biaxial and triaxial tension and compression.  The plasticity model was extended to 
replace the tensile cutoff and provide a smooth transition to the residual failure surface.  A new 
algorithm captured strain rate effects properly in any radial path.  This enhanced Prandtl-Reuss 
model has shown to properly represent the blast response of Substantial Dividing Walls 
subjected to standard charges. 
 Further modifications were implemented to include shear dilation.  This latter model was 
then applied to the case of laterally restrained cylinders under uniaxial compression. 
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