
1

Multiple Tutorial

2

BlockM: Table of Content

� Overview ……………………………………….7

� What is Index? …………………………………..8

� Fundamental of Multiple

� Index, Indices, Partition, and Region …………………9

� Function of Index ……………………………………..13

� Initialization: Block Mesh

� Relationship between node, element, and index ……...14

3

BlockM: Table of Content

� Concept of Projection

� Projection ……………………………………………..20

� Windows

� Main Window ………………………………………...24

� Computation Window ………………………………...25

� View menu …………………………………………….26

� Misc menu ……………………………………………..32

� Selections ………………………………………………34

4

BlockM: Table of Content

� Start Using BlockM

� Features Overview ……………………………………38

� Create …………………………………………………39

� Blank/Del ……………………………………………..52

� Move Pts. ……………………………………………..57

� Rotate Pts. …………………………………………….66

5

BlockM: Table of Content

� Start Using BlockM

� Project ………………………………………………...76

� Distribute ……………………………………………...101

� Parameter ……………………………………………...114

� Read/Write …………………………………………….117

6

7

BlockM: Multiple

� Overview
� Although there are lots of mathematics which go into a mesh generator, meshing in

general is an art form. This is especially true for blockM. With blockM, a user starts
out with a block of elements. Then he would delete, move, and project nodes and
elements in the block to form a desired shape. This is analogous to a sculptor starting
out with a block of clay, then needling, cutting, and shaping it into a beautiful work of
art.

� BlockM is a powerful mesh generator for hexagonal elements. The basic principals are
derived from LS-INGRID. Like LS-INGRID, this is still a purely “manual” mesh
generating method. However, the underlying core and user’s interface are not same.
The user’s interface is designed to provide a highly user friendly environment, at the
same time allowing the user to generate complex hex meshes efficiently.

For users of LS-INGRID and even TRUEGRID, BlockM has virtually no learning
curve. For some novice users, however, blockM might be a challenge. The challenge
arises from 2 relatively abstract principles known as “index spacing” and “projection”.
With some practices, any user can become highly proficient at generating mesh with
the BlockM.

� Once a user mastered BlockM, there is virtually nothing that he cannot not mesh.

8

BlockM: Multiple

� What is Index?

� Index or indices are divisions or cuts in the

“block” in the I, J, and K directions. These are

synonymous with the X, Y, and Z directions

respectively in the Euclidean or Cartesian

coordinates. In blockM, the I, J, and K will

always refer to directions in index space and they

are not be confused with the Euclidean space.

9

BlockM: Fundamental of Multiple

� Index, Partition, and Region

� Example (1.0): 1D block in Index Space

I

1st I-index 2nd I-index

� From the example above, the edges are considered index points. It also shows

that the minimum number of indices for any block in each of the index

direction are 2.

� The space between the index points is called partition or region.

� Partition refers to a single unit of space between 2 indices.

� Region refers to one or more partitions.

10

BlockM: Fundamental of Multiple

� Index, Partition, and Region (continued)

� Example (2.0): 2D block in Index Space

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

� Note the order of I and J indices. The first indices always correspond to the

lowest positions of X and Y in the Euclidean space. Likewise, the second

indices correspond to the higher positions in the Euclidean space.

11

BlockM: Fundamental of Multiple

� Index, Partition, and Region (continued)

� Example (3.0): 3D block in Index Space

� Note: there is only 1 partition in all 3 index directions.

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

K

1st K-index

2nd K-index

12

BlockM: Fundamental of Multiple

� Index, Partition, and Region (continued)
� The intersection of 2 orthogonal indices form edges or lines.

� The intersection of 3 orthogonal indices form a point or vertex.

� A face is comprised 4 connecting edges.

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

K

1st K-index

2nd K-index

Points formed
Edges

13

BlockM: Fundamental of Multiple

� Function of Index

� To achieve a desired shape, the user will have to either

move or project nodes and elements to surfaces. In

BlockM and LS-INGRID alike, the users do not have

direct control of the nodes and elements in the block. The

user will have to select the appropriate points, edges, and

indices to move or project. This concept will become

clearer with examples and further discussions later on.

� The bottom line:

� Indices, points, edges, faces, and regions are used for controlling

the shape of the mesh.

14

BlockM: Initialization

� Block Mesh
� Relationship between node, element, and index

� Nodes and elements are the basis of any finite element mesh. Now that the concept of
index is touched upon, the user would want to know how this is related to nodes and
elements.

� Example (4.0): Let’s look at the 2D block example again.

� For a single shell or a 2D element (e1), it is comprised of nodes 1, 2, 3, and 4,
represented by n1, n2, n3 and n4.

� To generate this element, note where the indices are: I-1 at x=0, I-2 at x=1, J-1 at y=0,
and J-2 at y=1. This is just an example, the initial position of the indices could be
anywhere. They could be the at the same position; let’s say I-1 and I-2 could both be
at x=0 or J-1 and J-2 at y=1,2,3… etc. However, it is good practice to have the initial
index position to be as close the desire shape as practically possible.

� As seen above, the indices form regions, which in turn contains the element or group of
elements.

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

n1

n3n4

n2
e1

104

113

012

001

Y-coord.X-coord.Node #

15

BlockM: Initialization

� Relationship between node, element, and index (continued)
� Example (4.1): Let’s expand the previous example and add one more element in the I-

direction.

� Here the 2nd I-index is moved to x=2. This is for visual demonstration purpose. To
show that as more elements are added to a partition, they are automatically divided
evenly. The 2nd I-index does not necessarily have to be at x=2, but could be at x=1
instead. In which case, n2 and n3 would be at x=.5.

� In this case, x-length of e1 is equaled to e2, which is equaled to 1.

� If we have 4 elements instead of 2, x-length of e1 is equaled to those of e2, e3, and e4,
which all equaled to .5.

� It is important to note that the partitions bounded by the I and J indices contain 2
elements

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

n1

n3

n4

n2

e1

126

025

104

113

012

001

Y-coord.X-coord.Node #

n5

n6

e2

16

BlockM: Initialization

� Relationship between node, element, and index (continued)
� Example (4.2): Let’s continue with previous example and add 1 more partition in the I-

direction.

� When adding another partition, notice the indices lie right at the boundaries of the
elements. Also, notice there are 3 indices in the I-direction and only 2 indices in the J-
direction. The order of the indices in the I-direction is for left to right and the bottom
to top in the J-direction.

� In this example, the 2nd I-index is set to x=1. Thus, it is no different from the previous
example in regards to node and elements. It could well be set anywhere between 0
and 2.

� Because there are 2 elements in I-direction and 1 in the J-direction, it becomes
apparent that the number of partition cannot be greater than the number of element for
any direction. Also, the number indices is equaled to the number of partition plus 1.

126

025

104

113

012

001

Y-coord.X-coord.Node #

I

1st I-index 3rd I-index

J

1st J-index

2nd J-index

n1

n3

n4

n2
e1

n5

n6

e2

2nd I-index

17

BlockM: Initialization

� Relationship between node, element, and index (continued)
� Example (4.3): Let’s continue with previous example. This time we set the 2nd I-index to

x=.5

126

025

104

1.53

0.52

001

Y-coord.X-coord.Node #

I

1st I-index 3rd I-index

J

1st J-index

2nd J-index

n1

n3

n4

n2
e1

n5

n6

e2

2nd I-index

� This example demonstrates how indices are used to control the size and position of
nodes and elements.

� Because the 2nd I-index is set at x=.5, element # 1 is 1/3 the size of element # 2.

� Notice nodes 2 and 3, they follow where ever the 2nd I-index goes. Likewise, nodes 5
and 6 will follow the 3rd I-index.

18

BlockM: Initialization

� Relationship between node, element, and index (continued)

� Example (4.4): Let’s add 1 more partition in the J-direction this time.

129

1.58

107

.526

025

.504

.5.53

0.52

001

Y-coord.X-coord.Node #

� As stated before, the number of partition cannot be more than the number of element in
that direction. Since the J-direction has only 1 element, we need to add another
element in order to insert a partition.

� Here, we set the 2nd J-index at y=.5, and the 3rd J-index takes the place of the 2nd J-
index in the previous example.

n7

I

1st I-index 3rd I-index

J

1st J-index

2nd J-index

n1

n3n4

n2

e1

n5

n6

e2

2nd I-index

e3 e4

3rd J-index
n8 n9

19

BlockM: Initialization

� Relationship between node, element, and index (continued)

� Example (5.0): Let’s look at a 3D example.

� Going from 2-D to 3-D is quite trivial, all we have to do is add an element and a
partition in the K-direction.

� Again, it is important to note the order of the indices for each principal direction. The
I-direction start from left to right. This means the I-1 index is at a lower x-position
than I-2 index. The J-direction goes from bottom to top because the J-1 index is at a
lower y-position than the J-2 index. Similarly, because the K-1 index is at a lower z-
position than the K-2 index, the direction for the K is from the page and going into the
page.

1108

1117

0

0

1

1

0

0

Z-coord.

116

105

004

013

012

001

Y-coord.X-coord.Node #

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

K

1st K-index

2nd K-index

n1

n3n4

n2

e1

n5 n6

n7n8

20

BlockM: Concept of Projection

� Projection
� The concept of projection in blockM could be view similarly to a video projector

projecting images onto a screen or wall.

� The basic idea here is to place the selected nodes onto a surface or set of surfaces much
like how light rays are projected onto a screen. Unlike light, the nodes will not bounce
off the surface.

� Another way to view projection is surfaces form the mold of a desired shape and the
block is soft clay that sets to the mold.

� Simple Example (6.0):
� We want to place a node onto the blue surface by projection

Node

Surface

Node

Surface

Before projection After projection

21

BlockM: Concept of Projection

� Projection (Continued)

� By default, the projected node takes the shortest path to the surface. However, there is

an option for the user to specify a vector for the projection.

� Simple Example (7.0):

� Projection with a vector (red)

Node

Surface

Node

Surface

Before projection After projection

22

BlockM: Concept of Projection

� Projection (Continued)

� Simple Example (7.1):

� Same example as before, but without vector

� As we could see, the node is moved to the closest position on the surface.

� Details of how the projection algorithm will not be discussed here. However, more

examples of projection will be provided to further demonstrate how it works.

Node

Surface

Node

Surface

Before projection After projection

23

BlockM: Windows

� In BlockM, there are 2 “major” features we

need to be familiar with before any meshing

could begin.

� Main or Physical Window

� The Main windows is what we are most familiar with,

it’s displays all the nodes, elements, curves, and

surfaces.

24

BlockM: Windows

� Main Window
� Everything is displayed

in Euclidean space.

� This serves to display
detailed information
about the mesh.
� Nodes

� Elements

� Surfaces

� Curves

� Other parts

� It also allow for user to
� Zoom

� Rotate

� Pan

� Selection

25

BlockM: Windows

� Computation Window

� This window pops up as soon as the “create” button is

clicked in the main window.

� The main purpose of the computation window is to

provide user-friendly environment for selecting nodes

and elements.

� As mentioned earlier, to select nodes and elements,

the user needs to do this via the indices. Hence, the

Computation window displays everything in index

space.

� All partitions are displayed as perfect squares or

cubes.

� Translation, rotation, and projection of nodes and

elements do not affect the block in this window.

� Only deletions of partitions or regions will be

affected.

26

BlockM: Windows

� Computation Window (continued)

� Let’s look at the different aspects within

the computation window.

� View menu – contains different display

modes for the block.

� Perspective

� Hide*

� AutoCen

� Trimetric View

� Triad*
*Default display setting

27

BlockM: Windows

� Computation Window: View menu (continued)

� Perspective

� When activated, this provides the block with a perception of dept.

Example of Perspective display

on.

Example of Perspective display

off.

28

BlockM: Windows

� Computation Window: View menu (continued)

� Hide
� When activated, this shows only the outer edges of the block. This is set on by

default.

Example of Hide display on. Example of Hide display off.

29

BlockM: Windows

� Computation Window: View menu (continued)

� AutoCen
� This works much like the Acen feature in the Main window; it automatically centers the

block within the window. This is does not “lock” the block in view. Hence, the user will
need to activated every time it is needed.

Example of AutoCen display

on.

Example of AutoCen display

off.

30

BlockM: Windows

� Computation Window: View menu (continued)

� Trimetric View
� This set block in the computation window to trimetric view, such as shown

below. Much like the AutoCen feature, this does not hold the view.

Example of Trimetric View

display on.

31

BlockM: Windows

� Computation Window: View menu (continued)

� Triad
� This is a toggle to turn on and off the display of the triad. It is turned on by

default.

Example of Triad display on. Example of AutoCen display

off.

32

BlockM: Windows

� Computation Window
� Misc menu – contains additional user’s

preference settings for the computation window
� Sync with MainWin*

� This toggle setting maintains the same
orientation for block in the main and
computation windows.

� For example, if the block is rotated by 30
degree about the J-axis, the block in the main
window will rotate by the same amount about
the Y-axis. Vise versa, if the block in the main
window is rotated by 30 degree, the block in the
computation window will rotate by the same
amount.

� The Sync is only applicable for rotation. It does
not apply to pan and zoom.

� 1.5x Win
� Increases the computation window by 1.5 times

the default size.

� 2.0x Win
� Increases the computation window by 2 times

the default size.

*Default display setting

33

BlockM: Windows

� Computation Window: selection
� The most important part of the computation

window is the selection of points, edges, faces,
and regions.

� There are 2 ways to do selection.
1. Using the mouse to pick a point on the block or

drag over the region of interest.

2. Using the mouse to select the “index slider bars” at
the top, right, and both of the computation window.

� It is important to notice there are points on the
slider bars and each point has a number
associated with it. These points are index
number for each direction.

� To the left, the block has 3 partitions and 4
indices for each direction. Hence, we see 4
points for each slider bar.

� To clear selection: as long as the Computation
window is active, press the “d” key. This might
be change to “ESC” key.

Slider bar for I-index

Slider bar for K-index

S
li

d
e
r

b
a

r
fo

r
J

-i
n

d
ex

34

BlockM: Windows

� Computation Window: selections (continued)
� Point selection

� Example (8.0)
� Lets select a point at

� I-index: 3

� J-index: 4

� K-index: 4

� We could simply click on the point on the block or
click at 3 locations on the slider bars.

� Notice how the selected point is highlighted in red.

� Also, the corresponding indices also turn red on the
slider bars.

Selected point

35

BlockM: Windows

� Computation Window: selection (continued)
� Edge selection

� Example (8.1)
� Lets select an edge at

� I-index: 1 3

� J-index: 4

� K-index: 4

� We simply drag-select along the edge.

� Or we could click and slide along the I-index slider
bar from 1 to 3 and click at point 4 on both the J and
K index slider bar.

� Notice the selected edge is highlighted in green.

� The corresponding partitions turn red in the I index
slider bar.

Selected edge

36

BlockM: Windows

� Computation Window: selection (continued)
� Face selection

� Example (8.2)
� Lets select a face at

� I-index: 1 4

� J-index: 2 4

� K-index: 4

� Again, we could drag-select over the area of interest.

� Or we could click and slide along the I-index slider
bar from 1 to 4, slide along the J bar from 2 to 4, and
click on point 4 on the K bar.

� Notice the selected face is highlighted in yellow.

Selected face

37

BlockM: Windows

� Computation Window: selection (continued)
� Region selection

� Example (8.3)
� Lets select an region at

� I-index: 2 4

� J-index: 2 4

� K-index: 3 4

� Again, we could drag-select over the area of interest.

� Or we could click and slide along the I-index slider
bar from 2 to 4, slide along the J bar from 2 to 4, and
slide along the K bar from 3 to 4.

� Also, notice the selected region is highlighted in
green.

Selected region

38

BlockM: Start Using BlockM

� Features Overview
� To the right is the BlockM interface and

it is the first thing we see when we click
on the BlockM button. The Create radio
button is selected by default.

� Current tools and features
� Create

� Blank/Del

� Move Pts.

� Rotate Pts.

� Parameter

� Rd/Write

� Distribute

� Project

39

BlockM: Start Using BlockM

� Create
� In the earlier sections, we discussed the concept of

index and partition. We also discussed how they are
related to nodes and elements. It is here that we apply
these concepts to generate the block. BlockM could
create both SOLID and SHELL elements as separate
parts or mixed together in one part.

� As we see to the right, there are 6 fields. We need to fill
in the fields with appropriate values.

� The top 3 fields:
� I Index List

� J Index List

� K Index List

� are where we define the number of elements and
partitions in the I, J, and K directions. Again, these
correspond to X, Y, and Z directions in the Euclidean
space, respectively.

� The bottom 3 fields:
� X Position List

� Y Position List

� Z Position List

� are where we specify the positions of the indices define in
the top 3 fields.

40

BlockM: Start Using BlockM

� Create (continued)
� Create button

� Once all the field are fill in appropriately, click on
this button to bring up the Computation window.

� Part ID field
� This sets the part number for the block.

� PList button
� We could enter a number in the Part ID field or

click on this button and a select a part from a pop-
up list.

� Reject button
� Once a block is create and for whatever reason we

want to start over, just click on this button.

� Accept button
� Similarly to the Reject button above, we click this

button if everything is acceptable.

� Done
� To exit out of BlockM.

41

BlockM: Start Using BlockM

� Create (continued)
� Syntax for the fields

� We could use spaces or commas between values.

� Examples (9.0): SOLID element
� Let’s create a very simple 3D block, the same one

given in earlier section.

� To the right is how we enter the indices and their
positions.

� Note, the first index in any direction must begin
with 1 or higher, but less than the 2 index.

I

1st I-index 2nd I-index

J

1st J-index

2nd J-index

K

1st K-

index

2nd K-

index

Conceptual Block

42

BlockM: Start Using BlockM

� Create (continued)
� Examples (9.0)

� Below is what the computation window show
when we click on the create button for the
specified block.

Block in Index space

43

BlockM: Start Using BlockM

� Create (continued)
� Examples (9.0)

� The same block is shown in the main window in
Euclidean space. This block has only 1 element.

Block in Euclidean space

44

BlockM: Start Using BlockM

� Create (continued)
� Examples (9.0)

� Let’s add more elements to the previous example.

� Notice the block in the computation window. It looks the
same as the previous example. However, the block in the
Main window appears slightly different. It has more
elements than the previous example.

Main window Computation window

45

BlockM: Start Using BlockM

� Create (continued)
� Examples (9.0)

� Notice the block in the main window has 4 elements in
the X and Y, and 2 in the Z direction.

� Let’s see how this works. In the fields to the right, we see
the only differences between this set of inputs and that of
the previous examples are the top 3 fields.

� I-index: 1 5 ----------> 4 elements

� J-index: 1 5 ----------> 4 elements

� K-index:1 3 ----------> 2 elements

� There is a simple relationship between the number of
elements and indices for any partition.

� N element = higher index # - lower index #

� Higher index # = lower index # + N element

� It is not necessary that the 1st index has to be 1. It just has
to be less than the 2nd and 3rd index.

� There are countless number of ways to specify the same
block. We could initialize the same block in another way.

� I-index: 4 8

� J-index: 10 14

� K-index: 5 7

46

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.1)

� Let’s add 1 partition to each of the index direction

for the block in example 8.0. We set the 2nd index

right in the middle. Each partition has 2 elements,

except for the ones in the K-direction.

Main window Computation window

47

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.1)

� Let’s see how the relationship stated above works.

� I-index: 1 + (2 el.)= 3 + (2 el.) = 5

� J-index: 1 + (2 el.)= 3 + (2 el.) = 5

� K-index: 1 + (1 el.) = 2 + (1 el.) = 3

� The relationship works out quite nicely.

� Notice the bottom 3 fields:

� X-pos : 0 .5 1

� Y-pos : 0 .5 1

� Z-pos : 0 .5 1

� Because we have 3 indices in each of the index

fields, we need to have 3 values for each of the

position field as well.

48

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.1)

� The table below illustrates the order on the

indices and their corresponding spatial initial

positions.

1.50Z-position

321K-index

1.50Y-position

531J-index

1.50X-position

531I-index

3rd Index2nd Index1st Index

49

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.2): SHELL element

� Let’s create a very simple SHELL or 2D block

based on example 4.4 above.

� A shell block is created in the same manner as that

for the solid, except for thickness direction in

index space is specified with a minus sign (-).

n7

I

1st I-index 3rd I-index

J

1st J-index

2nd J-index

n1

n3n4

n2

e1

n5

n6

e2

2nd I-index

e3 e4

3rd J-index
n8 n9

Conceptual Block

50

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.2): SHELL element

� Notice the -1 in the K Index List field.

� Below is the shell block shown in Computation

window.

Block in Index space

51

BlockM: Start Using BlockM

� Create (continued)

� Examples (9.2): SHELL element

� Below is the shell block shown in Main window.

Block in Euclidean space

52

BlockM: Start Using BlockM

� Blank/Del

� This feature allows for both visually disabling
(blanking) and for deleting elements and nodes.

� To blank or delete, we need to first select a
region. Blank and delete are not applicable to
point, edge, and face.

� There are 2 ways to select a region. We could
either specify the region with indices in the
index list fields, as seen on the right, or select
from the computation window.

� If selection is made from computation window,
the index list fields will be automatically filled
in accordingly.

� Once a region is selected, click on the blank or
delete button to the right.

53

BlockM: Start Using BlockM

� Blank/Del (continued)

� (Un)Blank button

� Blanking is for disabling the display of nodes
and elements. Click this button again will
unblank and enable the display of nodes and
elements again.

� This is useful for visually checking interior
elements.

� Example (10.0)

� Let’s use the same block as that in
example 8. We want to blank out the
region:

� I-index: 2 3

� J-index: 2 3

� K-index: 2 3

54

BlockM: Start Using BlockM

� Blank/Del (continued)

� (Un)Blank button

� Example (10.0)

� Notice the blank applies to both the main and

computation window.

Main window Computation window

55

BlockM: Start Using BlockM

� Blank/Del (continued)
� Reverse Blank button

� This blanks the region that is currently display and unblank
the visually disabled region.

� Example (10.1)

� Note the fields to the right do not update to reflect the
corresponding displayed region.

Main window Computation window

56

BlockM: Start Using BlockM

� Blank/Del (continued)

� Display All button

� This enables the display of all blank regions.

� Delete button

� This feature is similar to the blank. Visually,

the blank and delete features appear to be the

same. However, the delete actually remove

nodes and elements from the block once the

“accept” button is clicked .

� Unlike the blank feature, unblanking the missing

region will not bring it back.

� Undelete button

� This feature brings back the last deleted region.

57

BlockM: Start Using BlockM

� Move Pts.

� This feature lets the user move points, edges,
faces, and regions.

� There are a number of options to choose from
depending on the intend of the translations.

� To move:

1. Select the point, edge, face or region using the
computation window as explained previously.

2. Select one of the constrained options to the
right.

3. Enter the distance to translate. This does not
apply to any screen constrained translation.

4. Click “Trans-” or “Trans+” button. A less
precise method is to use the mouse to drag in the
Main window.

58

BlockM: Start Using BlockM

� Move Pts. (continued)

� Constrain To:

� NULL*

� This is a default setting. It means no constraint. We
could move the nodes and elements in any direction.
Hence, there are 3 fields for the 3 global directions (X,
Y, and Z).

� X-Axis

� Nodes and elements could only be translated along the
X-axis.

� Y-Axis

� Likewise, nodes and elements could only be translated
along the Y-axis.

� Z-Axis

� Similarly, nodes and elements could only be translated
along the Z-axis.

� Screen X Axis

� Nodes and element could only be translated along the
screen’s X-axis or horizontal direction. This not the
same as the global X-axis.

59

BlockM: Start Using BlockM

� Move Pts. (continued)
� Constrain To:

� Screen Y Axis

� Nodes and element could only be translated
along the screen’s Y-axis or vertical direction.
This not the same as the global Y-axis.

� XY Plane

� Nodes and element could only be translated on
the global XY plane.

� XZ Plane

� Nodes and element could only be translated on
the global XZ plane.

� YZ Plane

� Nodes and elements could only be translated on
the global YZ plane.

� Screen Plane

� Nodes and elements could only be translated
along both the screen’s X and Y axis.

60

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.0): Constrain to X-Axis

� Using the same block as in example 10.0, let’s move a point

along the X-axis a distance of 1.0.

Point to move

Before

61

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.0): Constrain to X-Axis

� Notice the Undo button is active.

Point moved

After

62

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.1): Constrain to Screen’s X-Axis

� Using the same block as in example 10.0, let’s move an edge along the

screen’s X-axis by some distance. As mentioned before, we need to

drag in the Main window. The block is rotated 90 degree so that the

global X is pointing up.

Edge to move

Before

63

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.1): Constrain to Screen’s X-Axis

� Notice that the screen X-axis is not the same as that on the

global X-axis. In this example, they are almost orthogonal to

each other.
Edge moved

After

S
cr

ee
n

’s
 Y

-a
x
is

Screen’s X-axis

64

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.2): Constrain to XZ Plane

� Using the same block as in example 10.0, let’s move region

along the screen’s X-axis and Z-axis by 0.5.

Region to move

Before

65

BlockM: Start Using BlockM

� Move Pts. (continued)

� Examples (11.2): Constrain to XZ Plane

Region moved

After

66

BlockM: Start Using BlockM

� Rotate Pts.

� This feature lets the user rotate points, edges,

faces, and regions about a point.

� Similar to the Move Pts. feature, there are a

number of options to choose from depending on

the intend of the rotations.

67

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� To rotate:

1. Select the point, edge, face or region using the
computation window as explained previously.

2. Select one of the constrained options to the right.

3. Enter the “Rotation Axis Base Point”. This point
could be entered manually by its x, y, and z
coordinates in the fields right below the “Position”
button. Or the point could be picked from the Main
window, by clicking on the Position button.

4. Enter the “Rotation Axis Direction”. This is the
vector that points along the axis of rotation. Or the
“Direction” button could be used to pick the vector
graphically. If a constraint is chosen, there is no need
to enter the direction.

5. Enter the angle of rotation in degree in the “Rotate
Angle” field.

6. Click on either “Rotate+” or “Rotate-” to rotate
counter-clockwise or clockwise direction.

68

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Constrain To:

� NULL*

� Nodes and elements are free to rotate about

any axis.

� X Axis

� Nodes and elements could only be rotated

about the global X-axis.

� Y Axis

� Nodes and elements could only be rotated

about the global Y-axis.

� Z Axis

� Nodes and elements could only be rotated

about the global Z-axis.

69

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Constrain To:

� Screen X Axis

� Nodes and elements could only be rotated

about the screen’s X-axis.

� Screen Y Axis

� Nodes and elements could only be rotated

about the screen’s Y-axis.

� Screen Z Axis

� Nodes and elements could only be rotated

about the screen’s Z-axis. The screen’s Z-

axis is always coming out of the screen or

normal to the screen.

70

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Example (12.0): Constrain to X Axis

� Let’s rotate a point about the X-axis by 30 degree.

Point to rotate

Before

Shaded view Wire frame view

Axis of

rotation

71

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Example (12.0): Constrain to X Axis

Point rotated

After

Original orientation Normal to rotation

orientation

72

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Example (12.1): Constrain to Z Axis

� Let’s rotate a region about the Z-axis by 30 degree.

Region to rotate

Before

Shaded view Wire frame view

Axis of

rotation

73

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Example (12.1): Constrain to Z Axis

Region rotated

After

Original orientation Normal to rotation

orientation

74

BlockM: Start Using BlockM

� Rotate Pts. (continued)
� Example (12.2): Constrain to Screen Z Axis

� Let’s rotate a face about the screen’s Z-axis by 30 degree.
The model is rotated 90 degree about the global Y direction.
The rotation base point is set at z=1.0.

Face to rotate

Before

Shaded view Wire frame view

Axis of

rotation

75

BlockM: Start Using BlockM

� Rotate Pts. (continued)

� Example (12.2): Constrain to Z Axis

Face rotated

After

76

BlockM: Start Using BlockM

� Project

� Early on, the concept of projection was introduced. It is
here that this concept is implemented.

� There are 7 different types of “target”. More targets will be
added in the future.

� Point

� Line

� Surface

� Shell Elem

� Plane

� Cylinder

� Sphere

� Individual components of the projection could be specified
with X, Y, and Z radio buttons at the bottom of the menu.

� Point, Line, Surface, and Shell Elem all requires external
source. These must be generated outside of BlockM.

� Plane, Cylinder, and Sphere are generated within BlockM.

77

BlockM: Start Using BlockM

� Project (continued)

� Point

1. In order to project to a point, we need to

generate a point. To do this, we need an

“external” surface or curve such as igest surface

and curve.

2. To select a target point, simply click on a

desired location on a surface or curve in the

Main window.

� It is good practice to project a point to a point,

rather than an edge or face to a point.

3. Select a “source” point from the Computation

window by one the processes described above.

4. Click on the Project button.

78

BlockM: Start Using BlockM

� Project (continued)

� Point

� There are 4 snapping options for point selection.
This simplifies the point selection process, and
it is more applicable to picking a point on a
curve or line.

� Pick Point – This is the default setting.
The point selected is right where the cursor
is positioned.

� Nearest Point – This option allows the
selection of point nearest to the cursor.

� End Point – This options allows picking of
the nearest end point on a curve or line.

� Mid Point – Similar to the previous
options, this allows for the selection of a
mid-point of a line.

79

BlockM: Start Using BlockM

� Project (continued)

� Point

� Example (13.0) : Projecting point to a point on a surface

Target

point on

surface

Source

point

Point selection panel –

contains options for

picking and unpicking

points .

Before

80

BlockM: Start Using BlockM

� Project (continued)

� Point

� Example (13.0) : Projecting point to a point on a surface

Target

point on

surface

Projected

source point

on surface

After

81

BlockM: Start Using BlockM

� Project (continued)

� Line

1. Much like that for the Point, we need an

external curve or line such as igest curve. A

curve could be generated in the Curves

interface on pages 2 and 7.

2. To select a target curve, simply click on a

desired curve in the Main window.

� It is good practice to project a point or an edge

to a line or curve, rather than a face or a region

to a line.

3. Select a source edge from the Computation

window by one the processes described above.

4. Click on the Project button.

82

BlockM: Start Using BlockM

� Project (continued)

� Line

� Example (13.1) : Projecting an edge to a curve

Target

curveSource edge

Line selection panel –

contains options for

picking and unpicking

lines and curves .

Before

83

BlockM: Start Using BlockM

� Project (continued)

� Line

� Example (13.1) : Projecting an edge to a curve

After

Target

curveSource edge

84

BlockM: Start Using BlockM

� Project (continued)

� Surface

1. Like the previous 2 projection options, we need
an external surface such as igest surface. A
surface could be generated from curves in the
Surface interface on page 7.

2. To select a target surface or surfaces, simply
click on a desired ones in the Main window.

� It is good practice to project a point, edge, or
face to a surface. It is not a good idea to project
a region to a surface.

3. Select a “source” point, edge or face from the
Computation window by one the processes
described above.

4. Click on the Project button.

85

BlockM: Start Using BlockM

� Project (continued)

� Surface

� Example (13.2) : Projecting 2 faces to a cylindrical surface.

� Use Closest 3D proj dir.

Target

surfaceSource

faces

Surface selection panel

– contains options for

picking and unpicking

surface .

Before

86

BlockM: Start Using BlockM

� Project (continued)

� Surface

� Example (13.2) : Projecting faces to a surface

After

Target

surfaceSource

faces

87

BlockM: Start Using BlockM

� Project (continued)

� Shell Elem

1. This option requires some sort of shell elements
to be generated first.

2. To select target shell elements, simply click on a
desired ones in the Main window. Shell
elements could be selected with either
propagation, area, or part option.

� It is good practice to project a point, edge, or
face to shell elements. It is not a good idea to
project a region to shell elements, though.

3. Select a source point, edge or face from the
Computation window by one the processes
described above.

4. Click on the Project button.

88

BlockM: Start Using BlockM

� Project (continued)
� Surface

� Example (13.3) : Projecting a face to shell elements.

� Use Closest 3D proj dir

Target shell

part

Source face

Element selection panel

– contains options for

picking and unpicking

shell elements .

Before

89

BlockM: Start Using BlockM

� Project (continued)
� Surface

� Example (13.3) : Projecting a face to shell elements.

� Use Closest 3D proj dir

Target shell

part

Source face

After

90

BlockM: Start Using BlockM

� Project (continued)

� Plane

� Unlike the previous 4 options, the Plane is generated
in BlockM. By default, the plane is at x=0, y=0, z=0
and the normal vector is along the z-axis.

1. Position the plane by either entering the XYZ
coordinates in the fields to the right or click on the
Position button to select with a mouse.

2. Specify the orientation of the plane by either entering
the vector components in the direction fields, or click
on the Direction button to visually select.

� Plane is an infinite plane, although visually the plane
is “clipped”.

3. Select a source point, edge or face from the
Computation window by one the processes described
above.

4. Click on the Project button.

91

BlockM: Start Using BlockM

� Project (continued)
� Plane

� Example (13.4) : Projecting a face to a plane.

� Use Closest 3D proj dir

Target plane

Source face

Before

Plane in default position and

orientation

Plane is moved to x=0, y=.75,

z=0 and the normal is oriented

along the y-direction.

92

BlockM: Start Using BlockM

� Project (continued)
� Plane

� Example (13.4) : Projecting a face to a plane.

� Use Closest 3D proj dir

Target plane

Source face

After

93

BlockM: Start Using BlockM

� Project (continued)
� Cylinder

� Similar to the Plane option above, the cylinder is
generated in BlockM. By default, the cylinder is at
x=0, y=0, z=0, the length is along the z-axis, and
radius=5.

1. Specify the cylinder’s radius in the Radius field.

2. Position the cylinder by either entering the XYZ
coordinates in the fields to the right or click on the
Position button to select with a mouse.

3. Specify the orientation of the cylinder’s axial
direction by either entering the vector components in
the direction fields, or click on the Direction button to
visually select.

� A cylinder has infinite length. It is visually clipped.

4. Select a source point, edge or face from the
Computation window by one the processes described
above.

5. Click on the Project button.

94

BlockM: Start Using BlockM

� Project (continued)

� Cylinder

� Example (13.5) : Projecting a face to a cylindrical surface.

� Use Closest 3D proj dir

Target

cylinder

Source face

Before

Cylinder with default radius,

position, and orientation

Cylinder is positioned at x=-1.5,

y=0, z=0, radius=1.0, and axial

direction is 45-degree on the YZ

plane.

95

BlockM: Start Using BlockM

� Project (continued)

� Cylinder

� Example (13.5) : Projecting a face to a cylindrical surface.

� Use Closest 3D proj dir

Target

cylinder

Source face

After

96

BlockM: Start Using BlockM

� Project (continued)

� Sphere

� Similar to the Plane and Cylinder options above,

the sphere is also generated in BlockM. By

default, the sphere is positioned at x=0, y=0,

z=0, and a radius=5.

1. Specify the cylinder’s radius in the Radius field.

2. Position the cylinder by either entering the XYZ

coordinates in the fields to the right or click on

the Position button to select with a mouse.

4. Select a source point, edge or face from the

Computation window by one the processes

described above.

5. Click on the Project button.

97

BlockM: Start Using BlockM

� Project (continued)

� Sphere

� Example (13.6) : Projecting 3 faces to a spherical surface.

� Use Closest 3D proj dir

Target

sphere

Source

faces

Before

Spherical shell with default

radius and position.

Sphere is positioned at x=0,

y=0, z=0, and radius=1.5.

98

BlockM: Start Using BlockM

� Project (continued)

� Sphere

� Example (13.6) : Projecting 3 faces to a spherical surface.

� Use Closest 3D proj dir

Target cylinder

Source faces

After

Original viewSide view

99

BlockM: Start Using BlockM

� Project (continued)
� Sphere

� Example (13.7) : Projecting a to a spherical surface.

� Use Vector projection: X-direction

After

Projection

vector

1. Click here

2. Specify

projection

vector

100

BlockM: Start Using BlockM

� Project (continued)
� Sphere

� Example (13.8) : Projecting a to a spherical surface.

� Use Vector projection: Y-direction

After

Projection

vector

1. Click here

2. Specify

projection

vector

101

BlockM: Start Using BlockM

� Distribute

� This feature allows for added mesh refinement by

redistributing nodes with minimum user’s inputs.

Currently, the distribution feature is limited to edges

only. However, nodal distribution for faces and

regions will be added shortly.

� There are 3 options are available:

� Edge along line

� This projects an edge to a curve and then

distributes the nodes evenly along it.

1. Select an edge using the Computation window

2. Click on the “Along a whole line” radio button

3. Select a curve from the Main window.

4. To apply, click on the “Edge along line” button.

102

BlockM: Start Using BlockM

� Distribute (continued)

� Edge along line

� Example (14.0) : Distribute nodes along a curve.

Before

Curves selection panel

– contains options for

picking and unpicking

curves .

Selected edgeTarget curve

103

BlockM: Start Using BlockM
� Distribute (continued)

� Edge along line
� Example (14.0) :

� Note how the nodes are evenly distributed a long the entire
curve.

After

Selected edgeTarget curve

104

BlockM: Start Using BlockM

� Distribute (continued)

� Linear

� This feature distributes nodes evenly along

a selected edge. This option is quite

straight forward. Vectex Interpolation is

selected by default. Edge Interpolation

option could be selected as well.

1. Select the edge or edges to linear

distribute.

2. Click the “Linear” button to apply.

105

BlockM: Start Using BlockM

� Distribute (continued)

� Linear

� Example (14.1) : Distribute nodes on 2 edges.

Before

Selected edges

Larger

elements

Smaller

elements

106

BlockM: Start Using BlockM

� Distribute (continued)

� Linear

� Example (14.1) : Distribute nodes on 2 edges.

After

Selected edges

107

BlockM: Start Using BlockM

� Distribute (continued)

� Zoning

� This option distributes nodes along an edge

such that the adjacent segment length

divided by the current segment length

equals the Zoning Ratio. By default, the

Zoning Ration is equaled to 1.0.

1. Select the edge or edges to be distributed.

2. Set the Zoning Ratio. This number cannot

be negative.

3. If both ends of the edge are to be the same

than click the Both Ends radio button.

4. To apply, click on the Zoning button.

108

BlockM: Start Using BlockM

� Distribute (continued)
� Zoning

� Example (14.2) : Distribute nodes on 3 edges with
Zoning ration = 1.5.

Before

Selected edges

Larger

elements

Smaller

elements

109

BlockM: Start Using BlockM
� Distribute (continued)

� Zoning
� Example (14.2) :

� Zoning ration = 1.5, note how the element sizes are changing.

After

Increasing

element size

110

BlockM: Start Using BlockM

� Distribute (continued)
� Zoning

� Example (14.3) : Distribute nodes on 3 edges with
Zoning ration = .5.

Before

Selected edges

Larger

elements

Smaller

elements

111

BlockM: Start Using BlockM
� Distribute (continued)

� Zoning
� Example (14.3) :

� Zoning ration = .5, note how the element sizes are reversed.

After

Increasing

element size

112

BlockM: Start Using BlockM

� Distribute (continued)
� Zoning

� Example (14.4) : Distribute nodes on 3 edges with
Zoning ration = .5 and Both Ends.

Before

Selected edges

Larger

elements

Smaller

elements

113

BlockM: Start Using BlockM
� Distribute (continued)

� Zoning
� Example (14.4) :

� Zoning ration = .5 and Both Ends, note how the smaller elements
are concentrated at the center.

After

Increasing

element size

114

BlockM: Start Using BlockM

� Parameter
� This feature allows for parameterized mesh

generations. What this means is that a mesh could be
changed and updated with the change of a
parameter’s value.

� Functions and expressions could be added here and
applied directly to a point, edge, face, and or region.

� To implement Parameter:
1. Enter parameters or expression in the 1st field

2. Click Create button or press the Enter key. This puts
the parameters or expressions in the list below.

3. To Delete: select an expression or parameter from the
list and click the Delete button.

4. To apply to the block directly: enter the parameters in
the corresponding X, Y, and Z Coordinate fields.

5. Select a point, edge, face and region using the
Computation window.

6. Click the Apply button.

115

BlockM: Start Using BlockM

� Parameter (continued)

� Example (15.0): Let’s create a parametric

block.

� Set the following parameters:

� width= 2.0

� hite = 3.0

� len = width + hite

� xseg = 8

� yseg = 6

� zseg = 4

116

BlockM: Start Using BlockM

� Parameter (continued)

� Example (15.0):

� Below is what a parametric block looks like.

8 elements

Length = 5.0

6 elements

height = 3.0

4
el

em
en

ts

w
id

th
 =

 2
.0

117

BlockM: Start Using BlockM

� Rd/Write

� Within BlockM there is also a way to save the

current work to a file. This is convenient to

save just features and information related to

BlockM. The file written out is in ASCII

format. The user could modify the file with a

text editor such as Notepad, WordPad under

Windows and Vi under Linux/Unix.

� To save or Write:

1. Click the Write button.

2. Enter the file name and path in the pop-up

window. By default, the file as the .cfile

extension.

3. Click on the Save button.

118

BlockM: Start Using BlockM

� Rd/Write (continued)

� To open an existing BlockM file:

1. Simply click on the Read button.

2. Select the file in the pop-up window.

3. Click the Open button.

4. A CFile Dialog window pop-up such as the one

to the left. Click the Start button for the file to

be processed.

5. Click the Done button at the bottom.

119

BlockM: Start Using BlockM

� Rd/Write (continued)

� There is a special button here, Empty.

� The purpose is to clear all the BlockM commands

from the buffer.

� Use this button with caution because all works

could be loss if saves to the same file that is

currently loaded.

� To avoid possibly losing works, it is a good idea

to save to a different file.

120

BlockM: Start Using BlockM

� Rd/Write (continued)

� Example (16.0): Saved block file from example 15.0

� As seen below, the BlockM input file is composed of a
series of commands. As a user become familiar with
BlockM’s commands, he could “program” a part
without using the BlockM’s visual interface. This could
be handy because it is a lot faster to generate and
modify meshes.

bmparam create "width=2.0"

bmparam create "hite=3.0"

bmparam create "len=width+hite"

bmparam create "xseg=8"

bmparam create "yseg=6"

bmparam create "zseg=4"

bmcreate multiple i 1 (1+xseg) j 1 (1+yseg) k 1

(1+zseg) x 0 len y 0 width z 0 hite

