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Abstract

One approach to the numerical solution of a wave equation on an unbounded domain uses a bounded domain
surrounded by an absorbing boundary or layer that absorbs waves propagating outwards from the bounded domain.
A perfectly matched layer (PML) is an unphysical absorbing layer model for linear wave equations that absorbs,
almost perfectly, outgoing waves of all non-tangential angles-of-incidence and of all non-zero frequencies. This paper
develops the PML concept for time-harmonic elastodynamics in Cartesian coordinates, utilising insights obtained
with electromagnetics PMLs, and presents a novel displacement-based, symmetric finite-element implementation of
the PML for time-harmonic plane-strain or three-dimensional motion. The PML concept is illustrated through the
example of a one-dimensional rod on elastic foundation and through the anti-plane motion of a two-dimensional
continuum. The concept is explored in detail through analytical and numerical results from a PML model of the
semi-infinite rod on elastic foundation, and through numerical results for the anti-plane motion of a semi-infinite
layer on a rigid base. Numerical results are presented for the classical soil-structure interaction problems of a rigid
strip-footing on a (i) half-plane, (ii) layer on a half-plane, and (iii) layer on a rigid base. The analytical and numerical
results obtained for these canonical problems demonstrate the high accuracy achievable by PML models even with
small bounded domains.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solution of wave equations over unbounded domains is of interest in various fields of both science and
engineering [1,2]. In particular, solution of the elastodynamic wave equation on an unbounded domain
finds applications in soil-structure interaction analysis [3] and in the simulation of earthquake ground
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Nomenclature

ap non-dimensional frequency
A cross-sectional area of elastic rod
b half-width of footing

B;, B; nodal compatibility matrices
c damping coefficient of S, S
q wave velocity in elastic rod
Cp P-wave velocity

Cs S- or shear-wave velocity

Cy Love-wave velocity

C, C;u material stiffness tensor

d depth of layer

D material moduli matrix

{e;} standard orthonormal basis
E, E*  Young’s modulus
1, f, fi, f5, fP attenuation function(s)

fm see Eq. (59)

F,F,F, F,F integrals of 1, f, f., /¢, fP

F; flexibility coefficient of rigid strip-footing, with i,j € {V,H,R}
F~ dynamic flexibility matrix of rigid strip-footing

H (in subscript) horizontal DOF of rigid strip-footing

i=+/—1 unit imaginary number

Im imaginary part of a complex number

I identity matrix

k stiffness coefficient of S, S

kg, k;  static stiffness per unit length of (visco)elastic foundation of rod

kyp, k,, k, wave numbers for P, S, and Love waves
k;, nodal submatrix of element stiffness matrix
L length of bounded medium

Lp depth of PML

mj, nodal submatrix of element mass matrix

n unit normal to a surface

N, N; nodal shape functions

p, pi direction of wave propagation

q direction of particle motion

Q, O0;; rotation-of-basis matrix

o characteristic length quantity for the rod on elastic foundation
R (in subscript) rocking DOF of rigid strip-footing

IR|, |Rppls |Rsp| amplitude(s) of wave(s) reflected from the PML

Re real part of a complex number

S non-dimensional dynamic stiffness of bounded rod

S~ non-dimensional dynamic stiffness of unbounded rod

S component of dynamic stiffness matrix of layer on rigid base
S dynamic stiffness matrix of layer on rigid base

u, u;, u displacement(s)
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vV (in subscript) vertical DOF of rigid strip-footing
w, w;, w arbitrary weighting function in weak form

x, x;, x real coordinate(s)

X, X;, X complex stretched coordinate(s)

Greek symbols

0y Kronecker delta

&, &, &, € infinitesimal strain tensor (scalar for one-dimensional and vector for anti-plane)
hysteretic damping ratio for viscoelastic medium

angle of incidence of outgoing wave on perfectly matched layer (PML)
bulk modulus

complex coordinate stretching function(s)

left stretch tensor

right stretch tensor

shear modulus

Poisson’s ratio

mass density

, 0, 05, 6 stress tensor (scalar for 1D and vector for anti-plane)

excitation frequency

entire bounded domain used for computation

element domain

BD elastic domain

Qpm perfectly matched layer

Qou unbounded perfectly matched medium (PMM)
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motion [4], since the ground beneath a structure or a geographical area of interest can be rationally
modelled as an unbounded elastic domain.

Solution of a wave equation in an unbounded domain requires the imposition of a radiation condition
in any unbounded direction: waves should radiate outwards from a source—a vibrating structure, for
example—toward an unbounded direction, without any spurious wave motion in the reverse direction.
Irregularities in the geometry of the domain or in the physical material often compel a numerical solution
of the problem, thus requiring the use of a bounded domain, along with an artificial boundary that
absorbs outgoing waves, for the modelling of the unbounded domain. Typical absorbing boundaries
belong to one of two broad categories: (1) rigorous, non-local boundaries [5-8], or (2) approximate, local
boundaries [9-11]. The various absorbing boundaries, local or not, are not without drawbacks. The
rigorous boundaries are highly accurate and thus may be used with a small bounded domain. However,
the low computational cost due to the small size of the domain may be negated by the expense due to not
only the non-local nature of such boundaries but also the computation of the boundary terms. Moreover,
rigorous boundaries may not be available for all problems of interest. The approximate boundaries,
although local and cheaply computed, may require large bounded domains for satisfactory accuracy,
since typically they absorb incident waves well only over a small range of angles-of-incidence. Moreover,
high-order approximate boundaries require the use of special finite elements [12,13] for proper imple-
mentation. Various absorbing layer models [14-16] surrounding a bounded elastic domain have also been
proposed as alternatives to absorbing boundaries; however, obtaining satisfactory performance from such
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models may require careful formulation and implementation, since the change in material properties from
the elastic medium to the absorbing layer causes reflection of incident waves [17]. Also notable are special
absorbing boundaries such as the superposition boundary [18] and infinite elements [19,20]; although
based on interesting ideas, use of these boundaries may prove to be cumbersome and may be compu-
tationally expensive.

A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that absorbs,
almost perfectly, propagating waves of all non-tangential angles-of-incidence and of all non-zero fre-
quencies. The concept of a PML was first introduced by Bérenger [21] in the context of electromagnetic
waves. More significantly, Chew and Weedon [22] showed — almost immediately — that the Bérenger
PML equations arise from a complex-valued coordinate stretching in the electromagnetic wave equations.
Since the introduction of these seminal ideas, extensive research has been conducted on various aspects
of PMLs for electromagnetic waves; this is mentioned without references: a review of electromagnet-
ics PMLs is beyond the scope of this paper. PMLs have been formulated for other linear wave equations
too: the scalar wave equation or the Helmholtz equation [23-25], the linearised Euler equations [26],
the wave equation for poroelastic media [27], and, as discussed below, to the elastodynamic wave
equation.

To the authors’ best knowledge, the idea that PMLs could be formulated for the elastodynamic wave
equation was first introduced by Chew and Liu [28]: they used complex-valued coordinate stretching to
obtain the equations governing the PML and presented a proof of the absorptive property of the PML.
Furthermore, they presented a finite-difference-time-domain (FDTD) formulation obtained through field
splitting or an unphysical additive decomposition of the velocity and stress fields. Contemporaneously,
Hastings et al. [29] applied Bérenger’s original split-field formulation of the electromagnetics PML directly
to the P- and S-wave potentials and obtained a two-dimensional FDTD scheme for implementing the
resultant formulation. Liu [30] later applied the coordinate stretching idea to the velocity—stress formula-
tion of the elastodynamic equation to obtain split-field PMLs for time-dependent elastic waves in cylin-
drical and spherical coordinates. Zhang and Ballmann [31] and Collino and Tsogka [32] have also obtained
split-field, time-domain PMLs for the velocity—stress formulation and presented FDTD implementations.
The latter have also implemented the PML using a two-dimensional mixed finite-element (FE) scheme [33]
in which the degrees-of-freedom of each element are the velocity, the shear stress, and split-field compo-
nents of the axial stresses.

The objective of this paper is twofold: (a) develop the concept of a PML in the context of time-har-
monic elastodynamics in Cartesian coordinates, utilising some of the insights obtained in the context of
electromagnetics [34-36], and (b) present a novel displacement-based, symmetric FE implementation of
the PML for time-harmonic plane-strain or three-dimensional motion. The PML concept is illustrated
through the one-dimensional example of a rod on elastic foundation and through the two-dimensional
example of the anti-plane motion of a continuum, governed by the Helmholtz equation. The PMLs for
these two systems are studied through analytical and numerical (FE) results for the dynamic stiffness of a
semi-infinite rod on elastic foundation, and through numerical results for the anti-plane dynamic stiffness
of a semi-infinite layer on rigid base. The PML for plane-strain and three-dimensional motion is pre-
sented next, together with its FE implementation. Numerical results are presented for the classical soil—
structure interaction problems of a rigid strip-footing on a (i) half-plane, (ii) layer on a half-plane, and
(iii) layer on a rigid base.

Tensorial and indicial notation will be used interchangeably in this paper; the summation convention will
be assumed unless an explicit summation is used or it is mentioned otherwise. An italic boldface symbol will
represent a vector, e.g., x, an upright boldface symbol will represent a tensor or its matrix in a particular
orthonormal basis, e.g., D, and a sans-serif boldface symbol will represent a fourth-order tensor, e.g., C; the
corresponding lightface symbols with Roman subscripts will denote components of the tensor, matrix or
vector.
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2. A one-dimensional system
2.1. Semi-infinite rod on elastic foundation

Consider a semi-infinite rod on elastic foundation (Fig. 1), not subjected to any body forces, but sub-
jected to an imposed displacement u, exp(iw?) at the left end (x = 0), and a radiation condition for x — oo,
with o the frequency of excitation. This excitation causes time-harmonic displacements u(x) exp(iwt), which
are governed by the following equations:

do K, 5

A AT TP (la)
o = Fe, (1b)
8—%, (1c)

where ¢ and ¢ are the axial stress and infinitesimal strain in the rod, E is the Young’s modulus of the rod, 4
its cross-sectional area, p its mass density, and k, the static stiffness per unit length of the foundation.

The frequency-response of this system can be expressed in terms of a dimensionless frequency ay =
wry/c1, where rg = \/EA/k, is a characteristic length quantity and ¢; = \/E/p is the wave velocity in the
rod. For ag < 1, Eq. (1) admits rightward- and leftward-evanescent-wave solutions of the form

u(x):exp[—m;o] and u(x):exp[—i— m:—o], (2)

and admits rightward- and leftward-propagating-wave solutions of the form

u(x):exp{—i ag—1;‘—0} and u(x):exp{—&-i\/;g‘—.l:—o} 3)

for ap > 1, with gy = 1 the cut-off frequency of the system; the radiation condition allows only the right-
ward modes in the system. The dynamic stiffness at x = 0, which is the axial force —g4 required in the
positive x-direction at x = 0 to maintain u, = 1, can be obtained using Egs. (1b), (1c), (2a), (3a) as

S*(ag) = K=y/1 — a3, 4)

where K> = \/EAk, is the static stiffness coefficient of the system. The dimensionless dynamic stiffness,
corresponding to K = 1, is defined as

S5 (ap) = /1 — 2. (5)
}—»x EA /
|
"WAA 'va;vww WA

— 0

Fig. 1. Homogeneous (visco)elastic semi-infinite rod on elastic foundation.
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The motion of a viscoelastic system, where material damping is introduced through the correspon-
dence principle [37], is also described by the above equations, but with complex-valued material moduli
E* = E(1 +2i{) and k; = k,(1 + 2i{) in place of the real moduli £ and k,, { being the hysteretic damping
ratio. The introduction of complex moduli results in a complex-valued wave speed ¢; = ¢jv/1 + 2i{ and
complex-valued dimensionless frequency af = ao/+/1 + 2i(.

The solutions for the displacement and dynamic stiffness of the semi-infinite rod are obtained by ana-
lytically solving Eq. (1) on the unbounded domain [0, 00) using appropriate boundary conditions. Nu-
merical solution of this unbounded domain problem requires the solution of Eq. (1) on a bounded domain
augmented by an artificial absorbing boundary or layer; a PML is an absorbing layer model that can be
used towards this purpose.

2.2. Perfectly matched medium

Consider a system of equations of the same form as Eq. (1), but with x replaced by a stretched coordinate
X, defined as [34]

%= /0 ' A(s)ds, (6)

where 4 is a nowhere-zero, continuous, complex-valued coordinate stretching function. By the continuity
of A,

o =), )
which formally implies

d 1 d

_— 8

dx  A(x) dx ®)
Thus this aforementioned system of equations can be defined as

1 do k,
ma—;uffw ou, (9a)
o = Eg, (9b)
1 du
&= m a7 (90)

as a modification of Eq. (1), where the constitutive relation, Eq. (9b), remains the same as for the elastic
medium. A perfectly matched medium (PMM) for a rod on elastic foundation is defined to be a medium
where the field variable u is governed by Eq. (9). The (visco)elastic medium is a special PMM, where
Alx) = L

Eq. (9) is only motivated by, but defined independently of Eq. (8); using the latter to derive the PMM
equations from Eq. (1) would involve issues of complex differentiability, all of which are neatly avoided by
the independent definition of the PMM. The assumption of continuity on / could presumably be dropped,
by considering one-sided derivatives, or possibly even weak derivatives, in Eq. (7); such technical issues are
avoided by this convenient assumption. Note that the assumption of a continuous 4 is not restrictive in the
least: the stretching function is specified a priori, and is not a physical quantity that is intrinsically dis-
continuous.
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As is to be expected from the coordinate-stretching motivation, Eq. (9) admits solutions similar in form
to those in Egs. (2) and (3) admitted by the elastic medium, but with x replaced by x. Evanescent-wave-type

solutions are of the form
_ i ax _ _p*
u(x) = exp [ 1 —gqg; r0‘| and u(x) =exp| +1/1 — &} r0‘| (10)

for ay < 1, and propagating-wave-type solutions are of the form

x| —i2 1% -
u(x)—exp[ W/ aj 1;@] and u(x) = exp

for ap > 1; that these are solutions of Eq. (9) can be shown by utilising the continuity of 1 through Eq. (7).

A special property of these PMM:s is that if two PMMs with different 4 are placed adjacent to each other,
with the functions 4 such that they match at the interface of the two media, then a wave-type motion will
pass through the interface without generating any reflected wave; this is the perfect matching property of the
PMM. Without loss of generality, consider two PMM:s: one is defined on (—o0,0) with A(x) := A"(x), and
the other on [0, 00) with A(x) := A"(x), with the stretching functions such that 1"(0) = 2™(0). These two
PMMs can be considered as only one PMM but with a continuous /4 defined piecewise on (—oc0,0) and
[0, 00); thus, there is no interface, precluding the possibility of the generation of any reflected wave. The
Perfect matching property holds for both solutions in Eq. (11) as well as for those in Eq. (10), i.e., it is
independent of the type of wave, of the direction of propagation, and of the frequency ay.

Another special property of the PMMs is that for suitable choices of 4, the solutions in the PMM take the
form of the corresponding elastic-medium solution but with an imposed spatial attenuation. Consider, for
ap > 1, 4 defined in terms of a real-valued, continuous function f as

+i aé—l%] (11)
0

Ax)=1— i%. (12)
ag—1
Then
_x Fl/n) (13)
ro To a; — 1
where
Fw) = [ 7(&)dé, (14)

0

with & = &/ry and f(&) = f(ro&) = f(&). On substituting for ¥ from Eq. (13) into Eq. (11a), the solution is
obtained as

u(x) = exp[—F(x/ro)] exp[ —iy/a} — li]. (15)
ro

Thus, if F(x/ry) > 0, then u(x) is a rightward propagating wave that is attenuated in that direction, with the

attenuation independent of the frequency due to the choice of A(x); the function " is termed the attenuation

function. Furthermore, for ay < 1, consider / defined as

)= 142 (16)

Vi—a
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then Eq. (10a) is transformed to

() = expl-Fx/rllexp| ~ /1= |, (17)

i.e., an evanescent wave with additional attenuation.

The above choices for the stretching function are merely illustrative choices that exploit prior knowledge
of the solution. A more realistic choice for 2 would be in terms of two non-negative attenuation functions f*
and fP, as

Ax) = [1 +

£0] i) (1)

ao ao

This function does not assume knowledge of the frequency equation of the system, nor does a priori dis-
tinguish between evanescent and propagating waves. This choice for 1 imposes a frequency-dependent
attenuation and a phase change on the rightward propagating wave: Eq. (11a) is transformed into

Fp(x/ro)m exp{im<%+ﬁe(z—o/ro)>} (19)

where F~ and F" are appropriately-defined integrals of /¢ and f®, respectively. Using Eq. (18) imposes an
attenuation and a harmonic mode on evanescent waves: Eq. (10a) transforms to

—F(x/ro) /ai% - 11 exp [iF”(x/ro) ai%_ 1] exp [ —/1- GZ:‘—J . (20)

Thus, /¢ imposes an attenuation on evanescent waves and /P on propagating waves.

u(x) = exp

u(x) = exp

2.3. Perfectly matched layer

These special properties of the PMM can be used to define an absorbing layer adjacent to a bounded
domain such that the layer and the domain together model the unbounded domain.

Consider the system shown in Fig. 2(a): Qpp (:= [0, L]) is the bounded domain governed by Eq. (1), and
Qo (:= (L, 00)) is the unbounded PMM, governed by Eq. (9). The stretch 1 is taken to be of the form in
Eq. (12) for ay > 1 and Eq. (16) for ay < 1, with f chosen such that /(L) = 0. Alternatively, 1 can be chosen
as in Eq. (18) for all aq, with the attenuation functions such that f¢(L) = fP(L) = 0. Since the medium in
Qpp is a special PMM, (4(x) = 1) and since the admissible choices of attenuation functions impose that the
functions /A for the two domains are matched at the interface, all waves propagating outwards from Qpp are

=1L
- ,

| | | ——

/

(a) 5 By
Lp
4 "
t t
(b) Qsp Qpm Q:= Qpp U QpMm

Fig. 2. (a) Perfectly matched medium; (b) Perfectly matched layer, adjacent to the bounded domain for the semi-infinite rod on elastic
foundation.
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completely absorbed into and then attenuated in Qp,,. Thus, the displacements of this system in Qpp are
exactly the same as the displacements of the semi-infinite rod in Qpp.

If the waves are attenuated enough in a finite distance, Qp}, can be terminated with a fixed boundary
condition at that distance without any significant reflection of the waves. Shown in Fig. 2(b), this bounded
PMM Qpy (:= (L,L + Lp]) is termed the PML. If the wave reflection from the fixed boundary is not sig-
nificant, the displacements of the entire bounded system Q (:= Qpp U Qpy) in Qpp should be almost the
same as the displacements of the semi-infinite rod in Qpp.

2.4. Effect of fixed-end termination of the PML

The effect of domain termination in the PMM is studied analytically, first by calculating the amplitude of
waves reflected back from the fixed boundary and then by investigating the effects of L, Lp and f on the
(normalised) dynamic stiffness S(ay) of Q at x = 0.

The reflected-wave amplitude is calculated by considering a PMM defined on [0, Lp] with an imposed
displacement u(Lp) = 0. The stretch is chosen as in Eq. (12) for ap > 1 and as in Eq. (16) for ap < 1. A
rightward propagating wave (ay, > 1) with an unit amplitude as it enters the PML, alongwith a wave re-
flected back from the fixed boundary, can be represented as

el i 1% W
u(x) —exp[ iy/aj lro + Rexp| +14/4a§ 1"01. (21)
Imposing u(Lp) = 0 gives
IR| = exp[—2F (Lp/ro)], (22)

which is the amplitude of the reflected wave as it exits the PML. A similar calculation for evanescent waves
using Eq. (16) shows that |R| in Eq. (22) is the additional attenuation imposed by the PML on the reflected
evanescent wave. This reflection coefficient |R| due to the PML is controlled by the choice of the parameters
f and Lp, independently of the size of the bounded domain to which the PML is adjacent. This suggests that
if displacement and stress quantities near x = 0 for the semi-infinite elastic medium are the quantities of
interest in the analysis, the bounded domain may be restricted to the region of interest, thus lowering the
computational cost, if the parameters of the PML are chosen appropriately.
A choice of 4 as in Eq. (18) leads to

— 2F"(Lp/ro)y [ 1 —% (23)
—ZFE(LP/VO)M%—I exp[—z 1—agi—f’} (24)

for ay < 1; an additional attenuation is imposed upon evanescent waves.
The dynamic stiffness of 2 at x = 0 is calculated as follows: (1) assume a solution of the form

_Sioe® hoe*
1 aoro +4/1 ar()]’ (25)

in terms of constants B, and B,, with imaginary square roots for ay > 1, and 4 in X defined as

[R| = exp

for ap > 1, and

[R| = exp

u(x) = B exp + By exp

Ax)=1 forxel0,L], (26a)
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and, following Eqgs. (16) and (12), in terms of a non-negative attenuation function 1 as

_ —a® i

M@:{1+f@ D/VI—a ifao <1l oo 41,, (26b)
1 —if(x—L)/\/as—1 if ay>1

(2) impose boundary conditions u(0) = 1 and u(L + Lp) = 0 to calculate B, and B,, and (3) compute the

dynamic stiffness as —(g4)|,_, using Eqs. (9b) and (9¢c). The dimensionless dynamic stiffness of @ is thus

obtained as

- . 1+Waﬁ—%ﬂ—%@+hﬂd

S(ao) =S (ao) ;
14mwﬁ_mm_%@+@yq
with §~(a,) given by Eq. (5), |R| given by Eq. (22). Here S(ao) — S (ao) as |R| — 0, i.e., the dynamic
stiffness of the entire bounded domain is a good approximation to that of the unbounded domain if the
reflection coefficient is suitably small.
If A is chosen as

x@yzb+ﬁ“_Lq—¢ﬁ“_”, (28)

ap ao

(27)

in (L,L + L,], following Eq. (18), then the dynamic stiffness for all aj is still given by Eq. (27), but with |R|
replaced by

e /1 — 1
—2F (LP/V()) ?— 1 eXp [21FP(LP/FO) ; — 1] .
0 0

Thus, the accuracy of the bounded-domain approximation is controllable through /¢ for evanescent waves
and through fP for propagating waves.

exp

2.5. Effect of PML parameters on accuracy of results

Eq. (27), with |R]| given by Eq. (22), is used to investigate the effect of the PML parameters Ly and f on
the dynamic stiffness S(ay), represented in terms of frequency-dependent stiffness, k(ay), and damping,
¢(ap), coefficients given by the relation

S(ay) = k(ao) + iapc(ap). (29)
This approximation to the stiffness of the unbounded medium is compared against the exact stiffness
5™ (ay), also decomposed into stiffness and damping coefficients.
To facilitate a meaningful discussion of the effects of these parameters, the attenuation function is chosen
to be of the form

) = fo(LiP) , (30)
which gives
Rty /) =L /0] a1

Thus the reflection coefficient |R| in Eq. (22) depends on the maximum value of the attenuation function,
Jfo[= f(Lp)], the depth of the PML, Lp/ry, and the degree of the polynomial attenuation function, m. Eq.
(31) suggests that the accuracy will be related directly to f, and to Lp/rgy, but inversely to m.

It is demonstrated that it is the depth Lp of the PML that is significant, rather than the size L of the
bounded domain. Fig. 3(a) shows that if Lp/r, is not large enough, then increasing L/ry does not improve
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the accuracy of the results. However, as shown in Fig. 3(b), for a sufficiently large PML (Lp/ro = 1), the size
of the bounded domain does not affect the results: in the “eye-norm™, there is no difference between either
approximate result and the exact one.

Fig. 4 shows the effect of the choice of the attenuation function on the accuracy of results. As was
predicted from Eq. (31), increasing f, increases the accuracy of results, but increasing m leads to less ac-
curate results. This suggests that the attenuation function should be chosen as a linear polynomial and that
the accuracy should be controlled through f;. An adequate value of f; can be established through a ru-
dimentary trial-and-error procedure; it is not appropriate to choose a value of f; by choosing an adequate
value of |R| in e.g., Eq. (22), because adequacy of the value of |R| is equivalent to adequacy of the value of
Jfo.
If the dynamic stiffness of the bounded domain is calculated for A in the PML given by Eq. (28) with
f¢ = fP = f, then the effects of L, Lp, fo and m on the dynamic stiffness is qualitatively similar to their effects
for /A in the PML given by Eq. (26b), shown in Figs. 3 and 4; therefore, these results are not presented here.
In fact, a highly accurate dynamic stiffness is still obtained by choosing the parameter values L/ry = 1/2,
Lp/l"o = l,fo =10and m = 1.

Although not presented here, accurate results are also obtainable for a viscoelastic rod, for either of the
choices of 4 given above.

1 Exact - |
PML with L/ry=1/2 e
1 .............
2 —
5 =}
= S
= Q
0 S = |
0 1 2 3 4 5 0 1 2 3 4 5
(a) w“ .
IExact ‘ _
1 PML with Lirg=1/2 - | 1L |
1 -
5 >
= S
=~ <o
0 0 |
0 1 2 3 4 5 0 1 2 3 4 5
(b) a“ .

Fig. 3. Effect of size of bounded domain on the accuracy of dynamic stiffness of the elastic rod for two different depths of the PML;
fo=10,m =1:(a) Lp/ro = 1/2 and (b) Lp/ro = 1.
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Fig. 4. Effect of attenuation function on the accuracy of dynamic stiffness of the elastic rod; L/ro =1/2, Lp/ro =1: (@) m=1 and (b) f, = 10.

2.6. Finite-element implementation

The PMM is equivalently interpreted as an inhomogeneous viscoelastic medium, which is then imple-
mented using standard displacement-based finite elements [38]. Because the displacement formulation is
well known, only the salient steps of the implementation are presented.

Eq. (9) is rewritten as follows: Eq. (9a) is multiplied by A(x), and ¢ in Eq. (9¢) is redefined as ¢ «+— A(x)¢ to
obtain an equivalent system of equations

do k& e

o Z;t(x)u = —w " pAx)u, (32a)
1

o= E}V(x) g, (32b)

e %, (32¢)

Here, the coordinate stretch has been transformed into a change in the material parameters; this PMM can
thus be interpreted to be an inhomogeneous viscoelastic medium.
The weak form of Eq. (32a) is derived as follows: the equation is first multiplied by an arbitrary weighting

function, w, residing in an appropriate admissible space, and then integrated over Q using integration-
by-parts to get
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d k
Yordo+ / 2 0x)wudQ — o? / pAX)wudQ = (Wo)|s0- (33)
Q dx Q A Q

The functions u and w are interpolated elementwise in terms of nodal quantities using NV, a vector of nodal
shape functions, and Eqgs. (32b) and (32c¢) are substituted into the integrals on the left hand side of Eq. (33).
Restricting the integrals to Q°, the element domain, gives the stiffness and mass matrices for a PML element:

e [ AN, 1 dN, ke

k= | & a9t / ~{Ax)NiN; dQ, (34a)

mi, :/ ,())L()C)N]NJdQ, (34b)
Qt!

k;, and m§, are the nodal submatrices of the entire element matrices k° and m®, with 7 and J the node
numbers and N; the shape function corresponding to node /. In Eq. (34), 1 is defined globally on the
computational domain, not elementwise.

The element stiffness and mass matrices obtained above are symmetric, but are intrinsically complex-
valued and frequency-dependent because of the choice for A (Eq. (12) or Eq. (18)). Hence, the system
matrices for 2 will be complex, symmetric, and banded, the PML contributions to which will have to
computed anew for each frequency.

2.7. Numerical results

The dynamic stiffness, S(a), of Q at x = 0, with 4 as defined in Eq. (26), is computed using a FE model
consisting of two-noded linear isoparametric elements. The mesh is chosen to have n;, elements in a length of
ro in the bounded domain and #, elements per » length in the PML; n;, and n, are parameters in the analysis.

For a sufficiently dense mesh (n, = n, = 30), the results from the FE model for either choice of 4 in the
PML (Eq. (26b) or Eq. (28)) match the corresponding analytical results for the dynamic stiffness of the
bounded domain, e.g., the results presented in Figs. 3 and 4; therefore, the numerical results are not pre-
sented separately.

The effect of mesh density on the accuracy of the computed dynamic stiffness is investigated. Because the
mesh should adequately capture significant spatial variations in the displacements, the mesh density in the
PML should be governed by both the wavelength and the sharpness of the spatial attenuation. If the spatial
attenuation is independent of the frequency, in the case of low frequencies the density should be governed
by the sharpness of the attenuation and by the wavelength for high frequencies. The qualifiers “high” and
“low” are characterised by the relation of the wavelength to the sharpness of the attenuation. Thus, it
should suffice to choose the mesh density in the entire bounded domain to be adequate for a high enough
frequency, with the density in the PML similar to that in the bounded domain.

Fig. 5 shows the effect of mesh density in the PML on the accuracy of the dynamic stiffness for two values
of n,. The stiffness coefficient computed with n, = n, = 10 shows a slight oscillation about the exact so-
lution, with its amplitude increasing with frequency. Increasing n, gives accurate results for ay $4; the error
found in the higher frequencies is because 1, = 10 is not adequate in that range. The slight deterioration in
accuracy of results for n, = 4n, over those for n, = 2n, may be due to the contrast between the densities in
Qpp and Qpy. For a larger n, (=20), both n, = n, and n, = 2n, give highly accurate results. This dem-
onstrates that if the mesh density in the entire bounded domain is adequate for the range of frequencies
considered, the accuracy may not be significantly sensitive to the choice of n,, provided n, = n,.

It is computationally advantageous to choose A in the PML so that the attenuation does not increase too
strongly with frequency, especially for higher frequencies, as is indeed the case for functions / in both Eq.
(26b) and Eq. (28). An alternate choice of
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Fig. 5. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic rod for two different mesh densities in the elastic
domain; L/ro = 1/2, Lp/ro =1, fo =10, m = 1: (a) n, =

=10 and (b) n, = 20.
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Fig. 6. Effect of frequency dependence of stretching function on the accuracy of the FE solution, with 4 in the PML as defined in (a)
Eq. (28), and (b) Eq. (35); n, =n, =30; L/ro =1/2, Lp/ro =1, fo =10, m = 1.
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Mx) = 14 f2(e — L) - if°(x — L) (35)

in the PML results in sharper attenuation for higher frequencies, thus requiring higher densities over-and-
above the usual high density requirements for high frequencies. As shown in Fig. 6, the FE solution ob-
tained using Eq. (28) is close to the exact result. The error in c¢(aq) for very low frequencies is due to the
division of Im S(ao) by small values of ay. In contrast, the FE solution for Eq. (35) does show a slight error
in k(ap) for ap > 3 which is due to inadequate mesh density in the PML. Although not presented here, this
error is not found in either the corresponding analytical solution or the FE solution for a denser PML mesh
(np =30, n, = 60).

3. Anti-plane motion
3.1. Elastic medium

Consider a two-dimensional homogeneous isotropic elastic continuum undergoing only time-harmonic
anti-plane displacements in the absence of body forces. For such motion, if the x;-direction is taken to point
out of the plane, only the 31- and 32-components of the three-dimensional stress and strain tensors are non-
zero. The displacements (in the form u(x)exp(iwt), with @ the excitation frequency) are governed by fol-
lowing equations (i € {1,2}):

Z 2;’ = —o’pu, (36a)

a; = e, (36b)
Ou

& = ox (36¢)

where p is the shear modulus of the medium and p its mass density; ; and ¢; represent the 3i-components of
the stress and strain tensors.
On an unbounded domain, Eq. (36) admits plane shear wave solutions [39] of the form

u(x) = exp|—iksx - pl, (37)

where k; = w/c; is the wave number, with wave speed ¢; = \/u/p, and p is a unit vector denoting the prop-
agation direction. Furthermore, consider the domain shown in Fig. 7, which consists of a layer of thickness d

with material constants y, and p,, with a traction-free surface at x; = —d, and supported by a half-plane with
material constants g, and p,. On such a domain, Eq. (36) admits Love-wave solutions of the form
u(x) = (Bye 4 Byetifrye % in the layer, (38a)
u(x) = Bye Prie7®= in the half-plane, (38b)

if ¢/ < ¢, where ¢! and ¢" are the shear wave velocities in the layer and the half-plane respectively. In Eq.
(38) By, B, and B; are constants, 7 = (k!)> — k2 and f = k> — (k)’, with k! = w/cl, k! = w/c", and
k, = w/cy; ¢y is the wave speed in the x,-direction, satisfying ¢! < ¢, < ¢!, and governed by the equation

By — WPy tan(p,d) = 0. (39)

A viscoelastic medium, with damping introduced through the correspondence principle, can also
be described using the above equations, but with a complex-valued shear modulus p* = u(1 + 2i{), ¢ being
the hysteretic damping ratio, leading to a complex-valued wave speed ¢} = c,v/1 + 2i{ and wave number

k= k/v/T+ 2.
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Fig. 7. Layer with a free surface supported on a half-plane; this geometry admits Love-wave motion.
3.2. Perfectly matched medium
The summation convention is abandoned in this section.

Consider a system of equations of the same form as Eq. (36), but with x; replaced by stretched coor-
dinates X;, defined as [34]

X = /OX’ 2i(s)ds, (40)

where A; are nowhere-zero, continuous, complex-valued coordinate stretching functions. This coordinate
stretching formally implies

0 1 ©
— = 41
a.i',' )»i(x,') ax," ( )
thus, this system of equations can be defined as
1 60',- 2
— == 42

Z ) A = (42a)
0; = U, (42b)

1 Qu
4= /l,-(x,-) 6_xi7 (420)

as a modification of Eq. (36), where the constitutive relation (Eq. (42b)) remains the same as for the elastic
medium. A PMM for anti-plane motion of a two-dimensional elastic continuum is defined to be one
governed by Eq. (42); a (visco)elastic medium corresponds to Z;(x;) = 1. Eq. (42) is defined independently
of, but motivated by, the definition of X;; this is comparable to the definition of Eq. (9) for the one-
dimensional PMM.

Given the continuity of 4;, solutions admitted in the PMM are similar in form to those in Egs. (37) and
(38) admitted in the elastic medium, but with x; replaced by x;. On an unbounded domain, Eq. (42) admits
plane-wave-type solutions of the form

u(x) = exp[—ikX - p]. (43)

Furthermore, on the domain shown in Fig. 7 and given 4,(x;) = 1, Eq. (42) admits Love-wave-type so-
lutions of the form

u(x) = (Bye ™ 4 Byetrye= %2 in the layer, (44a)
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u(x) = Bye P % in the half-plane, 44b
P

with f3,, f,, k, etc., as defined for the elastic medium.

The perfect matching property of these PMMs is that if two PMMs with different /; are placed adjacent
to each other, with the functions Z; for the two media such that they match at the interface of the media,
then a propagating wave will pass through the interface without generating any reflected wave. This
property is shown as follows. It is implicitly assumed in the definition of the PMM that 4; is a function of x;
only, i.e., the coordinate stretches are uncoupled [34]. Consider the x;—x, plane, with two PMMs defined on
it: one on the left half plane (:= {(x;,x,)[x; < 0}) with ;(x;) := A'(x;), and another on the right half plane
G={(x1,x2)[x1 = 0}) with 2(x;) := A*(x;). If 74 = 2%, and if A(0) = 27(0), then the two PMMs can be
considered as one PMM, wherein a continuous 4, is defined piecewise on the two half planes, and each 4, is
a function of x; only; thus there is no interface to generate any reflected wave. This Perfect matching
property holds for any wave solution admitted by the PMM. In particular, for a plane-wave-type solution
as in Eq. (43), the matching is independent of the direction of propagation p and of the wave number 4, (or
frequency w).

A suitable choice of /; imposes an attenuation on the wave solutions to Eq. (42). Consider the plane
wave-type solution in Eq. (43). If the functions 4; are defined in terms of real-valued, continuous attenu-
ation functions f; as

Jilx) i=1— H%x) (45)
then

% = — i) (46)
where

F(x) = / fi(e)de. (47)

Substituting Eq. (46) into Eq. (43) gives

u(x) = exp l - ZF}(x,-)p, exp|—iksx - pl. (48)

Thus, if Fi(x;) > 0 and p; > 0, then u(x) is attenuated as exp[—F;(x;)p;] in the x;-direction, and the attenu-
ation is independent of the frequency if p; is. Furthermore, consider the Love-wave-type solution in Eq.
(44); if A, for the layer and for the half-plane are chosen as in Eq. (45), as

fox
M) =1- 25{]2) (49a)
in the layer, and
) =1— i‘ﬁ](:;z) (49b)

in the half-plane, then the exp(—ik,X,) term in Eq. (44), which represents a wave propagating in the positive
xp-direction, is transformed to

o
exp| — o) &

v



1354 U. Basu, A.K. Chopra | Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337-1375

in the layer, and to
ch .
Y e
Cv

in the half-plane. Since ¢, depends on w through Eq. (39), the attenuation is not independent of frequency
for the choices of /, given above. The use of &, in place of k! and k! in Eq. (49) would, of course, make the
attenuation independent of frequency, but would require the solution of Eq. (39) to determine 4.

In a PMM for viscoelastic medium, with damping incorporated through the correspondence principle,
the complex wave number & may be used in place k; throughout, even in the stretching function, e.g., in Eq.
(45).

3.3. Perfectly matched layer

Consider a wave of the form in Eq. (37) propagating in an unbounded elastic domain, the x;—x, plane,
governed by Eq. (36). The objective of defining a PML is to simulate this wave propagation by using a
corresponding bounded domain. Consider the replacement of the unbounded domain by Qpp U 5, as
shown in Fig. 8(a), where Qpp is a “bounded” (truncated) domain, governed by Eq. (36), and 3, is the
unbounded PMM, governed by Eq. (42), with 4, of the form in Eq. (45), satisfying f;(0) =0, and 4, = 1.
Because a) the medium in Qpp is a special PMM (/;(x;) = 1, no summation), and b) the functions /4; for the
two media are chosen to be matched at the interface, all waves of the form in Eq. (37) propagating out-
wards from Qpp (waves with p; > 0) are completely absorbed into and then attenuated in the x,-direction in
Qpy- Thus the displacements in Qpp due to an outward propagating wave are exactly the same as the
displacements of the original unbounded elastic medium in Qpp due to the same wave.

If this outward propagating wave is attenuated enough in a finite distance, then Q3;, can be truncated by
a fixed boundary without any significant reflection of the wave. Shown in Fig. 8(b), this layer Qpy; of the
PMM is termed the PML. If the wave reflection from the fixed boundary is not significant, then the dis-
placements of this system (Qpp U Qpyp) in Qpp should be almost the same as those of the unbounded elastic

T2 T2
T 1
v
v
8 L / Attenuated wave 0 §
~ ~
~ ~
> ~ ~ ~ v
Outgoing wave ~ ~
N A Reflected wave ~
N
Fd r
Gkl £ T
- - v
s
QgD Q3 QBp Qpym
..
(a) (b) Lp

Fig. 8. (a) A PMM adjacent to a “bounded” (truncated) domain attenuates an outgoing plane wave; (b) a PML with a fixed edge also
reflects the wave back towards the bounded domain.
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domain in Qgp. A PML for the system shown in Fig. 7 can be constructed similarly by using a vertical layer
consisting of two different PMMs with material properties matched to the physical layer and the half-plane.

The effect of domain truncation in the PMM is analysed by studying the reflection of plane waves by the
fixed boundary. As shown in Fig. 8(b), the plane wave, incident at an angle 0 and of unit amplitude as it
enters the PML, is reflected from the fixed boundary. Therefore, the total wave motion can be represented
as

u(x) = exp[—ik.x - pV] + Rexp[—ikx - p™], (50)
where p\V and p® are the propagation directions of the incident and reflected waves respectively. Imposing
u(x) =0 for x; = Lp and for all x,, and substituting pil) = cos 6, gives

|R| = exp[—2Fi(Lp) cos 0], (51)

which is also the amplitude of the reflected wave as it exits the PML. This reflection coefficient is controlled
by the choice of the parameters f; and Lp—independently of the size of the bounded domain to which the
PML is adjacent—and is influenced by the angle of incidence. This suggests that the bounded domain may
be restricted to the region of interest in the analysis, thus lowering the computational cost, if the parameters
and the orientation of the PML are chosen appropriately.

3.4. An alternate interpretation of the PMM

Below is an equivalent interpretation of the anti-plane PMM as an anisotropic, inhomogeneous visco-
elastic medium, obtained by transforming the coordinate stretch into a change in the constitutive relation.
Consider two rectangular Cartesian coordinate systems for the plane as follows: (1) an x; system, with
respect to an orthonormal basis {e;}, and (2) an x; system, with respect to another orthonormal basis {¢}},
with the two bases related by the rotation-of-basis matrix Q, with components Q;; :=e; - e}. Eq. (42) can be
re-written in terms of the coordinates x; by replacing x; by x; throughout, as (no summation)

1 0cf )
3 i 52
G o P (52a)
o, = ug, (52b)
1 Ou
L 52
%00 ox (52¢)

representing a PMM wherein waves are attenuated in the €] and ¢, directions instead of in the e; and e,
directions as in Eq. (42); ¢} and ¢ are the 3i components in the basis {e/} of the stress and strain tensors. By
multiplying Eq. (52a) with 4, (x|)42(x}) and using the fact that /; is a function of x] only, Eq. (52) can be re-
written as

V- (R) = —plis (4 a8 (53a)
¢ = ue, (53b)
g =A(Vu), (53¢)
where
0
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and
] )Lz(x,) . / 1/2]()(’) .
A = 2 A= ! - 55
P ) YA G3)
The various primed quantities in Eq. (53) can be transformed to the basis {¢/} to obtain
V- (Ao) = —0pli () a5, (56a)
6 = L&, (56b)
&= A(Vu), (56¢)
where
o .= { o1 } = QO'/, &= { &1 } = QSI, V = axl = QV/7 (57)
g & v
6x2
and
A=QAQ", A=0QAQN (58)

the tensors A and A are termed the left and right stretch tensors, respectively. Furthermore, because these
stretch tensors are diagonal in the basis {e;}, this basis is termed the characteristic basis of the PMM.
Redefining o as 6 — Ac¢ and ¢ as ¢ — A 'g in Eq. (56), and defining

S = 21 (x)) A2 (x3) (59)
gives an equivalent system of equations:

V.o=—0pfu, (60a)

6 = uDg, (60b)

& = Vu, (60c)
where

D := AA = QA'A'Q". (61)

The coordinate-stretching in the PMM, represented by A and A in Eq. (56), has thus been transformed
into a change in the constitutive relation, thus leading to an interpretation of this PMM as an anisotropic,
inhomogeneous viscoelastic medium. This interpretation of the PMM is comparable to the inhomo-
geneous-media interpretation of the one-dimensional PMM presented earlier and is also related to similar
interpretations of electromagnetics PMLs [35,40].

3.5. Finite-element implementation

Next, the anisotropic, inhomogeneous medium form of the PMM, given by Eq. (60), is implemented
using standard displacement-based finite elements. The weak form of Eq. (60a) is derived by multiplying it
with an arbitrary weighting function w residing in an appropriate admissible space, and then integrating
over the entire computational domain  using integration-by-parts and the divergence theorem to obtain

/Vw-o-dQ—wz/pfmwudQ:/wo--ndF, (62)
Q Q r

where I' := 0Q is the boundary of Q and »n is the unit normal to I". Assuming elementwise interpolations of
u and w in terms of nodal shape functions N, imposing Egs. (60b) and (60c) pointwise in Eq. (62), and
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restricting the domain integrals to the element domain Q = Q° gives the stiffness and mass matrices for a
PML element. In terms of nodal submatrices, these are

K, = [ (V)" DV de (63a)
Q°

m; = / pﬁnN[NJ dQ, (63b)
Qe

where [ and J denote node numbers of the element. In Eq. (63), the functions /; in D and in f,, are defined
globally on the computational domain, not elementwise. Note that a FE implementation of Eq. (56) would
also have resulted in the stiffness and mass matrices in Eq. (63), because the coordinate-stretch model of the
PMM (Eq. (56)) is equivalent to the anisotropic-medium model (Eq. (60)).

The above is, of course, the FE implementation presented by Collino and Monk [41] and studied further
by Harari et al. [25]. These element matrices are symmetric, but intrinsically complex-valued and frequency-
dependent. Hence, the system matrices for Q will be complex, symmetric, and banded, the PML contri-
butions to which will have to computed anew for each frequency.

3.6. Numerical results

Consider a homogeneous isotropic semi-infinite layer of depth d on a rigid base, as shown in Fig. 9(a),
whose anti-plane motion is governed by Eq. (36) with the following boundary conditions:

u(x)=0 atx, =0, Vx; >0, (64a)
o, =0 atx, = d, Vx; > 0, (64b)
u(x) = uyNy(x2/d) + usN>(x2/d) atx; =0, Vx, € [0,d], (64c)

and a radiation condition for x; — oo, where u; and u, are the displacements at nodes 1 and 2 and N; and
N, are shape functions, defined as

N(E) =4(1-98), M(§=¢E2E-1), C€[0,1]. (65)

The wave motion in this waveguide system is similar to Love-wave motion: it is dispersive, and consists of
not only propagating modes but also an infinite number of evanescent modes, with the propagation (and
decay) in the x;-direction [42, Appendix A.3].

The nodal forces P, and P; at nodes 1 and 2 are related to the nodal displacements through the dynamic
stiffness matrix S*(ay) as

T2
T2
T ( f2(-r2) =0
N
2 Qpp | Qpym
P
e fi(z1)
d 1 —»
Layer: @, p, ¢ —=n
—= 1 + t
(a) (b) L Ip

Fig. 9. (a) Homogeneous isotropic (visco)elastic semi-infinite layer of depth d on a fixed base; (b) a PML model.
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P uj
=S*(a 66
{PZ } ( 0) Uy ) ( )

oy NV —a [ (<44 (=1)8/m)’ —12+ (—1)"40/, — 32/
S*(ap) = 21y . 0 [_12+(—1)”40/an—32/06,2, G (1Y) ] (67)

with ay = kd and o, = (2n + 1)n/2. Furthermore, the components S;;(ay) of S*(ay) can be decomposed
into dimensionless, frequency-dependent stiffness, k(ay), and damping, c¢(ao), coefficients as

Sij(ao) = Si;(0)[kij(ao) + iapci;(ap)] (no summation). (68)

This semi-infinite layer is modelled using the bounded-domain-PML model shown in Fig. 9(b), composed
of a bounded domain Qpp and a PML Qpy. Motivated by the realistic choice of a stretching function in Eq.
(18), the stretching functions A; are chosen as
ﬁ (X,‘) _ lﬁ (xi)

ks ks

}Li(xi) = |:1 + (69)
to attenuate both propagating and evanescent waves in the system, with f; chosen to be linear in the
PML—in view of the conclusions of Section 2.5—and f; = 0 matching the corresponding function in Qgp;
recall that &} = k; for an elastic medium. However, a stretching function of the form

will not be adequate for all evanescent modes, an observation mirrored in electromagnetics literature
[43,44], where alternative choices of the stretching function have been suggested for attenuating evanescent
waves.

A uniform FE mesh of four-node bilinear isoparametric elements is used to discretise the entire bounded
domain. The mesh is chosen to have n, elements per unit d, n, elements per unit L/d across the width of
Qpp, and n, elements per unit Lp/d across Qpy, where ny, n, and n, are parameters in the analysis.

Figs. 10 and 11 show the effect of mesh density in the PML on the accuracy of the dynamic stiffness for
two different values of n,. Note that a denser mesh in the PML does not affect the results for low frequencies
and, in fact, may lead to a deterioration in accuracy for higher frequencies. This suggests that the mesh
density in the PML should be chosen to be similar to that in the bounded domain, echoing conclusions
reached by an earlier dispersion analysis [25].

For purposes of comparison, the layer is also modelled using a viscous dashpot model [10], with con-
sistent dashpots placed at the edge x; = L + Lp, and the entire domain Qpp U Qpy; taken to be elastic. The
placement of the viscous dashpots is such that the mesh is comparable to that in the PML model. Fig. 12
presents stiffness and damping coefficients calculated for an elastic medium using the PML model and the
viscous dashpot model. It is seen that the results from the PML model are highly accurate, even though
they are obtained using a small computational domain and at a low cost: the cost of the PML model is
similar to that of the viscous dashpot model, and the grossly inaccurate results from the viscous dashpot
model emphasize the small size of the computational domain. Significantly, the high accuracy of the PML
results demonstrates that the stretching function of Eq. (69) adequately attenuates the infinite number of
evanescent modes in this waveguide.

Fig. 13 shows that the PML model gives highly accurate results for a viscoelastic medium with { = 0.05.
The appreciable inaccuracy in the results from the viscous dashpot model, even for this viscoelastic me-
dium, further emphasizes the small size of the computational domain.

i) = [T+ filxi)] (70)
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Fig. 10. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic semi-infinite layer on fixed base; L = d/2, Lp = d,
ng =15, fi(x;) = 10(x; — L) /Lp; (x) == (x + |x])/2.

4. Plane-strain and three-dimensional motion

4.1. Elastic medium

Consider a homogeneous isotropic elastic medium undergoing time-harmonic motion in the absence of

body forces, with displacements of the form u(x)exp(iwt), where w the excitation frequency. Such a me-
dium is governed by the equations

66,-] 2
2 5, = (71a)
J
U” = Z Cijk[‘gkl? (71b)
k1
1 au,‘ auj
U A M) 1
473 {@xj_‘_@x,-]’ (71c)

where C;;; written in terms of the Kronecker delta ¢, is

2
Cijmr = (K - gﬂ) 0ij0r + u(0udj1 + 0:05), (72)



1360 U. Basu, A.K. Chopra | Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337-1375

Exact [ 04 |
PML with n,=

05 1

ky1(ap)
cy1(ap)

kya(ap)
- cy(ag)

nb=15

Fig. 11. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic semi-infinite layer on fixed base; L = d/2, Lp = d,
ng = 15, ﬁ(xl) = 10<X1 7L>/Lp

o; and ¢; are the components of ¢ and &, the stress and infinitesimal strain tensors, and C;;; are the
components of C, the material stiffness tensor; « is the bulk modulus, u the shear modulus, and p the mass
density of the medium. If i, j, k, / € {1,2}, then Eq. (71) describes plane-strain motion; if i, j, k,/ € {1,2,3}
it describes three-dimensional motion. Eq. (71) also describes plane-stress motion, with i, j, k, 1 € {1,2}, if k
is re-defined appropriately.

On an unbounded domain, Eq. (71) admits body-wave solutions [39] in the form of (1) P waves:
u(x) = gexp[—ik,x - pl, (73a)

where k, = w/c,, with ¢, = \/(x 4+ 4u/3)/p the P-wave speed, p is a unit vector denoting the propagation
direction, and ¢ = +p the direction of particle motion, and (2) S waves:

u(x) = gexp[~ikex - pl, (73b)

where k; = w/cs, with ¢ = \/pt/p the S-wave speed, and ¢ -p = 0. Eq. (71) also admits interface-guided
waves, such as Rayleigh waves and Stoneley waves. Rayleigh waves propagate along a free surface, and
Stoneley waves may propagate along the interface of two semi-infinite elastic media. Both types of waves
propagate with exponentially-decreasing amplitude in the direction normal to and away from the surface or
interface, respectively.

A viscoelastic medium is described by the above equations, but with complex-valued moduli «* =

k(1 4 2i{) and p* = u(1 + 2i{), with { the hysteretic damping ratio, and corresponding complex-valued
wave speeds.
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Fig. 12. Dynamic stiffness coefficients of elastic semi-infinite layer on fixed base computed using a PML model as well as a viscous
dashpot boundary model; L =d/2, Lp = d, n, = n, = 15, ng = 15, fi(x;) = 10(x; — L) /Lp.

4.2. Perfectly matched medium and layer
The summation convention is abandoned in this section.

A PMM for plane-strain or three-dimensional elastodynamic motion is defined to be a medium governed
by the following equations:

1 60,‘]‘ B
TN AL — —wipu;, 74a
gij = Z Cijklﬁkl, (74b)
k1

Sij =

I 1 w1 o
2 o o 74
2 {’l.i(x_i) ox; * Zi(x;) Ox; ’ (74c)

where A; are nowhere-zero, continuous, complex-valued coordinate stretching functions; the constitutive
relation Eq. (74b) is the same as for the elastic medium. Consequently, Eq. (74) also describes a PMM for
plane-stress motion, if x is re-defined appropriately. A (visco)elastic medium corresponds to 4;(x;) = 1. Eq.
(74) is defined independently of, but motivated by, the definition of x; given by Eq. (40).

The continuity of /; can be used to show that on an unbounded domain, Eq. (74) admits solutions of the
same form as Eq. (73), but with x replaced by x. A P-type wave solution is of the form

u(x) = qexp[—ik,X - pJ, (75a)
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Fig. 13. Dynamic stiffness coefficients of viscoelastic semi-infinite layer on fixed base computed using a PML model as well as a viscous
dashpot boundary model; L =d/2, Lp =d, n, =n, =15, n; = 15, fi(x;) = 10(x; — L) /Lp; { = 0.05.

with ¢ = +p, and an S-type wave solution is of the form
u(x) = qexp|—ikx - p|, (75b)

with ¢ - p = 0. It can be argued that for appropriately defined 4; and appropriate boundary conditions, Eq.
(74) also admits solutions of the forms of Rayleigh and Stoneley waves. This is similar to the earlier ob-
servation that a PMM for anti-plane motion admits solutions of the form of Love waves.

These PMMs exhibit the perfect matching property: if two PMMs with different 4; are placed adjacent to
each other, with the functions 4, for the two media such that they match at the interface of the media, then
any propagating waveform will pass through the interface without generating any reflected wave. The
argument for this claim is the same as that for PMMs for anti-plane motion.

A choice of 4; of the form in Eq. (45) leads to attenuated solutions of the form

c§ .
u(x) = exp| == 3" Fu)ni| gexpl—ikyx -] (760)
P
for P-type waves and
u(x) =exp| — > F(x)p;|qexp[—ikx - p] (76b)

for S-type waves if F(x;) > 0 and p; > 0, with F; defined in Eq. (47); the attenuation is independent of the
frequency if p; is. It can be argued that suitable choices of /; lead to Rayleigh-type (and Stoneley-type) wave
solutions that are attenuated in the direction of their propagation.
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The absorptive and attenuative properties of the PMM can be used to define an absorbing layer—the
PML—adjacent to a bounded domain, e.g., as shown in Fig. 8(b). The argument for this claim is as for anti-
plane motion.

The absorptive capability of such a layer is analysed by studying the reflection of plane waves from the
fixed boundary. Consider plane-strain motion in the domain shown in Fig. 8(b), with Qpp governed by Eq.
(71) and Qpy governed by Eq. (74), with 4, of the form in Eq. (45), satisfying f;(0) =0, and 4, = 1.
Furthermore, consider a P-wave with unit amplitude as it enters the PML at an angle of incidence 6. The
incident wave will be reflected from the boundary as a P-type wave and an S-type wave, with the total wave
motion represented as

u(x) = qg) exp|[—ik,X ~pg)} + Rppq}()R) exp|—ikyX 'p]gR)] + Ropq™ exp[—iksx - plV], (77)

where the s and p subscripts refer to S-type and P-type waves, respectively, and superscripts (I) and (R)
refer to incident and reflected waves, respectively. Imposing u(x) = 0 for x; = Lp and for all x,, and ex-
pressing the directions of propagation and of particle motion in terms of 6, gives

_cos(0+ 0s) cs
|Rpp| = cos(0—0.) exp{ ZCpFl(Lp) cos 0} , (78a)
sin 20 Cs
|Rsp| = m exXp |: — Fvl (Lp) (g COS 0 -+ Ccos 95):| s (78b)

with 0, given by

sin 0 = S sin 0;
Cp
a similar analysis can be performed to determine the reflection coefficients due to an incident S-type wave.
The amplitudes of the reflected P- and S-type waves as they exit the PML, given by |R,,| and |Ry,|, re-
spectively, are controlled by the choice of parameters f; and Lp—independently of the size of the bounded
domain to which the PML is adjacent—and are also influenced by the angle of incidence. This suggests that
the bounded domain may be restricted to the region of interest in the analysis, thus lowering the com-
putational cost, if the parameters and the orientation of the PML are chosen appropriately.

4.3. Finite-element implementation

Unlike the PMM for anti-plane motion, the PMM for plane-strain or three-dimensional motion is not
amenable to interpretation as an anisotropic, inhomogeneous viscoelastic medium; however, a symmetric
FE implementation of this PMM can still be obtained, by expressing the PMM equations in a tensorial
form. The implementation of only the plane-strain PMM is presented here; the implementation of the three-
dimensional PMM follows similarly.

Consider two rectangular Cartesian coordinate systems for the plane: (1) a x; system, with respect to an
orthonormal basis {e;}, and (2) a x; system, with respect to another orthonormal basis {¢}}, with the two
bases related by the rotation-of-basis matrix Q, with components Q,; := e; - €;. Eq. (74) can be re-written in
the basis {e/} as (no summation)

1 gy )
2 (] , — —w pu;7 (793)
Aj(xj) o
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r ! /
Oy = Z CijriBrs (79b)
k,l

R T B T YA
W72 5 ) o ) 7%

where the various primed quantities represent the components in the basis {e/} of the corresponding vector
or tensor. This represents a PMM where waves are attenuated in the ¢| and ¢, directions. On multiplying
Eq. (79a) with 4,(x})Z2(x;) and using the fact that 4; is a function of x} only, Eq. (79) can be re-written in
matrix notation as

(6' A )V = —aplhy (X)) 70 (X)), (80a)
¢ =C¢, (80b)
8/ _ %[(u/V’T)A’ + A'T(u'V’T)T], (800)
where
9
S I - o
031 O &1 & u v
ox),
and
] )Lz(x,) . :| ’ |:1//L1(X’) . :|
A= 2 | A = ! K 82
e S 1) (8
Eq. (80b) is understood in indicial notation. Eq. (80) can be transformed to the basis {e;} to obtain
(GA)V = —p[ (x}) 2o (), (83a)
o = Cg, (83b)
e =1[@V)A + AT @vV")"], (83c)
where the unprimed quantities, e.g.,
9
= {6” 612} £:= {8“ 812}, u:—{ul} and V:= agl (84)
021 022 &1 & U o
aXZ

are obtained from the corresponding primed quantities in Eq. (80) via the usual change-of-basis rules for
vector and tensor components, e.g.,

A=QA'Q" and A=QAQ". (85)

Note that the stretch tensors A and A are diagonal in the characteristic basis {¢/} of the PMM. In tensorial
notation, Eq. (83) becomes

div(eA) = —?p[4 (x}) Aa(x,)]u, (86a)
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6 = Cg, (86b)

e = 1[(gradu)A + A" (gradu)"]. (86¢)

The weak form of Eq. (86a) is derived by taking its inner product with an arbitrary weighting function w
residing in an appropriate admissible space, and integrating the resultant scalar over the entire computa-
tional domain Q using integration-by-parts and the divergence theorem to obtain

/Zz:adewZ/pfmwwdQ:/w~0'1~\nd1“, (87)
Q Q r

with I' := 0Q the boundary of Q and n the unit normal to it, and f;, defined by Eq. (59). The symmetry of
has been used to obtain the first integral on the left hand side, with

& = [(gradw)A + A" (gradw)"]. (88)

Assuming elementwise interpolations of # and w in terms of shape functions NV, imposing Egs. (86b) and
(86¢) pointwise in Eq. (87), and restricting the integrals to the element domain Q = Q° gives the stiffness
and mass matrices for a PML element. In terms of nodal submatrices, with 7 and J the node numbers, these
are

K, = / B/ DB, d©, (89a)
@
mj, = / pfmNIN; dQ1, (89b)
Qe
where I is the identity matrix of size 2 x 2, and
ka3 k23 -1 [N Ng
D= |k—2u/3 x+4p/3 -|, Bi:=| . NV|, B=| . NI, (90)
. . 1 1 2 2
K NI<2) NI(I> NI(Z) NI(])
with
NO = AN, and NP = AN, o1
/A it V1 /A VL

In Eq. (89), the functions 4; in B, B and in Jm are defined globally on the computational domain, not ele-
mentwise. The right hand side in Eq. (87) can be ignored by assuming that the traction-like term ¢ An =0
on a free boundary of the PMM. Note the evidence of coordinate-stretching in the FE matrices in Eq. (89):
the stretch tensors A and A are incorporated in the nodal compatibility matrices B; and B;, not in the
material moduli matrix D (Eq. (90)). As a corollary, this plane-strain FE formulation can be applied to
plane-stress problems by re-defining x appropriately.

It is argued that the stiffness matrix given by Eq. (89a) is indeed symmetric, by first deriving an alternate
expression for the nodal submatrix kj,. Consider the first integrand on the left hand side of Eq. (87). By the
minor symmetries of Ciyy,

g:06 = ¢&,0;, = wi; Ciip, (92)
where

Cint = AjnCintn Ay = (k6 = 21) Ay Ay + (g Aju iy + Ay i) (93)
by Eq. (72). The functions w; and u; are interpolated as

w; = Nic! and w = N,d], (94)
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where d/ is the nodal displacement at node J in the direction ¢;, and ¢! is an arbitrary quantity associated
with the direction e; at node /. Introducing these interpolations into Eq. (87) and restricting the integral to
Q, gives the nodal stiffness submatrix in terms of its components as

(ky))y = /Q i N1y CiaNy dQ. (95)

The stiffness matrix is symmetric if (kS,), = (k%) which holds if Cy = Cyy. ie., if Cy has major
symmetry. _

It is argued that C,;, given by Eq. (93) indeed has major symmetry. Because major symmetry is preserved
by a change of basis, it suffices to consider diagonal stretch tensors

A= [12(52) ] and A = {1/’1‘.()“) (96)

21(x1) 1/72(x2)

corresponding to the characteristic basis of the PMM; the primes on the coordinates have been discarded in
the interest of notational convenience. Major symmetry of a fourth order tensor with indices ijk/ can be
shown by expressing it in matrix form through Voigt indexing, wherein a tensor index pair i/ is mapped to a
single Voigt index a. The rows of the Voigt-indexed matrix are taken to correspond to indices ij and the
columns to &/, with both index pairs enumerated in the same order. Major symmetry of a fourth order
tensor is then equivalent to the symmetry of this matrix. Under the Voigt indexing given by

Voigtindex a: 1 2 3 4
Tensor index ij: 11 22 12 21

the various terms in the expression for E,-jk, in Eq. (93) have the following matrix representations:

Jafia 1 Ja/
Ay = LAk 0 Su Ay = Mk W /in
0 o/
S M
and Z»ikA,-,E “l% 0 1 (97)
1 0

The symmetry of these matrices thus implies the symmetry of the stiffness matrix.

Thus, the FE matrices are symmetric, but intrinsically complex-valued and frequency-dependent. Hence,
the system matrices for Q will be complex, symmetric, and banded, the PML contributions to which will
have to computed anew for each frequency.

4.4. Numerical results

Numerical results are presented for the classical plane-strain soil-structure interaction problems of a rigid
strip-footing on a (1) half-plane, (2) layer on a half-plane, and (3) layer on a rigid base.

Fig. 14(a) shows a cross-section of a rigid strip-footing of half-width b with its three degrees-of-freedom
identified—vertical (V'), horizontal (H), and rocking (R)—supported by a homogeneous isotropic (vi-
sco)elastic half-plane with shear modulus p, mass density p, Poisson’s ratio v, and hysterstic damping ratio {
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Fig. 14. (a) Cross-section of a rigid strip of half-width » on a homogeneous isotropic (visco)elastic half-plane; (b) a PML model.

for the viscoelastic medium. Let P, and 4;, i € {V,H, R}, denote the amplitudes of the harmonic force and
of the harmonic displacement, respectively, along the ith DOF. The two are related through the dynamic
flexibility matrix F*(ag)(ay = wb/c;) as follows:

AV PV FVV((J()) 0 0 PV
AH = FOO((J()) PH = 0 FHH(CI()) FHR((J()) PH . (98)
bAR PR/b 0 FRH(CZ()) FRR(CZ()) PR/b

This unbounded-domain system is modelled using the bounded-domain-PML model shown in Fig. 14(b),
composed of a bounded domain Qpp and a PML Qpy. The stretching functions 4; are chosen as in Eq. (69),
with the attenuation functions chosen to be linear in the PML, following Section 2.5. Note that the choice
of attenuation functions, especially in the corner regions, follows naturally from the requirements that
fi = 01in Qpp, f; be a function of x; only, and that f; be continuous in the entire computational domain. A
FE mesh of four-node bilinear isoparametric elements are used to discretise the entire bounded domain.
The mesh is chosen to be adequately dense for the range of frequencies considered, and is graded to capture
adequately sharp variations in stresses near the footing. For purposes of comparison, the half-space is also
modelled using a viscous dashpot boundary model [9], wherein the entire domain Qgp U Qpy is taken to be
(visco)elastic and consistent viscous dashpot elements replace the fixed outer boundary. The mesh used for
the dashpot model is thus comparable to that used for the PML model.

Fig. 15 presents the dynamic flexibility coefficients computed for an elastic medium from the PML model
and from the dashpot model, against ““exact’’ analytical results [45]. The domain size parameters are chosen
to be L =3b/2, h =b/2, Lp = b. Note that the bounded domain chosen is small, extending only upto b/2
on either side of the footing and below it, and the PML width equal to b, the half-width of the footing.
Using this small domain, the results obtained from the PML model are highly accurate, even though they
are obtained at a low computational cost: the cost of the PML model is similar to that of the viscous
dashpot model. The gross inaccuracy of the results from the viscous dashpot model emphasizes the small
size of the computational domain. Fig. 16 compares results for a viscoelastic medium with { = 0.05,
computed for the same meshes used for the elastic medium, with “exact” semi-analytical results [46]. The
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Fig. 15. Dynamic flexibility coefficients of rigid strip on elastic half-plane computed using a PML model as well as a viscous dashpot
boundary model; L = 3b/2, h =b/2, Lp = b, fi(x1) = 10{(x; — h)/Lp, fo(x2) = 10{]xo| — L)/Lp; (x) := (x + |x])/2; u =1, v =0.25.

results from the PML model are highly accurate, even though the domain is too small for the dashpot
model to produce accurate results for this viscoelastic medium.

Fig. 17(a) shows a cross-section of the rigid strip supported by a viscoelastic layer on a half-plane, and
Fig. 17(b) shows a corresponding PML model where /; are of the form in Eq. (69) with linear attenuation
functions in the PMLs. The PMLs employed for the layer and the half-plane have different moduli, cor-
responding to the moduli for the elastic media. For comparison, a viscous dashpot model is also employed,
where the entire bounded domain is taken to be viscoelastic, and consistent dashpots replace the fixed outer
boundary. Fig. 18 compares results from the PML model and from the dashpot model against semi-ana-



U. Basu, A.K. Chopra | Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337-1375 1369

1.2 | o
Exact —_ 5
1f PML - e
“' Dashpots - ‘
0.8 | i o
§ 0.6 || “~ 06
: ' £
=2 ! T
04 ! o
02} 02}
0t | N | | I
0 1 2 3 4 0 : : : )
1.4
12t

Re Fgy
—ImFHH

Re Fpp
—Im FRR

0 1 2 3 4

) a9

Fig. 16. Dynamic flexibility coefficients of rigid strip on viscoelastic half-plane computed using a PML model as well as a viscous
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ay = wb/+\/E/p.

lytical results [47,48]. The results from the PML model are reasonably accurate, even though the compu-
tational domain is small and the cost is comparable to that of the dashpot model. The smallness of the
domain is evident in the inaccuracy of results from the dashpot model, especially for vertical and for
horizontal motion.

Fig. 19(a) shows a cross-section of the rigid strip supported by a viscoelastic layer on a rigid base, and
Fig. 19(b) shows a corresponding PML model where /; are of the form in Eq. (69) with fi(x;) = 0 and f>(x»)
linear in the PML. Fig. 20 presents results from the PML model and from a comparable viscous dashpot
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Fig. 17. (a) Cross-section of the rigid strip of half-width b on a homogeneous isotropic viscoelastic layer on half-plane; (b) a PML
model.

model against semi-analytical results [47,48]. The PML model produces reasonably accurate results at a
cost comparable to that of the dashpot model. The boundedness of the domain in the horizontal direction is
made prominent by the gross inaccuracy of results for F;; as computed from the dashpot model. Notably,
accurate PML results are obtained for this waveguide system with significant evanescent modes. Thus, the
stretching function of Eq. (69) is adequate for these evanescent modes, but with f;(Lp) = 20, rather than the
value of 10 used for other examples in this paper; a value of f;(Lp) = 10 for this problem produces results
that are slightly less accurate.

5. Conclusions

The concept of a PML has been developed in the context of time-harmonic elastodynamics by utilising
insights obtained in the context of electromagnetics. The concept has been developed through the pre-
sentation of perfectly matched media for three different systems: (1) a rod on elastic foundation, (2) a
continuum undergoing anti-plane motion, and (3) a continuum undergoing plane-strain or three-dimen-
sional motion.

The PML concept is summarised as follows. A perfectly matched medium (PMM) is defined as one
governed by a modification of the equations for the elastic medium, with the modification motivated by a
continuous, complex-valued, uncoupled coordinate stretching. Solutions admitted by the PMM are of the
form of those admitted by the elastic medium, but with the stretched coordinates replacing the real co-
ordinates. PMMs exhibit the perfect matching property: if the stretching functions of two adjacent PMMs
match at their interface, then the interface is invisible to all wave-type solutions in the PMMs and no
reflected wave is generated when a wave travels from one PMM to the other. This property holds irre-
spective of the direction of propagation of the wave or its frequency. Furthermore, if choices of the
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stretching functions are appropriate, the solutions in the PMM take the form of the corresponding elastic-
medium solution, but with an imposed spatial attenuation. Realistic choices of the stretching function can
impose attenuation on both propagating and evanescent waves. Notably, the imposed attenuation is di-
rectly spatial: it is not imposed through a temporal attenuation, or damping. The perfect matching and the
attenuative properties of the PMM is employed to build an absorbing layer—the PML—around a bounded
domain such that the layer absorbs and attenuates outward-propagating waves of all non-tangential angles-
of-incidence and of all non-zero frequencies. Termination of the layer by a fixed boundary causes reflection
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Fig. 19. (a) Cross-section of the rigid strip of half-width » on a homogeneous isotropic viscoelastic layer on rigid base; (b) a PML
model.

of the waves back towards the bounded domain, with the amplitude of reflected waves controllable—in-
dependently of the size of the bounded domain—by the choice of the PML parameters: (a) the depth of the
layer and (b) the attenuation profile in it. Thus, wave propagation in an unbounded domain can be
modelled through a bounded domain that is restricted to the region of interest in the analysis, and a
suitably-defined PML surrounding it.

The one-dimensional problem of the semi-infinite rod on elastic foundation has been used to analytically
study a bounded-domain-PML model. The stretching function is expressed in terms of an attenuation
function, which controls the reflection due to the finite depth of the PML. The reflection coefficient is related
to the dynamic stiffness of the rod, and it is shown that the dynamic stiffness of the PML model approaches
that of the unbounded-domain system as the reflection coefficient approaches zero. It is argued analytically
that the attenuation function should be chosen to increase linearly from zero at the bounded-domain-PML
interface to a maximum value at the end of the layer, and that this maximum value, as well as the depth of the
layer, should be used to control the accuracy of results; this conclusion is validated through analytical re-
sults. It is expected that a rudimentary trial-and-error procedure should be sufficient to establish an adequate
maximum value of the attenuation function. Also proposed is a realistic choice of the stretching function that
does not employ prior knowledge of the frequency equation of the system, but is adequate for both eva-
nescent and propagating waves; this adequacy is confirmed through analytical and numerical results.

It has been shown that the one-dimensional and the anti-plane PMM, although formulated through
coordinate-stretching, can be also be interpreted as anisotropic, inhomogeneous viscoelastic media, echoing
similar interpretations of electromagnetics PMLs [35,40]. These equivalent interpretations have then been
used to obtain symmetric FE implementations of these PMMs, with the implementation of the anti-plane
PMM matching those presented in earlier works [25,41]. The PMM for plane-strain or three-dimensional
motion is not amenable to a similar equivalent interpretation; however, a novel displacement-based,
symmetric FE implementation of this PMM is still obtained, by expressing the PMM equations in a ten-
sorial form. The FE matrices obtained are symmetric, but intrinsically complex-valued and frequency-
dependent. Thus the system matrices for the entire bounded domain are complex, symmetric and banded,
the PML contributions to which have to be computed anew for each frequency.

These FE implementations have been applied to the following canonical problems: (1) the one-dimen-
sional semi-infinite rod on elastic foundation, (2) the anti-plane motion of a semi-infinite layer on rigid
base, and (3) the classical plane-strain soil-structure interaction problems of a rigid strip-footing on a
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Fig. 20. Dynamic flexibility coefficients of rigid strip on viscoelastic layer on rigid base computed using a PML model as well as a
viscous dashpot boundary model; L = 3b/2, Lp = b, fi(x1) =0, fa(x2) = 20{|xy| — L)/Lp; d =2b, u =1, v=10.4, { = 0.05.

(1) half-plane, (ii) layer on a half-plane, and (iii) layer on a rigid base. Highly accurate results have been
obtained from PML models using small bounded domains at low computational costs; the computational
cost of the PML models was seen to be similar to that of comparable viscous dashpot models, and the
inaccuracy of results from these dashpot models emphasized the small size of these bounded domains.
Notably, accurate PML results have been obtained even for the waveguide system of a layer on a rigid base,
undergoing either anti-plane or plane-strain motion, where evanescent modes are significant. This is
achieved through the realistic choice of the stretching function proposed in the one-dimensional analysis;
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such a stretching function is thus seen to be adequate even for systems with many evanescent modes.
Preliminary numerical investigations of the effect of mesh density on the accuracy of results suggest that the
mesh density in the PML should be chosen to be similar to that in the bounded domain, echoing con-
clusions reached by an earlier dispersion analysis [25].

This paper presents PMLs for homogeneous, isotropic media only. However, the same motivation of
complex-valued coordinate stretching is utilised for all three systems to define the PMM corresponding to
the elastic medium. Consequently (1) all three PMMs exhibit the perfect matching property, (2) propa-
gating harmonic waveforms in the elastic medium are transformed to attenuated waveforms in the PMM,
and (3) the constitutive relation is not affected by the coordinate-stretching, i.e., the constitutive relation in
the PMM is the same as that in the elastic medium. These observations—especially the third—mirror
similar ones made in the context of electromagnetic waves [34,36,49], where PMLs have been formulated
for anisotropic, inhomogeneous media [36], underscoring the possibility of extending these elastodynamic
PML formulations to anisotropic, continuously-inhomogenecous elastic media with at most minimal
modifications. In fact, the PMMs presented in this paper, as well as any such extensions, could be seen as
verifications of an assertion by Teixeira and Chew [35]. They provide a geometric interpretation of the PML
concept, as a change in the metric of the coordinate space, and state: ““...the PML concept does not depend
on the particular form of field equations and is applicable to any linear wave phenomena.”
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