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Explicit finite element perfectly matched layer for transient
three-dimensional elastic waves
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SUMMARY

The use of a perfectly matched layer (PML) model is an efficient approach toward the bounded-domain
modelling of wave propagation on unbounded domains. This paper formulates a three-dimensional PML
for elastic waves by building upon previous work by the author and implements it in a displacement-based
finite element setting. The novel contribution of this paper over the previous work is in making this
finite element implementation suitable for explicit time integration, thus making it practicable for use in
large-scale three-dimensional dynamic analyses. An efficient method of calculating the strain terms in the
PML is developed in order to take advantage of the lack of the overhead of solving equations at each
time step. The PML formulation is studied and validated first for a semi-infinite bar and then for the
classical soil–structure interaction problems of a square flexible footing on a (i) half-space, (ii) layer on
a half-space and (iii) layer on a rigid base. Numerical results for these problems demonstrate that the
PML models produce highly accurate results with small bounded domains and at low computational cost
and that these models are long-time stable, with critical time step sizes similar to those of corresponding
fully elastic models. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling wave propagation on unbounded domains is crucial in many fields of science and
engineering, and typically the complexity of the problem precludes analytical solutions and compels
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a numerical approach [1, 2]. Of the many different numerical models for unbounded domains, local
boundary conditions for absorbing outgoing waves [3–5] have often proved popular over rigorous
non-local ones [6–9] because of their wider applicability, relative ease of implementation and low
intrinsic computational cost, even if lower-order boundaries typically need an extended bounded
domain to achieve a desired accuracy. For these reasons, recent research on local boundaries has
flowed toward formulating practical higher-order boundaries that approach the accuracy of rigorous
boundaries at a significantly lower computational cost [10–14].

An ideal absorbing boundary would be local in both space and time, computationally inexpensive,
easy to implement, and of course robust and accurate. A promising candidate is the perfectly
matched layer (PML) model, which was originally developed for electromagnetic waves [15, 16]
and is now the method of choice for that community [17]. The PML approach is applicable
to any linear wave equation [18] and PMLs have been formulated and studied for other wave
equations [19–23] as well, including elastic waves [24–42]. It has been demonstrated that PMLs
for elastic waves produce highly accurate results at low computational cost [35, 36].

A PML must be formulated with certain practical considerations in mind if it is to be widely
adopted and used outside of in-house research software. Because of its intrinsic ability to model arbi-
trary and complex geometries and materials with relative ease, the finite element method [43–45]
has become the method of choice for modelling solid mechanics and elasticity problems, and
existing software for finite element modelling, analysis and visualization are predominantly geared
toward the displacement-based finite element method. It is therefore pragmatic to formulate the
PML in terms of displacement-based finite elements, because the object of interest in the analysis
is not the PML itself, but what it bounds, which may be a domain with non-linear material and
complex geometry [46, 47]; the PML merely serves to model the rest of the world [1]. Further-
more, it is imperative that the PML allows explicit time integration, because it is impractical
to solve large systems of equations—from e.g. three-dimensional problems—at each time step.
Most existing formulations of PMLs for transient elastic waves [24–30, 32–34, 37, 38, 40–42] use
explicit time integration, but either with a finite-difference scheme or with a finite-difference-
motivated split-field formulation in a finite element setting, with the split fields visible outside of
the element.

The objective of this paper is to present a PML formulation and its displacement-based finite
element implementation with explicit time integration for three-dimensional elastic waves. The
formulation presented here extends previous work by the author [36], which developed a time-
domain PML for two-dimensional elastic waves using displacement-based finite elements with
implicit time integration, starting from a core frequency-domain PML [35] valid for both two- and
three-dimensional elastic waves. The development parallels the one for the two-dimensional PML:
the three-dimensional frequency-domain PML equations from Reference [35] are first transformed
into the time domain by a special choice of the coordinate-stretching functions, and then these
time-domain equations are made amenable to numerical solution by a straightforward finite element
approach, with some special considerations for explicit integration. The viability of using explicit
integration with PML is first investigated by studying (a) the effect of PML on the critical time
step size, and (b) the effect of matrix lumping in the PML on the accuracy of results and on the
critical time step size, in the context of a model semi-infinite bar. The PML formulation is then
validated by modelling the classical soil–structure interaction problems of a square flexible footing
on a (i) half-space, (ii) layer on a half-space and (iii) layer on a rigid base. This paper presents
only a brief description of the concept of a PML because detailed development and derivations
have been presented earlier [35, 36, 48].
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2. FORMULATION OF THE PML

2.1. Brief description

A PML (Figure 1) is a wave absorbing layer that, when placed adjacent to a truncated model of
an unbounded domain, absorbs and attenuates all waves outgoing from it. The continuum PML
is mathematically formulated—by applying a complex-valued coordinate stretching to the elastic
wave equation—such that waves of all frequencies and all angles of incidence are absorbed into
the PML without any reflection from the interface: the PML is thus ‘perfectly matched’ to the
truncated domain. This novel property of the PML makes it fundamentally different from and
more attractive than traditional local absorbing boundaries [3, 4] or layers [49, 50], even though it
itself is a local formulation. Choosing a particular form of the coordinate stretch—in terms of an
attenuation function—allows the PML to attenuate the wave inside the layer. The attenuated wave
is reflected back toward the truncated domain from the outer boundary of the PML—which may
be a fixed boundary—but the amplitude of the reflected wave re-entering the domain can be made
arbitrarily small by appropriate choice of the attenuation function. Thus, any outgoing wave is
only minimally reflected back, making the PML an appropriate model for the unbounded domain
beyond.

2.2. Frequency-domain equations

Consider a homogeneous isotropic linear elastic medium undergoing small-strain dynamic motion
in the absence of body forces. The displacements u(x, t) of such a medium at point x and time t
are governed by the following equations:

divr= �ü (1a)

r=Ce (1b)

e= 1
2 [gradu+(gradu)T] (1c)

Outgoing wave

Attenuated wave

Truncated domain

PML

Figure 1. A PML adjacent to a truncated domain attenuates and reflects back an outgoing wave.
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where C is the elastic constitutive tensor, given in components Ci jkl by

Ci jkl =(�− 2
3�)�i j�kl +�(�ik� jl +�il� jk) (2)

with � the bulk modulus and � the shear modulus; � is the mass density of the medium, and r
and e are the stress and infinitesimal strain tensors.

The corresponding PML medium is formulated naturally in the frequency domain, by assuming
a harmonic time dependence of the displacement, stress and strain, e.g. u(x, t)= ū(x)exp(i�t), in
Equation (1), where � is the frequency of excitation. Let a three-dimensional space be defined
by the coordinate system {xi }, with respect to an orthonormal basis {ei }. For generality, we will
consider a PML in which waves are attenuated along the coordinate axes {x ′

i }, defined with respect
to another orthonormal basis {e′

i }. The governing frequency-domain equations for such a PML
may be obtained by applying mutually independent nowhere-zero, continuous, complex-valued
stretches �i to each of the coordinates {x ′

i }, to obtain [35, 48]
div(r̄JK) = −�2�Jū (3a)

r̄=Cē (3b)

ē= 1
2 [(grad ū)K+KT(grad ū)T] (3c)

where

J=�1(x
′
1)�2(x

′
2)�3(x

′
3), K′ =diag(1/�1(x

′
1),1/�2(x

′
2),1/�3(x

′
3)) (4)

and K=QK′QT, where Q is the rotation-of-basis matrix with components Qi j :=ei ·e′
j . The above

description of the PML uses the linear elastic constitutive law (Equation (3b)) for the sake of
notational and algebraic simplicity, but in general, the PML can use any linear (visco-)elastic
material model [18, 35, 36].
2.3. Time-domain equations

Equation (3) may be transformed into the time domain by choosing the stretching function to be
of the form (no summation) [36]

�i (x
′
i ) :=[1+ f ei (x ′

i )]− i
f pi (x ′

i )

a0
(5)

using a normalized frequency a0=ksL , where ks=�/cs with cs the shear wave speed and L is
a characteristic length of the system; a convenient choice for L is the depth of the PML. The
functions f ei in Equation (5) serve to attenuate evanescent waves, whereas the functions f pi serve
to attenuate propagating waves. This choice of a coordinate stretch results in a simple dependence
of Equation (3) on the factor i�, thus allowing easy application of the inverse Fourier transform.

For this �i , the stretch tensor K can be expressed as

K=
[
Fe+ 1

i�
Fp

]−1

(6)

where

Fe=QFe′QT, Fp=QFp′QT (7)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:151–176
DOI: 10.1002/nme
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with

Fe′ := diag(1+ f e1 (x ′
1),1+ f e2 (x ′

2),1+ f e3 (x ′
3))

Fp′ := diag( f p1 (x ′
1), f

p
2 (x ′

2), f
p
3 (x ′

3))×cs/L
(8)

The product JK can be expressed as

JK= F̃ee+ 1

i�
F̃ep− 1

�2
F̃pp (9)

where

F̃ee=QF̃ee′QT, F̃ep=QF̃ep′QT, F̃pp=QF̃pp′QT (10)

with

F̃ee′ := diag( f ee23 , f ee13 , f ee12 )

F̃ep′ := diag( f ep23 , f ep13 , f ep12 )×cs/L

F̃pp′ := diag( f pp23 , f pp13 , f pp12 )×(cs/L)2

(11a)

where f eei j , etc. are defined as (no summation)

f eei j := [1+ f ei (x ′
i )][1+ f ej (x

′
j )]

f epi j := [1+ f ei (x ′
i )] f pj (x ′

j )+[1+ f ej (x
′
j )] f pi (x ′

i )

f ppi j := f pi (x ′
i ) f

p
j (x

′
j )

(11b)

Equation (3c) is pre-multiplied by i�K−T and post-multiplied by K−1, Equations (5), (6) and (9)
are substituted into Equation (3), and the inverse Fourier transform is applied to the resultant to
obtain the time-domain equations for the three-dimensional elastic PML:

div(rF̃ee+RF̃ep+R̃F̃pp)=� fMü+�
(cs
L

)
fCu̇+�

(cs
L

)2
fKu+�

(cs
L

)3
fHU (12a)

r=Ce (12b)

FeTėFe+(FpTeFe+FeTeFp)+FpTEFp

= 1
2 [FeT(grad u̇)+(grad u̇)TFe]+ 1

2 [FpT(gradu)+(gradu)TFp] (12c)

where

fM := [1+ f e1 (x ′
1)][1+ f e2 (x ′

2)][1+ f e3 (x ′
3)]

fC := [1+ f e1 (x ′
1)][1+ f e2 (x ′

2)] f p3 (x ′
3)+[1+ f e1 (x ′

1)][1+ f e3 (x ′
3)] f p2 (x ′

2)

+[1+ f e2 (x ′
2)][1+ f e3 (x ′

3)] f p1 (x ′
1) (13)

fK := f p1 (x ′
1) f

p
2 (x ′

2)[1+ f e3 (x ′
3)]+ f p2 (x ′

2) f
p
3 (x ′

3)[1+ f e1 (x ′
1)]+ f p1 (x ′

1) f
p
3 (x ′

3)[1+ f e2 (x ′
2)]

fH := f p1 (x ′
1) f

p
2 (x ′

2) f
p
3 (x ′

3)
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and

U :=
∫ t

0
ud�, E :=

∫ t

0
ed�, R :=

∫ t

0
rd�, R̃ :=

∫ t

0
Rd� (14)

Application of the inverse Fourier transform to obtain U, E and R assumes that ū(�=0)=0,
ē(�=0)=0, r̄(�=0)=0. The presence of the time integrals of r and u in the governing equations,
although unconventional from the continuum mechanics point of view, is not unnatural in a time-
domain implementation of a PML obtained without field splitting [51].

3. FINITE ELEMENT IMPLEMENTATION

3.1. Weak form

Equation (12) is implemented using a standard displacement-based finite element approach [45].
The weak form of Equation (12a) is derived by taking its inner product with an arbitrary weighting
function w residing in an appropriate admissible space and then integrating over the entire PML
domain � using integration by parts and the divergence theorem to obtain

∫
�

� fMw· üd�+
∫

�
�
(cs
L

)
fCw·u̇d�+

∫
�

�
(cs
L

)2
fKw·ud�+

∫
�

�
(cs
L

)3
fHw·Ud�

+
∫

�
ẽee :rd�+

∫
�
ẽep :Rd�+

∫
�
ẽpp : R̃d�=

∫
�
w·(rF̃ee+RF̃ep+R̃F̃pp)nd� (15)

where � :=�� is the boundary of �, and n is the unit outward normal to �. The symmetry of r
and R is used to obtain the last three integrals on the left-hand side, with

ẽee := 1
2 [(gradw)F̃ee+F̃eeT(gradw)T], ẽep := 1

2 [(gradw)F̃ep+F̃epT(gradw)T]
ẽpp := 1

2 [(gradw)F̃pp+F̃ppT(gradw)T]
(16)

3.2. System matrices and internal force

The weak form is first spatially discretized by interpolating u and w elementwise in terms of nodal
quantities using appropriate nodal shape functions. This leads to the system of equations

md̈+c ḋ+kd+KD+pint=pext (17)

where m, c and k are, respectively, the mass, damping and stiffness matrices arising out of the
inertial term on the right-hand side of Equation (3a), d is a vector of nodal displacements, D is
given by

D :=
∫ t

0
dd� (18)

i.e. it is the vector of nodal values of U (cf. Equation (14a)); K is the coefficient matrix associated
with D and also arising from the aforementioned inertial term; pint is a vector of internal force
terms; and pext is a vector of external forces.
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The inertial system matricesm, c, k andKmay be assembled from their respective element-level
constituent matrices:

me =
∫

�e
� fMNTNd�, ce=

∫
�e

�
(cs
L

)
fCNTNd�

ke =
∫

�e
�
(cs
L

)2
fKNTNd�, Ke=

∫
�e

�
(cs
L

)3
fHNTNd�

(19)

where N is the array of element-level nodal shape functions:

N=[N1I N2I · · · N8I] (20)

e.g. for an 8-node brick, where I is the 3×3 identity matrix. However, for facilitating explicit
time integration, these matrices are lumped by assigning to each diagonal entry the sum of all the
entries in its row, to get

me =
∫

�e
� fMNd d�, ce=

∫
�e

�
(cs
L

)
fCNd d�

ke =
∫

�e
�
(cs
L

)2
fKNd d�, Ke=

∫
�e

�
(cs
L

)3
fHNd d�

(21)

where

Nd =diag(N11,N21, . . . ,N81) with 1 :=[1,1,1] (22)

It is necessary to lump all the inertial matrices; lumping only the mass matrix, the minimum
requirement for explicit integration, may lead to strong long-time instabilities in the system. To
obtain a displacement-based formulation, the terms c ḋ, kd and KD in Equation (17) are computed
at the element level using Equation (21), and then assembled into the global force vector.

The element-level internal force term is given by

peint=
∫

�e
B̃eeTr̂d�+

∫
�e

B̃epTR̂d�+
∫

�e
B̃ppT ˆ̃Rd� (23)

where B̃ee is given in terms of its nodal submatrices as

B̃ee
I :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ñ ee
I1

Ñ ee
I2

Ñ ee
I3

Ñ ee
I2 Ñ ee

I1

Ñ ee
I3 Ñ ee

I1

Ñ ee
I3 Ñ ee

I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

retaining the sparsity of the standard finite element compatibility matrix, and B̃ep and B̃pp are
defined similarly, but with Ñ ee

I i replaced by Ñ ep
I i and Ñ pp

I i , respectively, where Ñ
ee
I i , etc. are defined as

Ñ ee
I i := F̃ee

i j NI, j , Ñ ep
I i := F̃ep

i j NI, j , Ñ pp
I i := F̃pp

i j NI, j (25)
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Furthermore,

r̂ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11

�22

�33

�12

�13

�23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

the vector form of r, with R̂ the time integral of r̂, and ˆ̃R that of R̂. Because the PML is an
unphysical medium, the symmetry of r, inherent in the representation in Equation (26), follows
from the minor symmetry of C, and not from the balance of angular momentum. The attenuation
functions f ei and f pi are defined globally on the PML domain, not elementwise. It is conveniently
assumed that there is no contribution to pext from a free boundary of the PML.

The element integrals in Equations (21) and (23) are computed using an eight-point Gauss
quadrature [45]. The possibility of reducing computational cost by using a single-point quadrature
with hourglass control [44] has been explored in recent work [41], with the hourglass modes of an
elastic element being used as hourglass modes for the PML element. A rational approach would
likely prove difficult, because the PML system is intrinsically a non-classically damped system,
and the stiffness and damping matrices of each element are unsymmetric and depend on its position
as well as on the time step [36].

3.3. Time discretization

Integration of the equations of motion (Equation (17)) using the central-difference explicit scheme
requires calculation of the total internal force at time tn , assuming that the displacements have
been calculated at time tn and velocities at time tn−1/2 [44].

The time integral of the displacement D is discretized as

Dn =Dn−1+dn�t (27)

where �t= tn− tn−1. Note that D is required only where Ke �=0, i.e. from Equation (21), wherever
fH �=0. From Equation (13), it can be seen that this holds only in the corner regions of the PML,
where waves are attenuated in all three coordinate directions. Thus, Dn needs to be stored and
updated only in the corner regions.

The element-level internal force term peint,n may be computed from r̂n , R̂n and ˆ̃Rn using
Equation (23), with

R̂n = R̂n−1+ r̂n�t, ˆ̃Rn = ˆ̃Rn−1+R̂n�t (28)

where r̂n is computed using Equation (12b) as

r̂n =Dên (29)
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with

D :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�+4�/3 �−2�/3 �−2�/3

�−2�/3 �+4�/3 �−2�/3

�−2�/3 �−2�/3 �+4�/3

�

�

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ê :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	11

	22

	33

2	12

2	13

2	23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where ên , the vector form of en , is to be computed from a time discretization of Equation (12c),
as discussed in the following section.

3.4. Efficient computation of strain terms

Because an explicit time integration scheme does not have the overhead of solving a system of
equations, it is crucial to compute the internal force as efficiently as possible. Toward this goal,
the strain terms are computed from Equation (12c) by transforming into the PML basis {e′

i }, which
diagonalizes matrices Fe and Fp. The approximations

ė(tn)≈ en−en−1

�t
, E(tn)≈En−1+en�t (30)

are used in Equation (12c) to obtain

en�t = 1

2
[FεT(grad u̇|n−1/2)Fı +FıT(grad u̇|n−1/2)

TFε]

+ 1

2
[F
T(gradun)Fı +FıT(gradun)TF
]+ 1

�t
FεTen−1Fε−F
TEn−1F
 (31)

where

Fı :=
[
Fe

�t
+Fp

]−1

, Fε :=FeFı , F
 :=FpFı (32)

Transforming Equation (31) into the PML basis {e′
i } gives

e′n�t = 1

2
[Fε′QT(grad u̇|n−1/2)QFı ′+Fı ′QT(grad u̇|n−1/2)

TQFε′]

+ 1

2
[F
′QT(gradun)QFı ′+Fı ′QT(gradun)TQF
′]

+ 1

�t
Fε′e′n−1F

ε′−F
′E′
n−1F


′ (33)

where the primed tensors are given by, e.g. e′n =QTenQ. Note that tensors Fε′, F
′ and Fı ′ are
diagonal tensors.

The quantity QT(gradu)Q in Equation (33)—dropping the time step subscript for ease of
notation—is in fact the displacement gradient in the PML basis, which can be checked by computing
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it using indices: if the displacement u is interpolated as uk =NI d I
k , where NI is the shape function

value for node I , and d I
k is the displacement of node I in the direction ei , then

QT(gradu)Q≡u′
i, j =d I ′

i N ′
I, j with d I ′

i :=Qkid
I
k , N ′

I, j :=Ql j NI,l (34)

where d I ′
i is the displacement in the direction e′

i at node I , obtained by transforming d I
k into the

PML basis and N ′
I, j is the gradient of NI in the direction e′

j .
Upon rewriting the velocity terms in Equation (33) in a similar manner, e′n may be obtained in

components as (no summation)

(	′i j |n)�t = 1

2
[Fε′

i (v′
i, j |n−1/2)F

ı ′
j +Fı ′

i (v′
j,i |n−1/2)F

ε′
j ]

+ 1

2
[F
′

i (u′
i, j |n)Fı ′

j +Fı ′
i (u′

j,i |n)F
′
j ]

+ 1

�t
Fε′
i (	′i j |n−1)F

ε′
j −F
′

i (E ′
i j |n−1)F


′
j (35)

where v′
i, j is the velocity gradient in the PML basis; Fε′

i is the i th diagonal element of Fε′, and
similarly for F
′

i and Fı ′
i . The strain en in the global coordinates may be obtained by transforming

e′n back:

en =Qe′nQT (36)

3.5. Summary of element calculations

This profusion of equations above is summarized below in an element algorithm.
Initial mass computation. Compute the diagonal element mass matrix me using Equation (21),

with fM defined in Equation (13), and assemble into the global mass matrix.
Element force computation. Compute the internal element force peint,n at time step tn as follows:

1. Compute displacement and velocity gradients in the PML basis using Equation (34).
2. Compute the strain e′n in the PML basis using Equation (35) and transform to global coor-

dinates using Equation (36).

3. Compute the stress r̂n using Equation (29), and the stress time integrals R̂n and ˆ̃Rn from
Equation (28).

4. Compute the internal force peint,n using Equation (23).

Compute the total internal force as follows:

1. Compute the diagonal matrices ce, ke, Ke using Equation (21), with fC, fK and fH given
by Equation (13). Matrix Ke is computed only in the corner regions of the PML model.

2. In the corner regions of the model, compute the time integral of displacement Dn using
Equation (27).

3. Add the force term (Equation (17))

ceḋn−1/2+kedn+KeDn

to peint,n to get the total internal force. The last term in the above expression is non-zero only
in the corner regions of the PML model.
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4. EVALUATION OF EXPLICIT INTEGRATION WITH PML

In order to successfully use an explicit integration scheme with the PML model, two key issues
need to be evaluated: (a) the effect of PML on the critical time step size and (b) the effect of
lumping of the PML matrices in Equation (19) on the accuracy of results. Additionally, we can
also evaluate the effect of lumping on the critical time step size. Because the complexity of the
PML equations precludes an analytical evaluation in this paper, we resort to a numerical evaluation
in the context of a bar of brick elements, which is analogous to the one-dimensional systems
commonly used in the analytical evaluation of stability and accuracy.

Consider a semi-infinite elastic bar with a square cross section of width b (Figure 2(a)), with
shear modulus �, mass density � and the Poisson ratio �, subjected to a uniform force at the free
end. The time-domain response of this system is studied by applying the force either longitudinally
along the axis of the bar—thus simulating P-waves—or transverse to it, thus simulating S-waves,
and recording the displacement of the tip in the corresponding direction. In the latter case, the
displacements of the bar along its axis are constrained in order to eliminate the beam bending
modes, which are not supported by the PML model. The time variation of the force is given by a
time-limited cosine wave bookended by cosine half-cycles and is characterized by its duration td
and its dominant forcing frequency �f. A typical waveform and its Fourier transform are shown
in Figure 3, and a detailed description of the waveform is given in Reference [36].

This bar is modelled using the PML model shown in Figure 2(b), discretized using eight-noded
bricks, with one element across the cross section of the bar, and enough elements along the
length of bar to adequately model the wave propagation, thus evoking a one-dimensional system.
The attenuation functions within the PML (cf. Equation (5)) are chosen as f e1 = f p1 = f1, and
f e2 = f p2 = f e3 = f p3 ≡0, with f1 chosen as [35, 36]

f1(x1) := f0

(
x1−Le

LP

)
(37)

An extended mesh model—fully elastic and extending up to 25b from the free end, with the same
mesh density as the PML model—is used to provide benchmark results for assessing the accuracy
of the results from the PML model.

(a) (b)

Figure 2. (a) Semi-infinite elastic bar subjected to a uniform force at the free end and
(b) a PML model fixed at the outer boundary.
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Figure 3. Plot of typical (a) applied force p(t) with td=20 and (b) amplitude of
its Fourier transform p̄(�), with �f=2.

Table I. Comparison of critical time step sizes for three choices of lumping of inertial matrices in the
PML model of a semi-infinite bar: b=0.1; Le =0.2, LP =0.8; f0=10; td=10, �f=3.0.

Lumped Consistent Intermediate

Model Longitudinal Transverse Longitudinal Transverse Longitudinal Transverse

Elastic 0.04865 0.05009 0.02582 0.02586 —
PML 0.04871 0.04921 0.02606 0.02632 Unstable 0.04958

The effect of the PML on the critical time step size is considered first by comparing the critical
time step size of the PML model with that of a fully elastic model of the same size, i.e. one where
the PML elements have been replaced with elastic elements. The critical time step size for either
model is determined by carrying out the analysis with different time step sizes and converging
upon the maximum step size for which we get stable results. Three variants of the PML model
are considered: (a) all inertial matrices lumped (Equation (21)), (b) all inertial matrices consistent
(Equation (19)) and (c) an intermediate formulation where only the mass matrix is lumped and
the other inertial matrices are consistent.

Table I shows the critical time step sizes for both the elastic and the PML models, for both
lumped and consistent matrices, as well as for the intermediate formulation for the PML. It is seen
that for both the lumped and the consistent formulations, the critical time step size required by
the PML model is approximately equal to that of the elastic model. The critical time step required
for the intermediate formulation under transverse excitation is also similar to that required for the
lumped formulation. However, for longitudinal excitation, the intermediate formulation exhibits a
strong long-time instability in the free-vibration phase irrespective of the time step size.

This demonstrates that PML elements with either fully lumped or fully consistent matrices do
not have any significant effect on the critical time step size for the corresponding elastic model.
Furthermore, the PML elements exhibit behavior well known for elastic elements: consistent
matrices yield smaller critical time step sizes than do lumped matrices [45]. This observation allows
the speculation that for the intermediate formulation under longitudinal excitation—where the bar
is unconstrained except at one end—the specific combination of lumped and consistent matrices
reduces the critical time step size to an unreasonably small value. The longitudinal constraint
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Figure 4. Tip displacements of a semi-infinite bar due to applied forces: longitudinal displace-
ments due to longitudinal excitation; transverse displacements due to transverse excitation; b=0.1;

Le =0.2, LP =0.8; f0=10; td=10, �f=3.0.

Table II. Comparison of relative error in tip displacement of PML model of a semi-infinite bar from
consistent and lumped formulations: b=0.1; Le =0.2, LP =0.8; f0=10; td=10, �f=3.0.

Longitudinal Transverse

Lumped Consistent Lumped Consistent

% error 2.89 1.73 3.71 2.24

imposed upon the bar for transverse excitation allows a stable solution for the intermediate formu-
lation.

The effect of lumping on the accuracy of results is considered next. The error in the PML
solution is computed relative to the benchmark extended mesh solution as

% error := maxn |up(tn)−ue(tn)|
maxn |ue(tn)| ×100 (38)

where ue and up are the tip displacements of the extended mesh model and the PML model,
respectively, at time steps tn . Figure 4 compares the displacements from the consistent and the
lumped formulations of the PML with those from the extended mesh, for both longitudinal and
transverse excitations, and Table II shows the errors from the two formulations.

It is difficult to visually distinguish the results from the two PML models, and both follow the
extended mesh result closely. The computed errors from the lumped formulation are seen to be
slightly larger than those from the consistent formulation, thus appearing to contradict analyses for
elastic elements that posit that lumped masses are well matched with explicit integration, and are
likely to produce more accurate results than consistent masses [45, 52]. It must be remarked that the
error is characterized differently in the two cases: these classical studies of well-matched methods
study the error in the natural frequency of the discrete system, whereas here the amplitude error
is used to assess accuracy. However, because the difference in accuracy of the two formulations is
negligible in practice, it is felt that this discrepancy with earlier analyses does not warrant further
investigation.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:151–176
DOI: 10.1002/nme



164 U. BASU

5. NUMERICAL RESULTS

Numerical results are presented for the classical soil–structure interaction problems of a square
flexible footing on a (i) half-space, (ii) layer on a half-space and (iii) layer on a rigid base.

Figure 5(a) shows a quarter model of a homogeneous isotropic elastic half-space with shear
modulus �, mass density � and the Poisson ratio �, subjected to a uniform force applied over
a square area of half-width b. The time-domain response of this system is studied by applying
the force either vertically or horizontally and recording the displacements in the corresponding
direction at the center and at the corner of the square. The time variation of the force is of the form
shown in Figure 3, characterized by its duration td and its dominant forcing frequency �f [36].

This unbounded domain system is modelled using the PML model shown in Figure 5(b),
discretized using an adequately dense regular mesh of eight-noded bricks. For comparison, the
half-space is also modelled using viscous dashpots [3], wherein the entire domain including the
PML region is taken to be elastic and consistent dashpot elements replace the fixed outer boundary;
thus, the mesh used for the dashpot model is comparable to that used for the PML model. An
extended mesh model, composed entirely of elastic elements in the interior and with the same
mesh density as the PML and the dashpot models, is used to provide benchmark results. This mesh
extends to a distance of 25b downward from the center of the excitation, and laterally to a distance
of 20b for vertical excitation and 25b for horizontal excitation; the dimensions are chosen to ensure
that waves reflected back from the outer boundary—modelled using viscous dashpots—do not
affect the recorded displacements within the duration of the simulation.

PML

Force

(a)

(b)

Half-space: , ,

Force

LP

LP

Le
b

b

Le

Figure 5. (a) Quarter model of a half-space subjected to a uniform force applied over a square area of
half-width b and (b) a PML model fixed at the outer boundary.
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The attenuation functions in the PML (cf. Equation (5)) are chosen as f ei = f pi = fi , with fi
now chosen to be a monomial:

fi (xi ) := f0i

(
xi
L Pi

)p

(no summation) (39)

where xi is the distance into the PML, and LPi is the depth of the PML, in the i th direction.
A quadratic monomial (p=2) is typically recommended because, in general, it is expected to
best ameliorate the error due to the finite element discretization [48, 53]; this is in contrast to a
continuum PML, where a linear monomial is optimal [35].

An optimal value of the coefficient f0i may be estimated from a wave-reflection analysis of
a discretized one-dimensional time-harmonic PML [48], by minimizing the expected reflection
coefficient for a white-noise excitation. This work adopts an approach that is similar in spirit, but
more directly applicable to three-dimensional problems: the optimal value of f0i for a given PML
depth—represented by the number of elements through the depth—for both p=1 and p=2, is
found by minimizing the expected error in the response of a canonical three-dimensional PML
model over a range of values of f0i . The canonical PML model is chosen to be the half-space model
presented above, with shear modulus �=1, the Poisson ratio �=0.25 and mass density �=1, with
the PML depth LPi ≡ LP , and the monomial coefficient f0i ≡ f0 the same in all three directions,
subjected to the excitation defined above, and its response characterized by the displacements at
the center and at the corner of the excitation. The expected error is computed as the mean of the
relative maximum error, given by Equation (38) with up and ue now representing the relevant
displacement quantities of the PML and the extended mesh model, respectively. The mean relative
error is obtained by averaging the relative error in the center and corner displacements for both
vertical and horizontal excitations over four different sets of excitation parameters: (a) �f=1.5,
td=10, (b) �f=2.25, td=15, (c) �f=3.0, td=10 and (d) �f=3.75, td=15.

Figure 6 compares the minimum expected relative errors for p=1 and 2 for various depths
of the PML, characterized by nP , the number of elements through the depth of the PML. It is
seen that for a PML more than four elements deep, there is little significant difference in accuracy
between the results for the linear and quadratic attenuation functions; p=2 gives slightly more
accurate results for depths of 4–7 elements, whereas the situation is reversed for depths of 8–12
elements. Based on these results, the numerical examples in this paper use PMLs that are eight
elements deep, with the corresponding minimizing coefficient value of f0=9.0 and p=1.

Figure 7 compares the displacements from the PML model and the dashpot model with those
from the extended mesh, and Table III compares the relative error in the displacements computed
from the two models. Note that the PML and the dashpot models are small: the PML starts at
a distance of 0.2b from the excitation and is only 0.8b deep. The results from the PML model
are visually indistinguishable from the extended mesh results, even though the domain is small
enough for the dashpots to reflect waves back early in the simulation, as manifested in the higher
response amplitudes and larger errors of the results from the dashpot model.

The effect of lumping of the PML matrices and the effect of PML on the critical time step
size were also studied. The time step size required for stability of a corresponding fully elastic
model also served as a stable time step for the PML model. Use of a consistent formulation led
to a negligible decrease in the accuracy of results but a considerably reduced critical time step
size. Use of the intermediate lumped formulation resulted in a strong long-time instability in the
free-vibration phase even for very small time step sizes.
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Figure 6. Minimum expected relative error in displacements for different numbers of elements nP through
the depth of the PML in the canonical half-space PML model, for linear and quadratic attenuation
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Figure 7. Displacements on the surface of a half-space due to applied forces: vertical displace-
ments due to vertical excitation; horizontal displacements due to horizontal excitation; b=1;
Le =0.2b, LP =0.8b; �=1, �=0.25, �=1; td=10, �f=3.00. The large errors due to the

dashpot model highlight the small size of the domain.

The efficacy of the PML model may be gauged by comparing the computational costs of the
three models, as presented in Table IV. Both the PML and the dashpot models have the same
number of elements, which is significantly smaller than the number of elements in the extended
mesh. However, the time step size required for stability of the dashpot model is smaller than that of
a fully elastic model, because the dashpots introduce material damping into the system. Therefore,
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Table III. Relative error in displacements on the surface of a half-space due to applied forces: b=1;
Le =0.2b, LP =0.8b; �=1, �=0.25, �=1; td=10, �f=3.00.

Center displacement Corner displacement

Excitation PML Dashpot PML Dashpot

% error Vertical 4.98 45.67 6.07 85.31
Horizontal 5.79 21.76 5.04 53.24

The large errors due to the dashpot model highlight the small size of the domain.

Table IV. Comparison of computational costs of three models for a half-space.

Model No. of elements No. of time steps Wall-clock time

PML 4000 614 30.2 s

Dashpots 4000 876 14.4 s (1-point elastic)
20.6 s (8-point elastic)

Extended mesh 10 140 000 (V) 878 35.1 proc-hours (V)
15 812 500 (H) 59.3 proc-hours (H)

The dashpot model was discretized using both under-integrated (1-point elastic) and fully integrated (8-point
elastic) elastic elements. The mesh size for the extended mesh was different for vertical (V) and horizontal
(H) excitations.

the dashpot model required more time steps to complete than the PML model. In order to obtain
a realistic assessment of the computational cost, the dashpot model, as well as the elastic region
in the PML model, was discretized with under-integrated elements with hourglass control [44]
as well as with fully integrated elements; the results from the two formulations were of similar
accuracy. The use of under-integrated elastic elements within the PML model did not result in any
noticeable reduction in computational cost because the elastic region is much smaller than the PML
region. Results for the PML and dashpot models were obtained using the explicit finite element
code LS-DYNA [54] on a desktop workstation with a 2.6GHz AMD Opteron processor, whereas
the extended mesh results were obtained using a specially optimized and parallelized in-house
code running on 16 processors of a 32-processor node of 1.7GHz IBM Power4+ processors at
the San Diego Supercomputer Center. Although the differing systems make a direct comparison
of the wall-clock times difficult, it is remarkable that the PML model achieves the accuracy of
the extended mesh model at a cost comparable to the dashpot model, several orders of magnitude
smaller than the cost of the extended mesh.

Figure 8(a) shows a quarter model of a layer on a half-space, with a layer of depth d with
shear modulus �l , supported by a half-space of shear modulus �h , and with the Poisson ratio �
and mass density � in both domains, and Figure 8(b) shows a corresponding PML model. Note
that the PML model must incorporate the interface between the layer and the half-space because it
is a physical feature that generates wave reflections in the physical unbounded domain model; the
PML is meant to eliminate only spurious reflections from the outer boundary. The elastic moduli
for the PMLs employed for the layer and the half-space are set to the moduli for the corresponding
elastic media. A viscous dashpot model is also employed for comparison, where the entire domain,
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Figure 8. (a) Quarter model of a layer on a half-space subjected to a uniform force applied over a square
area of half-width b and (b) a PML model fixed at the outer boundary.

including the PML region, is taken to be elastic, and consistent dashpots model the outer boundary.
An extended mesh elastic model with viscous dashpots at the outer boundary—extending laterally
to a distance of 20b from the center of the excitation for vertical excitation and 25b for horizontal,
and downward to 35b from the base of the layer—is used as a benchmark model.

Figure 9 shows the displacements computed from the three models, and Table V compares the
errors due to the PML and the dashpot models. The results from the PML model are virtually
indistinguishable from those from the extended mesh, even though the domain is small enough
for the dashpot model to generate spurious reflections. The computational cost of the PML model,
as shown in Table VI, is of the same order of magnitude as that of the dashpot model, but an
insignificant fraction of the cost of the extended mesh model. The critical time step size for the
elastic elements was adequate as a stable time step size for the PML elements. Using the consistent
formulation of the PML had little effect on the accuracy of results, but reduced the critical time
step size considerably. The intermediate lumped formulation showed a strong long-time instability
in the free-vibration phase even for very small time step sizes.

Figure 10(a) shows a quarter-model of a layer of depth d on a rigid base, with shear modulus �,
mass density � and the Poisson ratio �, and Figure 10(b) shows its PML model. The corresponding
viscous dashpot model is entirely elastic, with consistent dashpots replacing the fixed lateral
boundaries. The benchmark extended mesh model extends laterally to 22b from the center of the
excitation for vertical excitation and 25b for horizontal. Figure 11 shows that the PML model
produces accurate results even with a small bounded domain where the dashpot model generates
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Figure 9. Displacements on the surface of a layer on a half-space due to applied forces: vertical displace-
ments due to vertical excitation; horizontal displacements due to horizontal excitation; b=1, d=b;
Le =0.2b, LP =0.8b; �l =1, �h =2�l , �=0.25, �=1; td=15, �f=2.25. The errors due to the dashpot

model highlight the small size of the domain.

Table V. Relative error in displacements on the surface of a layer on a half-space due to applied forces:
b=1, d=b; Le =0.2b, LP =0.8b; �l =1, �h =2�l , �=0.25, �=1; td=15, �f=2.25.

Center displacement Corner displacement

Excitation PML Dashpot PML Dashpot

% error Vertical 6.79 27.88 8.29 51.84
Horizontal 6.51 20.19 9.75 41.83

The errors due to the dashpot model highlight the small size of the domain.

spurious reflections. The PML model is able to follow the extended mesh result in the free-
vibration phase of the displacements from horizontal excitation—in the direction of unboundedness
of the domain—when the results from the dashpot model are entirely inadequate; this is reflected
in the comparison in Table VII of errors due to either model. The slight phase difference between
the PML and the extended mesh results in the free-vibration phase may be due to evanescent
waves not being entirely attenuated [36]. Table VIII shows that the PML model is able to achieve
this accuracy at a cost that is of the same order of magnitude as that of the dashpot model, and
at a small fraction of the cost of the extended mesh model. The effect of lumping of the PML
matrices and the effect of PML on the critical time step size were similar to that observed for the
half-space and layer-on-half-space models.
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Table VI. Comparison of computational costs of three models for a layer on a half-space.

Model No. of elements No. of time steps Wall-clock time

PML 8000 867 65.6 s (1-point elastic)
67.9 s (8-point elastic)

Dashpots 8000 1237 15.4 s (1-point elastic)
44.3 s (8-point elastic)

Extended mesh 14 584 000 (V) 1256 116.7 proc-hours (V)
22 742 500 (H) 170.5 proc-hours (H)

The dashpot model, as well as the elastic region in the PML model, was discretized using both under-integrated
(1-point elastic) and fully integrated (8-point elastic) elastic elements. The mesh size for the extended mesh
was different for vertical (V) and horizontal (H) excitations.

PML
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(b)

Figure 10. (a) Quarter model of a layer on a rigid base subjected to a uniform force applied over a square
area of half-width b and (b) a PML model fixed at the outer boundary.

6. CONCLUSIONS

This paper has presented a three-dimensional PML for transient elastic waves along with its
displacement-based finite element implementation, by extending previous work by the author [36].
The initial development is similar to the previous work: a core frequency-domain PML [35] is
transformed into the time domain by a convenient choice of the stretching functions, and the time-
domain equations are then implemented straightforwardly in a finite element setting. For notational
convenience, the development employs a linear elastic material, but PMLs can be formulated for
linear visco-elastic materials as well [18, 36].
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Figure 11. Displacements on the surface of a layer on a rigid base due to applied forces: vertical
displacements due to vertical excitation; horizontal displacements due to horizontal excitation; b=1,
d=2b; Le =0.2b, LP =0.8b; �=1, �=0.25, �=1; td=15, �f=2.25. The large errors due to the

dashpot model highlight the small size of the domain.

Table VII. Relative error in displacements on the surface of a layer on a rigid base due to applied forces:
b=1, d=2b; Le =0.2b, LP =0.8b; �=1, �=0.25, �=1; td=15, �f=2.25.

Center displacement Corner displacement

Excitation PML Dashpot PML Dashpot

% error Vertical 6.67 31.81 11.25 56.62
Horizontal 15.00 48.30 30.85 94.86

The large errors due to the dashpot model highlight the small size of the domain.

The novel contribution of this paper over the previous work is in making the displacement-
based PML suitable for explicit time integration, thus making it practicable for use in large-scale
three-dimensional dynamic analyses. The two-dimensional elastic PML in Reference [36] resulted
in an unsymmetric stiffness matrix and employed implicit time integration, thereby incurring the
expense of solving unsymmetric equations at each time step. To take advantage of the lack of this
overhead in explicit integration, this paper presents an efficient method for computing the strain
terms in the PML, by exploiting the property that the matrices of the PML attenuation functions
are diagonal in the characteristic basis of the PML.

The viability of using explicit integration with this PML formulation was investigated by
studying (a) the effect of PML on the critical time step size and (b) the effect of lumping of
inertial matrices in the PML on the accuracy of results as well as on the critical time step size,
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Table VIII. Comparison of computational costs of three models for a layer on a rigid base.

Model No. of elements No. of time steps Wall-clock time

PML 8000 614 45.3 s (1-point elastic)
50.5 s (8-point elastic)

Dashpots 8000 828 10.5 s (1-point elastic)
31.9 s (8-point elastic)

Extended mesh 976 800 (V) 812 4.7 proc-hours (V)
1 260 000 (H) 5.9 proc-hours (H)

The dashpot model, as well as the elastic region in the PML model, was discretized using both under-integrated
(1-point elastic) and fully integrated (8-point elastic) elastic elements. The mesh size for the extended mesh
was different for vertical (V) and horizontal (H) excitations.

in the context of a model semi-infinite bar. It was found that the PML does not affect the crit-
ical time step size significantly. The consistent formulation of the PML gave results that were
marginally more accurate than the lumped formulation; this seemed to go against the conclu-
sion of earlier analyses that lumped matrices are better matched with explicit integration than
are consistent matrices [45, 52]. However, it was felt that the difference in accuracy of the two
formulations was too small to warrant further investigation of this discrepancy with established
results. Furthermore, it was observed that the consistent formulation of the PML yielded signif-
icantly smaller critical time step sizes than the lumped formulation, in keeping with behavior
well known for elastic elements [45]. The intermediate formulation of the PML—where only the
mass matrix is lumped and other inertial matrices are consistent—exhibited a strong long-time
instability in the free-vibration phase under longitudinal excitation irrespective of the time step
size.

The PML formulation was used to model the classical soil–structure interaction problems of
a square flexible footing on a (i) half-space, (ii) layer on a half-space and (iii) layer on a rigid
base. Optimal values of the PML depth and attenuation function were found by minimizing the
error in the response of a canonical half-space PML model over a range of these PML parameters.
Both quadratic and linear attenuation functions were considered, and it was found that for a PML
more than four elements deep, there was little significant difference in accuracy between the two.
Based on this study, the PMLs for these classical problems were chosen to be eight elements
deep, with the corresponding optimal attenuation functions. The PML models gave highly accurate
results, even though the domains were small enough that comparably sized viscous dashpot models
generated spurious wave reflections early on in the duration of the simulation. The computational
cost of the PML models was comparable to that of the dashpot models, but was an insignificant
fraction of the cost of the corresponding extended mesh models used as benchmarks.

The effect of lumping of the PML matrices and the effect of PML on the critical time step size
for these classical problems were similar to those observed for the semi-infinite bar. It was found
that the critical time step size for elastic elements served as a stable time step size for the PML
elements and that using a consistent formulation of the PML had a negligible effect on the accuracy
of results but reduced the critical time step size significantly. The intermediate formulation of
the PML exhibited a strong long-time instability in the free-vibration phase even for very small
time steps. Because consistent matrices reduce the critical time step size, it is speculated that
this instability arises because the specific combination of lumped and consistent matrices reduce
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the critical step size to an unreasonably small value; if correct, this observation could provide an
alternate explanation of the long-time instability observed in some PML formulations [55, 56].

It has been verified numerically that this PML model is stable not only in the long time in free
vibration, but even if it is excited over a long duration. Although this formulation uses an isotropic
material, its long-time stability suggests that it may be worthwhile to investigate its stability in
the presence of an anisotropic elastic material, where other PML formulations have exhibited
instabilities [31, 40].

NOMENCLATURE

a0 non-dimensional frequency
b half-width of footing
B̃ee, B̃ep, B̃pp compatibility matrices
cs shear wave speed
ce, c element-level and global inertial damping matrices
C, Ci jkl material stiffness tensor
d depth of the layer
d nodal displacements
D material moduli matrix
D time integral of d
{ei }, {e′

i } standard orthonormal basis and PML basis
E, Ê time integral of e, ê
f0 coefficient of monomial in f ei , f pi
fM, fC, fK, fH see Equation (13)
f ei , f pi attenuation functions
Fe, Fp, F̃ee, F̃ep, F̃pp attenuation tensors; Equations (7), (10)
i=√−1 unit imaginary number
J Jacobian determinant of coordinate stretch
ke, k element-level and global inertial stiffness matrices
Ke, K element-level and global inertial coefficient matrices
L characteristic length of the system
Le depth of the elastic region
LP , LPi depth of PML
me, m element-level and global mass matrices
nP number of elements through depth of PML
n unit normal to a surface
N, Nd , NI (arrays of) nodal shape functions
peint, pint, pext internal and external force terms
Q, Qi j rotation-of-basis matrix
td duration of applied force
u displacements
U time integral of u
w arbitrary weighting function in a weak form
xi , x ′

i , x coordinates
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Greek symbols

�i j Kronecker delta
�t time step size
	i j , e, ê strain quantities in global basis
	′i j , e′ strain quantities in PML basis
� bulk modulus
�i complex coordinate-stretching function
K stretch tensor
� shear modulus
� the Poisson ratio
� mass density
r, r̂ stress quantities
R, R̂ time integral of r, r̂

R̃, ˆ̃R time integral of R, R̂
� excitation frequency
�f dominant forcing frequency of applied force
� entire PML domain
�e element domain
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