

Table of Contents							
1.	Getting started – keyword input & a simple problem		2010				
2.	Mathematical Theory - Heat diffusion PDE -> FE equation						
3.	Equation solver – Gauss vs. Iterative						
4.	Time step control						
5.	Nonlinear problems						
6.	Initial and boundary conditions						
7.	Thermal Contact						
8.	Thermal-stress coupling						
9.	ALE coupled thermal-mechanics						
10.	Thermal-fluid coupling						
11.	Miscellaneous heat transfer modeling techniques						
Α.	Appendix A – using LS-PrePost						
В.	Appendix B – thermal expansion theory notes						
С.	Appendix C- walking on fire thermal contact analysis						
D.	Appendix D – modeling hot stamping						
E.	Appendix E – modeling warm forming						
F.	Appendix F – workshop problems	aduction	4				
	100	ouucii0fi	4				

Units									
Steel property values in different unit sets									
mass	Length	Time	ρ	E	Ср	k	h		
kg	m	sec	7.8e+03	2.1e+11	4.6e+02	7.1e+01	1		
kg	mm	sec	7.8e-06	2.1e+08	4.6e+08	7.1e+04	1		
kg	mm	msec	7.8e-06	2.1e+02	4.6e+02	7.1e-05	1.e-09		
ton	mm	sec	7.8e-09	2.1e+05	4.6e+08	7.1e+01	1.e-03		
g	mm	msec	7.8e-03	2.1e+05	4.6e+02	7.1e-02	1.e-06		
g	mm	sec	7.8e-03	2.1e+11	4.6e+08	7.1e+07	1.e+03		
Properti Densit Elastic Heat ca Therm Conve	Properties in SI Density ρ [kg/m³] Elastic modulus E [Pa] Heat capacity Cp [J/kg C] Thermal conductivity k [W/m C] Convection coefficient h [W/m² C]								

	Stiffness matrix										
		1				ſ	1		1		LSTO
	1	2	3	4	5	6	7	8	9	10	Obsolete solvers
1 2	X	x x	x		X	X			x x	x 0	•symmetric Gauss solver needs upper triangle = 55 entries
3			х	х	х	х			0	0	
4				x	0	0	х		0	0	 solver 1 (skyline Gauss) needs values + embedded 0's = 42 entries
5					х	0	х		х	0	December de la chierre (c. 1995)
6						x	0	х	x	0	Recommended solvers to use:
7							х	х	0	0	 solver 11 (sparse Gauss) needs
8								x	0	0	only the non-zeros \rightarrow 27 entries
9									x	x	solver 3 & 12 (conjugate gradient)
10										X	needs only the non-zeros \rightarrow 27 entries
											Chapter 3 - 4

CONTROL THERMAL THEOTER	0	
CONTROL_THERMAL_TIMESTEP	2	
Fourier heat equation	3	
Hyperbolic heat equation	4	
Mechanical time step stability limit	5	
Thermal time step vs. Mechanical time step	10	
Explicit vs. implicit time integration	14	
What is O(Dt), O(Dt2), O(Dx2)	15	
Crank-Nicolson oscillations	19	
Variable time step algorithm	20	
bcflux.k – workshop problem	22	
Time scaling	23	
Consistent vs. lumped mass matrix	24	
Conclusions	25	

	What is O(Δ t), O(Δ t ²), O(Δ x ²) A numerical experiment (converge_time.k)									
	im	olicit	-							
	Δt	Т								
	0.100	0.984155		linear convergence						
	0.050	0.987525		As ∆t is halved, the						
	0.025	0.989080	296	error decreases by 1/2						
	0.001	0.990487								
	Crank-l	Nicolson	*10 ⁻⁵							
Ī	Δt	Т								
Ī	0.100	0.990769)	quadratic convergence						
l Ť	0.050	0.990601		As ∆t is halved, the						
	0.025	0.990558	5.7	error decreases by 1/4						
1	0.001	0.990544	1.4							
				Chapter 4 - 18						

Material nonlinearity	С
*MAT_THERMAL_ISOTROPIC_TD_LC tmid rho hclc tclc	
tmid \rightarrow thermal material ID rho \rightarrow material density hclc \rightarrow load curve for Cp vs. T tclc \rightarrow load curve for k vs. T	
Chapter 5 - 10	

			Material material	nonlir input fo	nearity r water		LSTC
1.	Heat capa	acity meth	od				
*M7	AT THERMAL	ISOTROPI	C PHASE CHA	NGE			
\$	TMID	TRO					
	1	1000.0					
\$	т1	т2	тЗ	т4			
	-100.0	100.0					
\$	HC1	HC2	HC3	HC4			
	2000.0	2000.0					
\$	TC1	TC2	TC3	TC4			
	1.0	1.0					
\$	SOLT	LIQT	HLAT				
	0.0	2.0	3.00E+05				
2.	Energy m	ethod					
*M2	AT_THERMAI	_ISOTROPI	C				
\$	TMID	TRO	TGRLC	TGMULT	TLAT	HLAT	
	1	1000.0	0	0.	0.	3.00E+05	
Ş	нС 2000.	TC 1.				Chap	oter 5 - 14

Chapter 6 – Thermal Boundary Conditions				
	.,			
Thermel houndary conditions	2	LST		
nermal boundary conditions	2			
BOUNDARY THERMAL Reyword	0			
INITIAL_TEMPERATURE_(option)	0			
	10			
	12			
BOUNDARY_CONVECTION_(option)	14			
Convection heat transfer coefficient, h	16			
h for vertical plates & cylinders	20			
h for horizontal plates	22			
h for turbulent pipe flow	30			
h for water spray cooling	37			
DEFINE_FUNCTION keyword	39			
BOUNDARY_RADIATION_(option1)_(option2)	43			
Surface radiation	45			
Enclosure radiation	46			
Workshop problem frustrum.k	54			
Workshop problem cask ss.k & cask tr.k	55			
LOAD HEAT GENERATION (option)	56			
BOUNDARY THERMAL BULKNODE	57			
LOAD THERMAL (option)	60			
Energy balance	59	Chapter 6 - 1		

Convection hea Ru	at transfer	coefficient, h
Situation	h [W/m² C]	Free
free convection in air	5	convection
forced convection in air	200	
free convection in water	600	
forced convection in water	1000	Forced convection
boiling in water	6000	
		Chapter 6 - 16

	h for ti	u rbulent p Water propertie	ipe flow es	LST
Т [C]	ρ [kg/m³]	C _p [J/kg C]	μ [kg/m s]	k [W/m C]
20	998.	4182.	1.002e-03	0.603
40	992.	4179.	0.651e-03	0.632
60	983.	4185.	0.462e-03	0.653
80	972.	4197.	0.350e-03	0.670
100	958.	4216.	0.278e-03	0.681
				Chapter 6 - 31

Enclosure radiation TYPE 2: radiation in an enclosure
*BOUNDARY_RADIATION_SET_VF_(calculate or read) The <i>view factor</i> (or shape factor, configuration factor, geometric factor) is the fraction of energy leaving a black surface that arrives at a second black surface. The view factor is based on surface geometry. LS-DYNA does the diffuse gray body calculations.
*BOUNDARY_RADIATION_SET_EF_(calculate or read) The <i>exchange factor</i> is the fraction of energy leaving a surface that arrives at a second surface both directly and by all possible intermediate diffuse and specular reflections. Values are calculated using Monte Carlo numerical methods. The exchange factor is based on surface geometry and surface radiation properties.
For a description of exchange factors and how to calculate them, see (Hottel & Sarofim, <u>Radiative Transfer</u> , McGraw Hill, 1967.) Chapter 6 - 46

BULKN BOU	IODE – modeling a gas or fluid in a container INDARY_THERMAL_BULKNODE keyword
*BOUNDAR	Y_THERMAL_BULKNODE
NID PID	NBNSEG VOL LCID H A B
NID	bulk node number
PID	this bulk node is assigned a PID which in turn assigns
	material properties
NBNSEG	number of surface segments surrounding the bulk node
VOL	volume of bulk node (i.e., cavity volume – calculated by
	LSPP during mesh generation)
	hoad curve ID for heat transfer coefficient h
	neat transfer coefficient n
R	exponent a
D	exponent b
	Chapter 10 - 59

	conta	ct resista	ance v	s. pressure	
Curve	Material	Roughness	Temp.	condition	1
		Rms (μ in)	(F)		
а	steel	1000	200	parallel, rusted	
b	steel	1000	200	parallel, clean	1
С	steel	1000	200	perpendicular, clean	
d	steel	125	200	parallel, rusted	
е	steel	125	200	parallel, clean	
f	steel	63	200	perpendicular, clean	
g	steel	63	200	parallel, clean	
h	steel	4	200	clean	
i	416 ss	100	200	clean	
j	416 ss	100	400	clean	
k	416 ss	30	200	clean	
1	416 ss	30	400	clean	

Properti	Conver Using a d	sion c consiste	of mec ent set of	hanica units is	al worl	<mark>k to h</mark> e	eat ch
mass	Length	Time	ρ	E	Ср	k	h
kg	m	sec	7.83e+03	2.10e+11	4.60e+02	7.1e+01	1
kg	mm	sec	7.83e-06	2.10e+08	4.60e+08	7.1e+04	1
kg	mm	msec	7.83e-06	2.10e+02	4.60e+02	7.1e-05	1.e-09
ton	mm	sec	7.83e-09	2.10e+05	4.60e+08	7.1e+01	1.e-03
g	mm	msec	7.83e-03	2.10e+05	4.60e+02	7.1e-02	1.e-06
g	mm	sec	7.83e-03	2.10e+11	4.60e+08	7.1e+07	1.e+03
g	cm	msec	7.83e+00	2.10e+00	4.60e-06	7.1e-12	1.e-15
Properti Density Elastic Heat ca Therma Conve	es in SI y modulus apacity al conduct ction coeff	ρ Ε C ivity k ficient h	[kg [Pa p [J/ [W [W	J/m ³] a] kg C] /m C] /m ² C]			Chapter 8 -

Coefficient of Thermal Expansion

secant coefficient $\alpha_s = \frac{L - L_r}{L_r(T - T_r)}$

The secant coefficient of expansion, α_s is easily obtained in the laboratory and I'm sure many of you performed this experiment in a college physics lab. Take a rod at room temperature (i.e. reference temperature), T_r, and measure its length, L_r. Then uniformly (usually by an electric current) heat the rod and measure its new length, L, (or, change in length) and temperature, T. Note that a reference temperature, T_r, must be specified when using the secant value of thermal expansion. α_s is also referred to as the "mean" or "effective" coefficient of thermal expansion. The main disadvantage in using α_s is the requirement of a reference state. If the part initial temperature is different from the material reference state temperature, then the α_s values are no longer valid. They must be adjusted to account for the new strain free condition at the part initial temperature.

Chapter 8 - 17

LSTC

	ass and Tin	ne scaling to re	duce run time	;
Exercise 6 → r	esults			
baseline: nass scaled: nass & time so	upes upse caled: upse	t_mat003.k t_mat003_dt2ms t_mat003_dt2ms	.k _time_scaled.k	
Baseline Mass scaled Mass & time scaled				
run time	7 h	15 s	2 s	
run time ∆t mech	<mark>7 h</mark> 1.e-07	15 s 1.e-04	2 s 1.e-06	-
run timeΔt mechcycles mech	<mark>7 h</mark> 1.e-07	15 s 1.e-04 16,000	2 s 1.e-06 1600	-
run time ∆t mech cycles mech ∆t thermal	7 h 1.e-07 1.e-06	15 s 1.e-04 16,000 1.e-03	2 s 1.e-06 1600 1.e-05	-

	ALE Post-Processing using LS-POST							
			History variable plotting. Density and vo	LSTC				
-		- D X	Thistory variable plotting. Density and vor					
Follow	Splitw	Explod	NOTE:					
Output	Trace	Xyplot	Plotting of Lagrangian parts readily shows the	e material				
Anno	Light	FLD	deformation because the mesh follows the ma	aterial. Since				
SPlane	Setting	State	Eulerian or ALE materials "flow" in their mesh	nes, we need to plot,				
Range	Vector	Measur	instead, their volume fractions which describe	e the interfaces				
Find	Ident	Ascii	defining the material boundaries.					
Fcomp	History	Views		a				
Appear	Color	Model	The resolution of the mesh defines the resolu	tion of the				
Group	Blank	SelPar	Interraces.					
1 2 3	8 4 5	6 7 D						
Fri	nge Compor	nent	History var # 1 = Density					
Stress	temperatur	re	History var $\# 2 = vf$ of the 1 st ALE material					
Ndv	internal er shell thick	nergy ness	History var # 3 = vf of the 2 nd ALE material					
Result	%thicknes hourglass	s reduc.	History var # 4 = vf of the 3 rd ALE material					
Strain	time step s	size r#1	etc.					
Misc	(Additional history variables may depend on							
	mistory val	1# 3*	the material model used).	Chapter 9 - 8				

		*CONT	ROL_AL	E keyw	ord		
		I	upset_a	ale.k			
DCT	NADV 25	METH 1	AFAC 1.	BFAC	CFAC	DFAC	
Arbitrary automatic 1. stoppin N	Lagrangia rezoning the calc IADV = nu	n Eulerian algorithm ulation wh mber of cy	(ALE) for s: nen the mo cles betw	mulations esh is dist veen adve	s may be t torted ction	hought of as Steps 2 & 3 are expensiv	e
A B C D	FAC = sin FAC = vol FAC = iso FAC = equ	nple avera ume weig parametri uipotentia	ge smootl hted smoo c smoothi l smoothi	hing othing ng ng	Advection solution va smeared o	is dissipative - ariable fields a ut.	- the re
3. remapp e e	ing the so q. 1: dono q. 2: Van L	olution from fr cell (1 st o Leer (2 nd o	m the dist order accu rder accu	orted mes ırate) rate)	sh to the s	mooth mesh Chapter 9	- 16

Chapter 10 - thermal-fluid co	oupli	ng
		LSTC
Modeling flow through a pipe	2	
How do you determine h	3	
Pipe network	9	
3 methods to model pipe flow	15	
Modeling flow through a pipe	16	
BULKNODE – modeling a gas or fluid in a container	17	
BULKFLOW – modeling flow through a pipe	20	
Using LS-PrePost to create BULKNODE & BULKFLOW keywords	25	
Application – die cooling	28	
Workshop problem: Advection – Diffusion	30	
BOUNDARY_THERMAL_BULKFLOW_UPWIND	33	
ALE fluid material models	35	
Bulk modulus	37	
Speed of sound	38	
EOS_LINEAR_POLYNOMIAL	39	
EOS GRUNEISEN	40	
LS-PrePost	43	
Workshop Problem, channel.k	45	
Workshop problem with ambient element	49	
Workshop problem with advection – diffusion	51	
Contact between an ALE mesh and a Lagrangian mesh	59	
Plate Casting	61	Chapter 10 - 1

	How d	O YOU dete Water properti	ermine h ^{es}	LS
T ICl	ρ [kɑ/m³]	C _p [.]/kg C]	μ [kg/m s]	k [W/m C]
20	998.	4182.	1.002e-03	0.603
40	992.	4179.	0.651e-03	0.632
60	983.	4185.	0.462e-03	0.653
80	972.	4197.	0.350e-03	0.670
100	958.	4216.	0.278e-03	0.681
			1	
				Chapter 10 - 4

	Pine network	
	i pe network	
		_
Pipe type	Roughness, e [mm]	
Cast iron	0.25	
Galvanized iron	0.15	
Steel or wrought iron	0.046	
Drawn tubing	0.0015	
j		
Fitting type	Equivalent length L./D	
Fitting type Globe valve	Equivalent length L _e /D	-
Fitting type Globe valve Gate valve	Equivalent length L _e /D 350 13	
Fitting type Globe valve Gate valve Check valve	Equivalent length L _e /D 350 13 30	
Fitting type Globe valve Gate valve Check valve 90° std. elbow	Equivalent length L _o /D 350 13 30 30	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius	Equivalent length L _e /D 350 13 30 30 20	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius 90° street elbow	Equivalent length L _e /D 350 13 30 30 20 50	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius 90° street elbow 45° elbow	Equivalent length L _e /D 350 13 30 30 20 50 16	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius 90° street elbow 45° elbow Tee flow through run	Equivalent length L _o /D 350 13 30 30 20 50 16 20	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius 90° street elbow 45° elbow Tee flow through run Tee flow through branch	Equivalent length L _e /D 350 13 30 30 20 50 16 20 60	
Fitting type Globe valve Gate valve Check valve 90° std. elbow 90° long radius 90° street elbow 45° elbow Tee flow through run Tee flow through branch Return bend	Equivalent length L _e /D 350 13 30 30 20 50 16 20 60 50	

Pipe network								LS.	
	input						out	tput	
Pipe	N1	N2	Length [m]	Dia. [mm]	Rough [mm]	Ftg. [L _e /D]	Q [l/min]	h [W/m²C]]
1	1	4	1	10	0.05		5.7	5600	
2	2	5	1	20	0.05		9.7	2400	
3	3	6	3	10	0.05	100	4.5	4600	
4	1	2	0.2	10	0.05		14.2	11000	
5	2	3	0.2	10	0.05		4.5	4600	
6	4	5	0.2	10	0.05		5.7	5600	
7	5	6	0.4	10	0.05		15.5	12000	4

BULK	NODE – modeling a gas or fluid in a container BOUNDARY_THERMAL_BULKNODE keyword
*BOUNDAR NID PID	Y_THERMAL_BULKNODE NBNSEG VOL LCID H A B
NID PID	bulk node number this bulk node is assigned a PID which in turn assigns material properties
NBNSEG VOL	number of surface segments surrounding the bulk node volume of bulk node (i.e., cavity volume – calculated by LSPP during mesh generation)
LCID	load curve ID for heat transfer coefficient h
н	heat transfer coefficient h
A B	exponent a
-	
	Chapter 10 - 19

Plate Casting Modeling issues					
Time	Action				
0.0	Mold filling, green ambient elements set to T=1000 and v=10				
	T _{inf} =800 to keep the metal mold hot. Otherwise, liquid metal will solidify on contact which will drastically increase strength in the Eulerian fluid elements. This will tear things apart due to high velocity. This approach is not necessary for a sand mold due to decreased heat transfer between the liquid metal and sand.				
0.22	The mold is full, turn inflow off. Keep the elements as Eulerian to allow velocity to decay as we transition from fluid behavior to solid behavior during solidification.				
0.30	Change the environment from 800 to 25C to start cool down.				
0.32	Switch Eulerian formulation to Lagrangian formulation. Fluid velocities are very small and we are below the solidus temperature.				
0.33	Switch contact between the cast part and mold from tied to sliding to allow shrinkage gaps to form. Chapter 10 - 63	to 3			

Plate Casting Modeling issues		
1.	Mold Filling – the filling time was chosen such that all elements filled but not enough pressure was built up in the cavity to significantly deform the elastic mold. Some elements along the perimeter, especially in the curves, are just barely filled and cycle between filled and void on subsequent time steps. 90° corners should be avoided.	
2.	Mold heating – When using a cold mold, the hot liquid metal would contact the mold surface and immediately cool down due to very good metal-to-metal heat conduction and tied contact. The fluid material properties would instantaneously increase in strength to solid properties. The nodes would retain the ALE fluid velocity. However, now due to increased strength, these nodes would shoot out and tear things apart. Therefore, it is necessary to keep the mold at a high temperature in relation with the temperature dependent mechanical material properties. This may not be as much of problem when using a sand mold due to its lower thermal conductivity.	
3.	Switch to Lagrange Formulation – Allow a settling time after inflow is turned off to allow the fluid velocity to decrease in magnitude. This switch is also needed for the contact (see below).	
4.	Switch contact – The coupling between an ALE and a Langrangian mesh can only be done through tied contact. However, now we wish to model shrinkage. This can be accomplished by switching the ALE mesh to Lagrangian and then switching from tied contact to sliding contact.	
	Chapter 10 - 64	

hapter 11 – miscellaneous modelin	g method
Thermal conductivity of Honevcombs	2
Thermal conductivity of powders	3
Thermal conductivity of thin films	4
Macro-to-Micro scale transition	5
Contact Conductance in vacuum	6
Determining optical path difference	7
Induction heating	8
Bio-heat equation	10
Hyperbolic heat transfer	11
Thermostat controller	12
Weld Modeling	16
Water spray cooling	20
Process start-up	22

k values for thin	films may be 1 to 2 ord	ers of magnitude			
Material	Bulk k [W/mK]	Film k [W/mK]			
Al ₂ O ₃	38.5	18.3			
HfO ₂	1.70	0.05			
SiO ₂	1.38	0.45			
TiO ₂	10.5	0.48			
ZrO ₂	1.55	0.04			
 J.C. Lambropoulos, "Thermal Conductivity of Dielectric Thin Films", J. Appl. Phys., Vol. 66, No. 9, November 1989. W.D. Nix, "Mechanical Properties of Thin Films", Metallurgical Transactions A, Vol. 20A, November 1989. 					

	Bio-heat equation					
	LSTC					
$\rho c \frac{\partial T}{\partial t} = \nabla \cdot k \nabla T + \dot{Q}_{g}''' + W_{b} c_{b} \left(T - T \right)$						
*LOAD	_HEAT_GENERATION_SOLID					
sid	lcid mult W_b c_b T_b					
sid	= solid element set ID					
lcid	= load curve ID for Q					
mult	= curve multiplier for Q					
W _b	= load curve id for $W_b(t)$; [kg/m ³ s]					
c _b	= load curve id for $c_b(T_b)$; [J/kg C]					
T _b	= load curve id for $T_b(t)$; [C]					
Ref: H.H. Pennes, "An Human Forearm", J. A	alysis of Tissue and Arterial Blood Temperature in the Resting ppl. Physiol., V1, N2, pp 93-122, August 1948. Chapter 11 - 10					

Appendix A – Using LS-PrePos	st
I S-PrePost rotate, translate, zoom	2
Displaying fringes of temperature	3
Changing the temperature range	4
Temperature fringes without texture	5
Identifying a node for history plotting	6
Temperature history plot	7
Using ASCII file tprint	8
Plot node dT/dt history	9
Display thick shell	10
Display flux vectors	11
Display velocity vectors	12
	Appendix A - 1

Mysteries behind the Coefficient of Thermal Expansion (CTE) Revealed

Art Shapiro (LSTC)

Which calculation is correct?

Your job is to calculate the final length of a 1 meter long metal rod heated from 20C to 1020C. The coefficient of thermal expansion is $\alpha = 5.e-04$ m/mC.

You use the formula $\frac{L-L_0}{L_0} = \alpha (T-T_0)$

And calculate L = 1 + (1)(5.e - 04)(1020 - 20) = 1 + 0.5 = 1.5 m

In checking your work, a colleague uses the thermodynamic definition for the coefficient of thermal expansion

$$\alpha = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_P$$
 or $\frac{dL}{L} = \alpha dT$

Integrating

$$\int_{1}^{L} \frac{dL}{L} = 5.e - 04 \int_{20}^{1020} dT$$

He gets

$$L = \exp[\ln(1) + 0.5] = 1.65 m$$

There is a large difference between the two answers. Which one is correct?

 $\ln(L) - \ln(1) = (5.e - 04)(1020 - 100) = 0.5$

Both are correct plus 1 other is also correct

The difference is related to the definition of the CTE – there are 3. When using a CTE from a reference publication, you must determine how the CTE is defined. The 3 definitions for CTE are:

- 1. Tangent CTE using current length $\alpha_t = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)$ (eq. 1)
- $\alpha_t = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_p \tag{eq. 1}$
- 2. Tangent CTE using reference length $\alpha_{t,r} = \frac{1}{L_r} \left(\frac{\partial L}{\partial T}\right)_p$ (eq. 2)
- 3. Secant (or, mean) CTE $\alpha_s = \frac{L L_r}{L_r (T T_r)}$ (eq. 3)

These are shown graphically in figure 1. The thermodynamic defined coefficient, α_t , is the slope of the tangent to the curve at a specific temperature, T. The secant coefficient, α_s , is the slope of the line between two points on the curve. One point is taken as the reference state (T_r, L_r) . The subscript, r, means reference state. The thermal strain is zero at the reference temperature, T_r , and reference length, L_r . The reference temperature is usually 20C.

The CTEs can also be interpreted as representing the:

- "natural (logarithmic)" strain $\overline{\varepsilon} = \frac{dL}{L} = \alpha_t dT$ using eq. 1.
- "engineering (linear)" strain $\varepsilon = \frac{L L_r}{L_r} = \alpha_s (T T_r)$ using eq. 3.

Integrating
$$\int_{L_r}^{L} \frac{dL}{L}$$
, we obtain the logarithmic strain $\overline{\varepsilon} = \ln\left(\frac{L}{L_r}\right)$.

This can also be expressed as $\overline{\varepsilon} = \ln\left(1 + \frac{L - L_r}{L_r}\right) = \ln(1 + \varepsilon)$

If $\alpha_s (T - T_r) \ll 1$, then $\overline{\varepsilon} \simeq \varepsilon$. CTE values for metals and alloys are in the range of 10×10^{-6} to 30×10^{-6} /K. The difference in the thermal strain calculation if you use a tangent or secant CTE for reasonable temperature changes is very small for metals. However, using the correct CTE definition becomes more important for plastics with a typical CTE around 1×10^{-4} K.

The tangent coefficient of thermal expansion (default CTE definition in LS-DYNA)

The tangent coefficient of thermal expansion, $\alpha_t = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_p$, is a very convenient value to use

in an explicit finite element code. An explicit analysis is an incremental method where calculations are based on the instantaneous properties of the material. A reference state (e.g., reference temperature, reference length) is not required. The same tangent CTE values are applicable for heating an object up from room temperature or, cooling it down from an elevated temperature (e.g., hot stamping, casting). This is not true for secant CTEs which have different values for heating and cooling because the secant CTE is a function of a strain free reference state. The secant CTE values depend on whether the strain free reference state is at room temperature or at the elevated temperature.

A thermodynamic relation defines the tangent CTE. It is therefore compatible with thermodynamic defined equations of state. This makes solid-solid and liquid-solid volume changes during phase transition easy to calculate.

A main difficulty is finding values for tangent CTEs. They are much less reported in the literature than secant values. However, they can be easily calculated. An excellent source for CTE values is the reference book, <u>Thermophysical Properties of Matter</u>, <u>Thermal Expansion</u>, Vol. 12., ed. Y.S. Touloukin. Thermal expansion data is presented as polynomial curve fits, such as:

$$\frac{L - L_{293}}{L_{293}} = a + bT + cT^2 + dT^3$$
 (eq. 4)

To obtain the tangent CTE, we can simply take the derivative of this polynomial, dL/dT, and then divide by the current length, L, at a specific temperature, T.

The tangent coefficient of thermal expansion using a reference length

The tangent coefficient of thermal expansion using a reference length, $\alpha_{t,r} = \frac{1}{L_r} \left(\frac{\partial L}{\partial T}\right)_P$, is

presented as tabulated data in the reference book, <u>Thermophysical Properties of Matter, Thermal</u> <u>Expansion</u>, Vol. 12., ed. Y.S. Touloukin. I'm not aware of any FE codes that use this definition. However, this definition gets confused with the tangent coefficient, α_t , in the literature. You will find the statement in the literature that, "if the CTE is not a function of temperature, then the tangent CTE equals the secant CTE". This is only true for $\alpha_{t,r}$ and not for α_t .

Integrating eq. 2
$$\int_{L_r}^{L} \frac{dL}{L_r} = \int_{T_r}^{T} \alpha_{t,r} dT \qquad (eq. 5)$$

Appendix B

We obtain
$$\frac{L-L_r}{L_r} = \int_{T_r}^T \alpha_{t,r} dT$$
 (eq. 6)

Equation 3 can be written as
$$\frac{L-L_r}{L_r} = \alpha_s (T-T_r)$$
 (eq. 7)

Then, equating equations 6 and 7 we obtain: $\alpha_s = \frac{1}{(T - T_r)} \int_{T_r}^{T} \alpha_{t,r} dT$ (eq. 8)

We can see from equation 8 that if $\alpha_{t,r}$ is not a function of temperature, then $\alpha_s = \alpha_{t,r}$. Equation 8 also shows that α_s is the mean value of $\alpha_{t,r}$ over the temperature interval.

The secant coefficient of thermal expansion (optional CTE definition for MAT_106 in LS-DYNA)

Another definition for the coefficient of expansion exists which is called the secant value, α_s . These are easily obtained in the laboratory and I'm sure many of you performed this experiment in a college physics lab. Take a rod at room temperature (i.e. reference temperature), T_r, and measure its length, L_r. Then uniformly (usually by an electric current) heat the rod and measure its new length, L, (or, change in length) and temperature, T. Then,

$$\alpha_s = \frac{L - L_r}{L_r (T - T_r)} \tag{eq. 9}$$

Note that a reference temperature, T_r , must be specified when using the secant value of thermal expansion. α_s is also referred to as the "mean" or "effective" coefficient of thermal expansion.

Historically, the specification of α_s as a function of temperature allowed modeling the nonlinear influence of temperature on thermal strain in linear finite element codes. This specification carried over to many of the current nonlinear codes. For linear and nonlinear incremental material analysis, the increment in thermal strain can be calculated by

$$\Delta \varepsilon = \frac{\Delta L}{L_r} = \alpha_{s,T+\Delta T} \left(T + \Delta T - T_r \right) - \alpha_{s,T} \left(T - T_r \right)$$
(eq. 10)

This is an exact calculation and therefore is not dependent on the incremental time step size. This expression is used in implicit finite element calculations.

The main disadvantage in using α_s is the requirement of a reference state. If the part initial temperature is different from the material reference state temperature, then the α_s values are no longer valid. They must be adjusted to account for the new strain free condition at the part initial temperature.

How do you adjust α_s values at a new reference state?

If the part initial temperature state (P₁), is different from the material reference temperature state (P₀), then the α_s values must be modified. The subscript RM means 'reference material', and the subscript RP means 'reference part'. Figure 2 graphically depicts the computational method.

Figure 2: This figure shows graphically the parameters used in eq. 11 to shift the CTE reference state.

 (T_{RM}, L_{RM}) is the material reference state at point P_0 . This is the reference state for the material data. α_M is the secant CTE at the temperature, T. α_{MP} is the secant CTE at the temperature T_{RP} . α_M and α_{MP} are obtained from the literature.

 (T_{RP}, L_{RP}) is the part reference state at point P₁. This is the initial temperature for the part at which the thermal strain is 0. We want to calculate α_P .

 $L_{RM}\alpha_M$ is slope of the line from point P_0 to P_2 .

 $L_{RM}\alpha_{MP}$ is the slope of the line from point P_0 to P_1 .

 $L_{RP}\alpha_P$ is the slope of the line from point P_1 to P_2 .

$$L_{1} = L - L_{RM} = L_{RM} \alpha_{M} (T - T_{RM})$$
$$L_{2} = L_{RP} - L_{RM} = L_{RM} \alpha_{MP} (T_{RP} - T_{RM})$$
$$L_{3} = L - L_{RP} = L_{RP} \alpha_{P} (T - T_{RP})$$

$$L_{3} = L_{1} - L_{2}$$

$$\alpha_{P} = \left(\frac{L_{RM}}{L_{RP}}\right) \frac{\alpha_{M} \left(T - T_{RM}\right) - \alpha_{MP} \left(T_{RP} - T_{RM}\right)}{\left(T - T_{RP}\right)}$$
(eq. 11)

How do you calculate α_t from α_s ?

The secant lines can be used to approximate the tangent. The slope of a secant line (e.g., α_p in figure 2) approaches the slope of the tangent line as the secants' 2^{nd} point (i.e., P₂) approaches the 1st point (i.e., P₁). The problem of finding the tangent line to a graph was one of the main problems that originated calculus. In calculus this problem is solved using Newton's difference quotient.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This equation is similar to eq. 11. Also, by observation, the secant α_P in figure 2 appears to represent the slope of the tangent to the curve at the point $(T+T_{RP})/2$. The input to most FE codes is by piecewise linear data tables. If we have 2 data pairs (α_{s1}, T_1) and (α_{s2}, T_2) , we can calculate α_t at the midpoint temperature (T1+T2)/2 using eq. 11. Remember that this calculation is approximate and becomes more accurate in the limit as $\lim(T-T_{RP}) \rightarrow 0$.

How do you calculate α_s from α_t ?

We can use equation (1) to calculate the thermal strain, $\epsilon = \frac{dL}{L} = \int_{T_r}^T \alpha_t dT = \propto_t (T - T_r)$ for the case α_t = constant. The input to most FE codes is by piecewise linear data tables in which the tangent coefficient of thermal expansion is considered constant over the temperature increment. For example, $\alpha_{t,1}$ is constant between T_r and T₁, $\alpha_{t,2}$ is constant between T₁ and T₂, etc. Then

$$\varepsilon_1 = \alpha_{t,1}(T_1 - T_r)$$

$$\varepsilon_2 = \varepsilon_1 + \alpha_{t,2}(T_2 - T_1)$$

$$\varepsilon_3 = \varepsilon_2 + \alpha_{t,3}(T_3 - T_2)$$

Secant values of the coefficient of thermal expansion can then be calculated from:

$$\begin{aligned} & \propto_{s,1} = \varepsilon_1 / (T_1 - T_r) \\ & \propto_{s,2} = \varepsilon_2 / (T_2 - T_r) \\ & \propto_{s,3} = \varepsilon_3 / (T_3 - T_r) \end{aligned}$$

CTE Data for Aluminum

Temperature	Length	α_{tan}	α _{tan_r}	$\alpha_{\rm sec}$
[K]	լայ	[µm/m K]	[µm/m K]	[µm/m K]
293	1.000000	23.59	23.59	23.59
300	1.000165	23.63	23.64	23.61
325	1.000759	23.84	23.86	23.72
350	1.001359	24.08	24.11	23.84
375	1.001965	24.35	24.40	23.97
400	1.002579	24.65	24.71	24.10
425	1.00321	24.98	25.06	24.25
450	1.003833	25.34	25.44	24.41
475	1.004474	25.73	25.85	24.58
500	1.005126	26.15	26.29	24.76
525	1.005789	26.61	26.76	24.95
550	1.006465	27.09	27.26	25.15
575	1.007153	27.60	27.80	25.37
600	1.007855	28.14	28.36	25.59
625	1.008572	28.71	28.95	25.82
650	1.009304	29.31	29.58	26.06
675	1.010052	29.94	30.24	26.31
700	1.010817	30.60	30.93	26.58
725	1.011599	31.28	31.65	26.85
750	1.012400	32.00	32.40	27.13
775	1.013220	32.74	33.18	27.43
800	1.014060	33.52	33.99	27.73

Appendix B

Walking on Fire with LS-Dyna

The bed of wooden coals was meticulously prepared and simmered all day. By nightfall, the coals were glowing red and posed an intimidating path to cross. The spiritual leader tossed a steak on the coals and it immediately sizzled. The steak was removed from the coals and had a seared surface. Then, miraculously a person walked across the coals without being burnt (or cooked).

Firewalking has been practiced for thousands of years. Abundant information can be found by typing "firewalking" into a web search engine. Many articles are by faith healers who claim successful firewalking is an exercise in connecting the mind and body. A plethora of classes are offered to get you in touch with your inner self by walking on fire. However, as an alternative, you can use LS-DYNA to model the process and avoid chanting mantras all day to get your mind and body in sync – let your computer do the walking.

First, we need to know how hot the coals are. We can use the hemispherical spectral emissive chart [1] below to determine this. The visible wavelength is between 0.4μ (violet) to 0.7μ (red). The 1000K (727C) curve below has an amount of radiant energy sufficient to be observed by the human eye between wavelengths of 0.4 to 0.7 microns. Since a larger percentage of the radiant energy is toward the longer wavelength of 0.7μ , an object at that temperature glows with a dull-red color. Now you also know how hot your hair dryer is.

Second, we need to know the thermal physical properties of skin, fat, muscle, and wood coals. This information can be found in textbooks. Values are presented in Table 1.

material	density, ρ [kg / m3]	heat capacity, c [J / kg C]	conductivity, k [W / m C]
epidermis	1200.	3440.	0.34
muscle / fat	1060.	3350.	1.60
wood charcoal	240.	838	0.052

Table 1 Thermal Properties of Selected Materials

Third we need to solve the bio-heat equation

$$\rho C \frac{\partial T}{\partial t} = \nabla \cdot k \nabla T - W_b C_b \left(T - T_b \right)$$

The second term on the right models heat removal from tissue due to blood flow $(W_b=1.8 \text{ kg/m}^3 \text{ sec})$. This term can be represented as a temperature dependent volumetric heat sink in the thermal material constitutive model. However, in the end, the heat removed by this term is negligible. It doesn't make any difference on the final temperature if you are relaxed or completely tense up and stop the blood flow in your foot. Other heat removal terms that would also work in our favor in reducing foot temperature have been omitted. This includes energy loss due to mass diffusion of water through the skin (i.e., sweating).

The problem can be modeled in 1-dimension with a contact surface between the bottom of the foot and the top of the coals. The coal bed thickness is modeled as 3cm with a temperature initial condition of 727C. The epidermis thickness is 0.2cm with a temperature initial condition of 37C (i.e., normal body temperature). The contact resistance between the coals and your foot is the governing heat transfer mechanism. Because we waited so long before walking on the coals, a grey powdery ash covered them. We will assume the ash is 1mm thick with a thermal conductivity half that of the charcoal. If you time yourself walking, you will find that your foot is in contact with the coals for 0.5 seconds.

LS-Dyna predicts a foot surface temperature of 46.4C (115F) after 0.5 seconds. This is considerably below the temperature of 155F that McDonalds now sells its coffee at to prevent skin burns after the Scalding Coffee lawsuit [2]. The only real chance for a burn is if an ember gets stuck between your toes so walk flat footed. However, walk fast because the time constant for heat transfer is in an exponential term and does mater.

What About the Steak – The thermal diffusivity is defined as $\alpha = k/\rho c$. The reciprocal of the thermal diffusivity is a measure of the time required to heat a material to some temperature level. Using the values given in Table 1., the reciprocal thermal diffusivity for the epidermis is 1.2e+07. Steak is muscle and fat. Its reciprocal thermal diffusivity is 2.2e+06. Steak will heat up 5 times faster than your foot. This presents problems in cooking steak. When meat is heated to temperatures in the range of 125F to 150F, the connective tissue sheaths collapse and shrink. Free water in the muscle cells flow out the ends of the muscle fibers presenting the appetizing appearance of a juicy steak. However, once the "juices" are gone (driven by a much too high energy input), the steak becomes very dry. In a future article, I will discuss using LS-DYNA to cook the perfect steak.

References:

[1] Hemispherical Spectral Emissive Chart from http://www.omega.com/literature/transactions/volume1/theoretical2.html

[2] McDonald Scalding Coffee http://www.lectlaw.com/files/cur78.html

Appendix C

Table of Contents			
		LS	тс
Table of Contents	2		
Katana: how to make a Japanese sword	4		
B-pillar: how to make Car parts	6		
Numisheet 2008 Benchmark BM03	7		
Symbols and values	9		
Newtonian heating or cooling	11		
Blank heating and transport into tools	13		
Radiation & convection heat loss	16		
Radiation & convection heat transfer	18		
Temperature of the blank at tool contact	19		
Heat transfer to air and to dies	20		
Contact parameters	22		
Numisheet 2008 data for 22MnB5	26		
MAT_106 : Elastic Viscoplastic Thermal	27		
MAT_244 : Ultra High Strength Steel	32		
MAT_244 QA parameter study	40		
Numisheet 2008 BM03 Model	48		
Numisheet 2008 BM03 Simulation	49		
		Appendix D -	2

Table of Contents			
		L	ѕтс
Creating a CCT diagram Modeling tool cooling BULKNODE and BULKFLOW method Water properties How do you determine a pipe flow convection coefficient How do you determine a pipe flow friction factor Pipe Network Process start-up time Thermostat feature for tool heating	54 56 57 60 61 65 66 71 74		
		Appendix D	- 3

Radiation & convection heat transfer coefficients					
T [C]	h _{conv}	h _{rad}	h _{conv} - h _{eff} [W/m²C] .° ⁰	h _{rad} = h _{eff}	
50	5.68	5.31	11.0		
100	6.80	6.8	13.6	Note:	
200	7.80	10.8	18.6	a) h _{rad} dominates	
300	8.23	16.3	24.5		
400	8.43	23.6	32.0	b) h _{conv} @ T>400 uncertain	
500	8.51	33.0	41.5		
600	8.52	44.8	53.3		
700	8.50	59.3	67.8		
800	8.46	76.6	85.1		
900	8.39	97.2	106.		
1000	8.32	121.	129.	Appendix D	

	Contact para (1) Friction function of T (2) hea	meters at transfer function of P	1.070			
*CONTACT_(option)_THERMAL_FRICTION lcfst lcfdt formula a b c d lch						
Mecha	anical friction coefficients vs. tempera Static $\rightarrow \mu_s = \mu_s * \text{lcfst(T)}$	ature				
	Dynamic $\rightarrow \mu_d = \mu_d * \text{lcfdt(T)}$]]			
1	Dynamic→ $\mu_d = \mu_d * \text{lcfdt(T)}$ h(P) is defined by load curve "a"	such as GE data				
1 2	Dynamic→ $\mu_d = \mu_d * \text{lcfdt(T)}$ h(P) is defined by load curve "a" h(P) = a + bP + cP2 + dP3	such as GE data polynomial curve fit				
1 2 3	Dynamic $\rightarrow \mu_{d} = \mu_{d} * \text{lcfdt(T)}$ h(P) is defined by load curve "a" h(P) = a + bP + cP2 + dP3 $h(P) = \frac{\pi k_{ger}}{4\lambda} \left[1.+85 \left(\frac{P}{\sigma}\right)^{0.8} \right] = \frac{a}{b} \left[1.+85 \left(\frac{P}{c}\right)^{0.8} \right]$	such as GE data polynomial curve fit I.T. Shvets, "Contact Heat Transfer between Plane Metal Surfaces", Int. Chem. Eng., Vol4, No. 4, p621, 1964.				

Conta How do you calc	act par sulate	rameters h(P) at the int	erface
22MnB5 $p_c = 0$ MPa $t_0 = 1.75$ mm $p_c = 5$ MPa $p_c = 5$ MPa $p_c = 10$ MPa	P	h @ 550C (curve)	h calculated
$\begin{array}{c} \text{W/m}^2\text{K} \\ \text{W/m}^2\text{K} \end{array} = \begin{array}{c} \text{H}_{z} = 3.5 \text{ min} \\ \text{H}_{z} = 3.5 \text{ min} \\ \text{H}_{z} = 0.5 \text{ min} \\ $	5	1330	1330
3000 size	10	1750	1770
0000 eatitia	20	2500	2520
1000	40	3830	3830
$h = \frac{k\pi}{4\lambda} \left[1 + 85 \left(\frac{P}{\sigma_r}\right)^{0.8} \right]$	$h = c$ $k = a$ $\lambda = s$ $P = i$ $\sigma_r = b$	contact conductance hir thermal conductiv 0.059 W/mC at 550 C surface roughness [m nterface pressure [M rupture stress [MPa]	[W/m²C] ity 1] Pa]
M. Merklein and J. Lechler, "Determination of Mater Ultra High Strength Steels with Respect to a FE_based I.T. Shvets, "Contact Heat Transfer Between Plane Me	ial and process d Process design etal Surfaces",	Characteristics for Hot Stamping n", SAE Technical Paper 2008-01-(Int. Chem. Eng, Vol 4, No 4, p621,	Processes of Quenchable 1853, April, 2008. Appendix D - 24 1964.

MAT_106 : Elastic Viscoplastic Thermal						LSTC	
1	2	3	4	5	6	7	8
MID	RO	E	PR	SIGY	ALPHA	LCSS	
С	Р	LCE	LCPR	LCSIGY			LCALPH
LCC	LCP						
						Ap	opendix D - 27

	MA	\T_244 : Boron s	Ultra High teel comp	Streng	gth Steel , wt%	
		HAZ	Akerstrom	Naderi	ThyssenKrupp Max. values	
	В		0.003	0.003	0.005	
-	С	0.168	0.23	0.230	0.250	
	Со					
-	Мо	0.036			0.250	
	Cr	0.255	0.211	0.160	0.250	
	Ni	0.015				
	Mn	1.497	1.25	1.18	1.40	
	Si	0.473	0.29	0.220	0.400	
	V	0.026				
	W					
	Cu	0.025				
	Р	0.012	0.013	0.015	0.025	
	AI	0.020				
	As					
	Ti			0.040	0.05	
	S		0.003	0.001	0.010 Appe	endix D - 34

MAT_244 QA parameter study							
Cooling rate [C/sec]	Vickers Hardness	Ferrite wt%	Pearlite wt%	Bainite wt%	Martensite wt%		
200	428	0.0001	0.0010	0.3978	0.5840		
100	336	0.0001	0.0031	0.9825	0.0139		
40	310	0.0001	0.0188	0.9810	0.0001		
20	283	0.0002	0.1193	0.8804	0.0001		
10	176	0.0006	0.9993	0.0001	0.0000		
5	174	0.0023	0.9976	0.0001	0.0000		
2.5	172	0.0125	0.9874	0.0001	0.0000		
Cooling rate [C/sec]	Vickers Hardness	Ferrite wt%	Pearlite wt%	Bainite wt%	Martensite wt%		
200	478	0.0001	0.0004	0.0008	0.9692		
100	472	0.0001	0.0009	0.0028	0.9668		
40	459	0.0002	0.0040	0.0256	0.9416		
20	376	0.0005	0.0154	0.4819	0.4880		
10	273	0.0018	0.0852	0.9015	0.0111		
5	174	0.0093	0.9906	0.0001	0.0000		
2.5	172	0.7023	0.2976	0.0000	0.0000		

	Wa	iter prope	rties	L5
Т [C]	ρ [kg/m³]	C _p [J/kg C]	μ [kg/m s]	k [W/m C]
20	998.	4182.	1.002e-03	0.603
40	992.	4179.	0.651e-03	0.632
60	983.	4185.	0.462e-03	0.653
80	972.	4197.	0.350e-03	0.670
100	958.	4216.	0.278e-03	0.681
				Appendix D -

Pipe Network							LST		
Pipe	N1	N2	Length [m]	Dia. [mm]	Rough [mm]	Ftg. [L _e /D]	Q [l/min]	h [W/m²C]	
1	1	4	1	10	0.05		5.7	5600	
2	2	5	1	20	0.05		9.7	2400	
3	3	6	3	10	0.05	100	4.5	4600	
4	1	2	0.2	10	0.05		14.2	11000	
5	2	3	0.2	10	0.05		4.5	4600	
6	4	5	0.2	10	0.05		5.7	5600	
7	5	6	0.4	10	0.05		15.5	12000 Appendix I	p- (

Pipe Network			
-			
		L	
Pipe type	Roughness, e [mm]		
Cast iron	0.25		
Galvanized iron	0.15		
Steel or wrought iron	0.046		
Drawn tubing	0.0015		
Fitting type	Equivalent length L _e /D		
Globe valve	350		
Gate valve	13		
Check valve	30		
90° std. elbow	30		
90° long radius	20		
90° long radius 90° street elbow	20 50		
90° long radius 90° street elbow 45° elbow	20 50 16		
90° long radius 90° street elbow 45° elbow Tee flow through run	20 50 16 20		
90° long radius 90° street elbow 45° elbow Tee flow through run Tee flow through branch	20 50 16 20 60		
90° long radius 90° street elbow 45° elbow Tee flow through run Tee flow through branch Return bend	20 50 16 20 60 50		
90° long radius 90° street elbow 45° elbow Tee flow through run Tee flow through branch Return bend	20 50 16 20 60 50	Annordius	

Process Magnesium Alle	Specification oy AZ31B properties	LSTC
Young's modulus	45 GPa]
Poisson's ratio	0.35	
Density	1,770 kg/m³	
Thermal conductivity	96 W/(m⋅°C)	
Heat capacity	1,000 J/(kg⋅°C)	
Friction coefficient	0.1	
Interface heat transfer	4,500 W/m²C	
		Appendix E 4

		S	train rate	e : 0.016	/s		Temp	erature :	250℃
Test			Tempera	ature [°C]			Str	ain rate	[/s]
direction	RT	100	150	200	250	300	0.16	0.016	0.0016
0 °	1.347	2.006	1.291	1.621	1.344	1.374	2.002	1.344	0.965
45 °	2.793	2.412	1.976	2.118	1.532	1.477	2.648	1.532	1.112
90 °	4.109	4.406	3.189	2.672	1.799	1.881	3.082	1.799	1.350
Mean	2.760	2.809	2.108	2.132	1.552	1.552	2.595	1.552	1.135

Model PID	Geometry and CID	LSTC
	Part ID	Contact ID, PID1-PID2
Dia	PID 1 → blank	CID 1 \rightarrow pad \rightarrow 1-2
Pad	PID 2 → pad	CID 2 \rightarrow punch \rightarrow 1-3
	PID 3 → punch	CID 3 \rightarrow holder \rightarrow 1-4
y, Blank	PID 4 → holder	CID 4 \rightarrow die \rightarrow 1-5
	PID 5 → die	
Punch Blank Holder		
		Appendix E 8

Appendix F – workshop	o prol	blems
Problem	page	Chapter reference
p01.k – coupled thermal-stress	3	1-17
rank_oscillations.k - Crank-Nicolson oscillations	12	4-19
bcflux.k – investigate thermal time step parameters	16	4-22
phase1.k & phase2.k – nonlinear thermal material	23	5-15
radiation.k – nonlinear radiation boundary condition	33	5-16
od_gr_pr_nu.k – how to use FUNCTION keyword	36	6-39
rustrum.k – simple enclosure radiation problem	43	6-54
cask_ss.k & cask_tr.k - complicated enclosure radiation	47	6-55
oouncing_shell.k – investigate metal stamping contact options	55	7-45
vork_to_heat.k – conversion of mechanical work to heat	66	8-9
iction_to_heat.k – conversion of sliding friction to heat	69	8-10
pset.k – investigate coupled thermal-stress	73	8-36 Apper
eutron.k – pulse neutron source coupled thermal stress	90	none

<mark>cp01.k</mark> – co Pro	oupled thermal-stread blem definition	SS
X X X X X X X X X X	Aluminum 1100 Density modulus of elasticity Poisson Ratio coeff. of expansion heat capacity thermal conductivity heat generation	2700 kg/m ³ 70.e+09 Pa 0.3 23.6e-06 m/m K 900 J/kg K 220 W/m K 2.43e+07 W/m ³

cp01.k – coupled thermal-stress	
Workshop exercise	
 4. Using LS-PrePost a) Select node 7 and plot the temperature time history. b) Select node 7 and plot the X-displacement time history. Note the small oscillation in the curve. 5. Edit the input file cp01.k with a text editor or using LS-PrePost. Change the plot interval from 0.1 to 0.01 on the *DATABASE_BINARY_D3PLOT keyword. Re-run LS-Dyna, and look at the X-displacement versus time history for node 7. Note the oscillation. The oscillation is numerical and not physical. 	
Text editor in LS-DYNA manger 1) Top menu item → Misc → edit last run input with wordpad 2) Click "SAVE FILE" icon in wordpad top menu bar	
Appendix F -	- 8

rod_gr_pr_nu.k - DEFINE_FUNCTION keyword 1. h defined by a load curve							
*BOUNDARY_CONVECTION_SEGMENT							
\$	n1	n2	n3	n4			
	1	2	4	3			
\$	LCIDH	HM	LCIDT	TM	LOC		
5	→ 10	3.486784	0	10.	0		
*DERINE_CURVE							
	10						
0.				1.			
		1000.		1.			
Appendix F - 38						F - 38	

Conversion of sliding friction to heat friction_to_heat.k							
dt of cycle 1358 is controlled by s 161 time	hell element 9990E-04 7916E-07 8254E+00 4541E-03 0000E+00 0000E+00 1000E+00 0000E+00 0000E+00 10						

Mass and Time scaling to reduce run time						
Exercise 6 → r	esults					
baseline: upest_mat003.k mass scaled: upset_mat003_dt2ms.k mass & time scaled: upset_mat003_dt2ms_time_scaled.k						
	Baseline	Mass scaled	Mass & time scaled			
run time	Baseline 7 h	Mass scaled	Mass & time scaled 2 s	_		
run time ∆t mech	Baseline 7 h 1.e-07	Mass scaled 15 s 1.e-04	Mass & time scaled 2 s 1.e-06			
run time ∆t mech cycles mech	Baseline 7 h 1.e-07	Mass scaled 15 s 1.e-04 16,000	Mass & time scaled 2 s 1.e-06 1600			
run time Δt mech cycles mech Δt thermal	Baseline 7 h 1.e-07 1.e-06	Mass scaled 15 s 1.e-04 16,000 1.e-03	Mass & time scaled 2 S 1.e-06 1600 1.e-05			

implicit analysis Ls cercise 7 → implicit ben the file upset_mat003_implicit.k. The keyword CONTROL_IMPLICIT_GENERAL has been added and both the thermal id mechanical times steps are set to 0.05 seconds *CONTROL_IMPLICIT_GENERAL 1 .05 *CONTROL_IMPLICIT_GENERAL 1 .05 *CONTROL_THERMAL_TIMESTEP 0 1. .05) Record the elapsed run time) Compare the run time with results in the previous able	Upset workshop problem					
Ls tercise 7 → implicit pen the file upset_mat003_implicit.k. The keyword CONTROL_IMPLICIT_GENERAL has been added and both the thermal ad mechanical times steps are set to 0.05 seconds *CONTROL_IMPLICIT_GENERAL 1 .05 *CONTROL_THERMAL_TIMESTEP 0 105) Record the elapsed run time) Compare the run time with results in the previous able	implicit analysis					
<pre>pen the file upset_mat003_implicit.k. The keyword CONTROL_IMPLICIT_GENERAL has been added and both the thermal ad mechanical times steps are set to 0.05 seconds *CONTROL_IMPLICIT_GENERAL 1 .05 *CONTROL_THERMAL_TIMESTEP 0 105) Record the elapsed run time</pre>	Exercise 7 → implicit	LS				
*CONTROL_IMPLICIT_GENERAL 1 .05 *CONTROL_THERMAL_TIMESTEP 0 105) Record the elapsed run time) Compare the run time with results in the previous able	Dpen the file upset_mat003_implicit.k. The keyword CONTROL_IMPLICIT_GENERAL has been added and bo and mechanical times steps are set to 0.05 seconds	th the thermal				
) Record the elapsed run time) Compare the run time with results in the previous able	*CONTROL_IMPLICIT_GENERAL 1 .05					
) Record the elapsed run time) Compare the run time with results in the previous able	0 105					
	*CONTROL_THERMAL_TIMESTEP 0 105 a) Record the elapsed run time b) Compare the run time with results in the previous table					

Neutron heating introduction				
R. E. Canaan, "Dynamic response of a pulse-heated, thick walled hollow sphere: validation of code numerics", UCRL-ID-137326, LLNL, January, 2000.				
When fissionable metals are exposed to either an internal or external neutron source, fission heating and subsequent thermal expansion of the material can occur. If the heating pulse occurs rapidly enough, the temperature of the fissionable metal can rise faster than the material can respond by thermal expansion. In other words, there is a lag between the rise in temperature and thermal displacement of the material boundaries. Under such conditions, a portion of the thermal energy is converted to kinetic energy, producing vibrational displacements and potentially large dynamic stresses.				
Early on in the pulse-heating transient, the mass-inertia effect mentioned above implies that while the material density remains essentially constant, there is an increase in material pressure as the temperature rises. Hence, the fissionable material is initially subject to a compressive stress. Later on, if the material remains elastic, the initial compression gives way to tension as the material elastically rebounds and also begins to finally expand in response to increasing temperature. After the heating pulse is complete and the total temperature rise is achieved, the expanded metal reaches a maximum displacement and peak tensile stress. Here, the dynamic expansion of the fissionable part exceeds the static expansion that would occur if the material were heated slowly. Furthermore, if the stresses remain below the tensile yield, another elastic rebound occurs, again sending the material into compression and contracting the material to a minimum expansion that is below the static value. The fission-heating-induced oscillations described above are of interest because the dynamic stresses involved may be large enough to result in material failure.				

Neutron heating 3. Run neutron_heating_coupled.k					
Coupled analysis using LOAD_HEAT_GENERATION with an energy CURVE defining the deposition rate.					
\$ neutron heating defined by an energy deposition load curve					
S *LOAD HEAT GENERATION SET					
1 1	1.				
*DEFINE_CURVE					
1					
0.0000E+00	1.3551E+10				
1.0000E-05	3.1961E+10				
2.0000E-05	7.5328E+10				
3.0000E-05	1.7725E+11				
4.0000E-05	4.1549E+11				
*	*				
*	*				
2.4000E-04	4.3723E+08	Appendix F - 98			
3.0000E-04	2.5326E+06	•••			

