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Abstract 
Continuum mechanics is used to model the mechanical behaviour of concrete 
structures subjected to high rates of loading in defence applications. Large 
deformation theory is used and an isotropic elastic-plastic constitutive equation with 
isotropic hardening, damage and strain rate dependent loading surface. The 
hydrostatic pressure is governed by an equation of state. Numerical analysis is 
performed using the finite element method and the central difference method for the 
time integration. 
Projectile penetration is studied and it is concluded that it is not suitable to use 
material description of the motion of both the target and the projectile together with 
an erosion criterion. Instead, the material description should be used only for the 
projectile and the spatial description for the target. In this way the need for an erosion 
criterion is eliminated. Also, in the constitutive model used it is necessary to introduce 
a scaling of the softening phase in relation to the finite element size, in order to avoid 
strain localization. 
Drop weight testing of reinforced concrete beams are analysed, where a regularisation 
is introduced that renders mesh objectivity regarding fracture energy release. The 
resulting model can accurately reproduce results from material testing but the 
regularisation is not sufficient to avoid strain localization when applied to an impact 
loaded structure. It is finally proposed that a non-local measure of deformation could 
be a solution to attain convergence. 
The third study presents the behaviour of a concrete constitutive model in a splitting 
test and a simplified non-local theory applied in a tensile test. The splitting test model 
exhibits mesh dependency due to a singularity. In the tensile test the non-local theory 
is shown to give a convergent solution. The report is concluded with a discussion on 
how to better model concrete materials. 
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1 Introduction 
The use of conventional weapons against fortifications gives rise to fast and large 
loadings, cf. [1]. In order to assess or optimize the protection level of a structure there 
are two possible methods; tests and mathematical modelling. Each one of them has its 
advantages and disadvantages but if used together they can render a powerful tool. 
The Swedish defence research agency, FOI, has been involved in experimental work 
for decades and there exist a great knowledge in this field. Different types of 
mathematical models have been used but it is only since 1994 that continuum 
mechanics together with numerical analysis have been employed more regularly. 
Today there exist several numerical tools with the techniques needed to solve the 
problems at hand. The part still not mastered in a satisfying manner is the constitutive 
modelling at high rates of loading. This work has been focused on the mechanical 
constitutive modelling of concrete material at high loading rates, in particular impact 
loading. 
Research in the field of mechanical constitutive equations for concrete subjected to 
high loading rates started with the experimental investigation presented in Abrams [2]. 
Since then many studies have been devoted to this area. Most of the found knowledge 
on three-dimensional stressing of concrete is compiled in the European construction 
code, cf. [3]. This code is however only valid for constant strain rates in the range 
from 0 to 102s-1 in compression and 3·102s-1 in tension. In penetration problems strain 
rate values of order 104s-1 occur. Important contributors to the content in this code 
are Kupfer [4], William and Warnke [5] and Ottosen [6] on the shape of the loading 
surface, Hillerborg [7] on the softening behaviour and Reinhardt [8] on the effects of 
loading rates. Fundamental work on the constitutive modelling of concrete subjected 
to high rate of loading can be found in Nilsson [9] and Nilsson and Oldenburg [10]. A 
comprehensive textbook on the modelling of concrete is Chen [11]. 
The mechanical behaviour of concrete materials is complex. The inelastic behaviour is 
not related to the motion of dislocations as for metallic materials. Instead, the 
fracture, buckling and crushing of the cement paste and aggregate microstructure are 
the main mechanism of inelasticity. In a uniaxial deformation the response is 
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approximately linearly elastic in a regime, during which micro cracks are developed. 
As the deformation increases the amount of cracks increases and they propagate 
through the material. In extensional deformation the crack planes are orthogonal to 
the load direction and in compression they are parallel to the load direction. During 
these two phases the material exhibits stable cracking or hardening. A peak stress is 
reached at a point where one goes into unstable cracking or softening. If hydrostatic 
pressure is present the material shows a residual strength. Concrete also displays 
dilation, i.e. volume change, in the inelastic range. For a triaxial test the development 
of cracks is restrained and the equation of state displays tree different phases: elastic, 
compaction and solidification. During the compaction phase the water and air filled 
pores in the material collapses and in the final solidification phase the material is 
approximately homogenous and the volumetric response is once again linearly elastic. 
Also, the strain rate influences the material response. Two mechanisms have been 
identified to explain this. In the lower range (<1-10 s-1) it is the water filled pores that 
increase the strength through viscous effects. In the higher range the development of 
micro cracks is restrained due to inertia effects, i.e. the cracks do not have time to 
develop. Practical limitations make it difficult to model these two mechanisms 
explicitly and they are hence considered as discrete phenomena. Incorporation of 
these two discrete phenomena must then be done in the mathematical model through 
the constitutive equation. 
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2 Continuum mechanics 
In physics there are two viewpoints in modelling the nature of matter, discrete and 
field theories. In field theories, or phenomenological theories, continuous fields 
represent matter, motion energy etc. Continuum mechanics is defined as the 
mechanics of deformable media without consideration of the internal material 
structure, c.f. Truesdell and Noll [12]. Continuum mechanics can be further 
subdivided into fluid mechanics and solid mechanics. 

2.1 Kinematics 
Kinematics is the study of motion and deformation of a body within a mathematical 
framework. 

2.1.1 Motion 
The motion of a body is described by a smooth mapping of the material, or reference, 
configuration onto the spatial, or current, configuration. 

( )t,Xxx =  (1) 

A general motion consists of translation, rotation and deformation. The material 
particles X constituting the body are here identified with their position vector X in the 
material configuration schematically shown in Figure 1. 
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{ } BX =
( )X0x

{ } 0B=X
( )t,Xx

{ } B=x

Figure 1 The smooth mapping x(X,t) of the material (or reference) configuration B0 onto the 
spatial (or current) configuration B. 

The displacement of a material point is given by 

( ) ( ) XXxXu -tt ,, =  (2) 

and the velocity and acceleration of a material point respectively by 

( ) ( ) ( )t
t

t
t

t ,,, XuXxXv
∂
∂

=
∂
∂

=   (3) 

( ) ( ) ( )t
t

t
t

t ,,, 2

2

XuXvXa
∂
∂=

∂
∂=   (4) 

The material time derivative for spatial quantities is 

( ) ⋅∇+⋅
∂
∂

=⋅ t
tt

,
D
D

Xv   (5) 

where the last term on the right hand side is called the convective or transport term. 

2.1.2 Deformation 
The deformation of a body is characterized by the deformation gradient defined as 

( )t,XxF X∇=  (6) 

where∇X is the gradient with respect to the material configuration 

⋅
∂
∂

=⋅∇
XX  (7) 

When the motion of a body gets larger, i.e. when the deformation gradient differs 
much from the identity tensor, we cannot use the linear measure of strain defined as 
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( )[ ]T

2
1

uuε XX ∇+∇=  (8) 

The inadequacy of this strain is that it is non-zero for an arbitrary rigid body rotation. 
The rate of deformation tensor D is a spatial tensor that measures the rates of change 
in length of a spatial line segment and of their relative orientations. D is defined as 

( )T

2
1

LLD +=   (9) 

where 

( )T1

D
D

vF
F

L X∇== −

t
 (10) 

The rate of deformation vanishes for any rigid body motion but it has another 
drawback, it is path dependent. If it is integrated in a closed deformation cycle it does 
not necessarily vanish when returning to the initial configuration violating the field 
equation for energy balance, see Section 2.2.1. However, if the elastic strain is small 
compared to the total strain and the dissipation is small, the error in elastic strain 
energy is negligible, cf. Belytschko et al. [13]. Also, for the applications at hand the 
loadings are mainly monotonic. The rate of deformation is the most commonly used 
measure of deformation in finite element codes, and it is also the basis for the 
constitutive model used in this study, see Section 2.2.2. The rate of deformation 
tensor is integrated in time to give the strain 

∫=
t

dt
0

DE  (11) 

For uniaxial deformation this strain is equal to the logarithmic strain 









== ∫

00

log
L
LdtDE e

t

xxxx  (12) 

where L and L0 are the reference and current length, respectively. This holds true for 
the multiaxial case only if the principal axes of deformation are fixed, cf. Belytschko et 
al. [13]. 

2.2 Dynamics 
Dynamics is the study of the mathematical relations between loading of a body and 
the resulting deformations. The coupled system of partial differential equations to be 
solved is referred to as a boundary-initial value problem. 
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2.2.1 Field equations 
The field equations of solid mechanics are here given in their local spatial form. 
� Mass 

0
D
D

=⋅∇+ vρρ
t

 (13) 

where ρ is the density. 
� Linear momentum 

0abσ =−+⋅∇ ρρ  (14) 

where σ is the true, or Cauchy, stress tensor and b is the volume force per unit mass. 
� Angular momentum 

σσ =T  (15) 

� Energy 

Dσ :
D
D

=e
t

ρ   (16) 

where e is the specific internal energy per unit mass. 

ne BBB ∂∪∂=∂

B

 

Figure 2 A deformable body B with boundary ∂B. 

To arrive at a well-posed problem, initial- and boundary conditions have to be stated. 

( ) ( )
( ) ( ) conditionsBoundary 

,
,

nn

ee





∂∈=
∂∈=

Bt
Bt

XXtnXσ

XXvXv
  (17) 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

conditionsInitial 

0,
0,
0,
0,

0

0

0

0

B

ee

ρρ

∈










=
=
=
=

X

XX

XvXv

XuXu

XX

 (18) 

The field equations do not allow for singular surfaces or jumps in a quantity, such as 
fracture and chock waves. However, chock waves are handled in numerical 
continuum mechanics using an artificial bulk viscosity, cf. Neumann and Richtmyer 
[14]. 

2.2.2 Constitutive equation 
The rate of deformation tensor can be split additively into an elastic and an inelastic 
part as 

iee DDD +=   (19) 

The model used in this study is based on hypoelasticity, cf. Truesdell and Noll [12], 
where the stress rate is a linear function of the rate of deformation. The material time 
derivative of the true stress tensor is a non-objective tensor, i.e. it is not invariant 
under an arbitrary change of frame of reference, cf. Ogden [15], and cannot be used 
directly as a measure of the stress rate. This problem is circumvented by the use of an 

objective rate. In this study the Jaumann rate, 
o

σ , cf. Lubliner [16], has been used. 

TeT :
D
D

σWWσDCσWWσσσ ++=++=
o

t
 (20) 

where 

( )T

2
1

LLW −=  (21) 

and C is the tensor of elasticity. The Jaumann rate has been shown to provide 
incorrect results for simple elastic shearing, cf. Belytschko et al. [13]. In Figure 3 to 
Figure 5 the resulting stresses for the isotropic linear elastic case are shown from three 
different objective stress rates with equivalent elastic material parameters. For the 
material and applications in this study the elastic deformations are negligible 
compared to the total deformation. Thus the Jaumann rate can be used. 
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Figure 3 Normal stress parallel 
to the shear direction. 

Figure 4 Normal stress 
orthogonal to the shear direction.

Figure 5 Shear stress. 

The first mathematical models of the mechanical behaviour of concrete were based 
on isotropic, linear hyperelasticity combined with a failure criterion in tension, cf. 
Chen [11]. These models were restricted to problems where brittle failure in tension is 
prevailing and they soon showed to be inadequate for many problems. 
Mechanical testing of concrete revealed that the strength of concrete depended on all 
three invariants of the stress tensor. To model this behaviour attention was turned 
towards the theory of plasticity, cf. Hill [17], from which the idea of an elastic domain 
in stress space bounded by a failure surface was adopted. One or combinations of 
new and existing functions, for example von Mises, Rankine, Mohr-Coulomb and 
Drucker-Prager, were used to describe the failure surface. Two of the most widely 
used functions are due to Ottosen [6] and William and Warnke [5], used for example 
in the CEB-FIP model code [3]. 
Refinement of the models, still within the ideas of plasticity theory, included the 
addition of an initial elastic domain bounded by a yield surface and a corresponding 
hardening rule. All of the functions mentioned so far are open surfaces in stress space, 
but from tests it was observed that the elastic domain should be closed. This has been 
modelled using either a separate function for the volumetric behaviour or closed 
functions. Examples of closed functions are the critical state function, the two surface 
cap, the generalized ellipsoidal, cf. Nilsson [9], and the Hoffman failure criterion used 
for example in Winnicki et al. [18]. 
Further testing of concrete, now under displacement control, showed the existence of 
a descending branch after the peak stress, a phenomenon commonly called softening. 
To model this the brittle failure models were abandoned and softening rules were 
introduced, cf. Hillerborg [19], still within the framework of plasticity theory. 
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The introduction of inelastic deformations in the constitutive relations made it 
necessary to separate the elastic and the inelastic strains. For small, or infinite, 
deformations there exists an intersubjective theory on the mathematical treatment, but 
not for large, or finite, deformations, cf. Ristinmaa and Ottosen [20]. But, the rate of 
deformation can always be additively partitioned and this is the basis for hypoelasticity 
that has been more used than hyperelasticity. The incremental deformation theory of 
plasticity has been used more extensively than the total deformation theory, cf. 
Nilsson [9]. 
Strength enhancement due to dynamic loading has been included in the models 
mainly through enhancement of the failure surface based on strain rate. Strictly, this is 
a contradiction since the theory of plasticity is the theory for time independent 
inelastic deformations. Viscoplasticity, the theory for time dependent inelastic 
deformations, cf. Perzyna [21], was used in Nilsson [9] but has since then not been 
used extensively. One of the more recent works is Winnicki et al. [18]. 
Among the state of the art models available in commercial finite element codes for 
different situations of dynamic loading of concrete structures are the RHT model 
from Riedel [22], the Winfrith model [23], the cap model by Schwer and Murray [24] 
and the JHC model, cf. Holmquist et al. [25]. 
The K&C concrete model, cf. Malvar et al. [26], is an enhanced version of the Pseudo 
tensor model available in LS-DYNA [27] and developed at the Lawrence Livermore 
National Laboratories, USA. It was developed and modified mainly to analyse 
concrete structures subjected to blast loading. It is a linear isotropic hypoelastic-plastic 
model with strain rate scaled elastic domain, a non-associated flow rule and non-linear 
anisotropic strain hardening and softening representing stable and unstable cracking. 
The deviatoric and isotropic parts of the response are uncoupled and the isotropic 
behaviour is governed by a compaction curve or equation of state. 

Elastic domain 
The deviatoric elastic domain is defined as 

( ) ( ){ }0,|, pp <×∈= + EfRSEE σσT  (22) 

where S is the six dimensional stress space with linear, symmetric and positive definite 
second order tensors. R+ is the space of positive real values and Ep is an internal 
history variable representing plastic straining. The isotropic criterion f is stated as 

( ) l2
p, fJEf −=σ  (23) 

where 

( )σ22 JJ =  (24) 
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( )p
ll ,, Evpff =  (25) 

and 

( )σ13
1 Ip −=  (26) 

( ) ( )
( )

3

2

3

27
13cos 








=

σ

σ

J
Jv  (27) 

( ) ( )

( ) ( ) ( )

( ) ( )



















=





=

=

3
1

2
1

3
3

2

1

tr
2
9

dev:dev
2
3

tr

σσ

σσσ

σσ

J

J

I

 (28) 

( ) ( )σσσ 13
1dev I−=  (29) 

These forms on the invariants of the stress tensor are taken from Lemaitre and 
Chaboche [28]. The calculation of the modified effective plastic strain Ep is given in 
the section Inelastic domain. In the principal stress space this corresponds to a 
loading surface constructed as described in the following. The compressive and tensile 
meridians are defined as lines in the Rendulic stress space for which the angle v equals 
π/3 and 0, respectively, see Figure 6 and Figure 7. For hydrostatic pressures below 
one third of the compressive strength the meridians are piecewise linear functions 
connecting the points corresponding to triaxial extension, biaxial extension, uniaxial 
extension and uniaxial compression. For hydrostatic pressure exceeding one third of 
the compressive strength, the initial, quasi-static compressive meridians are given by 
the general relation 

( )
paa

paEvpff π

21
0

p
3l

c
l 0,,

+
+====  (30) 

where an are scalar valued parameters that are chosen to fit data from material 
characterization tests. Three compression meridians are defined, one representing the 
initial elastic domain, one for the failure strength and one for the residual strength 
according to 
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( )
paa

paEvpff π
i
2

i
1

i
0

p
3l

c
i 0,,

+
+====  (31) 

( )
paa

paEEvpff π
f
2

f
1

f
0

p
f

p
3l

c
f ,,

+
+====  (32) 

( )
paa

pEEvpff π
r
2

r
1

p
r

p
3l

c
r ,,

+
=≥==  (33) 

from which the current compressive load meridian is interpolated as 

( )
( )













+−

+−
=

c
r

c
r

c
r
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f

c
i

c
i

c
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c
i

c
l

f
fffd

fffd
f

f

pp
r

p
r

pp
f

p
f

p

p

,

,

0,

0,

EE

EEE
EE

E

≤

≤≤

≤≤

≤

 (34) 

where 

( ) ] [1,0|p ∈= dEdd  (35) 

The minimum, i.e. tensile, pressure is interpolated as 





≤−

≤≤−
=

pp
ft

p
f

p
t

min ,

0,

EEdf
EEf

p  (36) 

where ft is the failure strength in tension. The tensile meridian is given as a fraction 
k(p) of the compressive meridian according to 

( ) ( )
( )pr
prpk

c

t=  (37) 

and the values on k(p) are set according to Table 1, where fc and ft is the compressive 
and tensile failure strength, respectively. 
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Table 1 Values on the piecewise linear function k(p) 

p 0≤  
cf3

1  cf3
15.12 ⋅  cf3  cf45.8≥  

k(p) 
2
1  

c

t

f
f

2
3

2
1
+  

315.12
315.12

15.1

f
2

f
1

f
0

c

c

c

faa
fa

f

+
⋅

+
 

0.753 1 

 
In Figure 6 and Figure 7 graphical representations are given of the meridians 
corresponding to a concrete material with compressive and tensile strength of 100 and 
5.3 MPa, respectively. 
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Figure 6 Compressive (v=π/3) and tensile 
(v=0) meridians. 

Figure 7 Compressive (v=π/3) and tensile 
(v=0) meridians in the lower pressure range. 

The generalisation to a three-dimensional stress space, i.e. to include the third 
invariant of the deviatoric stress tensor, is done using the function proposed in 
William and Warnke [5] through the following expression 

( ) ( ) ( ) ( )[ ]
( ) ( )222

2222

c 21cos14
45cos1412cos12,

2
1

kvk
kkvkkvkrvprv −+−

−+−−+−
=  (38) 

where rv is the distance from the hydrostatic axis to an arbitrary meridian. In Figure 8 
a graphical representation of the ratio rv/rc is given. 
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Figure 8 Ratio between the distances from the hydrostatic axis to an arbitrary and the compressive 
meridian, respectively. 

Strength enhancement due to high rate of loading, see Section 1, is included through 
the factor 

( )Daa =  (39) 

where 

2
1

:
3
2







= DDD  (40) 

and carried out radially from the origin in the principal stress space. An example of 
such a relation is given in Figure 9. 

σ11

σ33 

σ22 
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Figure 9 Strength enhancement due to high strain rates. From the CEB-FIP model code 90 [3]. 

The complete expression for the load function then becomes 

c
ll farf v=  (41) 

Inelastic domain 
In the deviatoric inelastic domain defined as 

( ) ( ){ }0,|, pp =×∈=∂ + EfRSEE σσT  (42) 

the evolution of the inelastic deformation is governed by an non-associated flow rule 
with non-linear anisotropic strain hardening and softening. The derivation starts with 
the standard relations for plasticity theory 

rD m&=p  (43) 

0=f&  (44) 

and a for this model, a modified effective plastic strain measure defined as 

pp hDE =&  (45) 

where 

2
1

ppp :
3
2







= DDD   (46) 
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b

t   (47) 

Here bi is test data fitting parameters, ft is the uniaxial tensile strength and a is a factor 
to include rate effects. An associated flow rule would have direction according to 

σσσσ
rr

∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

=
∂
∂

==
v

v
fp

p
fJf ll2

a  (48) 

and the relation stating that that a stress point in plastic loading must remain on the 
loading surface is 
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Using equations 43, 45, 46 and 50 the plastic multiplier for the associated case is 
evaluated as 
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In our application of this model the direction of the plastic deformation is assumed to 
be independent of p and v, i.e. the non-associated direction 
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is used. Thus, the plastic multiplier 
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forms the final form of the flow rule expressed as 
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To include damage due to isotropic tensile stressing, a volumetric part is added to the 
damage 
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Here b3 and kd are scalar valued parameters and Dv and Dl
v are the current volumetric 

strain and the volumetric strain at the load surface, respectively. An example of a 
function for the scalar valued internal variable d(Ep) is given in Figure 10. This 
damage curve is optimized for one finite element size and to make it independent of 
the spatial discretization. Thus, in order to get the correct fracture energy release for 
all element sizes in a model, it has to be scaled relative the current element size using 

c

3
1

L
Vs =  (57) 

and 
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where V is the current element volume and Lc is a reference length. 
The volumetric material behaviour is governed by an equation of state that 
incorporates three phases: Elastic, compaction and solidification. In the compaction 
phase the air filled pores collapse and in the solidification phase all pores have 
collapsed and the material is solidified. An example of such a relation is given in 
Figure 11 where V0 and V denote the initial volume and current volume, respectively. 
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3 Numerical analysis 
An analytical solution to the field equations of continuum mechanics can be derived 
only in special cases. To solve the general form one must rely on numerical analysis. 
The idea of numerical analyses is to efficiently calculate accurate approximations to 
the solution. For the applications at hand the Finite Element Method (FEM) is the 
chosen numerical tool. 
A kinematically admissible velocity field v is defined as 

( )
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ee
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vvXvv

Xv
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St

 (59) 

The C0-condition assures that the functions are square integrable. This gives a residual 
equation for the linear momentum 

dabσ =−+⋅∇ ρρ  (60) 

where d is the residual vector. The idea here is to minimize a weighted residual over 
the spatial domain 

( ) 0=−+⋅∇= ∫∫ BB
dBρρdB wabσdw   (61) 

using a weight function w, or variation, defined as 
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If the weight functions are taken the same as the trial functions the formulation is 
referred to as the Bubnov-Galerkin method and if they differ, the Petrov-Galerkin 
method. Applying integration by parts and using the natural boundary conditions 
results in the variation form of the linear momentum equation 
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( ) 0:
n

n =+−−∇ ∫∫∫∫ ∂ BBBB
dBρdBdBρdB awwtbwwσ   (63) 

This expression quantifies the principle of virtual power and it constitutes the basis 
for the Finite Element Method in solid mechanics. 

3.1 Spatial discretization 
The body considered is discretized into ne subdomains, or finite elements, Be defined 
by their nodes i. 
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The motion and weight function in each finite element are approximated as 

( ) ( ) ( )tt eT, xXNXx =  (65) 

( ) ( ) ( )tt eT, wXNXw =  (66) 

where N is a matrix containing the element shape functions, xe is the element nodal 
co-ordinate vector and we is the element weight function. These approximations and 
that the principle of virtual power should hold for any w, result in 
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To reduce CPU-costs and use an explicit time integration a lumped, or diagonalized, 
mass matrix is computed through row summation as 
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An assembly procedure, where the element tensors are scattered on global tensors, is 
then performed which yields the semi-discrete linear momentum equation for the 
system 

extintd ffaM =+  (71) 

To avoid volumetric locking and to further reduce the CPU-costs, the volume 
integration is performed using single point Gaussian quadrature. This introduces rank 
deficiency, manifested as hourglass modes, which has to be controlled, cf. Belytschko 
et al. [13]. This control is done through the addition of a stabilisation vector fstab  

stabextintd fffaM +=+  (72) 

3.2 Temporal discretization 
For the time integration of the semi-discrete linear momentum equation the central 
difference method is used, which is an explicit step-by-step method. The integration 
starts with the initial conditions and the force vectors at time t0. Nodal accelerations 
are calculated at the current time step tn  

( ) ( ) ( ) ( )[ ]nstabnintnext
1

dn tttt fffMa +−= −  (73) 

Then the central, or mid, velocities at time tn+½ are calculated as 
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2
1 ttttt −+= ++ avv  (74) 

where 

( )1nnn 2
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2
1 ++

+= ttt  (75) 

After this step the velocity boundary conditions are enforced and the displacement is 
updated as 
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( ) ( ) ( ) tttt ∆
2
1nn1n ++ += vuu  (76) 

where 

n1n∆ ttt −= +  (77) 

The external force vector is assembled from prescribed loading and contact forces. To 
calculate the internal force vector one needs the Cauchy stress tensor at tn+1. First the 
stress tensor at tn is rotated into the configuration at tn+1 and the hydrostatic pressure 
is subtracted 

( )[ ] ( ) ( ) ( ) ( )[ ] ( )IWσWσσσ nnnnnn tptttttt +++=
++

∆dev T
n

r

2
1

2
1  (78) 

secondly, the deviatoric increment from the constitutive routine is added 
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The hydrostatic pressure at tn+1 is obtained from the equation of state 

( )EVpp ,=  (80) 

where V is the relative volume and E is the internal energy. The internal energy is 
updated as 

( ) ( ) EtEtE ∆n1n +=+  (81) 

where 
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Here m and v are the current element volume and mass, respectively, and V is the 
relative volume. The temporal discretization of this equation is 
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and an iterative procedure is performed according to 
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Eq.80
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*

1n
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*
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Eq.83,81

n ++++ →→→→ pEpEp  (84) 

Finally the new pressure p(tn+1) is added to the stress tensor 
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( ) ( )[ ] ( )Iσσ 1n1n
r

1n
r dev +++ += tptt  (85) 

After computing the internal force vector the acceleration at time tn+1 is given by 

( ) ( ) ( ) ( )[ ]1nstab1nint1next
1

d1n +++
−

+ +−= tttt fffMa  (86) 

and the mid velocities are updated to time tn+1 as 

( ) ( ) ( )( )
2
1

2
1 n1n1nn1n +++++ −+= ttttt avv  (87) 

Finally the energy balance is controlled and, unless the computation is terminated, the 
current time is updated and the procedure is repeated. 

3.3 Shock waves 
The presence of singular surfaces, cf. Truesdell and Toupin [29], results in multiple 
solutions to the field equations. Shock waves, defined as singular surfaces of first 
order with discontinuous deformation gradient and longitudinal velocity, can occur in 
materials where the sound velocity increases with increasing pressure. Shock waves 
are treated with bulk, or pseudo, viscosity that prohibits a shock wave to fully develop 
into a singular surface, cf. Neumann and Richtmyer [14]. The method consists in 
adding a hydrostatic pressure term, 
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where A and B are constants and c is the material bulk sound speed, to the stress 
tensor in the field equations for linear momentum and energy. 
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4 Summary of  appended 
publications 

Numerical simulations of penetration and perforation of high 
performance concrete with 75mm steel projectile 
The purpose of this study was to assess the ability to predict penetration depth or 
residual velocity with the chosen numerical methods and concrete constitutive model. 
The material description of the motion of both the targets and the projectiles was 
chosen together with a numerical erosion based on a shear strain criterion. The 
concrete material was modelled with the K&C concrete model and for the analysis 
LS-DYNA was used. For the perforation good agreement with test data was achieved 
but in the case of penetration, the results were not satisfying. The results were greatly 
influenced by the erosion criteria and the material model could not handle a 
discretized domain of finite element of different sizes. The conclusions were that the 
description of the softening behaviour had to be modified to render a fracture energy 
release that is independent of the spatial discretization. Also, it is not suitable to 
describe the target in a material reference frame, due to the need of an erosion 
criterion. Instead, the target should be described in a spatial reference frame, where 
the need for erosion is eliminated, while the material reference frame can be retained 
for the projectile. 

Numerical simulations of the response of reinforced concrete beams 
subjected to heavy drop tests 
The purpose of the work was to evaluate the ability of the chosen numerical method 
and material models to predict the material and structural response. The material 
model was modified to scale the softening behaviour relative the finite element sizes. 
The finite element analysis gave a different type of failure compared to the tests. In 
the test, the failure was mode I cracking combined with crushing in the impact zone. 
In the simulations, the failure was mainly due to mode II cracking. A material 
parameter analysis was performed but the results from the test could not be 
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reproduced. The conclusion is that the modified material model does not seem to be 
capable of correctly describing the problem, given the material properties and the 
numerical method of analysis. To handle the strain localization, that occurred in the 
problem, it is suggested that non-local measures of deformation should be used to 
attain a convergent solution. 

Finite element analysis of the splitting test 
The purpose with this study was to evaluate the possibility to use non-local measures 
of deformation to attain convergence when strain localization is present.. A simplified 
non-local theory is used, where the local strain measure is weighted and integrated 
over an element neighbourhood and used to calculate the rate of evolution of the 
inelastic strain. The size of the neighbourhood in the non-local theory has to be 
determined through material characterization tests. The theory is applied to a splitting 
test and a tensile test for three different materials. The split test model shows mesh 
dependency due to a singularity. In the tensile test the non-local theory is shown to 
give a convergent solution. The conclusion is that it is possible to handle singularities 
with a non-local theory. The concrete material model will not be used in future work, 
due to the many problems encountered in this and previous studies. The report is 
concluded with a discussion on how to better model concrete material. 
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1 INTRODUCTION 

The simulations in this report were part of the HPC-project in which the following Swedish and 
Norwegian organisations co-operated during the years 1997 � 2000 to build up their competence 
in high strength concrete (HPC): 

Sweden 

- Armed Forces Headquarter (HKV), http://www.mil.se/ 

- Defence Research Establishment (FOA), http://www.foa.se/  

- Fortification Administration (FortV), http://www.fortv.se/  

Norway 

- Headquarters Defence Command (FO), http://www.fo.mil.no/  

- Defence Research Establishment (FFI), http://www.ffi.no/  

- Defence Construction Service (FBT), http://www.mil.no/fbt  

 

The penetration and perforation test, upon which the simulations presented in this report are 
based on, were performed in Karlskoga at the Bofors Testing Centre 
(http://www.bofors.se/testcenter) 1999-10-05�07 comprising nine tests at three types of 
cylindrical concrete targets. 
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2 TESTS 

A 6.3kg armour piercing steel projectile with an ogival nose radius of 127mm, a length of 225mm 
and diameter of 75mm was fired at the targets, see Figure 1. The projectile impacted with 
approximately zero angle of attack and a velocity of about 620m/s (cf. Figure 2 and Figure 3). 
Targets 1-3 were penetration tests (projectile comes to rest in the target) and targets 4-9 were 
perforation tests (projectile passes through target). In Table 1 the target specifications and global 
test results are presented. 

~100m

Gun Target

Doppler radar
High-speed
camera

 
Figure 1. Experimental set up 

 

Table 1. Target specifications and test results 

Target 
number 

Diameter 
[mm] 

Length 
[mm] 

Reinforcement 
mass ratio 

Projectile 
impact velocity 

[m/s] 

Depth of 
penetration 

[mm] 

Projectile 
residual velocity 

[m/s] 

1 1 400 800 0.00 617 450 - 

2 1 400 800 0.00 612 540 - 

3 1 400 800 0.00 619 510 - 

4 1 400 400 0.00 616 - 276* 

5 1 400 400 0.00 616 - 303* 

6 1 400 400 0.00 618 - 293* 

7 1 400 400 0.06 617 - Not measured

8 1 400 400 0.06 616 - Not measured

9 1 400 400 0.06 616 - 260 
*: Data from FFI 
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Figure 2. Photo from high-speed camera before 
impact (target 5 with projectile to the left) 

Figure 3. Photo from high-speed camera after 
perforation (target 5 with projectile to the right)

 

Figure 4. Post-test condition for projectile used 
for target number 8 

Figure 5. Reinforcement in targets 7-9 

 

Inspection of the projectiles after the tests showed that no or negligible erosion and plastic 
deformation had occurred (cf. Figure 4) neither in the penetration nor in the perforation case. 

Three different types of targets and three targets for each type were tested, i.e. nine targets in 
total. During and after the tests the following registrations were made: 

- Doppler radar giving the time-velocity relation for the projectile. 

- High-speed camera giving the projectile residual velocity for perforation tests. 

- Depth of penetration. 

Targets 7-9 were reinforced with cages as the one shown in Figure 5. These cages were 
constructed in a three dimensional grid with 100mm spacing between rebars (D=12mm) and 
stirrups (D=10mm). Both the rebars and the stirrups were of steel quality Ks 500 ST. 

In Figure 6 to Figure 9 data from the Doppler radar is plotted for each type of target. When 
comparisons with results from simulations are made, these curves are integrated and combined 
with the residual velocities taken from the high-speed photos. 
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Figure 6.  Projectile velocity versus time for targets 1-3. 
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Figure 7.  Projectile velocity versus displacement for targets 1-3 (including three points for the 
post-test measured depth of penetration). 
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Figure 8. Projectile velocity versus time for targets 4-6 (including three data points from the high-
speed camera). 
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Figure 9. Projectile velocity versus displacement for targets 4-6 (including three data points from 
the high-speed camera). 
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Figure 10. Projectile velocity versus time for targets 7-9 (including one data point from the high-
speed camera). 
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Figure 11. Projectile velocity versus displacement for targets 7-9 (including one data points from 
the high-speed camera). 
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When using only one Doppler radar it is not possible to distinguish signals from objects moving 
towards the radar from objects moving away from the radar. Therefor the data in the above 
figures should only be used as guidance. 
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3 MATERIAL CHARACTERISATION 

3.1 Target 
Standard material testing was performed on 150x150mm cubes for the unconfined uniaxial 
compressive strength, 100x200mm cylinders for the splitting tensile strength and the modulus of 
elasticity. Determination of the fracture energy was done according to RILEM �Determination of 
the fracture energy of mortar and concrete�. The results are presented in Table 2. 

Table 2. Concrete material test data 

Mass density Uniaxial 
compressive 

strength 

Splitting tensile 
strength 

Modulus of 
elasticity 

Fracture energy 

2 770kg/m3 153MPa 9.1MPa 58GPa 162N/m 

 

By default the Poisson�s constant is taken as 0.16 and the uniaxial tensile strength is taken as 90% 
of the split strength according to The Swedish Concrete Handbook [4]. 

For the reinforcement the parameters in Table 3 were taken from earlier tests performed on the 
same type of reinforcement, 12mm rebars with quality KS500ST. The strain at maximum force 
(peak strain) was determined according to ISO 10606:1995(E).  

Table 3. Reinforcement material test data. 

Mass density Yield stress Poisson�s ratio Modulus of 
elasticity 

Hardening 
modulus 

Peak strain 

7 800kgm-3 586MPa 0.3 207GPa 1.1GPa 0.092 

3.2 Projectile 
The Vicker�s test (HV10) was performed on one of the projectiles after the tests and the yield 
limit was calculated according to the following relationship. 

10

6

32
10100 HVfsy

⋅
≈  

The results from the Vicker�s test together with the calculated yield limit is presented in Figure 12 
and the parameters in Table 4 were chosen from standard steel data. 
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Figure 12.  Results from the Vicker�s test (HV10) performed on a projectile after tests. 

 

Table 4. Projectile elastic material parameters. 

Mass density Modulus of elasticity Poisson�s ratio 

7 800kg/m3 200GPa 0.3 
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4 NUMERICAL SIMULATIONS 

The tools used for the simulations are specified in Table 5. 

The geometry was modelled with two symmetry planes and both the target and the projectile 
were described in Lagrangian co-ordinates. All nodes on the target�s perimeter were constrained 
to no displacement in the direction of the projectiles path. For the contact between target and 
projectile, the standard LS-DYNA algorithm �eroding surface to surface� was used. This is the 
only available contact algorithm that can be used together with numerical erosion, i.e. that 
updates the contact surfaces after each computational time step to account for eroded elements.  

The target was modelled using 8-node solid elements and an erosion criterion based on shear 
strain. The numerical erosion can only be used with solid elements and 1-point integration. The 
critical erosion value had to be determined through an iterative procedure, which is presented in 
Chapter 4.2. For the target elements, hourglass control of the type Flanagan-Belytschko stiffness 
form with exact volume integration were used. For the target the LS-DYNA material type 72 
�Concrete Damage� was used, see Appendix B for a detailed presentation of the material model. 
Since neither the material type number 72 nor the numerical erosion option is available in the 
pre-processor LS-INGRID changes had to be done in the LS-DYNA input file. 

The projectile was modelled using 8-node solid elements with 8-points integration and an elastic 
material model, LS-DYNA material type 2. The same mesh was used for all simulations and 
specifications are given in Table 6. 

The reinforcement was modelled using 2-node truss elements and the LS-DYNA elastic-plastic 
material type 3 together with the material parameters given in Table 3. 

 

Table 5.   System specifications. 

Compaq Workstation XP1000 
667 MHz DEC/Alpha 21264A processor with 1024 MB main memory 
Digital UNIX version 4.0d 
LS-INGRID versions 3.5a and 3.5b [6] 
LS-DYNA version 950c [1] 
LS-TAURUS version 940.3 [3] 
 

Table 6.   Mesh data for projectile 

Nodes 484 
Solid elements 252 
Characteristic element size 7.5 mm 
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Now follows a detailed explanation of the chosen input data for the target. The maximum 
compression meridian was fitted to the one given by the CEB-FIP Model Code 1990 [5] and the 
initial compression yield meridian and the residual compression meridian were constructed 
according to the instructions in [2]. In Figure 13 three different stress-paths are drawn together 
with the maximum compression meridian. In Figure 14 both the compression and tension 
meridians are shown for pressure up to 1.7GPa. 

8 8
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Figure 13. Compressive meridian and test stress paths. 
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Figure 14. Compressive and tensile meridian used for the simulations. 
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Figure 15. Equation of state used for the simulations. 

 

For the equation of state, a combination of test data from FFI on concrete with cube strength of 
90MPa and the data given in Table 1 on the modulus of elasticity was used. The slope of the 
elastic-porous part was calculated as: 

( ) ( ) GPa 43.28
16.0213

58
213

=
⋅−

=
−

=
υ

EK  

The curve was then connected to the FFI-curve. The difference in inclination for the elastic part 
is due to the GREAC-cell method used for the FFI-tests. It has been shown that this testing 
method gives a weaker response than that of a stabilised HOEK-cell [7]. The last point on the 
curve was extrapolated and the resulting equation of state is shown in Figure 15. 

In the model, there are three parameters which controls the shape of the response curves, b1 for 
uniaxial compression, b2 for uniaxial tension and b3 for tri-axial tension. The value for b1 was 
taken according to the recommendations in [1]. To regularise the fracture energy release these 
parameters has to be determined for each element size to be used so that 

( ) 1162 −== ∫ NmdhG f
ε

εεσ  

where 

3
0
elementVh =  
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The damage parameters were determined by simulations of a direct tension test. The softening 
part of the response was fitted to the following analytical expression using a bilinear softening 
curve. 

( ) 









−

= f

ct

G
wf

ctct efwσ  

The input damage curve is shown in Figure 16. 

For the two element sizes that were to be used in the simulations, 5 and 7.5mm, the damage 
parameters were tuned to get the right fracture energy. The resulting response curves for uniaxial 
compression, uniaxial tension and triaxial tension are shown in Figure 17 to Figure 19. The LS-
Ingrid input file, valid for uniaxial and triaxial tension tests and uniaxial compression test 
depending on which command lines that are commented out, is found in Appendix B. According 
to [2] this tuning of damage parameters is enough to avoid mesh dependency. 

To assure that the input curve for strain rate dependency covers the whole range of strain rates 
occurring in the simulations, registrations of the effective strain rates (upon which the strength 
enhancement in the model is based) were made for three elements in the impact area, see (Figure 
20). At time 0.022ms the first element, element 1 is eroded. 

The suggested bilinear relationship for the dynamic increase factor (DIF) in [5] is valid for strain 
rates up to 300/s. In Figure 21 this relationship is plotted up to the observed strain-rate values. 
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Figure 16. Damage curve used in the simulations. 
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Figure 20. Strain rates in the targets impact area. 
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4.1 Target 1-3 
The LS-INGRID input file and changes made to the created LS-DYNA keyword format input 
file is found in Appendix D. The mesh used for this target type is shown in Figure 22 and Figure 
23. A mesh specification is given in Table 7. 

The effects of dynamic strength increase of strain rate were investigated. Three curves for 
compressive strength enhancement were used (cf. Figure 21); no strength enhancement, linear 
strength enhancement and bilinear strength enhancement. The Doppler radar curves were 
integrated and plotted together with the measured penetration depths and the three resulting 
projectile velocity-displacement curves from the simulations, see Figure 24 and Figure 25. Only 
data up to 0.5ms was used from the Doppler radar according to discussion in Chapter 2. 

 

Figure 22. Mesh A in elevation view. Figure 23. Mesh A in plan view. 

 

Table 7.   Mesh data for target 1-3. 

Mesh A 
Characteristic element size 5mm 
Nodes 419 800 
Solid elements 403 200 
Approx. CPU time 12 h 
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Figure 24. Comparison between numerical simulations and test data. 
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Figure 25. Comparison between numerical simulations and test data. Data points with values are 
depths of penetration measured after test. 
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Compared to data from the Doppler radar, the simulations show a higher retardation of the 
projectile in the beginning of the penetration phase. At a projectile displacement of about 0.25m 
(or 0.5ms), the retardation decreases and the decrease is more pronounced when using the 
bilinear DIF relation. Post-processing of the simulations shows that at this moment a plug is 
formed in the target, see Figure 26, due to a great amount of shear damage in the element size 
transition zone. 

To investigate if the plug and thus the sudden decrease in retardation was caused by the models 
inability to handle different element sizes, i.e. different fracture energies, a new geometry model 
was constructed consisting of 5mm elements all through the target. Due to lack of memory, 
modelling of the whole target geometry could not be carried out. However, a smaller model with 
square geometry 330x330x800mm (1/4 model) and boundaries with fixed displacement and 
rotational constraints was created, see Figure 27 to Figure 28 and Appendix E for the LS-
INGRID input file, with the specifications given in Table 8. 

 

 

Figure 26. Formation of a plug in the target due to great amount of shear damage 
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Figure 27. Mesh C in elevation view Figure 28. Mesh C in plan view 

 

Table 8. Mesh data for square geometry target 1-3 

Mesh C 
Characteristic element size 5mm 
Nodes 723 125 
Solid elements 697 212 
Approx. CPU time 35 h 
 

In Figure 29 and Figure 30 it is shown that when using the same element size in the whole target 
no plug is formed, but the sudden decrease in retardation is still there. Nevertheless, the 
formation of a plug leading to lower structural bearing capacity shows that there is a need to 
improve the model in order to make the fracture energy release objective, i.e. mesh independent. 
An explanation for the sudden decrease in retardation has not been found nor has it been 
possible to conclude that this is not a real phenomenon. But, the data from the Doppler radar 
and the measured penetration depths indicate that this is not the case. 
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Figure 29. Comparison between numerical simulations and test data. Data points with values are 
depths of penetration measured after test. 

 

 

Figure 30. Longitudinal displacement for the square geometry model. 
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Returning now to the previous geometry model for targets 1-3, mesh A with a bilinear DIF. In 
Figure 31 and Figure 34 comparisons of damage are made with photos taken after the tests.  

Figure 31. Post condition for the front face of 
target 3 (shot 6). 

Figure 32. Damage on the front face from 
simulation. 

 

Figure 33. Post condition for the back face of 
target 3 (shot 6). 

Figure 34. Damage on the back face from 
simulation. 

 

In Figure 35 the damage variable lambda is plotted on the symmetry plane. According to this 
figure the target is almost completely damaged, which is not consistent with the test results. 
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Figure 35. Damage in the target, side view. 
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4.2 Target 4-6 
The LS-INGRID input file and changes made to the created LS-DYNA keyword format input 
file are found in Appendix C. The mesh used for this target is shown in Figure 36 and Figure 37 
and in Table 9 mesh specifications are given. 

First, the element size dependency was investigated using no DIF relationship. The results are 
presented in Figure 38 where it is obvious that the fracture energy release is not objective, i.e. 
adjusting the parameters b1, b2, and b3 does not eliminate mesh dependency. The elements 
outside the impacting area that are bigger than 5mm and 7.5mm respectively might also influence 
the result. For larger elements, the energy release is lower giving a higher residual velocity. This is 
consistent with the observed results. For erosion shear strain values over 0.9 the mesh becomes 
heavily distorted, why this value is taken as maximum. 

The influence of dynamic friction (no DIF) was also investigated, see Figure 39. Obviously, the 
friction has none or little effect on the result. This is due to the small area of contact between the 
projectile and the target, see Figure 40. At the nose, the elements are deleted according to the 
erosion criteria and towards the rear of the projectile, the hole in the target has a conical shape 
leaving a void between the projectile and the target. 

 

Figure 36.   Mesh A in elevation view. Figure 37.   Mesh A in plan view. 

 

Table 9.   Mesh data for targets 4-6. 

Mesh A B 
Characteristic element size 5mm 7.5mm 
Nodes 211 160 51 212 
Solid elements 201 600 47 488 
Approx. CPU time 3 hours 1 hour 
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Figure 38.   Influence of mesh element size and erosion shear strain on residual velocity (no DIF).
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 30

Figure 40. Contact between projectile and target 

 

The strain rate dependency was investigated using two curves, see Figure 41, for dynamic 
increase of the target�s compressive strength. The computations were carried out with an erosion 
shear strain of 0.9. 

Integrating the Doppler radar curve and plotting it against the projectile velocity show the 
projectile trajectory through the target, see Figure 42. 
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Figure 41. Comparison between numerical simulations and test data. 
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Figure 42. Comparison between numerical simulations and test data. Data points with values are 
taken from high-speed videos. 

 

In this simulation, as for targets 1-3, a plug is formed in the transition zone between different 
element sizes, decreasing the structural bearing capacity, see Figure 43. However, the effect of 
this phenomenon seems less important because of the smooth retardation.  
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Figure 43. Longitudinal displacement for target 4-6, element size 5mm and no DIF. 

 

Comparisons of photos from the tests with plots of the damage parameter lambda from the 
simulation (bilinear DIF), see Figure 44 to Figure 47, reveal almost the same damage pattern as 
for target 1-3.  

 

Figure 44. Post condition for the front face of 
target 5 (shot 2). 

Figure 45. Damage on the front face from 
simulation. 
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Figure 46. Post condition for the back face of 
target 5 (shot 2). 

Figure 47. Damage on the back face from 
simulation. 

 

 

Figure 48. Damage in the target, side view. 
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4.3 Target 7-9 
The LS-INGRID input file and changes made to the created LS-DYNA keyword format input 
file are found in Appendix C. Due to difficulties with connecting the reinforcement to the target 
mesh these tests were modelled using a square geometry, see Figure 49 to Figure 52. The 
reinforcement was modelled using truss elements and the nodes were tied to the corresponding 
nodes for the target brick elements. In Table 10 mesh specifications are given. 

 

Figure 49. Mesh A in elevation view. Figure 50. Mesh A in plan view. 

 

Figure 51. Elevation view of reinforcement cage. Figure 52. Plan view of reinforcement cage. 
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Table 10.   Mesh data for targets 7-9. 

Mesh A 
Characteristic element size 5mm 
Nodes 392 792 
Solid elements 369 920 
Truss elements 7 092 
Approx. CPU time 7 h 
 

The strain rate dependency was investigated with an erosion shear strain of 0.9. Integrating the 
curves in Figure 53 and plotting it against the projectile velocity show the projectile trajectory 
through the target, see Figure 54. In Figure 55, a damage plot is given showing the formation of a 
plug . 
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Figure 53. Influence of dynamic increase factor (DIF) on projectile retardation. 
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Figure 54. Influence of dynamic increase factor (DIF) on projectile retardation. 

 

 
Figure 55. Longitudinal displacement for target 7-9, element size 5mm and no DIF. 
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In Figure 56 to Figure 59 comparisons of the damage parameter lambda are made with photos 
taken after the tests. In Figure 61 to Figure 62 a comparison is made for reinforcement 
displacement at the target back face after perforation. 

Figure 56. Post condition for the front face of 
target 7 (shot 7). 

Figure 57. Damage on the front face from 
simulation (bilinear DIF). 

 

Figure 58. Post condition for the back face of 
target 9 (shot 9). 

Figure 59. Damage on the back face from 
simulation (bilinear DIF). 
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Figure 60. Damage in the target, side view (bilinear DIF). 

 

Figure 61. Post condition for the reinforcement 
at back face of target 7 (shot 7). 

Figure 62. Post condition for the reinforcement 
at back face of target from simulation. 
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5 SUMMARY 

Numerical simulations of penetration and perforation tests of high strength concrete have been 
carried out. The structural systems were modelled in LS-DYNA and solved using Lagrangian 
technique. Influence of strength enhancement based on strain rate, numerical erosion criteria, 
friction between target and projectile and mesh dependency has been investigated. 

Results from the computations were compared to test data on the projectile trajectory and photos 
showing the damaged targets. For perforation, the projectile�s trajectory was derived from 
Doppler radar and high-speed photos. In the case of penetration, the projectile�s trajectory was 
derived from Doppler radar and measurements on depth of penetration. 

The simulations show good agreement with test data for perforation. For penetration, the results 
are not satisfying since in the simulations the projectile perforates the target, which was not the 
case for the tests, see Table 11. 

Table 11. Comparison of results from test and numerical simulations. 

 Test Numerical simulation 

Target 
number 

Projectile impact 
velocity [m/s] 

Depth of 
penetration 

[mm] 

Projectile 
residual velocity 

[m/s] 

Depth of 
penetration 

[mm] 

Projectile 
residual velocity 

[m/s] 

1-3 616 500 - - 200 

4-6 617 - 291 - 320 

7-9 616 - 260 - 330 

 

During the work with the simulations, problems have been encountered in the following areas. 

- Material type 72 

The target material model does not allow different element sizes to be used in one material 
definition. The damage curve is fitted to one specific element size and when using different sizes 
of elements, one does not get the correct energy release. Future improvements of the model 
should include regularisation of the fracture so that the fracture energy release becomes objective, 
i.e. mesh independent. This problem with the fracture energy release seems to be a possible 
explanation for the large amount of shear damage in the element transition zones. The authors of 
the material model have improved the model since the first release, which is the one 
implemented in LS-DYNA. In Appendix B improvements made in the more recent release II of 
the model are listed. 

- Numerical erosion 

In LS-DYNA, six different types of erosion criteria can be used, with all material types and one-
point integrated solid elements. The value on the erosion criteria has a great influence on the 
results but the determination of the erosion criteria parameters is difficult, as the mesh becomes 
much distorted at large values. This problem suggests that another solution technique should be 
used, for example using an Euler reference frame or a smooth particle hydrodynamic (SPH) 
approach. A new erosion criterion should also be added to this particular material type, based on 
the modified effective plastic strain parameter lambda. This would give the possibility to ensure 
that all fracture energy has been released before eroding, or deleting, the element. 
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- Interaction between concrete and reinforcement 

With concrete to reinforcement mass ratio of 6%, one cannot use a smeared approach to model 
the rebars and stirrups. In this report, truss-elements were used, but this is not sufficient to take 
into account the confinement contributed by the reinforcement. The rebars should be modelled 
either as solid elements with a concrete-rebar interface or beam elements with and a slip model. 
For beam elements there is a possibility to model slip in LS-DYNA with an option called 1-D 
slide line, which have not been applied to this problem. 

 

- Dynamic increase factor (DIF) 

When enhancing the material strength using a DIF relation the structural response changes in the 
beginning of the penetration phase, i.e. the retardation of the projectile increases. However, for 
all cases considered here this effect seems to last only to half the targets depth and we almost got 
a converging residual velocity for all three DIF relations. For targets 1-3, where the projectile 
should come to rest in the target according to the test, a extrapolation of the initial retardation 
phase points to the measured depths of penetration. An explanation for what causes the 
pronounced bend on the projectiles penetration path, see for example Figure 25, has not been 
found in this report. 
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APPENDICES 

Appendix A 
The following plots show the frequency intensity from the Doppler radar and a predicted 
projectile path. For each target two plots are presented, the first showing all data and the second 
only for the penetration phase. 
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Figure 63. Doppler radar data for target 1  
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Figure 64. Doppler radar data for target 2  
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Figure 65. Doppler radar data for target 3  
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Figure 66. Doppler radar data for target 4  
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Figure 67. Doppler radar data for target 5  
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Figure 68. Doppler radar data for target 6  
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Figure 69. Doppler radar data for target 7  
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Figure 70. Doppler radar data for target 8  
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Figure 71. Doppler radar data for target 9  
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Appendix B 
Starting from the material model �Pseudo Tensor� (LS-DYNA material type 16), as a basis 
Karagozian & Case in 1994 released a constitutive concrete model for the Defence Nuclear 
Agency (DNA) Conventional Weapons Effects program. This model is part of the LS-DYNA 
standard material library since 1996 (version 940), where it is referred to as material type 72 
�Concrete Damage�. This version of the material model is called release I. 

 

Strength surfaces 

The strength surfaces limit the deviatoric stress at the corresponding pressure and in the model 
the construction of the strength surface in stress space is based on: 

- User input of the uniaxial tensile strength 

- User input of a curve for the compression meridian valid for pressures above one third of the 
uniaxial compression strength, i.e. including the unconfined uniaxial compression test. 

paa
paJ

21
023

+
+==∆σ  

- the assumption that the tri-axial tensile strength is equal to the uniaxial tensile strength 

- the assumption (based on studies of experimental data) that the bi-axial compressive strength is 
equal to 1.15 times the uniaxial compressive strength 

- the assumption (based on studies of experimental data) that the ratio between the compressive 
and extension meridian at a pressure of three times the uniaxial compressive strength is 0.753. 

- the assumption (based on studies of experimental data) that the ratio between the compressive 
and extension meridian at pressures higher than 8.45 times the uniaxial compressive strength is 1. 

- the 3D-shape proposed by William and Warnke for the strength surface leading to the following 
expression for the distance from the hydro static pressure axis to an arbitrary point in stress space 
lying on the strength surface. 
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- User input of a curve describing the migration between yield, maximum and residual strength 
surfaces, ( )ηλλ =  

The compression and extension meridians with stress paths for some tests are schematically 
shown in Figure B-1 and a schematically strength surface in 3D-stress space is shown in Figure 
B-2. 
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Figure B-1. Compression and extension meridians with stress paths in the Rendulic plane for 
different tests. Axis units in [Pa]. 

 

Figure B-2. Strength surface in principal stress space. Axis units in [Pa]. 
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Strength enhancement due to strain rates 

The strength enhancement due to strain rates is done along radial stress paths in the stress space. 
This is in accordance with data from unconfined compressive and tensile tests, but since the 
enhancement is based on effective strain, the model does not differentiate between compressive 
and tensile stress paths. 

( )
( ) factort enhancemen Strength

/

=

∆=∆
effective

f

ff

r

rpr

ε

σσ
 

The strength enhancement factor is given by the user as a piecewise linear curve, e.g. see Figure 
B-3. 

 

Figure B-3. Example of an strength enhancement function 

 

Damage accumulation 

In order to incorporate the yield strength and the residual strength two additional surfaces are 
defined, see Figure B-4 for a schematic representation. 
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Figure B-4. Yield (red), max. (blue) and residual (green) strength surfaces in stress space 

 

During loading the strength surface has to migrate between the three strength surfaces and this is 
done using the following relations. 
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Pc is the pressure cut-off, i.e. the maximum tensile that can be reached, η is the migration 
function and λ is called the modified effective plastic strain measure, which is calculated 
according to: 
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The function η(λ) is given by the user as a piecewise linear curve and the b-parameters are 
determined through iterative calculations to get the correct fracture energy for different stress 
paths. The parameter η ranges from some start value <1 representing the yield strength surface, 
up to 1 for the maximum strength surface and down to 0 for the residual strength surface. An 
example is given in Figure B-5. 

Figure B-5. Example of a damage function 

 

In a situation with negative pressure and softening a modified maximum strength surface is used 
to avoid a vertical pressure cut-off plane in the stress space: 
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Plastic flow 

The Concrete Damage model uses the volume-preserving Prandtl-Reuss flow rule, i.e. the plastic 
flow has a radial direction from the hydrostatic pressure axis. 

( ) YJpf −= 23,η  

where Y is the current position of the strength surface in stress space. The update to the strength 
surface (after the elastic trial step) becomes 

GhY
f

G
hY

YYn 3/)()(1
*)(

3
)()(*

,

,
1 σλη

σσλη

η

η

′+

′
=−+  

where 

( )

( )
ib

ctf

ftf

ffftmf

f
rf
prh

ppfr
pprprpr

Y

Y









+=







<

≥−∆−∆

=

1

.                                      ,3

,)],(/[
pressureincrement   todue surface strength Updated*

,

σ

σσ
η  

The increment for the modified effective plastic strain measure λ is: 
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Calculation of shear modulus 

The Poisson�s ratio is constant and given by the user and the shear modulus is calculated using 
this value and the bulk modulus from the given equation of state.  
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Release II 

A second release of the material model was presented in February 1996, but the model is not 
implemented in the LS-DYNA material library. The main new capabilities in the model are: 
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(1) incorporation of shear dilatancy 

Using a flow rule that assures the plastic strain increments to be normal to the strength surface, 
i.e. an associative flow rule, yields excessive dilatancy (change in volume) in shear. The Prandtl-
Reuss flow rule is a special case of a non-associative flow rule that yields no dilatancy at all. From 
shear tests on concrete it is found that dilatancy occurs, to a certain degree. In release II the 
introduction of a general non-associative flow rule controlled by a input parameter ω gives the 
possibility to handle shear dilatancy. 

(2) different rate enhancement in tension and compression 

Tests show that strength enhancement due to strain rate is different in tension than in 
compression. In release II the possibility is given to account for this via a user defined curve 
ranging from negative (tensile enhancement) to positive (compressive enhancement) strain rates.  

(3) variable strain enhancement with strain rate 

In addition, strain rate dependency on the peak strain has been added, which the user controls by 
entering a scalar representing how large a fraction of the strength enhancement curve to be used 
for strain enhancement. 

 

Release III 

In release III beta 20 of the material model, the generation of input material parameters has been 
automated. The parameter generation is based on the concrete compressive strength, the system 
of units, and the element size (or relative element size). In addition, release III beta 21 will be 
able to handle different element sizes using a unit length conversion factor (a characteristic 
length). 
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Appendix C 
Bofors-99, Constitutive model behaviour (SI-units) 
 
dn3d kw93 
batch 
 
term 1. plti 1. 
gmprt elout 1.E-10 nodout 1.E-10; 
 
c *************************************************************** PARAMETERS *** 
c Load rate 
 [lr=1.E-4] 
 
c Element size 
 [lch=5.E-3] 
c [lch=7.5E-3] 
 
c ********************************************************** SYMMETRY PLANES *** 
plane 3 
 0.  0.  0. -1.  0.  0. 1.E-6 symm 
 0.  0.  0.  0. -1.  0. 1.E-6 symm 
 0.  0.  0.  0.  0. -1. 1.E-6 symm 
 
c *************************************************************** LOAD CURVE *** 
c Deformation load curve 
lcd 1 2 
 0.    1. 
 1000. 1. 
 
c ***************************************************** MATERIAL DEFINITIONS *** 
mat 1 
 type 12 brfo 1 hgqt 5 
 ro 2770 g [50.E+9/(2*(1+.2))] sigy 50.E+6 eh [100.E+6/0.0025] bulk 2.843E+10 
endmat 
 
eos 8 
 npts 7 gamma 0.0 e0 0.0 v0 1.0 
 lnv  0.000000  -0.007034  -0.028960   -0.050979 
     -0.062837  -0.072613  -0.144392 
 pc         0.     2.E+08    2.4E+08    3.9E+08 
      5.65E+08   7.37E+08     2.E+09 
 ku   2.843E+10  2.843E+10  2.843E+10  2.843E+10 
      2.843E+10  2.843E+10  2.843E+10 
endeos 
 
c ************************************************* SPECIMEN PART DEFINITION *** 
Start 
 1 2; 
 1 2; 
 1 2; 
 0. [.5*lch] 
 0. [.5*lch] 
 0. [.5*lch] 
 
c Uniaxial compression - b1 
 fv 1 1 2 2 2 2 1 [lr]  0.  0. -1. 0. 1000. 
 b 1 1 2 2 2 2 000111 
 
c Uniaxial tension - b2 
c fv 1 1 2 2 2 2 1 [lr]  0.  0.  1. 0. 1000. 
c b 1 1 2 2 2 2 000111 
 
c Triaxial tension - b3 
c fv 1 1 2 2 2 2 1 [lr]  0.  0.  1. 0. 1000. 
c fv 1 2 1 2 2 2 1 [lr]  0.  1.  0. 0. 1000. 
c fv 2 1 1 2 2 2 1 [lr]  1.  0.  0. 0. 1000. 
c b 1 1 2 2 2 2 000111 
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c b 1 2 1 2 2 2 000111 
c b 2 1 1 2 2 2 000111 
 
 npb 1 1 2; 
 epb 1 1 1; 
 mat 1 
end 
 
c ********************************************************************** END *** 
end 
continue 
 
c ****************************************************************** KEYWORD *** 
c 5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9       1.0       1.0      .023 
         0         0         0         0         0         0         0 
        0.    .02E-3    2.8E-3    41.E-3 
 
        0.        1.       .15        .0 
 
c 7.5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9     0.682      6.46      .035 
         0         0         0         0         0         0         0 
        0.    1.5E-4     9.E-4    35.E-4 
 
        0.        1.        .2        .0 
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Appendix D 
Bofors-99, Target 1-3 (SI-units) 
 
dn3d kw93 
batch 
 
term 5.0E-3 plti 1.E-1 
gmprt nodout 1.E-10 elout 1.E-10 matsum 1.E-10; 
taurus int8 8; 
 
c *************************************************************** PARAMETERS *** 
c Projectile 
[v = 616] [r = 0.075 / 2] [nose = 0.090] [length = 0.225] 
[rc = (r*r+nose*nose)/2/r] [a = asin(nose/rc)] 
 
c ************************************************************** LOAD CURVES *** 
c Dynamic increase factor (DIF) in compression according to  
c CEB-FIP Model Code 1990 
c Linear function. 
lcd 1 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.107 5.00E+01 1.109 6.00E+01 1.110 
7.00E+01 1.111 8.00E+01 1.112 9.00E+01 1.113 1.00E+02 1.114 2.00E+02 1.120 
3.00E+02 1.123 4.00E+02 1.125 5.00E+02 1.127 6.00E+02 1.129 7.00E+02 1.130 
8.00E+02 1.131 9.00E+02 1.132 1.00E+03 1.133 2.00E+03 1.138 3.00E+03 1.142 
4.00E+03 1.144 5.00E+03 1.146 6.00E+03 1.147 7.00E+03 1.149 8.00E+03 1.150 
9.00E+03 1.151 1.00E+04 1.152 1.10E+04 1.152 1.20E+04 1.153 1.30E+04 1.154 
1.40E+04 1.154 1.50E+04 1.155 1.60E+04 1.156 1.70E+04 1.156 1.80E+04 1.157 
1.90E+04 1.157 2.00E+04 1.157 3.00E+04 1.161 4.00E+04 1.163 5.00E+04 1.165 
6.00E+04 1.167 7.00E+04 1.168 8.00E+04 1.169 9.00E+04 1.170 1.00E+05 1.171 
1.10E+05 1.172 1.20E+05 1.172 1.30E+05 1.173 1.40E+05 1.174 1.50E+05 1.174 
1.60E+05 1.175 1.70E+05 1.175 1.80E+05 1.176 1.90E+05 1.176 2.00E+05 1.177 
2.10E+05 1.177 2.20E+05 1.178 2.30E+05 1.178 2.40E+05 1.178 2.50E+05 1.179 
 
c Bilinear function. 
lcd 2 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.216 5.00E+01 1.310 6.00E+01 1.392 
7.00E+01 1.465 8.00E+01 1.532 9.00E+01 1.593 1.00E+02 1.650 2.00E+02 2.079 
3.00E+02 2.380 4.00E+02 2.619 5.00E+02 2.821 6.00E+02 2.998 7.00E+02 3.156 
8.00E+02 3.300 9.00E+02 3.432 1.00E+03 3.555 2.00E+03 4.479 3.00E+03 5.127 
4.00E+03 5.643 5.00E+03 6.078 6.00E+03 6.459 7.00E+03 6.800 8.00E+03 7.109 
9.00E+03 7.394 1.00E+04 7.658 1.10E+04 7.906 1.20E+04 8.138 1.30E+04 8.358 
1.40E+04 8.567 1.50E+04 8.767 1.60E+04 8.957 1.70E+04 9.140 1.80E+04 9.316 
1.90E+04 9.485 2.00E+04 9.649 3.00E+04 11.045 4.00E+04 12.157 5.00E+04 13.096 
6.00E+04 13.916 7.00E+04 14.650 8.00E+04 15.317 9.00E+04 15.930 1.00E+05 16.499 
1.10E+05 17.032 1.20E+05 17.533 1.30E+05 18.007 1.40E+05 18.458 1.50E+05 18.887 
1.60E+05 19.298 1.70E+05 19.692 1.80E+05 20.071 1.90E+05 20.436 2.00E+05 20.788 
2.10E+05 21.129 2.20E+05 21.459 2.30E+05 21.779 2.40E+05 22.091 2.50E+05 22.393 
 
c ********************************************************** SYMMETRY PLANES *** 
plane 2 
 0. 0. 0. -1. 0. 0. 1.E-6 symm 
 0. 0. 0. 0. -1. 0. 1.E-6 symm 
 
c *************************************************************** INTERFACES *** 
 si 1 t14 fd 0.0 material master 1; material slave 2; ; 
 
c ******************************************* LINES AND SURFACES DEFINITIONS *** 
 l3d 1 lp 1 [-r] 0.000 [-nose] lrot [rc-r] 0.000 [-nose] 0 1 0 [-90] 
 sd 1 L3S 0 0 0 0 0 1 1 
 sd 2 cyli 0 0 0 0 0 1. [r] 
 sd 3 cyli 0 0 0 0 0 1. 0.700 
 sd 4 cyli 0 0 0 0 0 1. 0.150 
  
c ***************************************************** MATERIAL DEFINITIONS *** 
c Target dummy material 
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mat 1  
 type 12 
 ro 2770 g [50.E+9/(2*(1+.2))] sigy [0.3*150.E+6] eh [100.E+6/0.0025] 
 bulk 17.E+9 hgqt 5 brfo 1 
endmat 
 
eos 8  
 npts 7 gamma 0.0 e0 0.0 v0 1.0 
 lnv  0.000000  -0.007034  -0.028960   -0.050979 
     -0.062837  -0.072613  -0.144392 
 pc         0.     2.E+08    2.4E+08    3.9E+08 
      5.65E+08   7.37E+08     2.E+09 
 ku   2.843E+10  2.843E+10  2.843E+10  2.843E+10 
      2.843E+10  2.843E+10  2.843E+10 
endeos 
 
c Projectile 
mat 2  
 type 1 
 ro 7800 e 200.E+9 pr 0.3 hgqt 5 brfo 2 
endmat 
 
c ************************************************* CONCRETE PART DEFINITION *** 
start 
c 5mm 
c 1 31 58; 
c 1 31 58; 
c 1 161; 
 
c 7.5mm 
 1 21 44; 
 1 21 44; 
 1 108; 
 
 0.000 0.010 0.010 
 0.000 0.010 0.010 
 0.000 0.800 
  
 di 2 3; 2 3; 0; 
  
 sfi -3; 1 2; ; sd 3 
 sfi 1 2; -3; ; sd 3 
 sfvi -2; 1 2; ; sd 4 
 sfvi 1 2; -2; ; sd 4 
 
 res 2 1 1 3 2 2 i 1.1 
 res 1 2 1 2 3 2 j 1.1 
  
 b 3 1 1 3 2 2 001000 
 b 1 3 1 2 3 2 001000 
  
c Elements in impact area 
 epb 1 1 1; 
 epb 1 1 1 po 0 0 1; 
c Element in exiting area 
 epb 1 1 2; 
c Nodes in impact area to calculate model's maximum strain rates 
 npb 1 1 1; 
 npb 1 1 1 po 0 0 1; 
 npb 1 1 1 po 0 0 2; 
 
 mat 1 
end 
 
c *********************************************** PROJECTILE PART DEFINITION *** 
start 
 1 4 6 8 11; 
 1 4 6 8 11; 
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 1 4 9 19; 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-nose/3] [-nose/3] [-nose] [-length] 
  
 di 1 2 0 4 5; 1 2 0 4 5; ; 
 di 1 2 0 4 5; ; 1 2; 
 di ; 1 2 0 4 5; 1 2; 
 pa 3 3 1 z 0 
 sfi -1 -5; -1 -5; -1 3; SD 1 
 sfi -1 -5; -1 -5; 3 4; SD 2 
 di 1 3; ; ; 
 di ; 3 5; ; 
 coor 1 mx -1.E-4 rz [90]; 
 lrep 1; 
 b 3 1 0 3 3 0 110111 
 b 3 3 0 5 3 0 110111 
 
c Projectile rear node 
 npb 3 3 4; 
c Nose top element 
 epb 3 3 1; 
 
 mat 2 
 velocity 0 0 [v] 
end 
 
c ********************************************************************** end *** 
end 
 
c ******************************************* LS-INGRID INTERACTIVE COMMANDS *** 
tp 1.E-5 
cont 
stop 
 
c *********************************************************** KEYWORD FORMAT *** 
*MAT_ADD_EROSION 
         1 
                                               0.9 
c 5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9       1.0       1.0      .023 
         0         0         0         0         0         0         0 
        0.    .02E-3    2.8E-3    41.E-3 
 
        0.        1.       .15        .0 
 
c 7.5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9     0.682      6.46      .035 
         0         0         0         0         0         0         0 
        0.    1.5E-4     9.E-4    35.E-4 
 
        0.        1.        .2        .0 
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Appendix E  
Bofors-99, Target 1-3_sq (SI-units) 
 
dn3d kw93 
batch 
 
term 5.0E-3 plti 1.E-1 
gmprt nodout 1.E-10 elout 1.E-10 matsum 1.E-10; 
taurus int8 8; 
 
c *************************************************************** PARAMETERS *** 
c Projectile 
[v = 616] [r = 0.075 / 2] [nose = 0.090] [length = 0.225] 
[rc = (r*r+nose*nose)/2/r] [a = asin(nose/rc)] 
 
c ************************************************************** LOAD CURVES *** 
c Dynamic increase factor (DIF) in compression according to  
c CEB-FIP Model Code 1990 
c Linear function. 
lcd 1 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.107 5.00E+01 1.109 6.00E+01 1.110 
7.00E+01 1.111 8.00E+01 1.112 9.00E+01 1.113 1.00E+02 1.114 2.00E+02 1.120 
3.00E+02 1.123 4.00E+02 1.125 5.00E+02 1.127 6.00E+02 1.129 7.00E+02 1.130 
8.00E+02 1.131 9.00E+02 1.132 1.00E+03 1.133 2.00E+03 1.138 3.00E+03 1.142 
4.00E+03 1.144 5.00E+03 1.146 6.00E+03 1.147 7.00E+03 1.149 8.00E+03 1.150 
9.00E+03 1.151 1.00E+04 1.152 1.10E+04 1.152 1.20E+04 1.153 1.30E+04 1.154 
1.40E+04 1.154 1.50E+04 1.155 1.60E+04 1.156 1.70E+04 1.156 1.80E+04 1.157 
1.90E+04 1.157 2.00E+04 1.157 3.00E+04 1.161 4.00E+04 1.163 5.00E+04 1.165 
6.00E+04 1.167 7.00E+04 1.168 8.00E+04 1.169 9.00E+04 1.170 1.00E+05 1.171 
1.10E+05 1.172 1.20E+05 1.172 1.30E+05 1.173 1.40E+05 1.174 1.50E+05 1.174 
1.60E+05 1.175 1.70E+05 1.175 1.80E+05 1.176 1.90E+05 1.176 2.00E+05 1.177 
2.10E+05 1.177 2.20E+05 1.178 2.30E+05 1.178 2.40E+05 1.178 2.50E+05 1.179 
 
c Bilinear function. 
lcd 2 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.216 5.00E+01 1.310 6.00E+01 1.392 
7.00E+01 1.465 8.00E+01 1.532 9.00E+01 1.593 1.00E+02 1.650 2.00E+02 2.079 
3.00E+02 2.380 4.00E+02 2.619 5.00E+02 2.821 6.00E+02 2.998 7.00E+02 3.156 
8.00E+02 3.300 9.00E+02 3.432 1.00E+03 3.555 2.00E+03 4.479 3.00E+03 5.127 
4.00E+03 5.643 5.00E+03 6.078 6.00E+03 6.459 7.00E+03 6.800 8.00E+03 7.109 
9.00E+03 7.394 1.00E+04 7.658 1.10E+04 7.906 1.20E+04 8.138 1.30E+04 8.358 
1.40E+04 8.567 1.50E+04 8.767 1.60E+04 8.957 1.70E+04 9.140 1.80E+04 9.316 
1.90E+04 9.485 2.00E+04 9.649 3.00E+04 11.045 4.00E+04 12.157 5.00E+04 13.096 
6.00E+04 13.916 7.00E+04 14.650 8.00E+04 15.317 9.00E+04 15.930 1.00E+05 16.499 
1.10E+05 17.032 1.20E+05 17.533 1.30E+05 18.007 1.40E+05 18.458 1.50E+05 18.887 
1.60E+05 19.298 1.70E+05 19.692 1.80E+05 20.071 1.90E+05 20.436 2.00E+05 20.788 
2.10E+05 21.129 2.20E+05 21.459 2.30E+05 21.779 2.40E+05 22.091 2.50E+05 22.393 
 
c ********************************************************** SYMMETRY PLANES *** 
plane 2 
 0. 0. 0. -1. 0. 0. 1.E-6 symm 
 0. 0. 0. 0. -1. 0. 1.E-6 symm 
 
c *************************************************************** INTERFACES *** 
 si 1 t14 fd 0.0 material master 1; material slave 2; ; 
 
c ******************************************* LINES AND SURFACES DEFINITIONS *** 
 l3d 1 lp 1 [-r] 0.000 [-nose] lrot [rc-r] 0.000 [-nose] 0 1 0 [-90] 
 sd 1 L3S 0 0 0 0 0 1 1 
 sd 2 cyli 0 0 0 0 0 1. [r] 
  
c ***************************************************** MATERIAL DEFINITIONS *** 
c Target dummy material 
mat 1  
 type 12 
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 ro 2770 g [50.E+9/(2*(1+.2))] sigy [0.3*150.E+6] eh [100.E+6/0.0025] 
 bulk 17.E+9 hgqt 5 brfo 1 
endmat 
 
eos 8  
 npts 7 gamma 0.0 e0 0.0 v0 1.0 
 lnv  0.000000  -0.007034  -0.028960   -0.050979 
     -0.062837  -0.072613  -0.144392 
 pc         0.     2.E+08    2.4E+08    3.9E+08 
      5.65E+08   7.37E+08     2.E+09 
 ku   2.843E+10  2.843E+10  2.843E+10  2.843E+10 
      2.843E+10  2.843E+10  2.843E+10 
endeos 
 
c Projectile 
mat 2  
 type 1 
 ro 7800 e 200.E+9 pr 0.2 hgqt 5 brfo 2 
endmat 
 
c ************************************************* CONCRETE PART DEFINITION *** 
start 
c 5mm square 
 1 67; 
 1 67; 
 1 161; 
 0 0.330 
 0 0.330 
 0 0.800 
 b 2 1 2 2 2 2 001000 
 b 1 2 2 2 2 2 001000 
 
c Elements in impact area 
 epb 1 1 1; 
 epb 1 1 1 po 0 0 1; 
c Element in exiting area 
 epb 1 1 2; 
c Nodes in impact area to calculate model's maximum strain rates 
 npb 1 1 1; 
 npb 1 1 1 po 0 0 1; 
 npb 1 1 1 po 0 0 2; 
 
 mat 1 
end 
 
c *********************************************** PROJECTILE PART DEFINITION *** 
start 
 1 4 6 8 11; 
 1 4 6 8 11; 
 1 4 9 19; 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-nose/3] [-nose/3] [-nose] [-length] 
  
 di 1 2 0 4 5; 1 2 0 4 5; ; 
 di 1 2 0 4 5; ; 1 2; 
 di ; 1 2 0 4 5; 1 2; 
 pa 3 3 1 z 0 
 sfi -1 -5; -1 -5; -1 3; SD 1 
 sfi -1 -5; -1 -5; 3 4; SD 2 
 di 1 3; ; ; 
 di ; 3 5; ; 
 coor 1 mx -1.E-4 rz [90]; 
 lrep 1; 
 b 3 1 0 3 3 0 110111 
 b 3 3 0 5 3 0 110111 
 
c Projectile rear node 
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 npb 3 3 4; 
c Nose top element 
 epb 3 3 1; 
 
 mat 2 
 velocity 0 0 [v] 
end 
 
c ********************************************************************** end *** 
end 
 
c ******************************************* LS-INGRID INTERACTIVE COMMANDS *** 
tp 1.E-5 
cont 
stop 
 
c *********************************************************** KEYWORD FORMAT *** 
*MAT_ADD_EROSION 
         1 
                                               0.9 
c 5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9       1.0       1.0      .023 
         0         0         0         0         0         0         0 
        0.    .02E-3    2.8E-3    41.E-3 
 
        0.        1.       .15        .0 
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Appendix F 
Bofors-99, Target 4-6 (SI-units) 
 
dn3d kw93 
batch 
 
term 2.0E-3 plti 1.E-4 
gmprt nodout 1.E-10 elout 1.E-10 matsum 1.E-10; 
taurus int8 8; 
 
c *************************************************************** PARAMETERS *** 
c Projectile 
[v = 617] [r = 0.075 / 2] [nose = 0.090] [length = 0.225] 
[rc = (r*r+nose*nose)/2/r] [a = asin(nose/rc)] 
 
c ************************************************************** LOAD CURVES *** 
c Dynamic increase factor (DIF) in compression according to  
c CEB-FIP Model Code 1990 
c Linear function. 
lcd 1 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.107 5.00E+01 1.109 6.00E+01 1.110 
7.00E+01 1.111 8.00E+01 1.112 9.00E+01 1.113 1.00E+02 1.114 2.00E+02 1.120 
3.00E+02 1.123 4.00E+02 1.125 5.00E+02 1.127 6.00E+02 1.129 7.00E+02 1.130 
8.00E+02 1.131 9.00E+02 1.132 1.00E+03 1.133 2.00E+03 1.138 3.00E+03 1.142 
4.00E+03 1.144 5.00E+03 1.146 6.00E+03 1.147 7.00E+03 1.149 8.00E+03 1.150 
9.00E+03 1.151 1.00E+04 1.152 1.10E+04 1.152 1.20E+04 1.153 1.30E+04 1.154 
1.40E+04 1.154 1.50E+04 1.155 1.60E+04 1.156 1.70E+04 1.156 1.80E+04 1.157 
1.90E+04 1.157 2.00E+04 1.157 3.00E+04 1.161 4.00E+04 1.163 5.00E+04 1.165 
6.00E+04 1.167 7.00E+04 1.168 8.00E+04 1.169 9.00E+04 1.170 1.00E+05 1.171 
1.10E+05 1.172 1.20E+05 1.172 1.30E+05 1.173 1.40E+05 1.174 1.50E+05 1.174 
1.60E+05 1.175 1.70E+05 1.175 1.80E+05 1.176 1.90E+05 1.176 2.00E+05 1.177 
2.10E+05 1.177 2.20E+05 1.178 2.30E+05 1.178 2.40E+05 1.178 2.50E+05 1.179 
 
c Bilinear function. 
lcd 2 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.216 5.00E+01 1.310 6.00E+01 1.392 
7.00E+01 1.465 8.00E+01 1.532 9.00E+01 1.593 1.00E+02 1.650 2.00E+02 2.079 
3.00E+02 2.380 4.00E+02 2.619 5.00E+02 2.821 6.00E+02 2.998 7.00E+02 3.156 
8.00E+02 3.300 9.00E+02 3.432 1.00E+03 3.555 2.00E+03 4.479 3.00E+03 5.127 
4.00E+03 5.643 5.00E+03 6.078 6.00E+03 6.459 7.00E+03 6.800 8.00E+03 7.109 
9.00E+03 7.394 1.00E+04 7.658 1.10E+04 7.906 1.20E+04 8.138 1.30E+04 8.358 
1.40E+04 8.567 1.50E+04 8.767 1.60E+04 8.957 1.70E+04 9.140 1.80E+04 9.316 
1.90E+04 9.485 2.00E+04 9.649 3.00E+04 11.045 4.00E+04 12.157 5.00E+04 13.096 
6.00E+04 13.916 7.00E+04 14.650 8.00E+04 15.317 9.00E+04 15.930 1.00E+05 16.499 
1.10E+05 17.032 1.20E+05 17.533 1.30E+05 18.007 1.40E+05 18.458 1.50E+05 18.887 
1.60E+05 19.298 1.70E+05 19.692 1.80E+05 20.071 1.90E+05 20.436 2.00E+05 20.788 
2.10E+05 21.129 2.20E+05 21.459 2.30E+05 21.779 2.40E+05 22.091 2.50E+05 22.393 
 
c ********************************************************** SYMMETRY PLANES *** 
plane 2 
 0. 0. 0. -1. 0. 0. 1.E-6 symm 
 0. 0. 0. 0. -1. 0. 1.E-6 symm 
 
c *************************************************************** INTERFACES *** 
 si 1 t14 fd 0.0 material master 1; material slave 2; ; 
 
c ******************************************* LINES AND SURFACES DEFINITIONS *** 
 l3d 1 lp 1 [-r] 0.000 [-nose] lrot [rc-r] 0.000 [-nose] 0 1 0 [-90] 
 sd 1 L3S 0 0 0 0 0 1 1 
 sd 2 cyli 0 0 0 0 0 1. [r] 
 sd 3 cyli 0 0 0 0 0 1. 0.700 
 sd 4 cyli 0 0 0 0 0 1. 0.150 
  
c ***************************************************** MATERIAL DEFINITIONS *** 
c Dummy material - replace in LS-DYNA keyword file with card at end. 
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mat 1  
 type 12 
 ro 2770 g [50.E+9/(2*(1+.2))] sigy [0.3*150.E+6] eh [100.E+6/0.0025] 
 bulk 17.E+9 hgqt 5 brfo 1 
endmat 
 
eos 8  
 npts 7 gamma 0.0 e0 0.0 v0 1.0 
 lnv  0.000000  -0.007034  -0.028960   -0.050979 
     -0.062837  -0.072613  -0.144392 
 pc         0.     2.E+08    2.4E+08    3.9E+08 
      5.65E+08   7.37E+08     2.E+09 
 ku   2.843E+10  2.843E+10  2.843E+10  2.843E+10 
      2.843E+10  2.843E+10  2.843E+10 
endeos 
 
mat 2  
 type 1 
 ro 7800 e 200.E+9 pr 0.3 brfo 2 
endmat 
 
c ************************************************* CONCRETE PART DEFINITION *** 
start 
c 5mm 
 1 31 58; 
 1 31 58; 
 1 81; 
 
c 7.5mm 
c 1 21 44; 
c 1 21 44; 
c 1 54; 
 
 0.000 0.010 0.010 
 0.000 0.010 0.010 
 0.000 0.400 
  
 di 2 3; 2 3; 0; 
  
 sfi -3; 1 2; ; sd 3 
 sfi 1 2; -3; ; sd 3 
 sfvi -2; 1 2; ; sd 4 
 sfvi 1 2; -2; ; sd 4 
 
 res 2 1 1 3 2 2 i 1.1 
 res 1 2 1 2 3 2 j 1.1 
  
 b 3 1 1 3 2 2 001000 
 b 1 3 1 2 3 2 001000 
  
c Elements in impact area 
 epb 1 1 1; 
 epb 1 1 1 po 0 0 1; 
c Element in exiting area 
 epb 1 1 2; 
c Nodes in impact area to calculate model's maximum strain rates 
 npb 1 1 1; 
 npb 1 1 1 po 0 0 1; 
 npb 1 1 1 po 0 0 2; 
 
 mat 1 
end 
 
c *********************************************** PROJECTILE PART DEFINITION *** 
start 
 1 4 6 8 11; 
 1 4 6 8 11; 
 1 4 9 19; 



 62

 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-nose/3] [-nose/3] [-nose] [-length] 
  
 di 1 2 0 4 5; 1 2 0 4 5; ; 
 di 1 2 0 4 5; ; 1 2; 
 di ; 1 2 0 4 5; 1 2; 
 pa 3 3 1 z 0 
 sfi -1 -5; -1 -5; -1 3; SD 1 
 sfi -1 -5; -1 -5; 3 4; SD 2 
 di 1 3; ; ; 
 di ; 3 5; ; 
 coor 1 mx -1.E-4 rz [90]; 
 lrep 1; 
 b 3 1 0 3 3 0 110111 
 b 3 3 0 5 3 0 110111 
 
c Projectile rear node 
 npb 3 3 4; 
c Nose top element 
 epb 3 3 1; 
 
 mat 2 
 velocity 0 0 [v] 
end 
 
c ********************************************************************** end *** 
end 
 
c ******************************************* LS-INGRID INTERACTIVE COMMANDS *** 
tp 1.E-5 
cont 
stop 
 
c *********************************************************** KEYWORD FORMAT *** 
*MAT_ADD_EROSION 
         1 
                                               0.8 
c 5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9       1.0       1.0      .023 
         0         0         0         0         0         0         0 
        0.    .02E-3    2.8E-3    41.E-3 
 
        0.        1.       .15        .0 
 
c 7.5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9     0.682      6.46      .035 
         0         0         0         0         0         0         0 
        0.    1.5E-4     9.E-4    35.E-4 
 
        0.        1.        .2        .0 
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Appendix G 
Bofors-99, Target 7-9 (SI-units) 
 
dn3d kw93 
batch 
 
term 2.0E-3 plti 1.E-4 
gmprt nodout 1.E-10 elout 1.E-10 matsum 1.E-10; 
taurus int8 8; 
 
c *************************************************************** PARAMETERS *** 
c Projectile 
[v = 616] [r = 0.075 / 2] [nose = 0.090] [length = 0.225] 
[rc = (r*r+nose*nose)/2/r] [a = asin(nose/rc)] 
 
c ************************************************************** LOAD CURVES *** 
c Dynamic increase factor (DIF) in compression according to  
c CEB-FIP Model Code 1990 
c Linear function. 
lcd 1 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.107 5.00E+01 1.109 6.00E+01 1.110 
7.00E+01 1.111 8.00E+01 1.112 9.00E+01 1.113 1.00E+02 1.114 2.00E+02 1.120 
3.00E+02 1.123 4.00E+02 1.125 5.00E+02 1.127 6.00E+02 1.129 7.00E+02 1.130 
8.00E+02 1.131 9.00E+02 1.132 1.00E+03 1.133 2.00E+03 1.138 3.00E+03 1.142 
4.00E+03 1.144 5.00E+03 1.146 6.00E+03 1.147 7.00E+03 1.149 8.00E+03 1.150 
9.00E+03 1.151 1.00E+04 1.152 1.10E+04 1.152 1.20E+04 1.153 1.30E+04 1.154 
1.40E+04 1.154 1.50E+04 1.155 1.60E+04 1.156 1.70E+04 1.156 1.80E+04 1.157 
1.90E+04 1.157 2.00E+04 1.157 3.00E+04 1.161 4.00E+04 1.163 5.00E+04 1.165 
6.00E+04 1.167 7.00E+04 1.168 8.00E+04 1.169 9.00E+04 1.170 1.00E+05 1.171 
1.10E+05 1.172 1.20E+05 1.172 1.30E+05 1.173 1.40E+05 1.174 1.50E+05 1.174 
1.60E+05 1.175 1.70E+05 1.175 1.80E+05 1.176 1.90E+05 1.176 2.00E+05 1.177 
2.10E+05 1.177 2.20E+05 1.178 2.30E+05 1.178 2.40E+05 1.178 2.50E+05 1.179 
 
c Bilinear function. 
lcd 2 65 
3.00E-05 1.000 3.00E-04 1.017 3.00E-03 1.034 3.00E-02 1.051 3.00E-01 1.069 
3.00E+00 1.086 3.00E+01 1.105 4.00E+01 1.216 5.00E+01 1.310 6.00E+01 1.392 
7.00E+01 1.465 8.00E+01 1.532 9.00E+01 1.593 1.00E+02 1.650 2.00E+02 2.079 
3.00E+02 2.380 4.00E+02 2.619 5.00E+02 2.821 6.00E+02 2.998 7.00E+02 3.156 
8.00E+02 3.300 9.00E+02 3.432 1.00E+03 3.555 2.00E+03 4.479 3.00E+03 5.127 
4.00E+03 5.643 5.00E+03 6.078 6.00E+03 6.459 7.00E+03 6.800 8.00E+03 7.109 
9.00E+03 7.394 1.00E+04 7.658 1.10E+04 7.906 1.20E+04 8.138 1.30E+04 8.358 
1.40E+04 8.567 1.50E+04 8.767 1.60E+04 8.957 1.70E+04 9.140 1.80E+04 9.316 
1.90E+04 9.485 2.00E+04 9.649 3.00E+04 11.045 4.00E+04 12.157 5.00E+04 13.096 
6.00E+04 13.916 7.00E+04 14.650 8.00E+04 15.317 9.00E+04 15.930 1.00E+05 16.499 
1.10E+05 17.032 1.20E+05 17.533 1.30E+05 18.007 1.40E+05 18.458 1.50E+05 18.887 
1.60E+05 19.298 1.70E+05 19.692 1.80E+05 20.071 1.90E+05 20.436 2.00E+05 20.788 
2.10E+05 21.129 2.20E+05 21.459 2.30E+05 21.779 2.40E+05 22.091 2.50E+05 22.393 
 
c ********************************************************** SYMMETRY PLANES *** 
plane 2 
 0. 0. 0. -1. 0. 0. 1.E-6 symm 
 0. 0. 0. 0. -1. 0. 1.E-6 symm 
 
c *************************************************************** INTERFACES *** 
 si 1 t14 fd 0.0 material master 1; material slave 2; ; 
 
c ******************************************* LINES AND SURFACES DEFINITIONS *** 
 l3d 1 lp 1 [-r] 0.000 [-nose] lrot [rc-r] 0.000 [-nose] 0 1 0 [-90] 
 sd 1 L3S 0 0 0 0 0 1 1 
 sd 2 cyli 0 0 0 0 0 1. [r] 
  
c ***************************************************** MATERIAL DEFINITIONS *** 
c Target dummy material 
mat 1  
 type 12 
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 ro 2770 g [50.E+9/(2*(1+.2))] sigy [0.3*150.E+6] eh [100.E+6/0.0025] 
 bulk 17.E+9 hgqt 5 brfo 1 
endmat 
 
eos 8  
 npts 7 gamma 0.0 e0 0.0 v0 1.0 
 lnv  0.000000  -0.007034  -0.028960   -0.050979 
     -0.062837  -0.072613  -0.144392 
 pc         0.     2.E+08    2.4E+08    3.9E+08 
      5.65E+08   7.37E+08     2.E+09 
 ku   2.843E+10  2.843E+10  2.843E+10  2.843E+10 
      2.843E+10  2.843E+10  2.843E+10 
endeos 
 
c Projectile 
mat 2  
 type 1 
 ro 7800 e 200.E+9 pr 0.2 hgqt 5 brfo 2 
endmat 
 
c Rebars 
mat 3 
 type 3 
 ro 7800 e 207.E+9 pr 0.3 sigy 586.E+6 etan 623.E+6 beta 0.5 fs 0.16 
 beam bform truss care 491.E-6 
endmat 
 
c Stirrups 
mat 4 
 type 3 
 ro 7800 e 207.E+9 pr 0.3 sigy 586.E+6 etan 623.E+6 beta 0.5 fs 0.16 
 beam bform truss care 113.E-6 
endmat 
 
c ************************************************* CONCRETE PART DEFINITION *** 
start 
c 5mm 
 1 13 37 49 57 63 67 69; 
 1 13 37 49 57 63 67 69; 
 1 9 14 39 44 69 74 81; 
 
 0. 0.060 0.180 0.300 0.420 0.540 0.660 0.700 
 0. 0.060 0.180 0.300 0.420 0.540 0.660 0.700 
 0. 0.0375 0.0625 0.1875 0.2125 0.3375 0.3625 0.400 
 
 b 8 1 1 8 8 8 001000 
 b 1 8 1 8 8 8 001000  
 
c Elements in impact area 
 epb 1 1 1; 
 epb 1 1 1 po 0 0 1; 
c Element in exiting area 
 epb 1 1 8; 
c Nodes in impact area to calculate model's maximum strain rates 
 npb 1 1 1; 
 npb 1 1 1 po 0 0 1; 
 npb 1 1 1 po 0 0 2; 
  
 mat 1 
end 
 
c *********************************************** PROJECTILE PART DEFINITION *** 
start 
 1 4 6 8 11; 
 1 4 6 8 11; 
 1 4 9 19; 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
 [-r/3] [-r/3] 0  [r/3]  [r/3] 
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 [-nose/3] [-nose/3] [-nose] [-length] 
  
 di 1 2 0 4 5; 1 2 0 4 5; ; 
 di 1 2 0 4 5; ; 1 2; 
 di ; 1 2 0 4 5; 1 2; 
 pa 3 3 1 z 0 
 sfi -1 -5; -1 -5; -1 3; SD 1 
 sfi -1 -5; -1 -5; 3 4; SD 2 
 di 1 3; ; ; 
 di ; 3 5; ; 
 coor 1 mx -1.E-4 rz [90]; 
 lrep 1; 
 b 3 1 0 3 3 0 110111 
 b 3 3 0 5 3 0 110111 
 
c Projectile rear node 
 npb 3 3 4; 
c Nose top element 
 epb 3 3 1; 
 
 mat 2 
 velocity 0 0 [v] 
end 
 
c ************************************************* REINFORCEMENT DEFINITION *** 
beam 
 rt 000000 0.000 0.000 0.000 
 rt 000000 0.060 0.000 0.000 
 rt 000000 0.180 0.000 0.000 
 rt 000000 0.300 0.000 0.000 
 rt 000000 0.420 0.000 0.000 
 rt 000000 0.540 0.000 0.000 
 rt 000000 0.660 0.000 0.000 
  
 rt 111111 0.000 0.000 1.000 
0 
c 5mm 
 1 2 12 3 1 8 
 2 3 24 3 1 8 
 3 4 24 3 1 8 
 4 5 24 3 1 8 
 5 6 24 3 1 8 
 6 7 24 3 1 8 
0 
 coor 36 
  my 0.060 mz 0.0375; 
  my 0.180 mz 0.0375; 
  my 0.300 mz 0.0375; 
  my 0.420 mz 0.0375; 
  my 0.540 mz 0.0375; 
  my 0.660 mz 0.0375; 
 
  my -0.060 mz 0.0625 rz 90; 
  my -0.180 mz 0.0625 rz 90; 
  my -0.300 mz 0.0625 rz 90; 
  my -0.420 mz 0.0625 rz 90; 
  my -0.540 mz 0.0625 rz 90; 
  my -0.660 mz 0.0625 rz 90; 
 
  my 0.060 mz 0.1875; 
  my 0.180 mz 0.1875; 
  my 0.300 mz 0.1875; 
  my 0.420 mz 0.1875; 
  my 0.540 mz 0.1875; 
  my 0.660 mz 0.1875; 
 
  my -0.060 mz 0.2125 rz 90; 
  my -0.180 mz 0.2125 rz 90; 
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  my -0.300 mz 0.2125 rz 90; 
  my -0.420 mz 0.2125 rz 90; 
  my -0.540 mz 0.2125 rz 90; 
  my -0.660 mz 0.2125 rz 90; 
   
  my -0.060 mz 0.3375 rz 90; 
  my -0.180 mz 0.3375 rz 90; 
  my -0.300 mz 0.3375 rz 90; 
  my -0.420 mz 0.3375 rz 90; 
  my -0.540 mz 0.3375 rz 90; 
  my -0.660 mz 0.3375 rz 90; 
 
  my 0.060 mz 0.3625; 
  my 0.180 mz 0.3625; 
  my 0.300 mz 0.3625; 
  my 0.420 mz 0.3625; 
  my 0.540 mz 0.3625; 
  my 0.660 mz 0.3625; 
   
  lrep 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
       28 29 30 31 32 33 34 35 36 
 
end 
 
c ****************************************************** STIRRUPS DEFINITION *** 
beam 
 rt 000000 0.000 0.000 0.0375 
 rt 000000 0.000 0.000 0.0625 
 rt 000000 0.000 0.000 0.1875 
 rt 000000 0.000 0.000 0.2125 
 rt 000000 0.000 0.000 0.3375 
 rt 000000 0.000 0.000 0.3625 
 rt 111111 1.000 0.000 0.000 
0 
 1 2 5  4 1 7 
 2 3 25 4 1 7 
 3 4 5  4 1 7 
 4 5 25 4 1 7 
 5 6 5  4 1 7 
0 
coor 36 
 mx 0.060 my 0.060; 
 mx 0.060 my 0.180; 
 mx 0.060 my 0.300; 
 mx 0.060 my 0.420; 
 mx 0.060 my 0.540; 
 mx 0.060 my 0.660; 
  
 mx 0.180 my 0.060; 
 mx 0.180 my 0.180; 
 mx 0.180 my 0.300; 
 mx 0.180 my 0.420; 
 mx 0.180 my 0.540; 
 mx 0.180 my 0.660; 
 
 mx 0.300 my 0.060; 
 mx 0.300 my 0.180; 
 mx 0.300 my 0.300; 
 mx 0.300 my 0.420; 
 mx 0.300 my 0.540; 
 mx 0.300 my 0.660; 
 
 mx 0.420 my 0.060; 
 mx 0.420 my 0.180; 
 mx 0.420 my 0.300; 
 mx 0.420 my 0.420; 
 mx 0.420 my 0.540; 
 mx 0.420 my 0.660; 
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 mx 0.540 my 0.060; 
 mx 0.540 my 0.180; 
 mx 0.540 my 0.300; 
 mx 0.540 my 0.420; 
 mx 0.540 my 0.540; 
 mx 0.540 my 0.660; 
 
 mx 0.660 my 0.060; 
 mx 0.660 my 0.180; 
 mx 0.660 my 0.300; 
 mx 0.660 my 0.420; 
 mx 0.660 my 0.540; 
 mx 0.660 my 0.660; 
 
 lrep 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
      28 29 30 31 32 33 34 35 36 
end 
 
c ********************************************************************** end *** 
end 
 
c ******************************************* LS-INGRID INTERACTIVE COMMANDS *** 
tp 1.E-5 
cont 
stop 
 
c *********************************************************** KEYWORD FORMAT *** 
*MAT_ADD_EROSION 
         1 
                                               0.9 
c 5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9       1.0       1.0      .023 
         0         0         0         0         0         0         0 
        0.    .02E-3    2.8E-3    41.E-3 
 
        0.        1.       .15        .0 
 
c 7.5mm mesh 
*MAT_CONCRETE_DAMAGE 
         1      2770      0.16 
    8.0E+6 50.643E+6     0.465  0.657E-9 
 22.789E+6     1.033  1.460E-9     0.465  0.657E-9     0.682      6.46      .035 
         0         0         0         0         0         0         0 
        0.    1.5E-4     9.E-4    35.E-4 
 
        0.        1.        .2        .0 
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ABSTRACT 
 
This paper presents a finite element analysis of impact loading tests of reinforced 
concrete beams. The purpose of the work is to evaluate the ability of the chosen 
numerical method and material models to predict the material and structural 
response. The impact loading was carried out using a drop weight impacting a 
simply supported beam at mid-span. Four beams, reinforced with steel rebars and 
stirrups, were tested. The velocity of the drop-weight and the beam, the strain 
history of lower reinforcement bars and the acceleration history of the beam were 
registered. A high-speed film camera captured the crack development. The finite 
element analysis gave a different type of failure compared to the tests. In the test, 
the failure was mode I cracking combined with crushing in the impact zone. In the 
simulations, the failure was mainly due to mode II cracking. Changes were made to 
the model and to the material data but the results from the test could not be 
reproduced. The conclusion is that the chosen concrete material model does not 
seem to be capable of correctly describing the problem, given the material 
properties and the numerical tool of analysis. 
 
KEYWORDS 
 
impact loading, high performance concrete, finite element analysis, material model 
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TESTS 
 
Tests were performed at FOI in 1999 where reinforced concrete beams were 
subjected to impact loading using a drop weight. The beams were 4.2 m and simply 
supported 0.1 m from the ends with a 0.17x0.34 m cross section. The reinforcement 
consisted of four ø12 mm rebars and 22ø10 mm stirrups. The drop weight had a 
mass of 718 kg and the cylindrical striker head impacted a steel pad fixed to the 
beam at 6.7 m/s.  Dampers were used to stop the drop-weight after 90 mm of 
vertical displacement of the beam, corresponding to approximately 20 ms after 
impact. The test set-up and results are thoroughly presented in Ågårdh et al. (1999). 
Four beams were tested during which the following registrations were made: 
- High speed photos of the beam mid-section 
- Striker displacement history 
- Striker head acceleration history 
- Beam acceleration history near the point of impact 
- Beam velocity history at mid-section 
- Crack indication at beam side 20 mm above lower surface of beam 
- Strain history in lower rebars 200 mm from mid-span 
- Strain history in lower rebars at mid-span 
- Strain history at the concrete surface at mid-span and at the same height as 

rebars 
 
 
MECHANICAL MATERIAL CHARACTERIZATION 
 
The concrete material was characterized through weighing of test specimens, 
uniaxial compression test of 150x150 mm cubes and ø100x200 mm cylinders and 
split tensile tests on 150x150 mm cubes. The fracture energy release was 
determined from RILEM beam testing, see Hilleborg (1985). Confined uniaxial 
compression tests of ø75x150 mm cylinders were performed by the Norwegian 
Defence Research Establishment (FFI) with the gauged reactive confinement 
(GREAC) cell, see Ågårdh (1999). The initial density was 2420 kg/m3 and the 
Poisson's ratio was taken from (2000). The test results are given in Tables 1 and 2. 
The steel reinforcement was characterized through uniaxial tension test on a ø12 
mm rebar. The density and Poisson's ration were set as defaults according to 
standard tables. 
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TABLE 1 
UNCONFINED STATIC MECHANICAL PROPERTIES OF THE CONCRETE MATERIAL 

 
Modulus of 

elasticity 
Poisson�s ratio Compressive 

strength 
Split tensile 

strength 
Fracture energy

[GPa] [-] [MPa] [MPa] [Nm-1] 
44 0.16 100 6.5 156 

 
TABLE 2 

CONFINED STATIC MECHANICAL PROPERTIES OF THE CONCRETE MATERIAL 
 

Relative volume 
(V/V0) 

Volumetric strain 
εv=ln(V/V0) 

Pressure 
p=-1/3tr(T) 

Unloading/loading 
bulk modulus 

dp/dεv 
[-] [-] [MPa] [GPa] 

1.0000 0.0000 0 9 
0.9896 -0.0104 90 9 
0.9715 -0.0289 216 - 
0.9503 -0.0510 390 - 
0.9391 -0.0628 565 - 
0.9300 -0.0726 737 25 

 
TABLE 3 

STATIC MECHANICAL PROPERTIES OF THE REINFORCEMENT 
 

Density Modulus of 
elasticity 

Poisson�s ratio Yield strength Tensile 
strength 

[kgm-3] [GPa] [-] [MPa] [MPa] 
7 800 207 0.3 586 684 

 
 
MECHANICAL CONSTITUTIVE MODELLING 
 
To model the concrete beam the K&C concrete model release III, see Malvar et al. 
(1997), was used. The source code was made available to FOI through an agreement 
with the developers. Release I of this model is available in the LS-DYNA as 
material type 72. The input parameters for this model are valid for one element size 
only, which results in erroneous fracture energy release when using different 
element sizes in a model. Modifications were made to the source code to scale the 
plastic deformation relative the size of the current element during the softening 
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phase of the material. In Figure 1 results from simulations of a uniaxial tension test 
with the modified material model using different element sizes are shown together 
with the recommendations in the CEB-FIP model code 90 (1993). The response 
curves display the same softening behaviour and integration gives the same energy 
release, i.e. related to fracture energy release the model is independent of the spatial 
discretization. In the model, the elastic material properties, except for the Poisson's 
ratio, are derived from the equation of state. The test data for the equation of state in 
Table 2 was complemented with two data points to get a correct elastic wave speed 
and to get correspondence with the uniaxial data on the modulus of elasticity. 
Strength enhancement factors due to high loading rate were taken from the CEB-
FIP model code 90 (1993). For the stirrups, a linear elastic-plastic material model 
with isotropic hardening was used and for the rebars a linear elastic-perfectly plastic 
material model due to restrictions in the code. The drop weight was modelled with a 
linear elastic material model. 
 

Element size

10 mmA
100 mmB
10 mm, CEB−FIPC
100 mm, CEB−FIPD
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Figure 1: Uniaxial extension of hexahedral element with user-modified version of 
the K&C concrete material model and comparison with the recommendations in the 

CEB-FIP model code 90 (1993). 
 
 
FINITE ELEMENT MODEL 
 
The three dimensional problem was numerically analysed in the finite element code 
LS-DYNA version 950d, see the LS-DYNA Keyword user's manual (1999), and a 
material description of the motion was used. The concrete beam and drop weight 
were discretized in space with eight-node cubical elements. One-point Gauss 
integration and viscous hourglass control was used for the beam and weight. For the 
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steel-pad and striker-head selectively reduced integration was used. The 
reinforcement bars were spatially discretized with beam elements and the stirrups 
with truss elements. For the problem double symmetry was used, see Figure 2. The 
mesh consisted of 42871 nodes, 36823 cube elements and 626 beam and truss 
elements. For the two contact interfaces, striker-steel pad and steel pad-beam, a 
surface to surface constraint algorithm with friction was used. Adjacent beam and 
reinforcement nodes were merged. The dampers were not incorporated in the model 
and the problem was only analysed up to 20 ms after impact. 

 
 

Figure 2: Problem geometry with double symmetry. 
 
 
NUMERICAL ANALYSIS AND COMPARISON WITH TEST RESULTS 
 
The results from the simulations displayed a different behaviour than the test 
results. In the tests cracks in mode I (tension) were initiated, the first approximately 
0.3 ms after impact, at the bottom of the beam followed by crushing of the material 
in the impact zone. The simulations reproduced the first mode I crack but also 
displayed an almost instantaneous initiation of a mode II (in plane shear) crack 50 
mm from the centre point of impact. This crack then propagated through the beam 
resulting in a partial separation of the material directly under the striker and the rest 
of the beam. This shear failure allowed for no additional mode I cracks to develop, 
as well as no crushing of the impact zone. Any problems induced by the double 
symmetry were investigated by performing computations using both single and 
double symmetry and it was concluded, based on negligible differences in the 
results, that double symmetry could be used in the problem. With the concrete 
model, various degrees of associativity of the flow rule can be used. This was also 
investigated and it was concluded that the degree of associativity also had negligible 
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effect on the results. Three different equations of state were used but the type of 
failure changed only slightly. Comparisons are made below between the 
registrations from the test and the corresponding data from the numerical analysis. 
- High speed photos. Comparisons between the high-speed photos and damage 

plots from the model are given in Figures 3 and 4. 
- Striker displacement. In the numerical analysis, the striker is displaced more 

than compared to the test. This is due to the partitioning of the beam caused by 
the shear failure. 

- Striker head acceleration. In the test, the peak acceleration is 18000 ms-2. The 
model gives rigid body acceleration for the striker head of 8000 ms-2. The lower 
value from the model can also be explained by the shear-induced failure. 

- Beam acceleration. Data on the nodal acceleration was hard to use for 
comparisons due to oscillations. However, integration of the signals shows that 
the speed of the beam is lower in the model than in the test. Again, this is due to 
the shearing failure. 

- Beam displacement. The model shows a larger displacement of the mid-centre 
section of the beam compared to the test. This is in accordance with the striker 
displacement. 

- Crack indication. For the mode I crack at the lower surface of the beam, the 
model reproduces well the time for the initiation. A stress-strain plot reveals that 
the material behaviour in uniaxial extension is accurately described. 

- Strain in lower rebars. The strain histories in the model show good agreement 
with the test but after approximately one millisecond the strain gauges reaches 
their maximum range. 

- Strain in concrete, at the same height as the tension reinforcement. The strain in 
the model is slightly smaller than the test data. The strain gauges reaches their 
maximum range after 0.5 ms. 

 
 

 
  

Figure 3: High-speed photo at mid-span and numerical damage plot after 1 ms. 
Beam mid-span indicated by dash-dotted line. 
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Figure 4: High-speed photo at mid-span and numerical damage plot after 20 ms. 
Beam mid-span indicated by dash-dotted line. 

 
 
SUMMARY 
 
An investigation has been carried out to determine if a numerical model could be 
used to reproduce the results from a drop-weight test on reinforced concrete beams. 
A short description of the tests performed is given with a reference to the 
corresponding test data report. Mechanical material characterization was performed 
on both the concrete and the steel reinforcement material. The data was then 
adapted to the concrete material model. Simulations were performed where 
investigations were made on how symmetry, flow rule associativity and the 
equation of state influenced the results.  
 
The conclusion from this study is that the concrete material model is able to 
accurately describe material response for standard tests such as uniaxial extension 
and compression. However, it does not seem to be able to reproduce the structural 
response in the tests performed, given the available data on the material properties 
and the numerical tool of analysis used. Suggestions for future implementation of 
the material model are to include: 
- The possibility to use full or selectively reduced integration for hexahedral 

elements. In the current implementation, the model is valid only for one-point 
integrated hexahedral elements and for the zone near the impact this can be 
insufficient. 

- Inelastic deformations due to isotropic compression, i.e. the volumetric strain 
from the equation of state, in the model's damage evolution. 

- Non-local material behaviour. This is one way to avoid strain localization, as in 
the present problem, by introducing non-local measures of deformation in the 
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material model Bazant & Planas (1997). A simple method is to calculate local 
strains and to choose a domain of influence. A weight function is then applied to 
the local strains in this domain and the resulting, weighted strain is used to 
calculate inelastic strain. In the present model the inelastic strain is represented 
by a scalar valued damage parameter. 
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1 Introduction 

At the Swedish Defence Research Agency (FOI) applied research is done on how 
to assess and optimize the protection level of concrete structures subjected to 
conventional weapon loadings. The modelling of concrete material is a challenging 
task, especially when the loading is three dimensional and applied at high rates. 
Two different material models have been used extensively at the Swedish Defence 
Research Agency and one of them is used in this study. The scrutinized material 
model has mainly been used for problems involving impact loading and it is here 
shown to be inadequate for these purposes. This report presents the behaviour of 
this model in a splitting test and a simplified non-local continuum approach applied 
in a tensile test. Based on two years of experience in this field, the report is 
concluded with thoughts on what is necessary to better model concrete materials.  

1.1 Splitting test 

Performing a direct tension test on a concrete material is expensive and the 
preparation of the test specimen is time demanding. The loading rig has to be very 
stiff in order to capture the complete response curve due to the softening 
behaviour of the concrete material. The preparation of the specimen consists of 
manufacturing a notched specimen of the granular material and of gluing grips to 
the ends, to which the load cell is to be fastened. A simpler way of determining the 
tensile strength is the splitting test, or the Brazilian test, originating from rock 
mechanics. This test, on the other hand, is load-controlled and does not provide 
any information on the softening behaviour. In this method a cubical or cylindrical 
specimen is subjected to a uniaxial line-load that induces tensile stresses at the 
centre of the specimen, see Figure 1-1 and Figure 1-2. 

Figure 1-1 Fringes of lateral stresses in an 
elastic analysis. 

Figure 1-2 Fringes of hydrostatic pressure 
in an elastic analysis. 
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The splitting test only works with materials that have an increase in strength with 
increasing pressure. Otherwise the failure would not occur at the centre of the 
specimen but in the area under the applied load where large compressive stresses 
are induced. The test set-up is shown in Figure 1-3. In the test the peak load is 
registered and the splitting strength is then calculated using an analytical expression 
and an empirical relation to approximate the tensile strength, cf. Ljungkrantz et al. 
[1]. At the Swedish Defence Research Agency, this has been the prevailing method 
when estimating tensile strength input for numerical models. Examples of earlier 
work where this test has been studied numerically are Feenstra and Borst [2], who 
used a cubical specimen, Sawamoto et al. [3], who used a cylindrical specimen and a 
discrete element method and Comi [4], who used a cubical specimen and the Finite 
Element Method (FEM). 

 

Concrete specimen 

150 mm 

Steel load ruler 

Wood interface 

Splitting crack in mode I 

 
Figure 1-3 Test set-up of splitting test according to the Swedish standard SS 13 72 13 [5]. 
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1.2 Non-local model 

The presence of a strain singularity gives rise to mesh sensitivity and in 
combination with a failure criterion a non-convergent solution. One way to 
circumvent problems of localization and singularities is to introduce a non-local 
measure of deformation. In this way the stress at a point does not only depend on 
the deformation at that point, which is one of the fundamental statements in 
continuum mechanics, cf. Noll [6], but also on the deformation in a neighbourhood 
to that point. The idea to use a non-local description of the continuum is found in 
Eringen [7]. A simple way of introducing non-locality is to define a non-local strain 
measure based on a weighted average of the local strain field, cf. Bazant and Planas 
[8]. 
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2 Methods 

2.1 Non-local kinematics 

In LS-DYNA version 960 a simplified method for non-local treatment has been 
implemented for solid elements with one-point integration. The local strain 
measure is weighted and integrated over the element neighbourhood using the 
following expression, from Bazant and Planas [8], for the non-local rate of 
evolution of the strain: 
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where Dlocal is the local strain rate measure, wei is a weight function, xe is the position 
vector of the element integration point, xi is the position vector of a neighbouring 
element and Vi is the corresponding element volume. L is the radius of the element 
neighbourhood as shown in Figure 2-1. The weight function with the parameters p 
and q set to 8 and 2, respectively, is shown in Figure 2-2 for the two-dimensional 
case. In this study the parameters were set to p=8 and q=2 with neighbourhood 
radius 5 and 2.5 mm. The effect on the weight function of the parameters is shown 
in Figure 2-3 and Figure 2-4. 

 

Figure 2-1 Element neighbourhood with 
radius L. 

Figure 2-2 Weight function over element 
neighbourhood with p=8 and q=2. 

 

L 
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Figure 2-3 Weight function as a function of 
neighbouring element position and q with 
p=8. 

Figure 2-4 Weight function as a function of 
neighbouring element position and p with 
q=2. 

2.2 Constitutive equations 

The concrete material was modelled with a user-modified version of the K&C 
concrete model by Malvar et al. [9], where a scaling of the softening behaviour 
based on the element size was introduced. The material input parameters were 
taken the same as in Unosson [10] and [11]. The wood interface and the steel load 
ruler were modelled using an isotropic elastic model with the parameters given in 
Table 2-1. 
Table 2-1 Isotropic elastic parameters for the wood interface and the steel load ruler. 

Material Mass density 
[kg m-3] 

Modulus of elasticity
[GPa] 

Poisson�s ratio 
[-] 

Wood 500 17 0.45 

Steel 7 800 200 0.2 

The non-local treatment of strains is not implemented in LS-DYNA version 960 
for all material models, why an elastic-plastic model with the von Mises yield 
criterion and a kinematic hardening with the parameters given in Table 2-2 was 
used in a tensile test instead. 
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Table 2-2 Parameters for the elastic-plastic model with isotropic hardening. 

Mass density 
[kg m-3] 

Modulus of 
elasticity 

[GPa] 

Poisson�s 
ratio 
[-] 

Yield strength 
[MPa] 

Hardening 
modulus 

[GPa] 

2 420 44 0.16 5.3 1.0 

2.3 Finite element analysis 

For the spatial discretization reduced integrated eight node brick elements with 
viscous hourglass control were used. The contact definition relied on a penalty 
based surface-to-surface algorithm with friction. The loading was applied through 
prescribed nodal displacements. The finite element analysis was carried out using 
LS-DYNA version 960. 
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3 Results 

3.1 Splitting test 

The current version of the software is incapable of treating the K&C concrete 
model with a non-local theory. Consequently the splitting test has only been 
analyzed with a local formulation. Three different models were defined for the 
simulations; a three-dimensional model, a plane strain model and a plane stress 
model. The geometry for the three-dimensional model is shown in Figure 3-1 and 
the geometry for the plane stress and plane strain models in Figure 3-2. Four levels 
of spatial discretization were used with every geometry. 

  

  

Figure 3-1 Three-dimensional geometry with symmetry in the xy-, yz- and xz-planes. 
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Figure 3-2 Plane strain and stress geometry with symmetry in the xy- and yz- planes. 

The global convergence properties and the resulting load-displacement relations for 
these three models are shown in Figure 3-3 to Figure 3-8. In the figures h is the 
finite element size. 
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Figure 3-3 Peak load in the 3D-model 
versus finite element size. 

Figure 3-4 Load versus displacement in the 
3D-model with four different finite element 
sizes. 
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Figure 3-5 Peak load in the plane strain 
model versus finite element size. 

Figure 3-6 Load versus displacement in the 
plane strain model with four different finite 
element sizes. 
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Figure 3-7 Peak load in the plane stress 
model versus finite element size. 

Figure 3-8 Load versus displacement in the 
plane stress model with four different finite 
element sizes. 
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For the 2.5 mm mesh a mode I crack is initiated at the centre of the specimen, in 
accordance with test results, see Figure 3-9. As the mesh is refined the point of 
crack initiation is moved to the loading zone, see Figure 3-10. Arrows in the figures 
indicates the points of crack initiation. 

Figure 3-9 Fracture for the 2.5 mm mesh at 
0.20 mm displacement. Representation by a 
scalar valued damage parameter. 

Figure 3-10 Fracture for the 0.5 mm mesh at 
0.16 mm displacement. Representation by a 
scalar valued damage parameter. 

3.2 Direct tension test with non-local theory 

The splitting test only works with brittle materials that have pressure dependent 
strength. The non-local treatment is not available for any appropriate model in the 
current version of the software. To investigate the possibility of using a non-local 
theory when dealing with singularities the elastic-plastic model described in Section 
2.2 was used in a direct tension test. A 100x50xh mm plate in plane stress was set 
up with a 2x2 mm notch introducing a singularity (see Figure 3-11). Computations 
were carried out with both local and non-local theory and the resulting plastic strain 
fields are shown in Figure 3-12 and Figure 3-13.  

 
Figure 3-11 Notched geometry for the direct tension test. (h=1 mm) 
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Figure 3-12 Local plastic strain fields (h=2.0, 1.0 and 0.5 mm). 

 

   
Figure 3-13 Non-local (L=5 mm) plastic strain fields (h=2.0, 1.0 and 0.5 mm). 
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With the local theory the maximum plastic strain in the finest mesh is 1.6 times the 
plastic strain in the 2.0 mm-mesh, whereas with the non-local theory the same 
comparison gives a factor 1.06. The global load-displacement relations are the same 
for all models as can be seen in Figure 3-14. The CPU-cost is shown graphically in 
Figure 3-15 for different levels of spatial discretization and non-local 
neighbourhood radius. 
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Figure 3-14 Global load-displacement 
relation for local and non-local theory with 
different finite element sizes. 

Figure 3-15 CPU-cost versus 
neighbourhood radius with different finite 
element sizes. 
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4 Discussion 

Splitting test and the K&C concrete material model 

The change of the fracture behaviour in the splitting test as the mesh is refined, is 
due to the occurrence of a singularity in the loading zone. At this singularity the 
solution converges towards immediate failure as the mesh density is increased. This 
is not in accordance with observations of experimental results. The overall 
experience from this material model gives that it will not be used in future work at 
FOI. 

Non-local deformation 

The use of a non-local theory results in a converging solution even though strain 
singularities are present. However, how large should the domain of influence, the 
element neighbourhood, be chosen? The neighbourhood corresponds to a 
statistical representative volume, i.e. the smallest volume for which the statistics do 
not change. In Bazant and Planas [8] it is suggested that tests of geometrically 
similar notched specimens with different sizes should be used. Iterative 
computations are then used to determine the size of the representative volume. 

A discussion on mechanical constitutive equations for concrete 

The following notes apply to the mechanical modelling of concrete materials 
subjected to monotonically increasing loads at high rates. 

Elastic domain: It is sufficient to use isotropic hypoelasticity with the additative split 
of the rate-of-deformation tensor. The anisotropic elastic domain should be convex 
and defined in strain space in order to have a stable material description according 
to Lubliner [12]. In addition, from a theoretical point of view a closed elastic 
domain is more appealing than an open deviatoric domain combined with a 
separate pressure-compaction curve. Careful modelling of the elastic domain at low 
pressures is very important to correctly model spalling and to reproduce standard 
material characterization loading paths. 

Inelastic domain: Plasticity is the theory of time-independent inelastic deformations, 
cf. Hill [13]. Strain-rate scaled plasticity, used in many material models, is thus a 
contradiction and can lead to numerical oscillations. Instead, a viscoplastic theory 
with a non-associated flow rule coupled to isotropic damage should be used, cf. 
Lemaitre and Chaboche [14]. Available experimental response curves can be used 
when defining relations governing inelastic deformations, both volumetric and 
deviatoric. 
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Implementation: For air blast loading applications, with relatively small deformations, 
a material description of the motion of the structure is the best approach. A 
material description of motion is computationally efficient and accurate at 
moderate strain levels. A target penetrated by a projectile should be described in a 
spatial reference frame so that the need for numerical erosion is eliminated. This 
calls for an implementation that allows both material (Lagrangian) and spatial 
(Eulerian) descriptions of motion. 

A non-local theory such as the one used in this report should be used in the 
presence of singularities, keeping in mind that this calls for further size effect 
testing. 

For the applications at hand solid elements are sufficient. However, the 
implementation should allow for full integration of elements near the impact zone. 

Model input: Obtaining model parameters for the full range of loading magnitudes 
and loading rates in defence applications is not yet possible. However, registrations 
from high explosive planar wave set-ups enable the extraction of material data for 
uniaxial compaction at high strain rates and pressures. This method will be 
employed at the Swedish Defence Research Agency for different materials. 

Fitting of material model parameters is possible by comparing simulation results to 
real projectile velocity history data. The velocity history through the target can be 
accurately registered with a Doppler radar or with accelerometers mounted inside 
the projectile. 
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theory applied in a tensile test. The splitting test model exhibits mesh dependency due to a singularity. In the tensile 
test the non-local theory is shown to give a convergent solution. The report is concluded with a discussion on how to 
better model concrete materials. 
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