LS-DYNA ${ }^{\circledR}$ Database Binary Output Files

Revised January 2023

Copyright © , 1989-2023
LIVERMORE SOFTWARE
TECHNOLOGY CORPORATION
All Rights Reserved

Support Address
Livermore Software Technology Corporation 7374 Las Positas Road
Livermore, California 94551

Tel: 9254492500
Fax: 9254492507
Email: support@1stc.com
Copyright © 1989-2015 by Livermore Software Technology Corporation All rights Reserved

LS-DYNA, LS-OPT and LS-PREPOST are registered trademarks of Livermore Software Technology Corporation.
1..INTRODUCTION 5
2..STATE DATABASE (d3plot) 7
CONTROL DATA 7
HIGHER SOLID ELEMENT PART DATA 14
MATERIAL TYPE DATA 14
FLUID MATERIAL ID DATA 15
SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS 16
PARTICLE DATA (NPEFG >0) 17
GEOMETRY DATA 18
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 19
SMOOTH PARTICLE HYDRODYNAMICS NODE AND MATERIAL LIST 21
RIGID ROAD SURFACE DATA 22
EXTRA 2 NODE CONNECTIVITY FOR 10 NODE TETRAHEDRON ELEMENTS 23
EXTRA 4 NODE CONNECTIVITY ARRAY FOR 8 NODE SHELL ELEMENTS 23
EXTRA 12 NODE CONNECTIVITY ARRAY FOR 20 NODE HEXAHEDRON ELEMENTS 23
27 NODE CONNECTIVITY ARRAY FOR 27 NODE HEXAHEDRON ELEMENTS 23
21 NODE CONNECTIVITY ARRAY FOR 21 NODE PENTAHEDRON ELEMENTS23
15 NODE CONNECTIVITY ARRAY FOR 15 NODE SOLID ELEMENTS 23
20 NODE CONNECTIVITY ARRAY FOR 20 NODE TETRAHEDRON ELEMENTS23
40 NODE CONNECTIVITY ARRAY FOR 40 NODE PENTAHEDRON ELEMENTS24
64 NODE CONNECTIVITY ARRAY FOR 64 NODE HEXAHEDRON ELEMENTS . 24
HEADER, PART \& CONTACT INTERFACE TITLES 25
DESCRIPTION OF BINARY FILE TYPES 26
3..EXTRA DATA TYPES (Output for Multi-Solver Analysis) 28
STATE DATA - D3PLOT AND D3PART 43
HIGHER ORDER SOLID ELEMENT STATE DATA 45
ELEMENT DELETION OPTION 50
SMOOTH PARTICLE HYDRODYNNAMICS NODE/ELEMENT STATE DATA. 51
PARTICLE STATE DATA (NPEFG > 0) 52
DES DATA - SEE DESCRIPTION BELOW FOR STATE DATA 52
ROAD SURFACE MOTION 52
EXTRA DATA (MULTI-SOLVER ANALYSIS) 53
END OF FILE MARKER 62
4.. TIME HISTORY DATABASE (d3thdt) 63
CONTROL DATA 63
SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS 67
GEOMETRY DATA 69
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 70
TIME HISTORY DATA 72
5. . INTERFACE FORCE DATABASE 81
CONTROL DATA 81
GEOMETRY DATA 84
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 85
ALE, CPM AND DES OUTPUT FRINGE LABELS 86
STATE DATA 88
FSIFOR FILE OUTPUT: 89
BLSTFOR FILE (NV2D=16 OR 7) OUTPUT: 90
6..CRACK FILE (d3crck) 91
7..DYNAIN BINARY FILE FORMAT (dynain.bin) 95
8..EXTRA DATA TYPE DEFINITIONS (NCFDV1 $=67108864$) 96
9.. DES CONTROL BLOCK AND DATA FORMAT 103

1. EXTENDED MASTER CONTROL WORD 103
2. DES EXTENDED CONTROL BLOCK 103
2.3 DES GEOMETRY BLOCK 104
3. DES STATE DATA BLOCK 106
10.D3ACS 107

INTRODUCTION

Three databases are discussed, these are:

1. State Database ($G=p t f$, default name d3plot and d3part)
2. Time History Database ($\mathrm{F}=\mathrm{thf}$, default name d3thdt)
3. Interface Force Database ($\mathrm{S}=$ iff, no default name, typically: intfor)

The purpose of this information is to give guidance on how to access and read the various databases.
The databases are written as word addressable fixed length binary files. The actual length depends on the amount of data saved, but will always be a multiple of 512 words (4 or 8 bytes each). Since it is likely that the database cannot be contained in a single file of length, FEMLEN, the data will spread over several files known as a family of files. Having a set of files enables them to be handled more easily than a single very large file. The root name for a family is the name of the first file member. Successive member names are compiled by appending a two or three digit number to the root name starting with 01,02 , through to 99 , then 100 and ending with 999. Root names are limited to 75 characters. The original reason for a family of files was because the hard disks used for dyna3d runs could not cope with a single contiguous files large enough to contain all the data output. Subsequently, it has been found that splitting the output into separate files allows some unwanted data to be discarded and aids the copying, saving and movement of the data. Very large files can be impossible to transfer reliably over networks. Total output data can amount to several gigabytes or more depending on the model size. For ls-dyna runs with mesh adaptivity, the root name has a two letter appendage for each adapted mesh. Starting from 'aa' through 'az', then 'ba' through ' $b z$ ' and continuing up to ' $z z$ ', this gives a maximum of 676 possible adaptions. For example if the root name is 'd3plot' the subsequent files related to the original mesh are 'd3plot01', d3plot02, ..., after adaption the new mesh and undeformed geometry is put in 'd3plotaa' and the subsequent files for the new mesh are: 'd3plotaa01', d3plotaa $02, \ldots$ The next adapted mesh will be in file 'd3plotab' and so on. A set of files at a particular adaption can be read separately by giving the root name with appendage, as the base file name.
For example command: 'Isprepost d3plot' will read in all the file with root name 'd3plot' While: '1sprepost d3plotab' will read in only files have 'd3plotab' in the name.
LSPREPOST will read the binary databases separately or combined.
Eg: 1sprepost d3plot, 1sprepost d3thdt, lsprepost iffname, lsprepost d 3 plot $\mathrm{h}=\mathrm{d} 3$ thdt $\mathrm{f}=\mathrm{iffname}$

The file length used is set in the ls-dyna run as the default size of $7 \times 512 \times 512$ words. The size can be changed on the command line with the ' $\mathrm{x}=$ factor' parameter giving a size of: factor $\mathrm{x} 512 \times 512$ words.
If the initial data or state data is larger than the given file length, the data will automatically split across files. This condition is not desirable because it is not clear whether any non root file can be discarded without destroying the continuity of the data. Ls-dyna checks before writing to a file, to ensure that there is room left in the file to contain the data at a particular state time. If not, it closes the current family member and starts writing the state data in the next file member. The files are written with a block size of 512 words, and if the data does not complete the last block it is padded out. This means that files cannot be concatenated and read together. The word size is 4 bytes for the single precision version of 1s-dyna and 8 bytes for the double precision version, unless 32 bit ieee format is defined, see *DATABASE_FORMAT, IBINARY.

FILE GENERAL STRUCTURE

The root file starts with a control words section, followed by node coordinates, then element connectivity for solids, thick shells, beams, and shells. Next are lists to reference the sequential internal numbering to the users number. State data is output next always starting with the time word. Data is of fixed length through the file members except where the mesh is adapted. The length of each area can be calculated from the information in the control words. The first file at adaption is like the root file in structure, so the new control words are used to recalculate the size of the subsequent data. The root file contains the initial data and also state data if there is room to write it. Further state data is written to the family members and each file will start with the time word provided data from the previous state did not overflow onto the file.

If the disk address, DA, of the data being written exceeds the maximum file length, then data is written into file number int(DA/FAMLEN) at location DA-FAMLEN*int(DA/FAMLEN). If the state length is greater than the remaining length, the disk address is increased to start the writing at the beginning of the next file.

STATE DATABASE (d3plot)

There are three sections in this database. The first contains 64 words of control information plus extensions. The second contains geometric information including the nodal coordinates and element connectivities and user numbering lists. The third section contains the results of the analysis at sequential output intervals. The output at a given time, called a state, contains a time word, global variables such as total energies and momenta for the whole model and each material (part), node data consisting of displacements, velocities, accelerations, and optionally temperatures, and finally element data that can include stresses and strains at integration points, and element deletion flags. The control data provides information about what is in the file and is used to calculate the various data length.
There are two other state database files, namely: d3drfl and d3part, these are similar to d3plot but contain less data. The dynamic relaxation file, d 3 drfl , provides the state at the end of the DR process, while d3part is state output for a reduced number of parts in the model.

CONTROL DATA

DISK			
VALUE \#W	\#WORDS	ADDRESS	DESCRIPTION
Title	10	0	Model identification
Run time	1	10	time in seconds since 00:00:00 UTC, January 1, 1970
INUM (File type)	e) 1	11	d3plot=1
			$1=\mathrm{d} 3$ plot, $2=\mathrm{d} 3 \mathrm{drlf}$, $3=\mathrm{d} 3$ thdt, $4=$ intfor, $5=\mathrm{d} 3$ part $6=$ blstfor, $7=\mathrm{d} 3 \mathrm{cpm}, 8=\mathrm{d} 3 \mathrm{ale}, 11=\mathrm{d} 3$ eigv, $12=\mathrm{d} 3$ mode, $13=\mathrm{d} 3$ iter, $21=\mathrm{d} 3 \mathrm{ssd}, 22=\mathrm{d} 3 \mathrm{spcm}$, $23=\mathrm{d} 3 \mathrm{psd}, 24=\mathrm{d} 3 \mathrm{rms}, 25=\mathrm{d} 3 \mathrm{ftg}, 26=\mathrm{d} 3 \mathrm{acs}$

If >1000, File type $=$ INUM- 1000
If INUM <0 for d3plot and d3eigv then the data has be defined by the
*DATABASE_EXTENT_BINARY_COMP option.
all external(users) numbers (Node, Element, Part, and Rigid Surface Nodes) will be written in I8 format.
Length of arbitrary numbering array $=$ NARBS $* 8$ bytes for single precision files.
Source version 1212 ls-dyna version *1000000 + svn number

Release number 13 Release number in character*4 form
50 for R5.0
511c for R5.1.1c

Version	1	14	Code version, floating number, eg 960.0 it is used to distinguish the floating point format, like cray, ieee, and dpieee
NDIM	1	15	Number of dimensions (2 or 3). If 5 or 7 then an array of material types is read (MATTYP $=1$ is set in lsprepost), element connectivities are unpacked and $\mathrm{NDIM}=3$. If 4 then element connectivies are unpacked in the DYNA3D database and NDIM is reset to 3 . If >5 and <8 then state data contains movement of rigid road surface. If NDIM $=8$ or 9 , coordinates, velocities and accelerations are not output for rigid bodies nodes. At the end of each state motion data is output for each rigid body. See below for more details. If $=9$ rigid road surface data is included.
NUMNP	1	16	Number of nodal points
ICODE	1	17	Flag to identify finite element code=2: old DYNA3D, code=6: NIKE3D, LS-DYNA/3D, LS-NIKE3D database
NGLBV	1	18	Number of global variable to be read with each state NUMRW=number of rigid walls. NUMRBS=number of rigid body sets. $=6+7$ * (NUMMAT8 + NUMMAT2 + NUMMAT4 + NUMATT+NUMRBS) + NUMRW * N $\mathrm{N}=1$ for DYNA3D and LS-DYNA3D $\mathrm{N}=4$ for LS-DYNA $>=$ version 971
IT	1	19	Flag for temperatures $=0$, none, $=1$, read in a temperature for each node $=2$, read temperature for each node and heat flux for each node. $=3$, read thermal shell middle temperature, thermal shell inner temperature, thermal shell outer temperature, and heat flux for each node. Solid node temperatures are repeated $+=10$, read mass scaling value for each node
IU	1	20	Flag for current geometry. $\begin{aligned} & 0=\text { no output } \\ & 1=\text { coordinates } \end{aligned}$

2 = displacements

IV	1	21	Flag for velocities ($=1$ or 0). If <0 d3eigv file contains unscaled data.
IA	1	22	Flag for accelerations ($=1$ or 0)
NEL8	1	23	Number of 8 node solid elements If NEL8 $<0,2$ extra nodes are output for ten node solids. Array is $2 *$ abs(NEL8), and is read after the arbitrary numbering arrays. NEL8 is also the total number of solid elements.
NUMMAT8	1	24	Number of materials (parts) used by the 8 node solids
NUMDS	1	25	If <0, Shell element data is output for 4 in-plane Gauss points. MAXINT will be 4 times number of points through the plane.
NUMST	1	26	=0 for d3plot/d3part
NV3D	1	27	Number of values in database for each solid element. $=6 * \operatorname{IOSOL}(1)+\mathrm{IOSOL}(2)+\mathrm{NEIPH}$ If NV3D $>=8$ * (6 *IOSOL(1)+IOSOL(2)+NEIPH), each solid element has values at each Gauss point.
NEL2	1	28	Number of 2 node one-dimensional elements
NUMMAT2	1	29	Number of materials (parts) used by the 2 node 1D elements
NV1D	1	30	Number of values in database for each 1D element $=6+5 *$ BEAMIP + NEIPB $*(3+$ BEAMIP $)$.
NEL4	1	31	Number of four node shells (2D or 3D) elements.
NUMMAT4	1	32	Number of materials (parts) used by the 4 node 2D elements
NV2D	1	33	Number of values in database for each 2D element Are: $\operatorname{MAXINT*}(6 * \operatorname{IOSHL}(1)+\mathrm{IOSHL}(2)+$ NEIPS $)+8$ *IOSHL(3)+4*IOSHL(4)+12*ISTRN
NEIPH	1	34	Number of additional values per integration point in a solid element, see NV3D. NEIPH is the number of values for history variables + total strains + plastic strains + thermal strains. ISTRN and IDTDT specifies which strains are present.
NEIPS	1	35	Number of additional values per integration point to be written into the type 6 database for shell elements.

MAXINT	1	36	Number of integration points dumped for each shell and the MDLOPT flag. The magnitude of MAXINT will be greater than or equal to 3 . if MAXINT $>=0$, then MDLOPT $=0$ and MAXINT=MAXINT if MAXINT <0 then MDLOPT $=1$ and MAXINT=abs(MAXINT) if MAXINT $<-10,000$, then MDLOPT $=2$ and MAXINT=abs(MAXINT)-10,000 MDLOPT controls the element deletion table (see below). This data allows deletion by nodes or elements.
EDLOPT	1	37	Element deletion flag (not standard) =xxx1 Solids deleted $=\mathrm{xx} 1 \mathrm{x}$ Beams deleted $=x 1 x x$ Shells deleted $=1 \mathrm{xxx}$ Thick Shells deleted (Not used in LS-DYNA)
NMSPH	1	37	Number of SPH Nodes
NGPSPH	1	38	Number of SPH materials
NARBS	1	39	Additional storage required for arbitrary node and element numbering in type 6 database $=0$, Sequential numbering.
NELT	1	40	Number of 8 node thick shell elements. MAXINT* (6*IOSHL(1)+IOSHL(2)+NEIPS) + 12*ISTRN
NUMMATT	1	41	Number of materials (parts) used for the 8 node thick shell element.
NV3DT	1	42	Number of values in database for each thick shell
IOSHL(1)	1	43	$\begin{aligned} & 6 \text { stress components flag. } \\ & \begin{array}{ll} \text { if } 1000: & \operatorname{IOSHL}(1)=1, \operatorname{IOSOL}(1)=1 \\ \text { if } 999: & \operatorname{IOSHL}(1)=0, \operatorname{IOSOL}(1)=1 \\ \text { else: } & \operatorname{IOSHL}(1)=0, \operatorname{IOSOL}(1)=0 \end{array} \end{aligned}$
IOSHL(2)	1	44	$\begin{aligned} & \text { Plastic strain flag. } \\ & \begin{array}{ll} \text { if 1000: } & \operatorname{IOSHL}(2)=1, \operatorname{IOSOL}(2)=1 \\ \text { if 999: } & \operatorname{IOSHL}(2)=0, \operatorname{IOSOL}(2)=1 \\ \text { else: } & \operatorname{IOSHL}(2)=0, \operatorname{IOSOL}(2)=0 \end{array} \end{aligned}$
IOSHL(3)	1	45	Shell force resultants flag, if $1000=1$ else $=0$
IOSHL(4)	1	46	Shell thickness, energy +2 others, if $1000=1$ else $=0$

IALEMAT	1	47	Size of array containing solid element parts numbers used as ALE material
NCFDV1	1	48	Bit flags for CFD nodal values, or if = 67108864, then state contains Multi-Solver extra data - see formats descriptions below.
NCFDV2	1	49	Further bit flags for CFD nodal values or if MS extra data, then value equals number of data domains.
NADAPT	1	50	Number of adapted element to parent pairs (not implemented)
NMMAT	1	51	Total number of materials (parts) - not set in LS- DYNA/3D
NUMFLUID	1	Total number of ALE fluid groups. Fluid density and volume fractions output as history variables, and a flag for the dominant group. If negative multi-material species mass for each group is also output. Order is: rho, vf1, .. vfn, dvf flag, m1, ... mn. Density is at position 8 after the location for plastic strain. Any element material history variables are written before the Ale variables, and the six element strains components after these if	
ISTRN=1.			

residual moments of length $3 *$ NUMNP. This data is written after node temperatures or $\mathrm{dT} / \mathrm{dt}$ values if there are output. (xxx1x)

IDTDT $!100=1: \quad$ Plastic strain tensor is written for each solid and shell after standard element data. For solids (6 values) and for shells ($6 \times 3=18$ values), at the lower, middle and upper integration location. (xxlxx)

IDTDT $!1000=1: \quad$ Thermal strain tensor is written after standard element data. For solid (6 values) and shell (6 values) and after the plastic strain tensor if output. (x1xxx)

IDTDT $!10000=1: \quad$ If database contains thermal or plastic strains, IDTDT>100, then this is the value of ISTRN, $=0$ or 1 . (1 xxxx)

EXTRA	$\mathbf{1}$	$\mathbf{5 7}$	Additional number of control words. If $>\mathbf{0}$, there are EXTRA control words after the first $\mathbf{6 4}$ words.
WORDS	6	$58-63$	Used by D3THDT and INTFOR

The value of ISTRN must be computed if IDTDT<100, because then it is not output in the control data. For this case only, this is the rule for computing it.

ISTRN can only be computed as follows and if NV2D >0.
If NV2D-MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS)+8*IOSHL(3)+4*IOSHL(4) > 1
Then ISTRN $=1$, else ISTRN $=0$
If ISTRN $=1$, and $\mathrm{NEIPH}>=6$, last the 6 additional values are the six strain components.
Or NELT > 0
If NV3DT-MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS) >1
Then ISTRN $=1$, else ISTRN $=0$

If (EXTRA > 0) Extra control words are written after the first 64 words
(This is currently set to 64 and 12 are used from September 2014, remaining are set to zero)

DISK			
VALUE	\#WORDS	ADDRESS	DESCRIPTION
NEL20	1	64	Number of 20 node Solid Hexahedron Elements.
			Internal element id and 12 extra nodes are output for
			20 node solids. Array is 13 * NEL20 long, and is read before Header, Part and Contact details, and after the extra nodes for 8 node shells, if they exist.
NT3D	1	65	Number of Thermal Element Variables, Data is NT3D
			* NEL8 and is output after the thermal nodal data.
NEL27	1	66	Number of 27 node Solid Hexahedron Elements.
NEIPB	1	67	Number of requested material history variables per integration point for beam elements.
NEL21P	1	68	Number of 21 node Solid Pentahedron Elements
NEL15T	1	69	Number of 15 node Solid Tetrahedron Elements.
SOLENG	1	70	If SOLENG >0, this is the position where to find internal energy density for solid elements in solid element integration point data.
NEL20T	1	71	Number of 20 node Solid Tetrahedron Elements.
NEL40P	1	72	Number of 40 node Solid Pentahedron Elements.
NEL64	1	73	Number of 64 node Solid Hexahedron Elements.
QUADR	1	74	Flag for output of state data for Quadratic elements
			$=1$ for full element connectivity, $=2$ for full connectivity and state data at each integration point.
CUBIC	1	75	Flag for output state data for Cubic elements
TSHENG	1	76	If TSHENG >0, this is the position where to find internal energy density for thick shell elements.
NBRANCH	1	77	Number of post branches
PENOUT	1	78	$0 / 1 / 2$. Flag for contact penetration output. $=1$: output max contact penetration, x, y, z for each node
			$(3 *$ NUMNP values). $=2$, in addition to absolute
			penetrations, also output relative (to max possible) x,
			y, z penetrations. ($3 *$ NUMNP values). Data written after residual forces and moments.
ENGOUT	1	79	$0 / 1$. Flag for output contact energy density as a node scalar field. Data written after contact penetrations.

BEMENG 1 If BEMENG >0, this is the position where to find internal energy density for beam elements in the beam element data block.

KINENG 11
$0 / 1$. Flag for output kinetic energy density as node scalar field. Data written after contact energy density node scalar field.

These flags are set in *DATABASE_EXTENT_BINARY card 4 columns 4 and 5.

HIGHER SOLID ELEMENT PART DATA

If QUADR or CUBIC is > 0
part data is output for each part defined with higher order elements
NPART 1 63+EXTRA Number of higher order element parts
repeat for each parts:

PID	1	64+EXTRA	Part internal id.
MID	1	65+EXTRA	Part material id.
EOS	1	66+EXTRA	Material equation of state.
EFORM	1	67+EXTRA	Element formation id.
NMNP	1	68+EXTRA	Number of nodes in element.
NGP	1	69+EXTRA	Number of integration points in element.
LENGP	1	70+EXTRA	Number of variables per integration point.
NHISV	1	71+EXTRA	Number of history variables.
ISTRN	1	72+EXTRA	Strain flag indicates output of strain tensor.

MATERIAL TYPE DATA

The material section contains the material type numbers. This section is skipped if MATTYP is zero.

This data is required because those shell elements that are in a rigid body have no element data output in the state data section. The normal length of the shell element state data is:
NEL4 * NV2D, when the MATTYP flag is set the length is: (NEL4 - NUMRBE) * NV2D.
When reading the shell element data, the material number must be check against IRBRTYP list to find the element's material type. If the type $=20$, then all the values for the element to zero. This option is set in *DATABASE_EXTENT_BINARY, with DCOMP=2

VALUE

NUMRBE	1	Number of rigid body shell elements.
NUMMAT	1	Number of materials in the database.
IRBTYP	NUMMAT	Material type numbers

FLUID MATERIAL ID DATA

The fluid material section contains the material numbers for solid elements that are used to define an Euler grid or Arbitrary Lagrangian Euler mesh. This section is skipped if IALEMAT is zero.

VALUE
FLUIDID

LENGTH DESCRIPTION
IALEMAT Fluid material number used in solid element mesh

SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS

This section is only output if NMSPH >0. The section is a list of flags to indicate what SPH data is output for each SPH node/element. The first number is the length in words for this array, currently $=11$.
SPH elements are centered at nodes, and cover a spherical volume defined by the radius of influence. They do not have a connection with other SPH elements. They should be displayed as a dot or a spherical surface, with radius scaling to reduce the size and enable each element to be distinguishable.

As follows:
$\operatorname{isphfg}(1)=11-$ length of sph flags array
isphfg $(2)=1 \quad$-radius of influence
$\operatorname{isphfg}(3)=1 \quad$ - pressure in particle
isphfg $(4)=6-6$ true stress components
isphfg(5) $=1 \quad$ - plastic strain, >0.0 if effective stress exceeds yield strength
$\operatorname{isphfg}(6)=1 \quad$ - density of particle material
$\operatorname{isphfg}(7)=1 \quad-$ internal energy (strain)
$\operatorname{isphfg}(8)=1 \quad$ - number of neighbors affecting particle
$\operatorname{isphfg}(9)=12-6$ strain (ex, ey, ez, exy, eyz, exz) and 6 strain rate (erx, ery, erz, erxy, eryz, erxz)

$$
\begin{array}{ll}
& \text { if negative, true strain components } \\
\text { isphfg }(10)=1 & \text { - mass of element }(>=1 \mathrm{~s} 971) \\
\text { isphfg }(11)=1 & \text { - max number of sph history variables. }
\end{array}
$$

If any value of $\operatorname{isphfg}(2)$ through $\operatorname{isphfg}(11)=0$, then the particular data item is not output for the particle. To calculated the size of data add the isphfg values from isphfg(2) through
isphfg(11) plus one. One value is always output which is the material number as a floating point number for each particle.
If this value is negative then the particle has been deleted from the model.
Note: it is possible a SPH element could be deleted, or be non active in the initial states, and become active in later states.
Full output for each particle is:
mat\#, radius, pressure, $\{s x, s y, s z, s x y, s y z, s x z\}$ ps, rho, ie, nn, \{ex, ey, ez, exy, eyz, exz, erx, ery, erz, erxy, eryx, erxz\}, mass, hv1 ... hvn.
NUM_SPH_VARS = $1+$ sum of isphfg(i), $\mathrm{i}=2$ to $\operatorname{isphfg}(1)$
Hence, total size is $20+$ the total number of history variables.
When a particle is deleted from the model, data is still output for it because the length of data must always be the same for each state.

PARTICLE DATA (NPEFG > 0)

DES Control Block - see description below

Control Block

If NPEFG >0 and NPEFG <10000000, airbag particles are output
The first three digits of NPEFG are the number of airbags in the database $=$ NPARTGAS
NPARTGAS = NPRFG \% 1000
SUBVER $=$ NPEFG $/ 1000$
In the extended control block:
The first four words in the block are:

1. NGEOM number of geometry variables
2. NVAR number of state variables
3. NPART number of particles
4. NSTGEOM number of state geometry variables

If SUBVER == 4
5. NCHAMBER number of chambers
$\mathrm{NLIST}=\mathrm{NGEOM}+\mathrm{NVAR}+\mathrm{NSTGEOM}$

NLIST words of output for variables listed to define the type of each variable, $=1$ for integer and $2=$ for floating point
8 * NLIST words of 8 character variable names (each integer word is an ascii character).

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is the same as the ordering of the nodal data in the state data that follows. If NDIM $=3$ the connectivities are assumed to be packed with 3 integers per word, if NDIM >3, then connectivities are not pack, (the default for LS-DYNA, LS-DYNA3D and LSNIKE3D. The order of the elements are 3, 2, and 1 dimensional elements if the database is ICODE=2 or 6 .

VALUE	LENGTH	DESCRIPTION
$\mathrm{X}(3,1)$	NDIM*NUMNP	Array of nodal coordinates X1,Y1,Z1, $\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2, \mathrm{X} 3, \mathrm{Y} 3, \mathrm{Z} 3, \ldots, \mathrm{Xn}, \mathrm{Yn}, \mathrm{Zn}$
IX8(9,1)	9*NEL8	Connectivity and material number for each 8 node solid element. Also, corner nodes for other >8 node solid elements. Pentahedron is: $1,2,3,4,5,5,6,6$, and Tetrahedron is: $1,2,3,4,4,4,4,4$
If NEL8 <0	2*abs(NEL8)	Extra nodes for ten node solids - not read here.
$\operatorname{IXT}(9,1)$	$9 *$ NELT	Connectivity and material number for each 8 node thick shell element.
IX2 $(6,1)$	6*NEL2	Connectivity, orientation node, two null entries, and the material number for each 2 node beam element. For some beam types the last two number contain the beam type and length to width ratio * 100 and length to height ratio * 100 type $=\mathrm{ix} 2(5, *) \& 0 \times 3 \mathrm{~F}$ width $=0.01 *$ length $/(\mathrm{ix} 2(5, *) \gg 6$ height $=0.01 *$ length $/ \mathrm{ix} 2\left(6,{ }^{*}\right)$ Third node (orientation) may be $>1 \mathrm{e} 9$ Contain flag 1e9 to indicate a spot weld.
IX4(5,1)	5*NEL4	Connectivity and material number for each 4 node shell element

Note the node numbers are the LS-DYNA internal numbers for nodes, these will be the same as the user's numbers if NARBS $=0$, otherwise, the arbitrary number lists are used to find the user's numbers, similarly, for element numbers and material numbers.

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It assumed that if this option is used all node and element data anywhere in the databases is in ascending order in relation to the user numbering. Read in NARBS words and decipher as indicated below.

For sequential material/part numbering, the total length of data is:
NARBS $=10+$ NUMNP+NEL8+NEL2+NEL4+NELT+
3*NMMAT : these numbers are not used
Only the first 10 control words are read in and used. The other 6 words are only output by lsdyna when NSORT <0.

For arbitrary material numbering (NSORT <0)
NARBS $=16+$ NUMNP+NEL8+NEL2+NEL4+NELT+3*NMMAT
Where material numbers are not in ascending order.
For this case all 16 control words are read in.

VALUE	LENGTH	DESCRIPTION
NSORT	1	Pointer to arbitrary node numbers in LS-DYNA code. If <0, it flags that arbitrary material identification numbers are also used.
NSRH	1	Pointer to arbitrary solid element numbers in LS-DYNA code: $=$ NSORT+NUMNP
NSRB	1	Pointer to arbitrary beam element numbers in LS-DYNA code: =NSRH+NEL8
NSRS	1	Pointer to arbitrary shell element numbers in LS-DYNA code: =NSRB+NEL2
NSRT	1	Pointer to arbitrary thick shell element numbers in LS-DYNA code: =NSRS+NEL4
NSORTD	1	Number of nodal points Number of 8 node solid elements NSRHD
NSRBD	1	Number of 2 node beam elements NSRSD
NSRTD	1	1

\(\left.$$
\begin{array}{lll}\text { NSRMA } & 1 & \begin{array}{l}\text { Pointer to an array in the LS-DYNA code that list } \\
\text { the material ID's in ascending order. }\end{array} \\
\text { NSRMU } & 1 & \begin{array}{l}\text { Pointer to an array in the LS-DYNA code that gives } \\
\text { the material ID's in the actual order that they are } \\
\text { defined in the user input. }\end{array} \\
\text { NSRMP } & 1 & \begin{array}{l}\text { Pointer to an array in the LS-DYNA code that gives } \\
\text { the location of a member in the array originating at }\end{array}
$$

NSRMU for each member in the array starting at\end{array}\right\}\)| NSRMA. |
| :--- |
| NSRTM |

RIGID BODY DESCRIPTION for NDIM=8,9

NRIGID	1	Number of rigid bodies
For each rigid body:		
MRIGID	1	Rigid body part internal number
NUMNODR	1	Number of nodes in rigid body
NODER	NUMNODR	Internal node number of rigid body
NUMNODA	1	Number of active (not rigid) nodes
NODEA	NUMNODA	Internal node numbers of active nodes.

Active node coordinates, velocities and accelerations are output as usual. Rigid body motion data is described in the state section below.

ADAPTED ELEMENT PARENT LIST (not implemented)

List of element id pairs for H-type shell element adaptivity.
Length of data is $2 *$ NADAPT, pairs are element number and element parent number

SMOOTH PARTICLE HYDRODYNAMICS NODE AND MATERIAL LIST

If NMSPH $>0 \quad$ List of sph node and its material number
Length of data $2 *$ NUMSPH

PARTICLE GEOMETRY DATA (NPEFG >0 0)

DES Control words $($ NPEFG $/ 10000000==1)-$ see description below

NPARTGAS blocks of NGEOM data to describe the geometry for each airbag:

1. first particle ID for the airbag
2. number of particles in the airbag
3. ID for the airbag
4. number of gas mixtures in the airbag

If $\mathrm{NGEOM}=5$
5. number of chambers

RIGID ROAD SURFACE DATA

If NDIM > 5
NNODE Number of nodes in road surface
NSEG Total number of 4 noded road surface segments
NSURF Number of road surfaces
MOTION Flag to indicate motion data is output for each state
NODEID NNODE list of IDs
SURFNODE XYZ Coordinate for each node
Lists of 4 node segments for each surface
SURFID Surface ID Number
SURFNSEG Number of segments in surface
SURFSEGS SURFNSEG of 4 node ids for each segment

Length of data $=4+$ NNODE $+3 *$ NNODE + NSURF $*(2+4 *$ SURFNSEG $)$

EXTRA 2 NODE CONNECTIVITY FOR 10 NODE TETRAHEDRON ELEMENTS
(only if NEL8 < 0)List of extra nodes for each 10 node tetrahedron element, 2 * abs(NEL8). Any 8 node solids have these two nodes set to zero.

EXTRA 4 NODE CONNECTIVITY ARRAY FOR 8 NODE SHELL ELEMENTS
(only if NEL48 > 0)
NEL48 number of 8 node shells
List of extra nodes for each 8 node shell element, 5 * NEL48:- element internal number and 4 extra nodes.

EXTRA 12 NODE CONNECTIVITY ARRAY FOR 20 NODE HEXAHEDRON ELEMENTS

(only if EXTRA > 0 and NEL20 > 0)
NEL20 number of 20 node solids
List of extra midside nodes for each 20 node solid elements, 13 * NEL20:- element internal number and 12 extra nodes for each element. Corner nodes are taken from NEL8 list.

27 NODE CONNECTIVITY ARRAY FOR 27 NODE HEXAHEDRON ELEMENTS (only if EXTRA > 0 and NEL27 > 0 and QUADR > 0)
NEL27 number of 27 node solids
List of 27 nodes for each 27 node solid elements, 28 * NEL27:- element internal number and 27 nodes for each element. Ls-dyna R10 outputs 19 nodes for each element to be combined with the 8 corner nodes already output.

21 NODE CONNECTIVITY ARRAY FOR 21 NODE PENTAHEDRON ELEMENTS (only if EXTRA >0 and NEL21P > 0 and QUADR >0)
 NEL21P number of 21 node solids

List of nodes for each 21 node solid element, 22 * NEL21P:- element internal number and 21 nodes for each element.

15 NODE CONNECTIVITY ARRAY FOR 15 NODE SOLID ELEMENTS
(only if EXTRA >0 and NEL15T > 0 and QUADR >0)
NEL15T number of 15 node solids
List of nodes for each 15 node solid elements, 8 * NEL15T:- element internal number and 15 nodes for each element.

20 NODE CONNECTIVITY ARRAY FOR 20 NODE TETRAHEDRON ELEMENTS (only if EXTRA > 0 and NEL20T > 0 and CUBIC > 0)
NEL20T number of 20 node solids

List of nodes for each 20 node solid elements, 21 * NEL20T:- element internal number and 20 nodes for each element.

40 NODE CONNECTIVITY ARRAY FOR 40 NODE PENTAHEDRON ELEMENTS

 (only if EXTRA > 0 and NEL40P > 0 and CUBIC > 0)NEL40P number of 40 node solids
List of nodes for each 40 node solid elements, 41 * NEL40P:- element internal number and 20 nodes for each element.

64 NODE CONNECTIVITY ARRAY FOR 64 NODE HEXAHEDRON ELEMENTS
(only if EXTRA >0 and NEL64 > 0 and CUBIC >0)
NEL64 number of 64 node solids
List of nodes for each 64 node solid elements, 65 * NEL64:- element internal number and 64 nodes for each element.

HEADER, PART \& CONTACT INTERFACE TITLES

At the end of the first binary files, eg d3plot, the part and model titles are appended. If the model input includes *DATABASE_BINARY_D3PROP, all the d3prop part data is included.
At the end of the first interface force file, titles and contact id are appended.
This extra data is written at the end of the following files:
d3plot, d3part and intfor files, and the header and part titles are written directly after the EOF (= -999999.0) marker.

Header output

NTYPE	1	entity type $=90000$
HEAD	18	Header title $(72$ characters)

For the interface force file (intfor), header and contact titles are written at the end of first file after the EOF (= -999999.0) marker

Part title output

Value	Length	Description

NTYPE	1	entity type $=90001$
NUMPROP	1	number of parts

For NUMPROP parts:

IDP	1	part id
PTITLE	18	Part title (72 characters)

For the interface force file (intfor), header and contact titles are written at the end of first file after the EOF (=-999999.0) marker.

Contact title output

NTYPE	1	entity type = 90002
NUMCON	1	number of contacts

For NUMCON contacts:

IDC	1	contact id
CTITLE	18	Contact title (72 characters)

Header output

NTYPE	1	entity type $=90000$
HEAD	18	Header title (72 characters)

ICFD Part title output
Value Length Description

NTYPE	1	entity type $=90020$
NUMPROP	1	number of parts

CESE: mechanics solid surface part title output

Value	Length	Description
$-----------------------\quad$		
NTYPE	1	entity type $=90021$
NUMPROP	1	number of parts

For NUMPROP parts:

IDP	1	part id
PTITLE	18	Part title (72 characters)

The d3prop data is written to the d3plot file only if it is requested.
D3PROP output
Values Length Description

NTYPE	1	entity type $=900100$
NLINE	1	number of keyword lines

For NLINE keyword lines:
KEYWORD 20 keyword line (80 characters)

DESCRIPTION OF BINARY FILE TYPES

Control word 11
File type:
1=d3plot plot file of model and state data
$2=\mathrm{d} 3 \mathrm{drlf} \quad$ plot file of model and state data from a dynamic relaxation analysis
$3=\mathrm{d} 3$ thdt time history plot file for a set of nodes and elements
$4=$ intfor \quad plot file of contact interfaces
5=d3part plot file of model and state data for a set of parts
6=blstfor plot file for a blast wave analysis
7=d3cpm
8=d3ale plot file for ale fluid-structure interface
or fsifor
11=d3eigv plot file for an eigen value analysis
12=d3mode
$13=$ d3iter
$21=\mathrm{d} 3$ ssd \quad plot file for steady state dynamic response.
$22=\mathrm{d} 3 \mathrm{spcm} \quad$ plot file for response spectrum analysis.
$23=\mathrm{d} 3$ psd plot file for power spectral density of response, in random vibration.
$24=\mathrm{d} 3 \mathrm{rms} \quad$ plot file for root mean square of response, in random vibration.
$25=\mathrm{d} 3 \mathrm{ftg} \quad$ plot file for random fatigue analysis.
26=d3acs plot file for frequency domain acoustic FEM analysis

EXTRA DATA TYPES (Output for Multi-Solver Analysis)

If NCFDV1 $=67108864$, then NCFDV2 will be the number of additional datasets from different solver-mesh combinations that are included in the d3plot file. One of each of the solver-mesh combinations listed below can be among the NCFDV2 datasets. Currently defined solver-mesh combinations follow.

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: PFEM_IF
number of volume vars output: nvolvar_pfem
first volume variable ID: ID 1
last volume variable ID: ID nvolvar_pfem
number of PFEM parts nPFEM_parts
first internal part ID: partID 1
last internal part ID: partID nPFEM_parts
first user part ID: user_partID 1
last user part ID: user_partID nPFEM_parts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: PFEM_IF_SURFACE
number of surface vars output: nsurfvar_pfem
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_pfem
number of PFEM surface parts nPFEM_surfparts
first internal part ID: partID 1
last internal part ID: partID nPFEM surfparts
first user part ID: user_surfpart\overline{ID }1
last user part ID: user_surfpartID nPFEM_surfparts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID:
number of volume vars output: nvolvar_cese
first volume variable ID: ID 1
last volume variable ID: ID nvolvar_cese
number of CESE parts nCESE_parts
```

```
first internal part ID: partID 1
last internal part ID:
partID nCESE_parts
first user part ID:
last user part ID: user_partID nCESE_parts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: CESE_SURFACE
number of surface vars output: nsurfvar_cese
first surface variable ID: ID I
last surface variable ID: ID nsurfvar_cese
number of CESE surface parts nCESE_surfparts
first internal part ID: partID 1
last internal part ID: partID nCESE_surfparts
first user part ID: user_surfpartID 1
last user part ID: user_surfpartID nCESE_surfparts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID:
number of volume vars output: nvolvar_cese
first volume variable ID: ID I
last volume variable ID: ID nvolvar_cese
number of CESE parts nCESE_parts
first internal part ID: partID I
last internal part ID: partID nCESE_parts
first user part ID:
last user part ID: user_partID nCESE_parts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: CESE2D_SURFACE
number of surface vars output: nsurfvar_cese
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_cese
number of CESE surface parts nCESE_surfparts
first internal part ID: partID 1
```

```
last internal part ID:
first user part ID:
last user part ID:
```

```
partID nCESE_surfparts
```

partID nCESE_surfparts
user_surfpart\overline{ID 1}
user_surfpart\overline{ID 1}
user_surfpartID nCESE_surfparts

```
user_surfpartID nCESE_surfparts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: CESE2DAXI
number of volume vars output: nvolvar_cese
first volume variable ID: ID I
last volume variable ID: ID nvolvar_cese
number of CESE parts nCESE_parts
first internal part ID: partID}
last internal part ID: partID nCESE_parts
first user part ID:
last user part ID: user_partID nCESE_parts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: CESE2DAXI_SURFACE
number of surface vars output: nsurfvar_cese
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_cese
number of CESE surface parts nCESE_surfparts
first internal part ID: partID I
last internal part ID: partID nCESE_surfparts
first user part ID: user_surfpartID 1
last user part ID: user_surfpartID nCESE_surfparts
```

In this domain, the variables are defined at the element centroid.

```
solver and domain ID: CESE_CFD_ELEMENT
size of each variable component: numelh_ce\overline{es}
number of nodes: numnp_\overline{cese}
number of elements: numelh_cese
user node numbers: nodes_cese_cfd(numnp_cese)
array of nodal coordinates: x_cese_cfd(3, numnp_cese)
element connectivity: ix8_cese_cfd(9, numelh_cese)
number of output vars: nv_cese_cfd_ele
first variable ID: ID }\mp@subsup{}{}{-1
last variable ID: ID nv_cese_cfd_ele
number of CESE parts ncese_parts
first internal part ID:
partID 1
```

```
last internal part ID: partID ncese_parts
first user part ID: user_partID \overline{1}
last user part ID: user_partID ncese_parts
user element number: for the first CESE element
user element number: for the last CESE element
```

In this domain, the variables are defined at the surface element centroid.

```
solver and domain ID:
solver and domain ID: CESE_SURFACE_CFD_ELEMENT
size of each variable component: numel
number of nodes:
number of elements:
user node numbers:
array of nodal coordinates:
element connectivity:
number of output vars:
first variable ID:
last variable ID:
number of CESE surface parts
first internal part ID:
last internal part ID:
first user part ID:
last user part ID:
user element number:
user element number:
```

```
numnp_cese
```

numnp_cese
numelsurf_cese
numelsurf_cese
nodes cese\overline{e}cfd(numnp cese)
nodes cese\overline{e}cfd(numnp cese)
x_cese_cfd(3, numnp_cese)
x_cese_cfd(3, numnp_cese)
ix4_cese_cfd(5, numelsurf_cese)
ix4_cese_cfd(5, numelsurf_cese)
nv_cese_cfd_ele
nv_cese_cfd_ele
ID - 1
ID - 1
ID nv_cese_cfd_ele
ID nv_cese_cfd_ele
ncese_surfparts
ncese_surfparts
partID 1
partID 1
partID ncese_surfparts
partID ncese_surfparts
user_surfpartID 1
user_surfpartID 1
user_surfpartID ncese_surfparts
user_surfpartID ncese_surfparts
for the first CESE surface element
for the first CESE surface element
for the last CESE surface element

```
for the last CESE surface element
```

In this domain, the variables are defined at the 2 D element centroid.

```
solver and domain ID:
CESE2D CFD ELEMENT
size of each variable component:
number of nodes:
number of elements:
user node numbers:
array of nodal coordinates:
element connectivity:
number of output vars:
first variable ID:
last variable ID:
number of CESE parts
first internal part ID:
last internal part ID:
first user part ID:
..
last user part ID:
    numel2\overline{d}}\textrm{cese
    numnp cèse
    numel2d_cese
    nodes_cese_cfd(numnp_cese)
    x_cese_cfd(3, numnp_cese)
    i\overline{x}4_ce\overline{se_cfd(5, numēl2d_cese)}
    nv_cese_\overline{cfd_ele}
    ID }\mp@subsup{}{}{-1
    ID nv_cese_cfd_ele
    ncese_parts
    partID 1
    partID ncese_parts
    user_partID 1
    user_partID ncese_parts
user element number:
    for the first 2D CESE element
...
user element number: for the last 2D CESE element
```

In this domain, the variables are defined at the 2D surface element centroid.

```
solver and domain ID: CESE2D_SURFACE_CFD_ELEMENT
size of each variable component: numsurf}2\textrm{L
number of nodes: numnp_cese
number of elements: numsurf2Dele_cese
user node numbers: nodes_cese_c\overline{f}d(numnp_cese)
array of nodal coordinates: x_cese\overline{e_cfd(3, numnp_cesese)}
element connectivity:
number of output vars:
first variable ID:
last variable ID:
number of CESE surface parts
first internal part ID:
...
last internal part ID: partID ncese_surfparts
first user part ID: user_surfparṫD 1
last user part ID:
user element number: for the first CESE surface element
user element number: for the last CESE surface element
```

In this domain, the variables are defined at the 2 D axisymmetric element centroid.

```
solver and domain ID:
CESE2DAXI_CFD_ELEMENT
size of each variable component: numel2dax\overline{i}_ce\overline{se}
number of nodes: numnp_cese
number of elements: numel\overline{2}daxi_cese
user node numbers: nodes_cese_cfd(numnp_cese)
array of nodal coordinates: x_cesé_cfd(3, numnp_cese)
element connectivity:
number of output vars:
first variable ID:
last variable ID:
number of CESE parts
first internal part ID:
last internal part ID:
first user part ID:
last user part ID: user_partID ncese_parts
user element number: for the first 2D \overline{CESE element}
user element number:
```

```
CESE2DAXI_CFD_ELEMENT
```

CESE2DAXI_CFD_ELEMENT
ix4_cese_cfd(5, numèl2daxi_cese)
ix4_cese_cfd(5, numèl2daxi_cese)
nv_cese_\overline{cfd_ele}
nv_cese_\overline{cfd_ele}
ID - 1
ID - 1
ID nv_cese_cfd_ele
ID nv_cese_cfd_ele
ncese_parts
ncese_parts
partI\overline{D}1
partI\overline{D}1
partID ncese_parts
partID ncese_parts
user_partID 1
user_partID 1
for the last 2D CESE element

```
for the last 2D CESE element
```

In this domain, the variables are defined at the 2 D axisymmetric surface element centroid.

```
solver and domain ID:
    CESE2DAXI_SURFACE_CFD_ELEMENT
size of each variable component: numsurfel\overline{2daxi_cese}
number of nodes:
    numnp_cese
number of elements: numsurfel2daxi_cese
```

```
user node numbers:
array of nodal coordinates:
element connectivity:
number of output vars:
first variable ID:
•••
last variable ID:
number of CESE surface parts
first internal part ID:
...
last user part ID:
user element number:
...
user element number:
```

last internal part ID: partID ncese_surfparts
first user part ID: user_surfpartID 1

```
nodes_cese_cfd(numnp_cese)
x_cese__cfd\overline{(3, numnp_cese)}
i\overline{x}2_cese_cfd(3, numsurfel2daxi_cese)
```



```
ID-1
ID nv_cese_cfd_ele
ncese_surfpart\overline{s}
partI\overline{D 1}
user_surfpartID ncese_surfparts
for the first CESE surface element
for the last CESE surface element
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: MECH_SURFACE
number of surface vars output: nsurfvar_mech
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_mech
number of MECH surface parts nMECH_surfparts
first internal part ID: partID}
last internal part ID: partID nMECH_surfparts
first user part ID: user_surfpart\overline{ID 1}
last user part ID: user_surfpartID nMECH_surfparts
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: MECH2D_SURFACE
number of surface vars output: nsurfvar_mech
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_mech
number of MECH 2D surface parts nMECH2D_surfparts
first internal part ID: partID 1
...
last internal part ID: partID nMECH2D_surfparts
first user part ID: user_surfpartID``1
last user part ID: user_surfpartID nMECH2D_surfparts
```

In this domain, the variables are defined on structural solid elements.

```
solver and domain ID: EM_FEMSTER_SOLID_INTEG_PTS
size of each variable component: ni\overline{p}_solid_em * nümelh
number of nodes: numnp
number of elements: numelh
number of integration points: nip_solid_em
number of output vars: nv_em_sol\overline{id_integ}
first variable ID: ID `}
last variable ID: ID nv_em_solid_integ
```

In this domain, the variables are defined on structural thick shell elements.

```
solver and domain ID: EM_FEMSTER_TSHELL_INTEG_PTS
size of each variable component: nip_tshell_em * numelt
number of nodes:
    numnp
number of elements: numelt
number of integration points: nip_tshell_em
number of output vars: nv_em_tshell_integ
first variable ID: ID }\mp@subsup{}{}{-
last variable ID: ID nv_em_tshell_integ
```

In this domain, the variables are defined on structural thin shell elements.

```
solver and domain ID: EM_FEMSTER_SHELL_INTEG_PTS
size of each variable component: nip_shell_em * numels
number of nodes:
    numnp
number of elements: numels
number of integration points: nip_shell_em
number of output vars: nv_\overline{em_she\overline{l}}_integ
first variable ID: ID 1
last variable ID: ID nv_em_shell_integ
```

In this domain, the variables are defined at the centroids of structural solid elements.

```
solver and domain ID: EM_FEMSTER_SOLID_CENTROID
size of each variable component: numelh
number of nodes: numnp
number of elements: numelh
number of output vars: nv_em_solid_cent
first variable ID: ID }\mp@subsup{}{}{1
last variable ID: ID nv_em_solid_cent
```

In this domain, the variables are defined at the centroids of structural thick shell elements.

```
solver and domain ID: EM_FEMSTER_TSHELL_CENTROID
size of each variable component: numelt
number of nodes: numnp
number of elements: numelt
number of output vars: nv_em_tshell_cent
```

```
first variable ID: ID 1
last variable ID: ID nv_em_tshell_cent
```

In this domain, the variables are defined at the centroids of structural thin shell elements.

```
solver and domain ID: EM_FEMSTER_SHELL_CENTROID
size of each variable component: numels
number of nodes: numnp
number of elements: numels
number of output vars: nv_em_shell_cent
first variable ID: ID }\mp@subsup{}{}{-1
last variable ID: ID nv_em_shell_cent
```

In this domain, the variables are defined at the integration points of structural beam elements.

```
solver and domain ID: EM_FEMSTER_BEAM_INTEG_PTS
size of each variable component: numelb
number of nodes: numnp
number of elements: numelb
number of output vars: nv_em_beam_cent
first variable ID: ID 1
last variable ID: ID nv_em_beam_cent
```

In this domain, the variables are defined at the mesh nodes.

```
solver and domain ID: EM_FEMSTER_AIR
size of each variable component: nip_air_em * numelh_air_em
number of nodes: numnp_air_em
number of elements: numel\overline{h}_ai\overline{r}_em
number of integration points: nip_ai\overline{r}_em
user node numbers:
array of nodal coordinates:
element connectivity:
number of output vars:
first variable ID:
last variable ID: ID nv_em_air_integ
```

In this domain, the variables are defined at the nodes of the implied rectangular mesh.

```
solver and domain ID: RECT_AIR_EM_NODE
size of each variable component: nx_rēct_\overline{air_em * ny_rect_air_em}
    * ñz_rec
number of x nodes: nx_rect_air_em
number of y nodes: ny_rect_air_em
number of z nodes: nz_rect_air_em
minimum x coordinate: xmīn_re\overline{c}t_a\overline{ir_em}
minimum y coordinate: ymin_rect_air_em
minimum z coordinate: zmin_rect_air_em
maximum x coordinate: xmax_rect_air_em
maximum y coordinate: ymax_rect_air_em
maximum z coordinate: zmax_rect_air_em
number of output vars: nv_em_air_nd
first variable ID: ID`}
```

```
last variable ID: ID nv_em_air_nd
```

In this domain, the variables are defined on faces of structural elements.

```
solver and domain ID: EM_FEMSTER_BEM
size of each variable component: nip_bem_em * nfaces_bem_em
number of nodes: numnp_bem_em
number of elements: nfaces_bem_em
number of integration points: nip_bem_em
number of BEM parts: em_numPartBem
flag for BEM mesh: nBEMflag
    (first bit =0 if no motion,=1 if motion)
    (second bit =0 if no edge domain,=1 if edge domain)
    (third bit =0 if no node domain,=1 if node domain)
user node numbers: nodes_bem_em(numnp_bem_em)
array of nodal coordinates: x_bem_em(\overline{3}, numnp_bem_\overline{em})
element connectivity: ix4_bem_em(5, nfaces_bem_em)
if (second bit(nBEMflag) = 1)
    number of edges nedges_bem_em
    number of edge domains nedgedomain̄_bem_em
    node edge connectivity edgex2_bem_\overline{em(3,}
    (internal node1,internal node2,partId)
    number of edges per domain
    edge domain list
numEdgesPerDomain(nedgedomain_bem_em)
edgeDomainList(sum(numEdgePerDomain(i)))
endif
if (third bit(nBEMflag) = 1)
    node element connectivity nodex4_bem_em(5, nfaces_bem_em)
    number of node domains nnodedomain_bem_em
    node domain array nodeDomain(\overline{numnp}_bem_em)
endif
number of output vars: nv_em_bem_integ
first variable ID: ID``l
last variable ID: ID nv_em_bem_integ
```

In this domain, the variables are defined at the nodes of the mechanics structural mesh.

```
solver and domain ID: EM_FEMSTER_NODE
number of nodes: numnp
size of each variable component: numnp_em
node list (internal #s): numnp_em
number of output vars: nv_node_em
first variable ID: ID`1
last variable ID: ID nv_node_em
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: DUALCESE3D_ADAPT
number of volume vars output: nvolvar_dualcese
first volume variable ID: ID I
last volume variable ID: ID nvolvar_dualcese
number of DUALCESE3D parts nDUALCESE3D_parts
first internal part ID: partID 1
last internal part ID: partID nDUALCESE3D_parts
first user part ID: user_partID 1
last user part ID: user_partID nDUALCESE3D_parts
initial number of elements: nel
first user element number: for the first DUALCESE3D_ADAPT element
last user element number: for the last DUALCESE3D_ADAPT element
```


Notes:

(1) The user elements numbers only refer to the unrefined mesh elements. As no elementcentered data is output, these are only provided for user reference.

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: DUALCESE3D_SURF_ADAPT
number of surface vars output: nsurfvar_dualcese
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_dualcese
# of DUALCESE3D surface setIDs nDUALCESE3D_surfsetIDs
first internal part ID: partID 1
last internal part ID: partID nDUALCESE3D_surfsetIDs
first user part ID: user_surfpartID 1
last user part ID: user_surfpartID nDUALCESE3D_surfsetIDs
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: DUALCESE2D_ADAPT
number of volume vars output: nvolvar_dualcese
first volume variable ID: ID I
last volume variable ID: ID nvolvar_dualcese
number of DUALCESE parts nDUALCESE_parts
first internal part ID:
last internal part ID: partID nDUALCESE_parts
```

```
first user part ID: user_partID 1
last user part ID: user_partID nDUALCESE_parts
initial number of elements: nel 
last user element number:
```


Notes:

(1) The user elements numbers only refer to the unrefined mesh elements. As no elementcentered data is output, these are only provided for user reference.

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: DUALCESE2D_SURF_ADAPT
number of surface vars output: nsurfvar_dualcese
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_dualcese
number of DUALCESE surf. setIDs nDUALCESE_surfsetIDs
first internal part ID: partID 1
last internal part ID: partID nDUALCESE_surfsetIDs
first user part ID: user_surfpartID \overline{I}
last user part ID: user_surfpartID nDUALCESE_surfsetIDs
```

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID:
number of volume vars output
first volume variable ID:
last volume variable ID:
number of DUALCESE parts
first internal part ID:
last internal part ID:
first user part ID:
last user part ID:
initial number of elements:
first user element number:
•••
last user element number:
```

```
DUALCESE2DAXI_ADAPT
```

DUALCESE2DAXI_ADAPT
nvolvar_dualcese
nvolvar_dualcese
ID 1
ID 1
ID nvolvar_dualcese
ID nvolvar_dualcese
nDUALCESE_parts
nDUALCESE_parts
partID 1
partID 1
partID nDUALCESE_parts
partID nDUALCESE_parts
user_partID 1
user_partID 1
user_partID nDUALCESE_parts
user_partID nDUALCESE_parts
nel
nel
for the first DUALCESE2DAXI_ADAPT element
for the first DUALCESE2DAXI_ADAPT element
for the lastDUALCESE2DAXI_ADAPT element

```
for the lastDUALCESE2DAXI_ADAPT element
```

Notes:
(1) The user elements numbers only refer to the unrefined mesh elements. As no elementcentered data is output, these are only provided for user reference.

For the following domain, the mesh can be completely different for each output state, so no mesh is output in this control block.

```
solver and domain ID: DUALCESE2DAXI_SURF_ADAPT
number of surface vars output: nsurfvar_dualcese
first surface variable ID: ID 1
last surface variable ID: ID nsurfvar_dualcese
number of DUALCESE surf. setIDs nDUALCESE_surfsetIDs
first internal part ID: partID 1
last internal part ID: partID nDUALCESE_surfsetIDs
first user part ID:
last user part ID: user_surfpartID nDUALCESE_surfsetIDs
```

In this domain, the variables are defined at the nodes.

```
solver and domain ID:
DUALCESE3D
number of output vars:
first variable ID:
last variable ID:
number of DUALCESE3D parts
first internal part ID:
last internal part ID:
first user part ID:
. . 
last user part ID:
size of each variable component:
number of nodes:
number of elements: numelh
user node numbers: nodes_dualcese(numnp_dualcese)
array of nodal coordinates: x_dual}cese(3, numnp_\overline{dualcese)
element connectivity: ix
user element number: for the first DUALCESE\overline{3}D element
user element number: for the last DUALCESE3D element
nv_dualcese
ID-1
ID nv_dualcese
ndual\overline{cese_parts}
partID 1
partID ndualcese_parts
user_partID 1
•••
user_partID ndualcese_parts
numnp_dualcese
numnp_dualcese
```

In this domain, the variables are defined at the surface nodes (of segment sets).

```
solver and domain ID:
number of output vars:
first variable ID:
last variable ID:
# of DUALCESE3D surf. setIDs
```

```
DUALCESE3D_SURFACE
nv_dualcese
ID nv_dualcese
ID - 1
ndual\overline{cese_surfsetIDs}
```

```
first internal part ID:
last internal part ID: partID ndualcese_surfsetIDs
first user part ID:
last user part ID: user_surfpartID ndualcese_surfsetIDs
size of each variable component: nsur\overline{f}dualcese
number of nodes: nsurf_dualcese
number of segments: numelsurf_dualcese
user node numbers: nodes_dualcese(nsurf_dualcese)
array of nodal coordinates:
segment connectivity:
```

```
partID 1
```

partID 1
user_surfpartID 1
user_surfpartID 1
x_dualcese(3, nsurf_dualcese)
x_dualcese(3, nsurf_dualcese)
ix4_dualcese(5, numelsurf_dualcese)

```
ix4_dualcese(5, numelsurf_dualcese)
```

In this domain, the variables are defined at the nodes.

```
solver and domain ID:
number of output vars:
first variable ID:
last variable ID:
number of DUALCESE parts
first internal part ID:
last internal part ID:
first user part ID:
last user part ID: user_partID ndualcese_parts
size of each variable component: numnp_dualcese
number of nodes: numnp_dualcese
number of elements: numel2}d_dualces
user node numbers: nodes_dualcese(numnp_dualcese)
array of nodal coordinates: x_dualcese(3, numnp_dualcese)
element connectivity: ix4_dualcese(5, numel2d_dualcese)
user element number: for the first 2D DUALCESE element
user element number:
```

```
DUALCESE2D
```

DUALCESE2D
nv_dualcese
nv_dualcese
ID 1
ID 1
ID nv_dualcese
ID nv_dualcese
ndualcese_parts
ndualcese_parts
partID 1
partID 1
partID ndualcese_parts
partID ndualcese_parts
user_partID 1
user_partID 1
numel2d_dualcese
numel2d_dualcese
for the last 2D DUALCESE element

```
for the last 2D DUALCESE element
```

In this domain, the variables are defined at the surface nodes (of segment sets).

```
solver and domain ID:
number of output vars:
first variable ID:
last variable ID:
number of DUALCESE surf. setIDs
first internal part ID:
last internal part ID:
first user part ID:
...
last user part ID:
size of each variable component:
number of nodes:
number of segments:
user node numbers:
```

```
DUALCESE2D SURFACE
```

DUALCESE2D SURFACE
nv_dualcese
nv_dualcese
ID }\mp@subsup{}{}{-1
ID }\mp@subsup{}{}{-1
ID nv_dualcese
ID nv_dualcese
ndualcese_surfsetIDs
ndualcese_surfsetIDs
partID 1
partID 1
partID ndualcese_surfsetIDs
partID ndualcese_surfsetIDs
user_surfpartID \overline{1}
user_surfpartID \overline{1}
user_surfpartID ndualcese_surfsetIDs
user_surfpartID ndualcese_surfsetIDs
nsurf_dualcese
nsurf_dualcese
nsurf_dualcese
nsurf_dualcese
numsurf2Dele_dualcese
numsurf2Dele_dualcese
nodes_dualcese(nsurf_dualcese)

```
nodes_dualcese(nsurf_dualcese)
```

```
array of nodal coordinates:
segment connectivity:
```

```
x_dualcese(3, nsurf_dualcese)
i\overline{x}2_dualcese(3, numsururfDele_dualcese)
```

In this domain, the variables are defined at the nodes.

```
solver and domain ID:
number of output vars:
first variable ID:
last variable ID:
number of DUALCESE parts
first internal part ID:
last internal part ID:
first user part ID:
last user part ID:
size of each variable component:
number of nodes:
number of elements:
user node numbers:
array of nodal coordinates:
element connectivity:
user element number:
user element number:
DUALCESE2DAXI
nv dualcese
ID }\mp@subsup{}{}{-1
ID nv_dualcese
ndualcese_parts
partID 1
partID ndualcese_parts
user_partID 1
user_partID ndualcese_parts
numnp_dualcese
numnp_dualcese
numel2
nodes_dualcese(numnp_dualcese)
x_dualcese(3, numnp_dualcese)
ix4 dualcese(5, numel2daxi dualcese)
for the first 2D DUALCESE \overline{element}
for the last 2D DUALCESE element
```

In this domain, the variables are defined at the surface nodes (of segment sets).

```
solver and domain ID: DUALCESE2DAXI_SURFACE
number of output vars: nv_dualcese
first variable ID:
last variable ID:
number of DUALCESE surf. setIDs
first internal part ID:
last internal part ID:
first user part ID:
last user part ID: user_surfpartID ndualcese_surfsetIDs
size of each variable component: nsurf_dualcese
number of nodes:
number of segments:
user node numbers:
array of nodal coordinates:
segment connectivity:
```

```
ID 1
```

ID 1
ID nv_dualcese
ID nv_dualcese
ndualcese_surfsetIDs
ndualcese_surfsetIDs
partID 1
partID 1
partID ndualcese_surfsetIDs
partID ndualcese_surfsetIDs
user_surfpartID \overline{1}
user_surfpartID \overline{1}
nsurf_dualcese
nsurf_dualcese
numsurfel2daxi dualcese
numsurfel2daxi dualcese
nodes dualcese\overline{(nsurf dualcese)}
nodes dualcese\overline{(nsurf dualcese)}
x_dualcese(3, nsurf_dualcese)
x_dualcese(3, nsurf_dualcese)
ix2_dualcese(3, numsurfel2daxi_dualcese)

```
ix2_dualcese(3, numsurfel2daxi_dualcese)
```

In this domain, the variables are defined at the particle positions.

```
solver and domain ID:
number of output vars:
first variable ID:
last variable ID:
...
```

STOCHASTIC_PARTICLES
n_prtcl_vars
ID 1
ID n_prtcl_vars

General notes regarding "EXTRA DATA TYPES":

The variable IDs are grouped into three groups:

1) D3PL_FIRST_SCALAR_ID <= ID < D3PL_FIRST_VECTOR_ID are scalar variables
2) D3PL_FIRST_VECTOR_ID <= ID < D3PL_FIRST_TENSOR_ID are vector variables (3 components per entry)
3) D3PL_FIRST_TENSOR_ID <= ID < D3PL_END_IDS are symmetric tensor variables (6 component per entry)

When a number of integration points are specified, it is assumed that they are distributed at the Gauss points of the given element type based upon how many are output. That is, for shell or face elements, 4 output points would imply the 2×2 Gauss points are used, while 9 output points would imply the 3×3 Gauss points are used, and so forth. Similarly, for volume elements, 8 output points would imply the $2 \times 2 \times 2$ Gauss points are used, while 27 output points would imply he $3 \times 3 \times 3$ Gauss points are used, and so forth.

STATE DATA - d3plot and d3part

The state data has three parts:

- Time word and global data
- Node data
- Element data for solids, shell, and beams, respectively

The data defined below can be removed by the flags set in
*DATABASE_EXTENT_BINARY_COMP, see control word INUM $=-1$ and $=-11$.

VALUE
TIME
GLOBAL

NODEDATA

THERMDATA
CFDDATA

LENGTH
1
NGLBV

NND

CFD

DESCRIPTION

Time word
Global variables for this state. LS-DYNA Global Variables:

KE, IE, TE, X, Y, and Z velocity
IE for each material
KE for each material
X, Y, and Z velocity for part 1
$\dddot{\mathrm{X}}, \mathrm{Y}$, and Z velocity for part n
Mass for each part
Hourglass energy for each part
Force for each rigid wall
Xyz position of wall (ls971)
$=6+7$ * (NUMMAT8 + NUMMAT2 +
NUMMAT4 + NUMMATT+NUMRBS) + N *
NUMRW, $\mathrm{N}=1$, for ls-dyna(ls971) N=4
Total nodal values for state.
For LS-DYNA3D and LS-DYNA
$\mathrm{IT}=1$, node temperatures only, $\mathrm{N}=0$
$\mathrm{IT}=2$, node temperature and node flux, $\mathrm{N}=2$
$\mathrm{IT}=3,3$ temperature per node and node flux, $\mathrm{N}=3$
Temperature for shell node at inner, middle and outer layer, inner array, middle array, outer array.
IT $/ 10=1$, mass scaling value at node. $\mathrm{N}+=1$
$=\left((\mathrm{IT}+\mathrm{N})+\mathrm{NDIM}^{*}(\mathrm{IU}+\mathrm{IV}+\mathrm{IA})\right)^{*} \mathrm{NUMNP}$
where $\mathrm{IT}=$ temperature flag, $\mathrm{IU}=$ coordinates flag, $\mathrm{IV}=$ velocities flag, and IA=accelerations flag.

If NT3D >0, NT3D * NEL8 of thermal element data.
Bit flag: NCFDV1, bits from right to left
eg, Pressure, Resultant Vorticity, and Density
NCFDV1 $=2+32+1024=1058$
2 Pressure
3 X Vorticity

4 Y Vorticity
5 Z Vorticity
6 Resultant Vorticity
7 Enstrophy
8 Helicity
9 Stream Function
10 Enthalpy
11 Density
12 Turbulent KE
13 Dissipation
14-20 Eddy Viscosity
Bit flag: NCFDV2
2-11 Species 1 through 10

NOTE: This CFDDATA is no longer output by ls-dyna.

ELEMDATA ENN | Total element data for state. |
| :--- |
| $=$ NEL8*NV3D+NELT*NV3DT+NEL2*NV1D+ |
| NEL4*NV2D+NMSPH*NUM_SPH_VARS |
| The organization of the element data for each |
| element type is described below. The data for the |
| solid elements (7 values/element) is printed first, |
| followed by the data for the beam elements (6 |
| values/element), and then the data for the shell |
| elements (typical 33 or 45 values/element |
| depending on whether the strains are included). |

This state data is repeated for each state in the database.
Element data is defined at the integration points within the element. Contour and fringe plots require that the data be extrapolated to or averaged at the nodal points. In LS_PREPOST the element values are averaged at the nodes or optionally extrapolated to the nodes. Element strains are not output by default, these are only output for solids, shell, and thick shell when *DATABASE_EXTENT_BINARY, STRFLG=1

SOLID ELEMENTS - 8 node Hexahedron, other solid elements like wedge, pyramid, and tetrahedron are identified by repeated final connectivities. Eg: pentahedron $=1,2,3,4,5,5,6,6$, and tetrahedron $=1,2,3,4,4,4,4,4$

The database for solid elements consists of 7+NEIPH values per element. NEIPH extra values are defined if and only if NEIPH is greater than zero or if the model is an ALE analysis. If strain components are output, then the last 6 neiph values are true strains: ex, ey, ez, exy, eyz, exz, in the global system.

HIGHER ORDER SOLID ELEMENT STATE DATA

is output after the standard 8 node data. This is only output if either QUADR or CUBIC is >1. The data is output for each integration point so for example there will be 64 times the stress tensor and plastic strain if the elements used are 64 node hexahedron solids. When this data is output the normal center point data is also output. The data is output according to the order defined in the Higher Order Element data part list.
They are:

1. Sigma-x (true stress in the global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
8. First extra value (if NEIPH >0)
9. Second extra value (if NEIPH >1)
10. Etc. until NEIPH extra values are defined if ISTRN=1

7+NEIPH-5. Epsilon-x
7+NEIPH-4. Epsilon-y
7+NEIPH-3. Epsilon-z
7+NEIPH-2. Epsilon-xy
7+NEIPH-1. Epsilon-yz
7+NEIPH. Epsilon-zx

For thick shell elements the database contains NV3DT $=$ MAXINT $*(6 * \operatorname{IOSHL}(1)+$ $\operatorname{IOSHL}(2)+$ NEIPS $)+12$ * ISTRN+1(if TSHENG >0) values per element. Three sets of global stresses are always put into the database for each thick shell and are located at the mid surface, the inner integration point surface, and the outer integration point surface, respectively. If one integration point is used the same through the thickness stress state is outputted three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If the integration point does not lie at the center, ie, an even number of integration points through the thickness, a value is computed that is an average of the two integration point nearest the mid surface.
The IOSHL flags indicate which shell element data is included which is suppressed.
The flags are set in ls-dyna by *DATABASE_EXTENT_BINARY, SIGFLG, EPSFLG, RLFLG, and ENGFLG

The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for mid surface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for inner surface
15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
*. If ISTRN=1, then define strain components Epsilon ($\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x y}, \mathbf{y z}, \mathbf{z x}$) here for inner surface and outer surface

If MAXINT >3 then define an additional (MAXINT-3 $) *(6 * \operatorname{IOSHL}(1)+1 * \operatorname{IOSHL}(2)+$ NEIPS $)$ quantities here.

TSHENG. Internal energy density

For beam elements the database contains NV1D $=6$ values per element. They are:

1. Axial force
2. \quad S shear resultant
3. T shear resultant
4. $\quad \mathrm{S}$ bending moment
5. T bending moment
6. Torsional resultant

If there are values output at beam integration points, then NV1D $=6+5 *$ BEAMIP

1. RS shear stress
2. TR shear stress
3. Axial stress
4. Plastic strain
5. Axial strain

BEAMIP is set in *DATABASE_EXTENT_BINARY

If beam material history variables are requested, NEIPB*(3+BEAMIP) number of values are written after the previous data.
Average, min and max, computed from all integration points by LS-DYNA, for NEIPB history variables are written. Then followed by NEIPB history variables for BEAMIP number of integration points.
For example, if $\mathrm{NEIPB}=2$ and $\mathrm{BEAMIP}=3$ the data comes in this order:
\{hv1_avg, hv2, avg\}, \{hv1_min, hv2_min\}, \{hv1_max, hv2_max\}, \{hv1_ip1, hv2_ip1\}, \{hv1_ip2, hv2_ip2], \{hv1_ip3, hv2_ip3\}.

For shell elements the database contains NV2D values, where:
NV2D $=$ MAXINT* $(6 * \operatorname{IOSHL}(1)+1 * \operatorname{IOSHL}(2)+\mathrm{NEIPS})+8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ $12 *$ ISTRN values per deformable element. If MATTYP $=1$ and $\operatorname{IRBTYP}(\mathrm{I})=20$, where $\mathrm{I}=$ internal element number, then the material is rigid and the compressed database contains no data for the element. If the minimum value of $M A X I N T$ is used, i.e., $=3$, the stresses are typically located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the stress is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i.e., an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface.

The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-x
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for mid surface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable

*. Define NEIPS additional history values here for inner surface

15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
If MAXINT >3 then define an additional (MAXINT-3)* (6 *IOSHL(1) $+1 * \operatorname{IOSHL}(2)+$ $8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ NEIPS $)$ quantities here
22. Bending moment-Mx (local shell coordinate system)
23. Bending moment-My
24. Bending moment-Mxy
25. Shear resultant-Qx
26. Shear resultant-Qy
27. Normal resultant-Nx
28. Normal resultant-Ny
29. Normal resultant-Nxy
30. Thickness
31. Element dependent variable
32. Element dependent variable
33. Internal energy (if and only if ISTRN=0)

The following quantities are expected if and only if ISTRN=1
33. eps-x (inner surface strain in global system)
34. eps-y
35. eps-z
36. eps-xy
37. eps-yz
38. eps-zx
39. eps-x (outer surface strain in global system)
40. eps-y
41. eps-z
42. eps-xy
43. eps-yz
44. eps-zx
45. Internal energy (if and only if NV2D>=45)

ELEMENT DELETION OPTION

Skip this section if the word MAXINT is greater than or equal to zero, (MDLOPT $>=0$). If MDLOPT $=1$, then the list is equal to the number of nodal points (NUMNP) and contains a one if the node is visible and a zero if the node is not visible, (only used in vec-dyna3d). If MDLOPT=2, then the list equals the total number of elements (NEL8 + NELT + NEL4 + NEL2), in this order, and each value is set to the element material number or $=0$, if the element is deleted. All these numbers are output as floating point values and not integers.

SMOOTH PARTICLE HYDRODYNNAMICS NODE/ELEMENT STATE DATA

This section is only output if NMSPH >0
For each SPH node the follow values are output:
NUM_SPH_DATA $=1+\sum$ isphfg(i), $\mathrm{i}=2: 10$
Length of data $=$ NUM_SPH_DATA * NUMSPH
Material number, if $<=0$ then element is deleted.
Currently isphfg $(1)=10$, ie number of sph data flags, this could be changed in the future.
If isphfg $(2)=1$, - radius of particle influence
If isphfg $(3)=1$, - pressure in particle
If isphfg(4) $=6,-$ stress components for particle, $s x, s y, s z, s x y, s y z, s x z$
If isphfg $(5)=1$, - plastic strain for particle
If isphfg $(6)=1$, - density of particle material
If isphfg(7) $=1$, - internal energy of particle
If isphfg(8) $=1$, - number of particle neighbors
If isphfg $(9)=12$, -6 strain (ex, ey, ez, exy, eyz, exz) and 6 strain rate (erx, ery,erz, erxy, eryz, erxz)
if negative, true strain components

If $\operatorname{isphfg}(10)=1$, mass of element (1s971)

Note: it is possible a SPH element could be deleted, or be none active in the initial states, and become active in later states.

PARTICLE STATE DATA (NPEFG > 0)

DES DATA - see description below for state data

STATE DATA

NPARTGAS blocks of NSTGEOM data to describe the state geometry for each bag:

1. number of active particles
2. current bag volume

PARTICLE DATA

NVAR words of data output for each particle:

1. gas ID
2. chamber ID
3. leakage flag, 0 active, -1 fabric, -2 vent hole, -3 mistracked
4. mass
5. radius
6. spin energy
7. translational energy
8. distance from particle to nearest segment
9. x position
10. y position
11. z position
12. x velocity
13. y velocity
14. z velocity

ROAD SURFACE MOTION

If NDIM >5 output rigid body displacement, $d x, d y, d z$ and velocity, $v x, v y, v z$ of each road surface.
Length of data $=6 *$ NSURF

RIGID BODY MOTION DATA, NDIM=8,9

see DCOMP=5,6 in *DATABASE_EXTENT_BINARY
For each rigid body:
X, Y, Z position of geometric center
MXYZ, Rotation matrix from of principal axes, 3 direction cosines, $9(3 \times 3)$ values
VX, VY, VZ translational velocity of GC
RVX, RVY, RVZ, rotational velocity of GC
AX, AY, AZ, translational acceleration of GC
RAX, RAY, RAZ, rotational acceleration of GC

If NDIM $=9$ only $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and MXYZ are output.

EXTRA DATA (Multi-Solver Analysis)

If NCFDV1 $=67108864$, then the state data includes NCFDV2 additional datasets from solver-mesh combinations specified after the "User material, node, and element identification numbers" for the structural mesh.

State data of the first solver-mesh combination
State data of the last (NCFDV2-th) solver-mesh combination

When the state data comes from the PFEM_IF domain, then the mesh is output first, followed by the data. Currently, the mesh is entirely tetrahedral, but we anticipate users will also specify mixed meshes in the near future:

$$
\begin{array}{ll}
\text { size of each volume variable component: } & \text { nnpvol_pfem } \\
\text { number of volume nodes: } & \text { nnpvol_pfem }
\end{array}
$$

data for 1st volume variable (size is nnpvol_pfem) data for nvolvar_pfem-th volume variable (size is nnpvol_pfem)

Notes:
(1) the first four entries of ix4_pfem(5, ntet_pfem) for each element are the volume node numbers, while the last entry is the volume part number.
(2) the first five entries of ix5_pfem(6, npyr_pfem) for each element are the volume node numbers, while the last entry is the volume part number.
(3) the first six entries of ix6_pfem(7, nwdg_pfem) for each element are the volume node numbers, while the last entry is the volume part number.
(4) the first eight entries of ix8_pfem(9, nhex_pfem) for each element are the volume node numbers, while the last entry is the volume part number.

When the state data comes from the PFEM_IF_SURFACE domain, then the surface mesh is output first, followed by the data. Currently, the surface mesh is entirely triangular, but we anticipate users will also specify mixed triangle-quadrilateral meshes in the near future:

```
size of each surface variable component: nnpsurf_pfem
number of surface nodes: nnpsurf_pfem
number of surface elements: nelsurf_pfem
user surface node numbers: surfnodes_pfem(nnpsurf_pfem)
surface element connectivity: ixsurf_pfem(5, nelsurf_pfem)
data for 1st surface variable (size is nnpsurf_pfem)
data for nsurfvar_pfem-th surface variable (size is nnpsurf_pfem)
```


Notes:

(1) the first four entries of ixsurf_pfem(5, nelsurf_pfem) for each surface element are the surface node numbers, while the last entry is the surface part number. The 3rd and 4th node numbers are the same for triangles.

When the state data comes from the CESE domain, then the mesh is output first, followed by the data:
size of each volume variable component: nele_cese
number of volume nodes:
number of tetrahedral elements:
number of pyramid elements:
number of wedge elements:
number of hexahedral elements:
user volume node numbers:
array of volume nodal coordinates:
nnpvol_cese
ntet_cese
npyr_cese
nwdg_cese
nhex_cese
volnodes_cese(nnpvol_cese)
xvol_cese(3, nnpvol_cese)

```
tetrahedral element connectivity: ix4_cese(5, ntet_cese)
pyramid element connectivity: ix5_cese(6, npyr_cese)
wedge element connectivity: ix6_cese(7, nwdg_cese)
hexahedral element connectivity: ix8_cese(9, nhex_cese)
data for 1st volume variable (size is nele_cese)
..
data for nvolvar_cese-th volume variable (size is nele_cese)
```

Notes:
(1) nele_cese $=$ ntet_cese + npyr_cese + nwdg_cese + nhex_cese
(2) the first four entries of ix4_cese(5 , ntet_cese) for each element are the volume node numbers, while the last entry is the volume part number.
(3) the first five entries of ix5_cese(6, npyr_cese) for each element are the volume node numbers, while the last entry is the volume part number.
(4) the first six entries of ix6_cese(7, nwdg_cese) for each element are the volume node numbers, while the last entry is the volume part number.
(5) the first eight entries of ix8_cese(9, nhex_cese) for each element are the volume node numbers, while the last entry is the volume part number.

When the state data comes from the Cese_surface domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the CESE domain:

```
size of each surface variable component: nnpsurf_cese
number of surface nodes: nnpsurf_cese
number of surface elements: nelsurf_cese
user surface node numbers: surfnodes_cese(nnpsurf_cese)
surface element connectivity: ixsurf_cese(5, nelsurf_cese)
data for 1st surface variable (size is nnpsurf_cese)
data for nsurfvar_cese-th surface variable (size is nnpsurf_cese)
```


Notes:

(1) the first four entries of ixsurf_cese(5, nelsurf_cese) for each surface element are the surface node numbers, while the last entry is the surface part number. The 3rd and 4th node numbers are the same for triangles.

When the state data comes from the CESE2D domain, then the mesh is output first, followed by the data:
size of each volume variable component: nele2d_cese
number of volume nodes: nnp2d_cese
number of triangle elements: ntri_cese
number of quadrilateral elements: nquad_cese
user volume node numbers: array of volume nodal coordinates: triangle element connectivity: quadrilateral element connectivity:
data for 1 st volume variable
volnodes_cese(nnp2d_cese)
xvol_cese(3, nnp2d_cese)
ix3_cese(4, ntri_cese)
ix4_cese(5, nquad_cese)
(size is nele2d_cese)
data for nvolvar_cese-th volume variable (size is nele2d_cese)
Notes:
(1) nele2d_cese $=$ ntri_cese + nquad_cese
(2) the first three entries of ix3_cese(4, ntri_cese) for each element are the volume node numbers, while the last entry is the volume part number.
(3) the first four entries of ix4_cese(5, nquad_cese) for each element are the volume node numbers, while the last entry is the volume part number.

When the state data comes from the CESE2D_SURFACE domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the CESE2D domain:
size of each surface variable component: nnpsurf2d_cese number of surface nodes: nnpsurf2d_cese number of surface elements: nsurfel2d_cese user surface node numbers: surfnodes_cese(nnpsurf2d_cese) surface element connectivity: ixsurf_cese(3, nsurfel2d_cese)
data for 1st surface variable (size is nnpsurf2d_cese)
data for nsurfvar_cese-th surface variable (size is nnpsurf2d_cese)

Notes:

(1) the first two entries of ixsurf_cese(3, nsurfel2d_cese) for each surface element are the surface node numbers, while the last entry is the surface part number.

When the state data comes from the CESE2DAXI domain, then the mesh is output first, followed by the data:

```
size of each volume variable component: nele2daxi_cese
number of volume nodes:
nnp2daxi_cese
number of triangle elements:
number of quadrilateral elements:
user volume node numbers:
array of volume nodal coordinates:
triangle element connectivity:
quadrilateral element connectivity: ix4_cese(5, nquad_cese)
ntri_cese
nquad_cese
volnodes_cese(nnp2daxi_cese)
xvol_cese(3, nnp2daxi_cese)
ix3_cese(4, ntri_cese)
```

data for 1st volume variable (size is nele2daxi_cese) data for nvolvar_cese-th volume variable (size is nele2daxi_cese)

Notes:
(1) nele2daxi_cese $=$ ntri_cese + nquad_cese
(2) the first three entries of ix3_cese(4, ntri_cese) for each element are the volume node numbers, while the last entry is the volume part number.
(3) the first four entries of ix4_cese(5, nquad_cese) for each element are the volume node numbers, while the last entry is the volume part number.

When the state data comes from the CESE2DAXI_SURFACE domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the CESE2DAXI domain:
size of each surface variable component: nnpsurf2d_cese
number of surface nodes: nnpsurf2d_cese number of surface elements: nsurfel2d_cese user surface node numbers:
surfnodes_cese(nnpsurf2d_cese)
surface element connectivity:
ixsurf_cese(3, nsurfel2d_cese)
data for 1st surface variable
(size is nnpsurf2d_cese)
data for nsurfvar_cese-th surface variable (size is nnpsurf2d_cese)
Notes:
(1) the first two entries of ixsurf_cese(3, nsurfel2d_cese) for each surface element are the surface node numbers, while the last entry is the surface part number.

When the state data comes from the mech_surface domain, then the surface mesh is output first, followed by the data. The surface node numbers reference nodes from the mechanics mesh:

size of each surface variable component:	nnpsurf
number of surface nodes:	nnpsurf
number of surface elements:	nelsurf
surface node numbers (internal):	surfnodes(nnpsurf)
surface element connectivity:	ixsurf(5, nelsurf)
data for 1st surface variable	(size is nnpsurf)

data for nsurfvar-th surface variable (size is nnpsurf)
Notes:
(1) the first four entries of ixsurf(5, nelsurf) for each surface element are the surface node numbers (internal), while the last entry is the surface part number. The 3rd and 4th node numbers are the
same for triangles.

When the state data comes from the MECH2D_SURFACE domain, then the surface mesh is output first, followed by the data. The surface node numbers reference nodes from the mechanics mesh:

```
size of each surface variable component: nnpsurf2d
number of surface nodes: nnpsurf2d
number of surface elements: nsurfel2d
surface node numbers (internal): surfnodes(nnpsurf2d)
surface element connectivity: ixsurf(3, nsurfel2d)
data for 1st surface variable (size is nnpsurf2d)
data for nsurfvar-th surface variable (size is nnpsurf2d)
```

Notes:
Notes:
(1) the first two entries of ixsurf $(3$, nsurfel2d) for each surface element are the surface node numbers (internal), while the last entry is the surface part number.

When the state data comes from the DUALCESE3D_ADAPT domain, then the mesh is output first, followed by the data:

```
size of each volume variable component: nnpvol_dualcese
number of volume nodes: nnpvol_dualcese
number of elements: nel_dualcese
user volume node numbers: volnodes_dualcese(nnpvol_dualcese)
array of volume nodal coordinates: xvol_dualcese(3, nnpvol_\overline{dualcese)}
element connectivity: ix_dualcese(9, nel_dualcese)
data for 1st volume variable (size is nnpvol_dualcese)
data for nvolvar_dualcese-th volume variable (size is nnpvol_dualcese)
```


Notes:

(1) the first eight entries of ix_dualcese (9, nel_dualcese) for each element are the volume node numbers, while the last entry is the volume part number. For tetrahedral elements, the last 4 node numbers are the same as the 4th node number. For wedge/prism elements, the 5th and 6th node numbers are the same, and the $7^{\text {th }}$ and $8^{\text {th }}$ node numbers are the same. For pyramid elements, the last 3 node numbers are the same as the $5^{\text {th }}$ node number.

When the state data comes from the DUALCESE_SURF_ADAPT domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the DUALCESE_ADAPT domain:

```
size of each surface variable component:
number of surface nodes:
nnpsurf_dualcese
nnpsurf_dualcese
number of surface segments: nelsurf_dualcese
```

```
    user surface node numbers:
surfnodes_dualcese(nnpsurf_dualcese)
    array of nodal coordinates: x_dualcese(3, nnpsurf_dualcese)
    surface segment connectivity: ixsurf_dualcese(5,
nelsurf_dualcese)
    data for lst surface variable (size is nnpsurf_dualcese)
    data for nsurfvar_dualcese-th surface variable (size is nnpsurf_dualcese)
```


Notes:

(1) the first four entries of ixsurf_dualcese(5, nelsurf_dualcese) for each surface segment are the surface node numbers, while the last entry is the surface setID. The $3^{\text {rd }}$ and $4^{\text {th }}$ node numbers are the same for triangles.

When the state data comes from the DUALCESE2D_ADAPT domain, then the mesh is output first, followed by the data:

```
size of each volume variable component:
number of volume nodes:
number of elements:
user volume node numbers:
volnodes_dualcese(nnp2d_dualcese)
    array of volume nodal coordinates: xvol_dualcese(3, nnp2d_dualcese)
    element connectivity: ix_dualcese(5, nel2d_dualcese)
    data for 1st volume variable (size is nnp2d_dualcese)
    data for nvolvar_dualcese-th volume variable (size is nnp2d_dualcese)
```


Notes:

(1) the first four entries of ix_dualcese (5, nel2d_dualcese) for each element are the volume node numbers, while the last entry is the volume part number. The $3^{\text {rd }}$ and $4^{\text {th }}$ node numbers are the same for triangles.

When the state data comes from the DUALCESE2D_SURF_ADAPT domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the DUALCESE2D_ADAPT domain:

```
    size of each surface variable component:
    number of surface nodes:
    number of surface segments:
    user surface node numbers:
surfnodes_dualcese(nnpsurf2d_dualcese)
    array o\overline{f nodal coordinates"}
nnpsurf2d_dualcese)
    surface-segment connectivity: ixsurf_dualcese(3,
nsurfel2d_dualcese)
    data for lst surface variable (size is nnpsurf2d_dualcese)
    data for nsurfvar_dualcese-th surface variable (size is
nnpsurf2d_dualcese)
```


Notes:

(1) the first two entries of ixsurf_dualcese (3, nsurfel2d_dualcese) for each surface segment are the surface node numbers, while the last entry is the surface setID.

When the state data comes from the DUALCESE2DAXI_ADAPT domain, then the mesh is output first, followed by the data:

```
    size of each volume variable component: nnp2daxi_dualcese
    number of volume nodes: nnp2daxi_dualcese
    number of elements: nel2daxi_dualcese
    user volume node numbers:
volnodes_dualcese(nnp2daxi_dualcese)
    array of volume nodal coordinates: xvol_dualcese(3, nnp2d_dualcese)
    element connectivity: ix_dualcese(5, nel2daxi_dualcese)
    data for lst volume variable (size is nnp2daxi_dualcese)
    data for nvolvar_dualcese-th volume variable (size is nnp2daxi_dualcese)
```


Notes:

(1) the first four entries of ix_dualcese (5, nel2daxi_dualcese) for each element are the volume node numbers, while the last entry is the volume part number. The $3^{\text {rd }}$ and $4^{\text {th }}$ node numbers are the same for triangles.

When the state data comes from the DUALCESE2DAXI_SURF_ADAPT domain, then the surface mesh is output first, followed by the data. The user surface node numbers reference nodes from the DUALCESE2DAXI_ADAPT domain:

```
    size of each surface variable component: nnpsurf2d_dualcese
    number of surface nodes:
    number of surface segments: nsurfel2d_dualcese
    nnpsurf2d_dualcese
    user surface node numbers:
surfnodes_dualcese(nnpsurf2d_dualcese)
    array o\overline{f nodal coordinates: }
nnpsurf2d_dualcese)
    surface segment connectivity: ixsurf_dualcese(3,
nsurfel2d_dualcese)
    data for 1st surface variable (size is nnpsurf2d_dualcese)
    data for nsurfvar_dualcese-th surface variable (size is
nnpsurf2d_dualcese)
```

Notes:
(1) the first two entries of ixsurf_dualcese (3, nsurfel2d_dualcese) for each surface segment are the surface node numbers, while the last entry is the surface setid.

When the state data comes from the STOCHASTIC_PARTICLES domain, then the number of particles is output first, following by the particle positions, and then the state data.

```
size of each variable component: n_particles
array of particle positions: x_particles(3, n_particles)
```

```
data for lst output variable
data for n_prtcl_vars-th output variable
```

Notes:
When the state data comes from the STOChASTIC_PARTICLES domain, then the

```
size of each variable component: n_particles
array of particle positions: x_particles(3, n_particles)
data for lst output variable
...
data for n_prtcl_vars-th output variable
```

Notes:
There will always be at least the following two variables output for each particle domain: PARTICLE_SIZES and PARTICLE_VElOCIties. That is, n_prtcl_vars >= 2. For each particle, both the position and velocity are a 3-component vector.

END OF FILE MARKER

Value $=-999999.0($ a floating point number $)$

TIME HISTORY DATABASE (d3thdt)

There are three sections in the LS-DYNA time history database. The first used to contain 144 words of control information, but now depends upon the number of node and elements the user defines in LS-DYNA. The second contains geometric information including the nodal coordinates and element connectivities. The third section contains the results of the analysis at sequential output intervals for a subset of solids, beams, and shells. The output at a given time, called a state, contains a time word, global variables such as total energies and momenta, nodal data consisting of accelerations, velocities, and displacements, and finally element data is written that may include stresses and strains at integration points. The control information provides information on what is in the file and which database is contained.

CONTROL DATA

VALUE	\#WORDS	DISK ADDRESS	DESCRIPTION
Title	10	0	Model Identification
Run time	1	10	Time in seconds since 00:00:00 UTC, January 1, 1970
File type	1	11	$1=\mathrm{d} 3$ plot, $2=\mathrm{d} 3 \mathrm{drlf}$, $3=\mathrm{d} 3$ thdt, $4=$ intfor, $5=\mathrm{d} 3$ part, $6=$ blstfor, $7=\mathrm{d} 3 \mathrm{cpm}$, $8=\mathrm{d} 3$ ale, $11=\mathrm{d} 3$ eigv, $12=\mathrm{d} 3$ mode, $13=\mathrm{d} 3$ iter, $21=\mathrm{d} 3 \mathrm{ssd}, 22=\mathrm{d} 3 \mathrm{spcm}$, $23=\mathrm{d} 3 \mathrm{psd}, 24=\mathrm{d} 3 \mathrm{rms}, 25=\mathrm{d} 3 \mathrm{ftg}, 26=\mathrm{d} 3 \mathrm{acs}$
Source version	1	12	LS-DYNA version * $1000000+$ svn number
Release number	1	13	Release number in character*4 form 50 for R5.0 511c for R5.1.1c
Version	1	14	Code version, a real number, not integer
NDIM	1	15	Number of dimensions (2 or 3) is set to 4 if element connectivies are unpacked in the LSDYNA/3D
NUMNP	1	16	Number of nodal points
ICODE	1	17	Flag to identify finite element code = 2 old DYNA3D, NIKE3D database $=6$ new LS-NIKE3D, LS-DYNA/3D database
NGLBV	1	18	Number of global variables to be read in each state
IT	1	19	Flag for temperatures $=0$ none, $=1$ read in a temperature for each node

VALUE	\#WORDS	DISK ADDRESS	DESCRIPTION
IU	1	20	Flag for current geometry (=1)
IV	1	21	Flag for velocities (=1)
IA	1	22	Flag for accelerations ($=1$)
NEL8	1	23	Number of 8 node solid elements
NUMMAT8	1	24	Number of materials (parts) used by the 8 node solids
NDS	1	25	Number of node blocks for plotting
NST	1	26	Number of element blocks for plotting. $=$ NSTH + NSTB + NSTS + NSTT
NV3D	1	27	Number of values in database for each solid element
NEL2	1	28	Number of 2 node one-dimensional elements
NUMMAT2	1	29	Number of materials (parts) used by the 2 node 1D elements
NV1D	1	30	Number of values in database for each 1D element
NEL4	1	31	Number of four node two-dimensional elements
NUMMAT4	1	32	Number of materials (parts) used by the 4 node 2D elements
NV2D	1	33	Number of values in database for each 2D element
NEIPH	1	34	Number of additional values per solid element to be written in the type 6 database =NEIPH-6*ISTRN
NEIPS	1	35	Number of additional values per integration point to be written into the type 6 database for shell elements
MAXINT	1	36	Number of integration points dumped for each shell element
NMSPH	1	37	Number of SPH nodes
NGPSPH	1	38	Number of SPH materials
NARBS	1	39	Additional storage required for arbitrary node and element numbering in type 6 database
BLANK	3	40	Unused space
IOSHL(1)	1	43	Stress components flag ($=1000$ yes)
IOSHL(2)	1	44	Strain components, ISTRN ($=1000$ yes)
IOSHL(3)	1	45	Shell force resultants (=1000 yes)

VALUE	\#WORDS	DISK ADDRESS	DESCRIPTION
IOSHL(4)	1	46	Shell thickness, energy +2 others (=1000 yes)
BLANK	1	47	Unused space, ignore value
NCFDV1	1	48	Bit flags for CFD nodal values
NCFDV2	1	49	Further bit flags for CFD nodal values
BLANK	7	50	Unused space
EXTRA	1	57	Additional number of control words. If >0, there are EXTRA control words after the first 64 words.
NSTP	1	58	Number of SPH element blocks
IFLAGD	1	59	Number of node blocks + 1000 flag
NSTH	1	60	Number of solid element blocks
NSTB	1	61	Number of beam element blocks
NSTS	1	62	Number of shell element blocks
NSTT	1	63	Number of thick shell element block
NDSB	$2 * N D S$	64+EXTRA	Node blocks for which time histories are output. The locations $2 \mathrm{n}-1$, where $\mathrm{n}=1$ through NDS correspond to the first node in the block and locations 2 n correspond to the last node in the block.
NSTHB	2*NSTH	$\begin{aligned} & \text { 64+EXTRA+ } \\ & 2 * \text { NDS } \end{aligned}$	Solid element blocks start and end numbers. These are defined in a similar manner to the nodal time history blocks
NSTBB	2*NSTB	$\begin{aligned} & \text { 64+EXTRA+ } \\ & \text { 2*NDS+ } \\ & \text { 2*NSTH } \end{aligned}$	Beam element block start and end numbers
NSTSB	2*NSTS	$\begin{aligned} & \text { 64+EXTRA+ }+ \\ & 2 * \text { NDS }+ \\ & 2 * \text { NSTH }+ \\ & 2 * \text { NSTB } \end{aligned}$	Shell element block start and end numbers
NSTTB	2*NSTT	$\begin{aligned} & \text { 64+EXTRA+ } \\ & 2 * \text { NDS }+ \\ & 2 * \text { NSTH }+ \\ & 2 * \text { NSTB }+ \\ & 2 * \text { NSTS } \end{aligned}$	Thick shell element block start and end numbers
NSTPB	$2 *$ NSTP	$\begin{aligned} & \text { 64+EXTRA+ } \\ & \text { 2*NDS+ } \\ & \text { 2*NSTH }+ \\ & 2 * \text { NSTB }+ \\ & 2 * \text { NSTS }+ \\ & 2 * \text { NSTT } \end{aligned}$	SPH element block start and end numbers

ISTRN can only be computed as follows and if NSTS >0.
If NV2D-MAXINT*($6 * \operatorname{IOSHL}(1)+\operatorname{IOSHL}(2)+\mathrm{NEIPS})+8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)>10$
Then ISTRN $=1$, else $\operatorname{ISTRN}=0$
Or NSTT > 0
If NV3DT-MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS) > 1
Then $\operatorname{ISTRN}=1$, else ISTRN $=0$

SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS

This section is only output if NMSPH >0. The section is a list of flags to indicate what SPH data is output for each SPH node/element. The first number is the length in words for this array, currently $=10$.
SPH elements are centered at nodes, and cover a spherical volume defined by the radius of influence. They do not have a connectivity with other SPH elements. They should be displayed as a dot or a spherical surface, with radius scaling to reduce the size and enable each element to be distinguishable.

As follows:
isphfg $(1)=10$ - length of sph flags array
$\operatorname{isphfg}(2)=1 \quad$ - radius of influence
$\operatorname{isphfg}(3)=1 \quad$ - pressure in particle
$\operatorname{isphfg}(4)=6-6$ true stress components
isphfg(5) $=1 \quad$ - plastic strain, >0.0 if effective stress exceeds yield strength
$\operatorname{isphfg}(6)=1 \quad$ - density of particle material
$\operatorname{isphfg}(7)=1 \quad$ - internal energy (strain)
$\operatorname{isphfg}(8)=1 \quad$ - number of neighbors affecting particle
$\operatorname{isphfg}(9)=12-6$ strain (ex, ey, ez, exy, eyz, exz) and 6 strain rate (erx, ery, erz, erxy, eryz, erxz)
if negative, true strain components
$\operatorname{isphfg}(10)=1 \quad$ - mass of element

If the value of isphfg $(2-10)=0$, then the particular data item is not output for the particle. To calculated the size of data add the isphfg values from isphfg(2) through isphfg(10) and add one. One value is always output which is the material number as a floating point number for each particle.
If this value is negative then the particle has been deleted from the model.
Full output for each particle is:
mat\#, radius, pressure, $\{\mathrm{sx}, \mathrm{sy}, \mathrm{sz}, \mathrm{sxy}, \mathrm{syz}, \mathrm{sxz}\}$ ps, rho, ie, nn, $\{\mathrm{ex}, \mathrm{ey}, \mathrm{ez}$, exy, eyz, exz, erx, ery, erz, erxy, eryz, erxz\}, mass.
Hence total size is 20 .
When a particle is deleted from the model, data is still output for it because the length of data must always be the same for each state.

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is assumed to be the same as the ordering of the nodal data in the state data that follows. The connectivities are assumed to be packed with 3 integers per word unless NDIM is set to 4 as in the new LS-DYNA/3D, LS-NIKE3D databases. The order of the elements are 3,2 , and 1 dimensional elements if the database is ICODE $=2$ or 6 .

VALUE
$\mathrm{X}(3,1)$

IX8 $(9,1)$

IXT(9,1)

IX2 $(6,1)$

IX4(5,1)

LENGTH
NDIM*NUMNP

9*NEL8

9*NELT

6*NEL2

5*NEL4

DESCRIPTION

Array of nodal coordinates $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$, X2,Y2,Z2,X3,Y3,Z3, ... ,Xn,Yn,Zn
Connectivity and material number for each 8 node solid element
Connectivity and material number for each 8 node thick shell element
Connectivity, orientation node, two null entries, and the material number for each 2 node beam element

Connectivity and material number for each 4 node shell element

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It is assume that if this option is used all the node and element data in the databases is in ascending order in relation to the user numbering. For sequential material/part numbering, the total length of data is:

NARBS $=10+$ NUMNP+NEL8+NEL2+NEL4+NELT+
3*NMMAT : these numbers are not used

For arbitrary material numbering (NSORT <0)
NARBS=16+NUMNP+NEL8+NEL2+NEL4+NELT+3*NMMAT
Where material numbers are not in ascending order.

VALUE	LENGTH	DESCRIPTION
NSORT	1	Pointer to arbitrary node numbers in LS-DYNA/3D code, If <0, it flags that arbitrary material identification numbers are also used.
NSRH	1	Pointer to arbitrary solid element numbers in LS-DYNA code: =NSORT+NUMNP
NSRB	1	Pointer to arbitrary beam element numbers in LS-DYNA code: =NSRH+NEL8
NSRS	1	Pointer to arbitrary shell element numbers in LS-DYNA code: =NSRB+NEL2
NSRT	1	Pointer to arbitrary thick shell element numbers in LS-DYNA code:
NSORTD	1	=NSRS+NEL4 NSRHD
NSRBD	1	Number of nodal points Number of 8 node solid elements
NSRSD	1	Number of 2 node beam elements NSRTD
	1	Number of 4 node shell elements Number of 8 node thick shell elements

NSRMA

NSRMU

NSRMP

NSRTM

NUMRBS
NMMAT
NUSERN
NUSERH
NUSERB
NUSERS
NUSERT
NORDER
NSRMU
NSRMP

NSORTD
NSORTH
NSORTB
NSORTS
NSORTT
NMMAT
NMMAT
NMMAT

Pointer to an array in the LS-DYNA code that list the material ID's in ascending order.

Pointer to an array in the LS-DYNA code that gives the material ID's in the actual order that they are defined in the user input.

Pointer to an array in the LS-DYNA code that gives the location of a member in the array originating at NSRMU for each member in the array starting at NSRMA.

Total number of materials

Total number of nodal rigid body constraint sets.
Total number of materials (parts)
Array of user defined node numbers
Array of user defined solid element numbers
Array of user defined beam element numbers
Array of user defined shell element numbers
Array of user defined solid shell numbers
Ordered array of user defined material (parts) ID's
Unordered array of user material (parts) ID's
Cross reference array

TIME HISTORY DATA

The time database contains the following data:

- Time word
- Node data
- Node data for solids, thick shells, and shells, respectively
- Element data for solids, thick shells, beams, and shells, respectively

VALUE	LENGTH	DESCRIPTION
TIME	1	Time word
GLOBAL	NGLBV	Global variables for this state.
		LS-DYNA Global Variables:
		KE, IE, TE, X, Y, and Z velocity
		IE for each part
		KE for each part
		X, Y, and Z velocity for part 1
		\ldots
		X, Y, and Z velocity for part n
		Mass for each part
		Hourglass energy for each part
		Force for each rigid wall
		$=6+7$ (NUMMAT8+ NUMMAT2 +
		NUMMAT4 + NUMMATT + NUMRBS) +
		N*NUMRW, $\mathrm{N}=1$ or $\mathrm{N}=4$ (ls971)

SKIP THE FOLLOWING DATA IF THE NUMBER OF NODE BLOCKS FOR PLOTTING
IS ZERO (VALUE NUMDS AT DISK ADDRESS 25)

TIME	1	Time word
NODEDATA	NND	Total nodal values for state where
	NLN $=10^{*}$ TNODS where TNODS is the number	
	of nodes put into database. The database contains	
	TNODS vectors each with up to 10 components:	
	temperature (if $\mathrm{IT}=1) ; \mathrm{x}, \mathrm{y}$, and z coordinates; x,	
	y, and z velocities; and x, y, and z accelerations.	

CFDDATA CFD
Bit flag: NCFDV1, bits from right to left Eg Pressure, Resultant Vorticity, and Density NCFDV1 $=2+32+1024=1058$

14 Pressure
15 X Vorticity
16 Y Vorticity
17 Z Vorticity
18 Resultant Vorticity
19 Enstrophy
20 Helicity
21 Stream Function
22 Enthalpy
23 Density
24 Turbulent KE
25 Dissipation
14-20 Eddy Viscosity
Bit flag: NCFDV2
2-11 Species 1 through 10
Count number of bits on * NUMNP

SKIP THE FOLLOWING DATA IF THE NUMBER OF ELEMENT BLOCKS FOR IS ZERO (VALUE NUMDS AT DISK ADDRESS 26)
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SOLID ELEMENTS ****

TIME

SOLIDDATA

1

ENV

Time word

Total nodal values for solid elements where $\mathrm{ENV}=56 *$ TBELM where THELM is the total number of solid elements to be put into the database. The data contains THELM vectors each with 56 components ordered as follows: 8 connectivities: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for each of the 8 nodes; and, lastly, x, y, z velocities for each of the 8 nodes.

For solid elements the database contains (7+NEIPH-6*ISTRN) values per element. One set of global stresses are always put into the database for each solid element followed by NEIPH history values. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (true stress in the global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
8. First extra value (if NEIPH >0)
9. Second extra value (if NEIPH >1)
10. Etc. until NEIPH extra values are defined if ISTRN=1

7+NEIPH-5. Epsilon-x
7+NEIPH-4. Epsilon-y
7+NEIPH-3. Epsilon-z
7+NEIPH-2. Epsilon-xy
7+NEIPH-1. Epsilon-yz
7+NEIPH. Epsilon-zx
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR THICK SHELLS ****

TIME

TSHELLDATA

ENV

Time word

Total nodal values for thick shell elements where ENV=56*TBSEL where TBSEL is the total number of thick shell elements in the database. The data contains TBSEL vectors each with 56 components ordered as follows: 8 connectivities: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for each of the 8 nodes; and, lastly, x, y, z velocities for each of the 8 nodes.
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SHELL ELEMENTS ****

TIME

SHELLDATA ENVS

Time word

Total nodal values for shell elements where ENVS $=28 *$ TSELM where TSELM is the total number of shell elements in the database. The data contains TSELM vectors each with 28 components ordered as follows: 4 connectivities: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for each of the 4 nodes; and, lastly, $\mathrm{x}, \mathrm{y}, \mathrm{z}$ velocities for each of the 4 nodes.
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR THICK SHELLS ****

For thick shell elements the database contains NV3DT values per element. Three sets of global stresses are always put into the database for each thick shell and are located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the single state is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i. e. an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for midsurface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for inner surface
15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
22. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
If MAXINT >3 then define an additional (MAXINT-3) * (6*IOSHL(1) + $1 * \operatorname{IOSHL}(2)+$ NEIPS) quantities here
*. If ISTRN=1, then define strain components Epsilon ($\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x y}, \mathbf{y z}, \mathbf{z x}$) here for inner surface and outer surface

TIME

BEAMDATA

1

BESV

Time word

Total element values for beam elements where BESV=NV1D*TBELM. The data contains TBELM vectors each with NV2D values ordered as described below.

For beam elements the database contains NV1D $=6$ values per element. They are:

1. Axial force
2. \quad S shear resultant
3. T shear resultant
4. $\quad \mathrm{S}$ bending moment
5. T bending moment
6. Torsional resultant

If there are values output at beam integration points, then NV1D $=6+5 *$ BEAMIP
7. RS shear stress
8. TR shear stress
9. Axial stress
10. Plastic strain
11. Axial strain

BEAMIP is set in *DATABASE_EXTENT_BINARY
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SHELL ELEMENTS ****
For shell elements the database contains NV2D values per element. If the minimum value of MAXINT is 3 , then the stresses are typically located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the stress is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i. e. an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for midsurface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for inner surface
15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
If MAXINT >3 then define an additional (MAXINT-3)* (6*IOSHL(1) $+1 * \operatorname{IOSHL}(2)+$ $8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ NEIPS $)$ quantities here
22. Bending moment-mx (local shell coordinate system)
23. Bending moment-my
24. Bending moment-mxy
25. Shear resultant-qx
26. Shear resultant-qy
27. Normal resultant-nx
28. Normal resultant-ny
29. Normal resultant-nxy
30. Thickness
31. Element dependent variable
32. Element dependent variable
33. Internal energy (if and only if ISTRN=0)

The following quantities are expected if and only if ISTRN=1
33. eps-x (inner surface strain in global system)
34. eps-y
35. eps-z
36. eps-xy
37. eps-yz
38. eps-zx
39. eps-x (outer surface strain in global system)
40. eps-y
41. eps-z
42. eps-xy
43. eps-yz
44. eps-zx
45. Internal energy (if and only if ISTRN=1)
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SPH ELEMENTS ****

TIME	1	Time word
SPHDATA	SPHV	Data for each sph element according to the sph flags SPHV=NSTP*NUM_SPH_DATA

INTERFACE FORCE DATABASE

There are three sections in the interface force database. The first contains 64 words of control information. The second contains geometric information, i.e. the nodal coordinates and segment connectivities for each segment contained in the master and slave surface definitions. The third section contains the results of the analysis at sequential output intervals. The output at a given time is called a state. The state contains a time word, global variables such as total energies and momenta, nodal data consisting of accelerations, velocities, and displacements, and finally segment data is written that include the pressure and shear stress acting on each segment and nodal forces for each node that defines the segment. The control information that follows provides information as to what is in the file and which database is being processed.

CONTROL DATA

VALUE \#	DISK		DESCRIPTION
	\#WORDS	ADDRESS	
Title	10	0	Problem identification
Run time	1	10	time in seconds since 00:00:00 UTC, January 1, 1970
File type	1	11	intfor=4
			$1=\mathrm{d} 3$ plot, $2=\mathrm{d} 3 \mathrm{drlf}$, $3=\mathrm{d} 3$ thdt, $4=$ intfor, $5=\mathrm{d} 3$ part $6=$ blstfor, $7=\mathrm{d} 3 \mathrm{cpm}, 8=\mathrm{d} 3$ ale, $11=\mathrm{d} 3 \mathrm{eigv}$, $12=\mathrm{d} 3$ mode, $13=\mathrm{d} 3$ iter, $21=\mathrm{d} 3 \mathrm{ssd}, 22=\mathrm{d} 3 \mathrm{spcm}$, $23=\mathrm{d} 3 \mathrm{psd}, 24=\mathrm{d} 3 \mathrm{rms}, 25=\mathrm{d} 3 \mathrm{ftg}, 26=\mathrm{d} 3 \mathrm{acs}$
Source version	1	12	1s-dyna version $* 1000000+$ svn number
Release number	r 1	13	Release number in character*4 form
			50 for R5.0
			511c for R5.1.1c
Version	1	14	Code version
NDIM	1	15	Insert 4 for LS-DYNA/3D database
NUMNP	1	16	Number of nodal points
ICODE	1	17	Insert 6 for LS-DYNA/3D database
NGLBV	1	18	Number of global variable to be read
BLANK	1	19	Insert zero
IU	1	20	Flag for current geometry (=1)

IV	1	21	Flag for velocities (default=1)		
BLANK	1	22	Insert zero		
BLANK	1	23	Insert zero		
BLANK	1	24	Insert zero		
BLANK	1	25	Insert zero		
BLANK	1	26	Insert zero		
BLANK	1	27	Insert zero		
BLANK	1	28	Insert zero		
BLANK	1	29	Insert zero		
BLANK	1	30	Insert zero		
NUMSG	1	31	Total number of slave and master		
			segments in sliding interface		
	1	32	definitions.		
NUMMAT4	1	33	$=$ 2 times the number of sliding interfaces.		
NV2D	1		If NV2D is negative, then the file is FSIFOR for an		
			34		ALE model
:---					
BLANK					

If *DATABASE_EXTENT_INTFOR is included in the model input the following values apply to the state output, written in the following order:
$\mathrm{NV} 2 \mathrm{D}=\mathrm{NPRESU}+\mathrm{NSHEAR}+\mathrm{NFORCE}+\mathrm{NGAPC}+\mathrm{NWEAR}+\mathrm{NWUSR}+\mathrm{NHVF}+$
NTIED + NENG + NPEN + NTWELD
NPRESU: output option for pressures
EQ. 0 no pressures output
EQ. 1 output normal interface pressure only
EQ. 2 output normal interface pressure and peak pressure
EQ. 3 output normal interface pressure, peak pressure and time to peak pressure

NSHEAR: output option for maximum interface shear stress, shear stress in r-direction and s-direction
EQ. 0 no
EQ. 3 yes

NFORCE: output option for X-, Y- and Z-force at all 4 nodes
EQ. 0 no
EQ. 12 yes

NGAPC: output option for contact gap at all nodes and frictional energy density
EQ. 0 no
EQ. 5 yes

NWEAR: output surface wear at each node of segments
EQ. 0 no values
EQ. 4 output wear depth for each node
EQ. 8 output wear depth and sliding distance for each node

NWUSR: Number of wear history variables
4 * Number of wear history values. 4 values for each segment.

NHVF: Number of user friction history variables
4 * Number of user friction history values. 4 values for each segment.

NTIED: Node tied to top face and node tied to bottom face. Value is between 0 (not tied) to 1 (fully tied). May include damage effect.

EQ. 0 no values
EQ. 2 output tied info for top and bottom side of segment

NENG: Contact energy density. Includes both frictional and contact "springs".
EQ. 0 no values
EQ. 4 contact energy density for each node

NPEN: Contact penetrations. $\mathrm{x}, \mathrm{y}, \mathrm{z}$ values for each node
EQ. 0 no values
EQ. 12 Absolute penetrations
EQ. 24 Absolute and relative (to max) penetrations

NTWELD: Number of user tied history variables
$4 *$ Number of user friction history values. 4 values for each segment.

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is assumed to be the same as the ordering of the nodal data in the state data that follows.

VALUE
$\mathrm{X}(3,1)$

IX4(5,1)

LENGTH
NDIM*NUMNP

5*NUMSG

DESCRIPTION

Array of nodal coordinates $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$, X2,Y2,Z2, X3, Y3, Z3, ... , Xn, Yn, Zn
Connectivity and identification number for each 3 or 4 node interface segment. For sliding interface n the identification number in $2 \mathrm{n}-1$ for the slave surface and 2 n for the master surface.

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It is assumed that if this option is used all node and element data anywhere in the databases is in ascending order based on user numbering. For sequential material/part numbering, the total length of data is:

NARBS $=10+$ NUMNP+NEL8+NEL2+NEL4+NELT+
3*NMMAT : these numbers are not used

For arbitrary material numbering (NSORT <0)
NARBS=16+NUMNP+NEL8+NEL2+NEL4+NELT+3*NMMAT
Where material numbers are not in ascending order.

VALUE	LENGTH	DESCRIPTION
NSORT	1	Pointer to arbitrary node numbers in LS-DYNA code, If <0, it flags that arbitrary material identification numbers are also used.
NSRH	1	Pointer to arbitrary solid element numbers in LS-DYNA code: =NSORT+NUMNP
NSRB	1	Pointer to arbitrary beam element numbers in LS-DYNA code: =NSRH+NEL8
NSRS	1	Pointer to arbitrary shell element numbers in LS-DYNA code: =NSRB+NEL2
NSRT	1	Pointer to arbitrary thick shell element numbers in LS-DYNA code: =NSRS+NEL4
NSORTD	1	Number of nodal points NSRHD
NSRBD	1	Number of 8 node solid elements Number of 2 node beam elements
NSRSD	1	Number of 4 node shell elements
NSRTD	1	Number of 8 node thick shell elements

NSRMA	1	Pointer to an array in the LS-DYNA code that list the contact ID's in ascending order.
NSRMU	1	Pointer to an array in the LS-DYNA code that gives the contact ID's in the actual order that they are defined in the user input.
NSRMP	1	Pointer to an array in the LS-DYNA code that gives the location of a member in the array originating at NSRMU for each member in the array starting at
NSRMA.		

ALE, CPM and DES Output Fringe Labels

At the end of the first binary files, eg intfor, fringe labels are appended.
This extra data is written at the end of the following files:
ALE, CPM and DES intfor files. Labels for fringe titles are written directly after the EOF (= -999999.0) marker.

Header output

NTYPE	1	entity type $=90200$
NLABEL	1	number of labels
NCHAR8	1	number of char*8 characters in each label
LABEL	NCHAR8	Fringe label

For the interface force file (intfor), Fringe labels are written at the end of first file after the EOF (= -999999.0) marker

STATE DATA

The state data for the interface forces have three parts:

- Time word and global data
- Node data
- Force data for sliding interface segments

VALUE	LENGTH	DESCRIPTION
TIME	1	Time word
GLOBAL	NGLBV	Global variables for this state
NODEDATA	NND	Total nodal values for state where NND $=(I T+N D I M *(I U+I V)) * N U M N P ~ L S-~$ DYNA/3D writes 6 values per node, i.e., the three coordinates and the translational velocities. The Data is put into the database as two vectors: first $\mathrm{X}(3, \mathrm{NUMNP})$ and then V(3,NUMNP), respectively.
SEGMDATA	ENN	Data for sliding interface segments where the quantity ENN $=\mathrm{NUMSG}^{*}$ NV2D. The organization of the segment data is described below.

This state data is repeated for each state in the database.

For each sliding interface segment the database contains NV2D values per segment. The data order is:

1. Normal interface pressure acting on segment
2. Maximum interface shear stress acting on segment
3. Shear stress in local r-direction of segment
4. Shear stress in local s-direction of segment
5. X force at node n 1 of segment
6. Y force at node n 1 of segment
7. Z force at node n 1 of segment
8. $\quad \mathrm{X}$ force at node n 2 of segment
9. Y force at node n 2 of segment
10. Z force at node n 2 of segment
11. X force at node n 3 of segment
12. Y force at node n 3 of segment
13. Z force at node n 3 of segment
14. X force at node n 4 of segment
15. Y force at node $n 4$ of segment
16. Z force at node n 4 of segment
17. contact gap at node n 1
18. contact gap at node n 2
19. contact gap at node n3
20. contact gap at node $n 4$
21. surface energy density of segment
22. peak pressure
23. time to peak pressure
24. surface wear depth at node n 1
25. surface wear depth at node n 2
26. surface wear depth at node n3
27. surface wear depth at node $n 4$
28. wear sliding distance at node n 1
29. wear sliding distance at node n 2
30. wear sliding distance at node n3
31. wear sliding distance at node n 4

If contact gap at node $n 1=-1.0$, then no values are set. Similarly, if surface energy density is $=-$ 1.0 , no value is set.

If contact gap is $>=999.0$ ignore the value, this means that the interfaces are not in discernible contact.

Note: original interface force files have 16 variables, while recent ones, from ls-dyna 1s970 and ls971, have up to 31. Check size of NV2D. If *database_extent_intfor is include in the model input then NV2D is according to the formula above.

FSIFOR file output:

1. Normal interface pressure acting on segment
2. X force on segment
3. Y force on segment
4. $\quad \mathrm{Z}$ force on segment
5. relative interface velocity
6. X interface velocity
7. Y interface velocity
8. Z interface velocity

BLSTFOR file (NV2D=16 or 7) output:

1. effective (combined incident and reflected) pressure applied to the segment
2. reflected wave (relevant only for BLAST=4)
$=-1$: segment is below ground level and not exposed to blast
$=0$: segment has not been subjected to blast waves
$=1$: segment has been subjected to the initial incident wave
$=2$: segment has been subjected to the ground reflected wave
$=3$: segment resides in the Mach stem region (Since known by geometrical considerations this value is fixed at time $t=0$. Thus, any non-zero reflected pressure on this segment is due to the Mach wave.)
3. incident pressure
4. mass density of air
5. global x-velocity of blast wind
6. global y-velocity of blast wind
7. global z-velocity of blast wind

CRACK FILE (d3crck)

The crack file is created in LS-DYNA when the Winfrith Concrete material model is used for solid elements. This model allows up to three orthogonal crack planes to develop each with an origin at the center of the element. The plane is assumed to project to the surface of the solid, and can be represented by drawing a line on any of the six solid element faces where it emerges. This cutting line can be found by considering the intersection of each plane and each solid face.

The crack file is written as a Fortran unformatted binary file, and each record in the file has a start record mark and an end record mark, each of which is 4 bytes for a single precision run and 8 bytes for a double precision run. The data is output for a state and contains:

VALUE	\#WORDS	DESCRIPTION
TIME	1	State Time word
NUMBER OF CRACKS	1	NC, Number of sets of crack data
CRACK DATA	$16 *$ NC	Sets of data for each crack

Data for each crack contains: Element ID, Flag for each crack plane, Normal vector for each crack plane and width for each crack plane.
Crack plane flags are as follows:
$0=$ no crack, $1=$ cracked, but no sustaining tensile load, $2=$ cracked but closed up, and $3=$ fully cracked with no tensile strength.
Shown below is some C coding from LS-PREPOST to illustrate how the crack data is used and the crack lines established. The important coding is picked out in bold type. Also, after the crack data was read in, the crack flags (3 words) where stored as bits in one word. NG and MAT are the Group number for elements and the Material ID we assign in LS-PREPOST.

```
/* elm id, 3 2bit flags 0 -> 2, group no., mat no. */
int id, pflag, ng, mat;
float abc[9]; /* plane normals */
float cp[3]; /* crack width planes 1, 2 and 3 */
```

/* check brick element face against crack plane (nx,ny,nz) positioned
* at element center (xe,ye,ze)
*/
int CrackPlane(float xe, float ye, float ze, float nx, float ny, float nz,
float xyz[]$[3]$, float $\mathrm{xs}[2]$, float $\mathrm{ys}[2]$, float $\mathrm{zs}[2]$)

```
{
    int i, k;
    float x0, y0, z0, x1, y1, z1;
    float xp1, yp1, zp1, xp2, yp2, zp2, pn, dn, t;
    k=0;
    x0 = xyz[3][0];
    y0 = xyz[3][1];
    z0 = xyz[3][2];
    for (i=0; i<4; i++) {
        /* parametric line clip algorithm */
        xp1 = x0 - xe;
        yp1 = y0- ye;
        zp1 = z0 - ze;
        x1 = xyz[i][0];
        y1 = xyz[i][1];
        z1 = xyz[i][2];
        xp2 = x1 - x0;
        yp2 = y1 - y0;
        zp2 = z1 - z0;
        x0 = x1;
        y0 = y1;
        z0 = z1;
        pn = nx*xp1 + ny*yp1 + nz*zp1;
        dn = nx*xp2 + ny*yp2 + nz*zp2;
        if (fabs(dn) < 1.0e-15) continue;
        t = -pn / dn;
        if (t < 0.0 || t > 1.0) continue;
        t = t - 1.0;
        xs[k]= x1 + t * xp2;
        ys[k]= y1 + t * yp2;
        zs[k] = z1 + t * zp2;
        k++;
        if (k>1) break;
    }
    return k;
}
void SetCrackWidth(float v)
{
    min_crack_width = MAX(0.0, v);
}
void DrawCracks(int ist, float *bg_color)
{
    int i, k, m, n, nc, nd, kd, ip, ic, is;
    int id, facecode;
    int etype, nface, pflag, flag;
    unsigned int j;
    float xc, yc, zc, a, b, c;
    float xyz[24][3];
    float xi[2], yi[2], zi[2];
    int shrink, count, ns[2];
    float dx, dy, dz, ds, d;
    NDCOOR *nod;
    int ng=0;
```

float rd, gn, bu;

```
nod = node;
nod--;
rd = 1.0 - bg_color[0];
gn=1.0-bg_color[1];
bu = 1.0 - bg_color[2];
glDisable(GL_LIGHTING);
glColor3f(rd, gn, bu);
glLineWidth(2.0);
GetCrackData(ist);
glBegin(GL_LINES);
nc = cstate[ist].nc;
for (n=0; n<nc; n++) {
    pflag = crack[n].pflag;
    if (pflag == 0) continue;
    id = crack[n].id - 1;
    k = solid[id].mat & MASKBIT22;
    j = active_list[k].loc;
    facecode = (active_list[k].akey>>2) & FACEBITS1;
    if (j < BIT30 && facecode > 0) {
        id = j;
    ng = crack[n].ng;
        if (!part[ng].active) continue;
    dx = part[ng].dscale[0];
    dy = part[ng].dscale[1];
    dz = part[ng].dscale[2];
    ds = part[ng].dscale[3];
        shrink = part[ng].shrink_mode;
    etype =(active_list[k].akey) & 0x3;
    nface = FACE_NF[etype];
        xc = yc = zc = 0.0; ic = 0;
    for (i=0; i<nface; i++) {
        for (m=0; m<4; m++) {
        nd = FACE_P[etype][i][m];
        kd = solid[id].conn[nd];
            k = 4 * i + m;
            if (ds == 0.0) {
                        xyz[k][0] = (disp_state+kd)->xyz[0];
                        xyz[k][1] = (disp_state+kd)->xyz[1];
                        xyz[k][2] = (disp_state+kd)->xyz[2];
                    }
                    else {
                    GetScaledNodalCoord(kd, nod, disp_state, dx,dy,dz, xyz[k]);
                }
        xc += xyz[k][0];
        yc += xyz[k][1];
        zc += xyz[k][2];
            ic += 1;
        }
            }
            if (ic == 0) continue;
```

```
            d = 1.0 / (float)ic; xc *= d; yc *= d; zc *= d;
            if (shrink) {
                for (i=0; i<24; i++) {
                    xyz[i][0] = xc + (xyz[i][0] - xc) * shrink_factor;
                        xyz[i][1] = yc + (xyz[i][1] - yc) * shrink_factor;
                    xyz[i][2] = zc + (xyz[i][2]-zc) * shrink_factor;
                }
            }
        for (i=0; i<nface; i++) {
            if (shrink || (facecode & FACE_CODE1[i])) {
            k=4 * i;
            /* for each active crack plane */
                for (ip=0,is=0,ic=0; ip<3; ip++,is+=2,ic+=3) {
                flag = (pflag>>is) & 3;
                if (flag == 0) continue;
                if ((min_crack_width < 0.5 && crack[n].cp[ip] >= min_crack_width)
                    |(min_crack_width >= 0.5 && flag == 3)) {
                    a = crack[n].abc[ic];
                    b = crack[n].abc[ic+1];
                    c = crack[n].abc[ic+2];
                    count = CrackPlane(xc, yc, zc, a, b, c, &xyz[k], xi, yi, zi);
                    if (count > 1) {
                        glVertex3f(xi[0], yi[0], zi[0]);
                        glVertex3f(xi[1], yi[1], zi[1]);
                    }
                }
            }
        }
        }
        }
    }
    gIEnd();
    glLineWidth(1.0);
}
```


DYNAIN BINARY FILE FORMAT (dynain.bin)

/* Discription of Dynain binary format:

* In first 100 words (integers)
* head[0] = location of nodal data
* head[1] = number of nodes
* head[2] = location of solid element connectivities
* head[3] = number of solid elements
* head[4] = location of shell element connectivities + thicknesses
* head[5] = number of shell elements
* head[6] = location of adaptive constraints
* head[7] = number of adaptive constraints
* head[8] = location of initial stresses for solid elements
* head[9] = number of initial stress states defined for solids
* head[10] = location of initial stresses for shell elements
* head[11] = number of initial stress states defined for shells
* head[12] = location of initial strains for shell elements
* head[13] = number of initial strains states defined for shells
* head[14] = location of boundar spc's
* head[15] = number of boundary spc's
* head[16] = location of local coordinate systems by nodes
* head[17] = number of local coordinate systems by nodes
* head[18] = location of local coordinate systems by vector
* head[19] = number of local coordinate systems by vector
* head[20] = location of initial stress states for beams
* head[21] = number of initial stress states for beams
* head[22] = location of thick shell element connectivities
* head[23] = number of thick shell elements
* head[24] = location of initial stresses for thick shell elements
* head[25] = number of initial stress states defined for thick shells
* head[26] = location of beam element connectivities
* head[27] = number of beam elements
* head[28] = location of initial strains for solid elements
* head[29] = number of initial strain states defined for solids

EXTRA DATA TYPE DEFINITIONS (NCFDV1 = 67108864)

```
#ifndef _HAVE_D3PLOT
#define -HAVE_D3PLOT 1
#define D3PL_FIRST_SCALAR_ID 0
#define D3PL_FIRST_VECTOR_ID 1000
#define D3PL_FIRST_TENSOR_ID 2000
#define D3PL_END_I\overline{D}S - 3000
/* scalar variable names */
enum {
    D3PL_Pressure_INS=0,
    D3PL-Temperature INS,
    D3PL_Enstrophy_INS,
    D3PL_Helicity_INS,
    D3PL_Stream_function_INS,
    D3PL_Enthalpy_INS,
    D3PL_Turbulent_KE_INS,
    D3PL_Turbulent_eps_INS,
    D3PL_Eddy_Viscosity_INS,
    D3PL_Density_INS,
    D3PL_VolFractSpec1_INS,
    D3PL_VolFractSpec2_INS,
    D3PL_VolFractSpec3_INS,
    D3PL_VolFractSpec4_INS,
    D3PL_VolFractSpec5_INS,
    D3PL_VolFractSpec6_INS,
    D3PL_VolFractSpec7_INS,
    D3PL_VolFractSpec8_INS,
    D3PL_VolFractSpec9_INS,
    D3PL_VolFractSpec10_INS,
    D3PL_Density_CESE,
    D3PL_Pressure_CESE,
    D3PL_Temperature_CESE,
    D3PL_Total_energy__CESE,
    D3PL_Internal_energy_CESE,
    D3PL_Enthalpy_CESE,
    D3PL_Entropy_CESE,
    D3PL_Stream_function_CESE,
    D3PL_Density__TS_CESE,
    D3PL_Total_energy_TS_CESE,
    D3PL_Temperature_radflow,
    D3PL_Intensity_radflow,
    D3PL_Scalar_potential,
    D3PL_Electrical_conductivity,
    D3PL_Ohm_heating_power_FEM,
    D3PL_Ohm_heating_power_BEM,
    D3PL_Temperature_PFEM,
    D3PL_Pressure_PFEM,
    D3PL_K_PFEM,
    D3PL-e\overline{ps PFEM,}
    D3PL_particle_size,
    D3PL_particle_temperature,
    D3PL_particle_cnt_child_particles,
```

```
    D3PL_Vorticity_PFEM,
    D3PL-CP PFEM,
    D3PL_Qc_PFEM,
    D3PL_Shear_PFEM,
    D3PL_void_fraction_CESE,
    D3PL__schlieren_number_CESE,
    D3PL LEVELSET P
    D3PL_AVG PRES PFEM,
    D3PL_TURB_VISC_PFEM,
    D3PL_relative_mu,
    D3PL_HCC_PFEM,
    D3PL_heatflux_PFEM,
    D3PL_YPLUS PFEM,
    D3PL UINDEX PFEM,
    D3PL_VISCOUS_PFEM,
    D3PL_RAND_r0_EM,
    D3PL_RAND_r10_EM,
    D3PL-RAND-C10-EM,
    D3PL-RAND SOC EM,
    D3PL_RAND_i_EM,
    D3PL_RAND_u_EM,
    D3PL_RAND_V_EM,
    D3PL_RAND vC EM,
    D3PL_RAND_temperature_EM,
    D3PL_RAND_P JHR EM,
    D3PL_RAND_P_dudt_EM,
    D3PL_ALPHA_PFEM,
    D3PL CFL PFEM,
    D3PL-CMU PFEM,
    D3PL_TURBINTENS_PFEM,
    D3PL_mass_flow_rate_CESE,
    D3PL_Surf_Pressure_MECH,
    D3PL_interface_Temperature_MECH,
    D3PL_Surf_solid_Heat_Flux_\overline{MECH,}
    D3PL_Surf_fluid_Heat_Flux_MECH,
    D3PL_Surf_Net_HeatFluxRate_MECH,
    D3PL_HCCAVG_PFEM,
    D3PL_TemperatureAVG_PFEM,
    D3PL_HeatfluxAVG_PFEM,
    D3PL-WETNESS PFEM
    D3PL RAND areaCircuit EM,
    D3PL_RAND_areaCell_EM,
    D3PL_PFEM_potential,
    D3PL_Density_DUALCESE,
    D3PL-Pressure DUALCESE,
    D3PL Temperatūre DUALCESE,
    D3PL_Tot_energy_DUALCESE,
    D3PL_schlieren_no_DUALCESE,
    D3PL_void_fract_DUALCESE,
    D3PL_Intn\overline{l}}\mathrm{ -nerg}y DUALCESE
    D3PL_Enthalpy DUALCESE,
    D3PL_Entropy_DUALCESE,
    D3PL_MassFlowRate_DUALCESE
};
/* vector variable names */
enum {
```

```
    D3PL_Velocity_INS=1000,
    D3PL-Vorticity INS,
    D3PL_Velocity_CESE,
    D3PL_Vorticity_CESE,
    D3PL_Momentum_CESE,
    D3PL_Momentum_TS_CESE,
    D3PL_E_field_radflow,
    D3PL_H_field_radflow,
    D3PL_Current_density_FEM,
    D3PL_Electric_field_FEM,
    D3PL_Magnetic_field_FEM,
    D3PL_Lorentz_force_\overline{FEM,}
    D3PL_Vector_potentíal FEM,
    D3PL_Current_density_BEM,
    D3PL_Electric_field_BEM,
    D3PL_Magnetic_field_BEM,
    D3PL_Lorentz_force_BEM,
    D3PL-}\mathrm{ Vector potentíal BEM,
    D3PL_Surface_current,
    D3PL_Surface_magnetic_field,
    D3PL_Surface_Lorentz_force,
    D3PL_Velocity_PFEM,
    D3PL_Vorticity_vect_PFEM,
    D3PL_particle_velocíty,
    D3PL_Average_Velocity_PFEM,
    D3PL_H_field_BEM,
    D3PL_magnetization_BEM,
    D3PL_NF Velocity_P\overline{FEM,}
    D3PL_DRA\overline{G PFEM,}
    D3PL_Shear_vect_PFEM,
    D3PL_drag_CESE,
    D3PL_Surf_Fluid_Force_MECH,
    D3PL_Surf_Displacement_MECH,
    D3PL_Surf_Velocity_MEC\overline{H}
    D3PL_Surf_Acceleration_MECH,
    D3PL_RAND_i_vector_EM,
    D3PL_Shearavg_vect_PFEM,
    D3PL_DRAG_element_PFEM,
    D3PL_Velocity_DUA\overline{LCESE,}
    D3PL-Vorticity DUALCESE,
    D3PL_Momentum_DUALCESE,
    D3PL_dragforce_DUALCESE
};
/* symmetric tensor variable names */
enum {
    D3PL_INS_VELOCITY_GRAD=2000
};
/* chemistry species variable names */
enum {
    D3PL_CHEM_SPECIES=3000
};
```

```
typedef struct _d3pnt {
    char * name;
    int id;
} D3PLOT_NAME_TABLE;
/* Identifiers for solver-mesh combinations */
enum {
    FEM_Q1Q0_INS_CFD=0,
    CESE_CFD_NODE,
    CESE_CFD_ELEMENT,
    CESE_CED_ELEMENT_TS,
    RADFLOW F
    RADFLOW NODE,
    EM_FEMSTER_SOLID_INTEG_PTS,
    EM_FEMSTER_TSHEL___INTEG_PTS,
    EM_FEMSTER_SHELL_INTEG_\overline{PTS,}
    EM FEMSTER SOLID`` CENTRO}ID
    EM_FEMSTER_TSHELL_CENTROID,
    EM_FEMSTER_SHELL_CENTROID,
    EM_FEMSTER_AIR,
    RE\overline{CT_AIR_EM_NODE,}
    EM_FEMSTER_\overline{BEM,}
    PFEM_IF,
    PFEM_IF_SURFACE,
    STOCHASTIC_PARTICLES,
    CESE,
    CESE_SURFACE,
    EM,
    EM_SURFACE,
    EM_FEMSTER_SOLIDSHELL,
    EM_FEMSTER_NODE,
    CESE2D,
    CESE2D_SURFACE,
    CESE2D\overline{A}XI,
    CESE2DAXI_SURFACE,
    CESE_SURFACE_CFD_ELEMENT,
    CESE2D_CFD_ELEMENT,
    CESE2D_SURFACE_CFD_ELEMENT,
    CESE2D\overline{A}XI CFD ELEMENT,
    CESE2DAXI_SURFACE_CFD_ELEMENT,
    MECH_SURFACE,
    MECH2D_SURFACE,
    DUALCESE3D,
    DUALCESE3D SURFACE,
    DUALCESE2D,
    DUALCESE2D_SURFACE,
    DUALCESE2DAXI,
    DUALCESE2DAXI_SURFACE,
    DUALCESE3D_ADAPT,
    DUALCESE3D_SURF_ADAPT,
    DUALCESE2D_ADAPT,
    DUALCESE2D_SURF_ADAPT,
    DUALCESE2DAXI_ADAPT,
    DUALCESE2DAXI_SURF_ADAPT
};
static D3PLOT_NAME_TABLE d3plot_solver_name[] = {
    {"Incompressible FEM CFD",FEM_Q1Q0_INS_CFD},
```

```
    {"CESE CFD node",CESE CFD NODE},
    {"CESE CFD element",C\overline{ESE \overline{C}FD_ELEMENT},}
    {"CESE CFD taylor series",CESE_CFD_ELEMENT_TS},
    {"Radiation transport (w/groups)",RADFLOW_FULL},
    {"Radiation transport",RADFLOW_NODE},
    {"EM solid integ. pts",EM_FEMSTER_SOLID_INTEG_PTS},
    {"EM tshell integ. pts",E\overline{M_FEMSTER_TSHELL_INTEGG PTS},}
    {"EM shell integ. pts",EM_\overline{FEMSTER_S}\mp@subsup{\}{HELL_INTEG_PTS},}{}\mathrm{ ,}
    {"EM solid centroid",EM_FEMSTER_SOLID_CENTROI\overline{D}},
    {"EM tshell centroid",EM_FEMSTER_TSHEL̄L_CENTROID},
    {"EM shell centroid",EM_FEMSTER_SHELL_CENTROID},
    {"EM solidShell centroi\overline{d",EM_FEMSTER_SOLIDSHELL},}
    {"EM node",EM FEMSTER NODE},
    {"EM air",EM_\overline{FEMSTER_A}AIR},
    {"EM air - rectangular grid",RECT_AIR_EM_NODE},
    {"EM BEM",EM_FEMSTER_BEM},
    {"Incompressíble CFD", PFEM_IF},
    {"Incomp. CFD surfaces",PFEM_IF_SURFACE},
    {"Stochastic particles",STOC\overline{HASTIIC_PARTICLES},}
    {"CESE compressible CFD",CESE},
    {"CESE CFD surface",CESE_SURFACE},
    {"EM nodes",EM},
    {"EM surface nodes",EM_SURFACE},
    {"CESE 2D CFD",CESE2D},
    {"CESE 2D CFD surface",CESE2D_SURFACE},
    {"CESE 2D axisym CFD",CESE2DAXI},
    {"CESE 2D axisym CFD surface",CESE2DAXI_SURFACE},
    {"CESE CFD surface element",CESE_SURFACE_CFD_ELEMENT},
    {"CESE 2D CFD element",CESE2D_CFD_ELEMENT},
    {"CESE 2D CFD surface element",CESE2D_SURFACE_CFD_ELEMENT},
```



```
    {"CESE CFD axisym surface element",CESE2DAXI_SURFACE_CFD_ELEMENT},
    {"Mechanics surface element",MECH_SURFACE},
    {"Mechanics 2D surface element",MECH2D_SURFACE},
    {"dual CESE compressible CFD",DUALCESE},
    {"dual CESE surface nodes",DUALCESE_SURFACE},
    {"dual CESE 2D compressible CFD",DUALCESE2D},
    {"dual CESE 2D surface nodes",DUALCESE2D_SURFACE},
    {"dual CESE 2D axisym comp. CFD",DUALCESE2DAXI},
    {"dual CESE 2D axisym surf nodes",DUALCESE2DAXI_SURFACE},
    {"adaptive dual CESE compressible CFD",DUALCESE_ADAPT},
    {"adaptive dual CESE surface nodes",DUALCESE_SURF_ADAPT},
    {"adaptive dual CESE 2D compressible CFD",DUALCESEE2D_ADAPT},
    {"adaptive dual CESE 2D surf nodes",DUALCESE2D_SURF_\overline{ADAPT},}
    {"adaptive dual CESE 2D axisym comp. CFD",DUAL\overline{CESE2\overline{DAXI ADAPT},}},\vec{D},
    {"adaptive dual CESE 2D axisym surf nodes",DUALCESE2DAXI_SURF_ADAPT}
};
static D3PLOT_NAME_TABLE d3plot_et_name[] = {
    {"Pressure",}\mp@subsup{}{}{-}\mp@subsup{D}{3PL}{-}\mathrm{ Pressure INS},
    {"Temperature",D\overline{3}PL_Temper
    {"Enstrophy",D3PL_Enstrophy_INS},
    {"Helicity",D3PL_Helicity_INS},
    {"Stream function",D3PL_Stream_function_INS},
    {"Enthalpy",D3PL_Enthalpy_INS},
    {"Turbulent KE",焐3PL_Turbūlent_KE_INS},
    {"Turbulent eps",D3PL__Turbulent_eps_INS},
    {"Eddy Viscosity",D3PL_Eddy_Viscosity_INS},
    {"Density",D3PL_Density_INS},
```

```
{"Volume fraction-1",D3PL_VolFractSpec1_INS},
{"Volume fraction-2",D3PL-VolFractSpec2-INS},
{"Volume fraction-3",D3PL_VolFractSpec3_INS},
{"Volume fraction-4",D3PL_VolFractSpec4_INS},
{"Volume fraction-5",D3PL_VolFractSpec5_INS},
{"Volume fraction-6",D3PL_VolFractSpec6_INS},
{"Volume fraction-7",D3PL-VolFractSpec7_INS},
{"Volume fraction-8",D3PL-VolFractSpec8_INS},
{"Volume fraction-9",D3PL_VolFractSpec9_INS},
{"Volume fraction-10",D3PL_VolFractSpec10_INS},
{"Fluid_velocity",D3PL_Velocity_INS},
{"Vorticity",D3PL_Vortīicity_INS},
{"grad(velocity)",D3PL_INS_VELOCITY_GRAD}
{"Density",D3PL_Density_CESE},
{"Pressure",D3PL_Pressure_CESE},
{"Temperature",D\overline{3}PL_Temperature_CESE},
{"Total energy",D3PL_Total_energ}y_CESE}
{"Enthalpy",D3PL_Enthalpy_\overline{CESE},}
{"Entropy",D3PL_Entropy_CESE},
{"Stream function",D3PL_Stream_function_CESE},
{"Void fraction",D3PL_void_fraction_CESE},
{"Schlieren_number",D\overline{3}PL_sc̄hlieren_\overline{number_CESE},}
{"Density Tāylor series",D3PL_Densīty_TS_\overline{CESE},}
{"Total energy Taylor series",D3PL_Tōal_energy_TS_CESE},
{"Fluid_velocity",D3PL_Velocity_CESE},
{"Vorticity",D3PL_Vorticity_CESE},
{"Momentum",D3PL_Momentum_CESE},
{"Momentum Taylor series",D3PL_Momentum_TS_CESE},
{"Temperature radflow",D3PL_Temperature_ra\overline{dflow},}
{"Intensity radflow",D3PL_Intensity_radflow},
{"E-field radflow",D3PL_E_field_radflow},
{"H-field radflow",D3PL_H_field_radflow},
{"Scalar potential",D3PL_Scalar_potential},
{"Electrical conductivity"",D3PL_Electrical_conductivity},
{"Ohm heating power FEM",D3PL_O\̄m_heating_\overline{power_FEM},}
{"Ohm heating power BEM",D3PL_Ohm_heating_power_BEM},
{"Current density FEM",D3PL_Current_density_FEM},
{"Electric field FEM",D3PL_Electric_field_FEM},
{"Magnetic field FEM",D3PL_Magnetic_field_FEM},
{"Lorentz force FEM",D3PL_Lorentz_force_FEM},
{"Vector potential FEM",D\overline{3PL_Vectōor_potential_FEM},}
{"Current density",D3PL_Current_density_BEM},
{"Electric field",D3PL_Electric_field_BEM},
{"Magnetic field",D3PL_Magnetic_field_BEM},
{"Lorentz force",D3PL_E_Lorentz_fōrce_B\overline{EM}},
{"Vector potential",D\overline{3}PL_Vectōr_potēntial_BEM},
{"Surface current",D3PL_Surface_current},
{"Surface magnetic fiel\overline{d",D3PL_Sururace_magnetic_field},}
{"Surface Lorentz force",D3PL_Surface_Lorentz_force},
{"Fluid velocity",D3PL_Velocīty_PFEM},
{"Fluid temperature",D\overline{3}PL_Temperature_PFEM},
{"Fluid pressure",D3PL Prēssure_PFEM},
{"Fluid vorticity",D3PI_Vorticity_PFEM},
{"Fluid pressure",D3PL_\overline{Pressure_PFEM},}
{"Turbulent K.E.",D3PL_K_PFEM},
{"Turbulent eps.",D3PL_e\overline{ps_PFEM},}
{"Particle size",D3PL_\overline{particle_size},}
{"Particle velocity",\overline{D3PL_particle_velocity},}
{"Particle temperature",D3PL_particle_temperature},
```

```
{"# of child particles",D3PL_particle_cnt_child_particles},
{"Pressure Coefficient",D3PL_Cp_PFEM},
{"Q Criterion",D3PL_Qc_PFEM},
{"Surface Shear",D3PL_Shear_PFEM},
{"Level Set",D3PL_LEVELSET_PFEM},
{"Viscosity",D3PL_VISCOUS_\overline{PFEM},}
{"Average Pres",D\overline{3PL_AVG_\overline{PRES_PFEM},}}\mathbf{}\mathrm{ }}
{"Turbulent Visc",D3\overline{P}L T\overline{URB V\overline{ISC PFEM},}}\mathbf{~}\mathrm{ ,}
{"H field",D3PL_H_field_BEM},
{"Magnetization",D3PL_magnetization_BEM},
{"Relative permeability",D3PL_relative_mu},
{"Heat Trans. Coefficient",D3\overline{PL_HCC_PFEM},}
{"Heat Flux",D3PL_heatflux_PFEM},
{"Y plus",D3PL_YPLUS_PFEM},
{"Uniformity Iñex",\overline{D}3PL_UINDEX_PFEM},
{"Near Field Vel.", D3PL_NF_Velocity_PFEM},
{"Drag Distribution", D3P
{"Surface Shear Vector",D3\overline{P}L_Shēar_vect_PFEM},
{"randle r0", D3PL_RAND_r0_EM},
{"randle r10", D3PL_RAND_r10_EM},
{"randle c10", D3PL_RAND_C10_EM},
{"randle soc", D3PL_RAND_soc_EM},
{"randle i", D3PL_RĀND_i_EM},
{"randle u", D3PL_RAND_u_EM},
{"randle v", D3PL_RAND_v_EM},
{"randle vc", D3P\overline{L_RAND_}\=\overline{vc_EM},}
{"randle temp", D3\overline{P}L_RAN\overline{N_}_\mathrm{ temperature_EM},}
{"randle r0*I^2", D3\overline{P}L_RA\overline{N}D_P_JHR_EM}
{"randle I*T*dudt", D3\overline{P}L_RAN\overline{ND_P_du}dt_EM},
{"Thermal diffusivity",D\overline{3}PL_A\overline{LP}\overline{H}A_PFEMM},
{"CFL number",D3PL_CFL_PFEM},
{"RANS Cmu",D3PL_CMU_PFEM},
{"Turbulent Inteñs",\overline{D}3PL_TURBINTENS_PFEM},
{"Surface mass flow rate",D3PL_mass_flow_rate_CESE},
{"Surface drag",D3PL_drag_CESE},
{"Surface fluid FSI pressure",D3PL_Surf_Pressure_MECH},
{"Surface interface temperature",D\overline{3PL_interface_Temperature_MECH},}
{"Surface solid displacement",D3PL_Surf_Displacement_MECH},
{"Surface solid velocity",D3PL_Surf_Velocity_MECH},
{"Surface solid acceleration",D
{"Surface fluid FSI force",D3PL_Surf_Fluid_Force_MEC\overline{H}},
{"Surface solid heat flux",D3PL_Surf_solid_Heat_Flux_MECH},
{"Surface fluid heat flux",D3PL_Surf_fluid_Heat_Flux_MECH},
{"Surface net heat flux rate",D\overline{3}PL_Sūrf_Ne\overline{t}_Hea\overline{t}Flux\overline{Rate_MECH},}
{"Average HTC",D3PL_HCCAVG_PFEM},
{"Average Temp.",D3\overline{P}L_TempēratureAVG_PFEM},
{"Average Heat Flux",D3PL_HeatfluxAVG_PFEM},
{"randle i vector", D3PL_\overline{RAND_i_vector_EM},}
{"Avg Surface Shear Vectōr",D\overline{3}P\overline{L}_Shearavg_vect_PFEM},
{"Drag Force",D3PL_DRAG_element_\overline{PFEM},}
{"Wetness",D3PL_WETNESS_PFEM},
{"Randle areaCircuit", D3PL_RAND_areaCircuit_EM},
{"Riandle areaCell", D3PL_RAND_areaCell_EM},
{"Potential", D3PL_PFEM_pōtentīial},
{"Internal energy",D3PL_Internal_energy_CESE},
{"Density",D3PL_Density_DUALCESE},
{"Pressure",D3P\overline{L_Pressure_DUALCESE},}
{"Temperature",D\overline{3}PL_Temperature_DUALCESE},
{"Total energy",D3PL_Tot_energy_DUALCESE},
```

```
    {"Schlieren_number",D3PL_schlieren_no_DUALCESE},
    {"Void fraction", D3PL voíd fract D\overline{UAL}\overline{C}ESE},
    {"Internal energy",D3PL_Intnl_energy_DUALCESE},
    {"Enthalpy",D3PL_Enthalpy_DUALCESE},
    {"Entropy",D3PL_Entropy_DUALCESE},
    {"Surface mass \overline{flow rate",D3PL_MassFlowRate_DUALCESE},}
    {"Fluid_velocity",D3PL_Velocity_DUALCESE},
    {"Vorticity", D3PL_Vortīcity_DUALCESE},
    {"Momentum", D3PL_MMomentum_DUUALCESE},
    {"Surface drag force",D3PL_dragforce_DUALCESE}
};
#endif
```


DES CONTROL BLOCK AND DATA FORMAT

NPEFG - Word \#54 : when the seventh digit is set to 1 or 2 , there is a DES output.
i.e. $x x 1$ xxxxxx or $V=\mathrm{NPEFG} / 10000000=1$ or 2
$\mathrm{V}=1:$ version 1,8 words in the control block, with words 9 to $16=0$. (not used)
$\mathrm{V}=2$: version 2,16 words in the control block.

1. EXTENDED MASTER CONTROL WORD

There will be one word as the master control word (NDEDB). It defines the number of "Extended Control Blocks" in Section 2, and the same number of "State Data Blocks" in Section 3.

2. DES EXTENDED CONTROL BLOCK

2.1 First 8 words in the block are:

VALUE WORD \#
 DESCRIPTION

NDEGP 1
NDEGE 2
NDESP 3
NDESE 4
NGPV 5
NGEV 6
NSPV 7
NSEV 8
version 2:
BDID 9
number of DE Parts in Geometries Block
number of DE Elements in Geometry Block number of DE Parts in State Block number of DE Elements in State Block number of Part Geometry Variables number of Element Geometry Variables number of Part State Variables number of Element State Variables
database id $=0$ for Discrete elements not used
2.2 Output Variable Definitions:
$\mathrm{N}=\mathrm{NGPV}+\mathrm{NGPV}+\mathrm{NSPV}+\mathrm{NSEV}$
2.2.1 There will be N words of output type flags (integers) for each variable listed:

The data type flag is in a 6-digit form: GGGCTF, where digits are as following:
$\mathrm{F}:=1$, for integers; $=2$, for real numbers; $=3$, for complex numbers
$=5$, for array of integers; $=6$, for array of reals; $=7$, array of complexes
$=8$, for combined data
$\mathrm{T}:=0$, for a scalar variable; $=1$, for a global vector; $=3$, for a global tensor
$=5$, for a local vector; $=7$, for a local tensor; $=8$, for array data
Notes: A data block contains variable number and types of data, and is included only in the extended control block.
The first integer of a data block (N) is the length of the data block, excluding the first integer. The definition of the data block identified by the group ID.
The post processor may ignore the data block by skipping these $(\mathrm{N}+1)$ words, if the definition of the data block is unknown.
C : The component ID of the grouped variables, defined by group ID, $=0$: for a scalar variable.
$=1,2,3$: components ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) of a vector variable.
$=1,2,3,4,5,6$: components ($\mathrm{XX}, \mathrm{YY}, \mathrm{ZZ}, \mathrm{XY}, \mathrm{YZ}, \mathrm{ZX}$) of a symmetric tensor
$=7,8,9$: components $(\mathrm{ZY}, \mathrm{XZ}, \mathrm{YX})$ of a spin tensor.
$=1,2,3,4,5,6,7,8,9$: components (XX, YY, ZZ, XY, YZ, ZX, ZY, XZ, YX) of a general tensor.

Note: If any components of a vector or tensor not present it is zero.
If none of components $(7,8,9)$ are present, the tensor is symmetrical
If only components $(7,8,9)$ are present, the tensor is unsymmetrical
If components $(7,8,9)$ are present with other components the tensor is general.
GGG: The group ID of the grouped variables (GID)
2.2.2 There will be $8 * \mathrm{~N}$ words of the names output for variables listed after the type output (character*8).

2.3 DES GEOMETRY BLOCK

2.3.1 There will be NGPV blocks describing geometry data for each DES Part. The block size varies for each part, if variable data blocks are included, i.e. $1+\operatorname{Sum}\{\mathrm{NGPV}+1, \mathrm{i}=2, \mathrm{NGPV}\}$.
word \#1: Part ID
word \#2: number of words reserved for a DE Part (NGPVi)
word \#3: NGPVi+2: Reserved for a DE element
2.3.2 There will be NGEV blocks describing geometry data for DE Elements. The block size varies for each element, if variable
data blocks are included, i.e. $5+$ Sum $\{\mathrm{NGEVi}+1, \mathrm{i}=6, \mathrm{NGEV}\}$.
word \#1: Element ID
word \#2: Part ID
word \#3: Radius
word \#4: Mass
word \#5: Inertia
word \#6: number of words for reserved for a DE element (NGEVi)
word \#7: NGEVi+6: Reserved for a DE element

3. DES STATE DATA BLOCK

There are no arrays or data blocks in the state data.
3.1 Header for each state: current information for each part: there will be NDESP blocks of part geometry data for each part in. Data output for each part in a state is determined by word \#7 (NSPV) from the DES control block. word \# 1: Number of active DE elements in each part. to word \# NSPV:

3.2 Following each state header: DE Element Data

Data for NDESE DE elements in this state will be listed. Each element will have NSEV (Word \#8) words of data output in the database.

The first variables should be always in the database word \# 1: flag, 0 active, <0 inactive to
word \# NSEV:

D3ACS

The binary plot file D3ACS gives the results of frequency domain finite element acoustic analysis. The analysis is activated by the keyword:
*FREQUENCY_DOMAIN_ACOUSTIC_FEM.
The results of acoustic analysis are given as complex acoustic pressure at the nodes. The real and imaginary parts of the pressure, the magnitude of the pressure and a sound pressure level (dB) are written to D3ACS as nodal state variables for each output frequency. No any element state variables are output.

1. Header file

1. File type $=26$
2. There are no element data, values: NV1D, NV2D, NV3D and NV3DT all $=0$
3. Nodal data flags are: $\mathrm{IU}=1, \mathrm{IT}=0, \mathrm{IV}=1$, and $\mathrm{IA}=1$.

2. State data

The state data is as follows for each frequency:
Time word = Frequency value
NGLBV as given for d3plot
NODEDATA $=(\mathrm{IT}+\mathrm{NDIM} *(\mathrm{IU}+\mathrm{IV}+\mathrm{IA}))^{*} \mathrm{NUMNP}$
CFDDATA $=0$
ELEMDATA $=0$
The ordering NODEDATA is as follows:
IU data: X, Y, Z Coordinates for each Node.
IV data: Real part, Imaginary part and Magnitude of Nodal Acoustic Pressure for each Node. IA data: Sound Pressure Level (dB), Real part and Imaginary part of Nodal Normal Velocity for each Node.

