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Abstract

One approach to the numerical solution of a wave equation on an unbounded domain uses a bounded domain

surrounded by an absorbing boundary or layer that absorbs waves propagating outwards from the bounded domain.

A perfectly matched layer (PML) is an unphysical absorbing layer model for linear wave equations that absorbs,

almost perfectly, outgoing waves of all non-tangential angles-of-incidence and of all non-zero frequencies. This paper

develops the PML concept for time-harmonic elastodynamics in Cartesian coordinates, utilising insights obtained

with electromagnetics PMLs, and presents a novel displacement-based, symmetric finite-element implementation of

the PML for time-harmonic plane-strain or three-dimensional motion. The PML concept is illustrated through the

example of a one-dimensional rod on elastic foundation and through the anti-plane motion of a two-dimensional

continuum. The concept is explored in detail through analytical and numerical results from a PML model of the

semi-infinite rod on elastic foundation, and through numerical results for the anti-plane motion of a semi-infinite

layer on a rigid base. Numerical results are presented for the classical soil–structure interaction problems of a rigid

strip-footing on a (i) half-plane, (ii) layer on a half-plane, and (iii) layer on a rigid base. The analytical and numerical

results obtained for these canonical problems demonstrate the high accuracy achievable by PML models even with

small bounded domains.
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1. Introduction

Solution of wave equations over unbounded domains is of interest in various fields of both science and
engineering [1,2]. In particular, solution of the elastodynamic wave equation on an unbounded domain

finds applications in soil–structure interaction analysis [3] and in the simulation of earthquake ground

*Corresponding author. Tel.: +1-510-642-1292; fax: +1-510-643-8928.

E-mail address: chopra@ce.berkeley.edu (A.K. Chopra).

0045-7825/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0045-7825(02)00642-4

Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337–1375

www.elsevier.com/locate/cma

mail to: chopra@ce.berkeley.edu


Nomenclature

a0 non-dimensional frequency

A cross-sectional area of elastic rod

b half-width of footing

BI , eBBI nodal compatibility matrices
c damping coefficient of S, S

1

cl wave velocity in elastic rod

cp P-wave velocity

cs S- or shear-wave velocity

cv Love-wave velocity

C, Cijkl material stiffness tensor

d depth of layer

D material moduli matrix
feig standard orthonormal basis

E, E� Young�s modulus

f , �ff , fi, f e, f p attenuation function(s)

fm see Eq. (59)

F , F , Fi, F
e
, F

p
integrals of f , �ff , fi, f e, f p

Fij flexibility coefficient of rigid strip-footing, with i; j 2 fV ;H ;Rg
F1 dynamic flexibility matrix of rigid strip-footing

H (in subscript) horizontal DOF of rigid strip-footing
i ¼

ffiffiffiffiffiffiffi
�1
p

unit imaginary number

Im imaginary part of a complex number

I identity matrix

k stiffness coefficient of S, S
1

kg, k�g static stiffness per unit length of (visco)elastic foundation of rod

kp, ks, kv wave numbers for P, S, and Love waves

keIJ nodal submatrix of element stiffness matrix

L length of bounded medium
LP depth of PML

me
IJ nodal submatrix of element mass matrix

n unit normal to a surface

N , NI nodal shape functions

p, pi direction of wave propagation

q direction of particle motion

Q, Qij rotation-of-basis matrix

r0 characteristic length quantity for the rod on elastic foundation
R (in subscript) rocking DOF of rigid strip-footing

jRj, jRppj, jRspj amplitude(s) of wave(s) reflected from the PML

Re real part of a complex number

S non-dimensional dynamic stiffness of bounded rod

S
1

non-dimensional dynamic stiffness of unbounded rod

Sij component of dynamic stiffness matrix of layer on rigid base

S1 dynamic stiffness matrix of layer on rigid base

u, ui, u displacement(s)
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motion [4], since the ground beneath a structure or a geographical area of interest can be rationally
modelled as an unbounded elastic domain.

Solution of a wave equation in an unbounded domain requires the imposition of a radiation condition

in any unbounded direction: waves should radiate outwards from a source––a vibrating structure, for

example––toward an unbounded direction, without any spurious wave motion in the reverse direction.

Irregularities in the geometry of the domain or in the physical material often compel a numerical solution

of the problem, thus requiring the use of a bounded domain, along with an artificial boundary that

absorbs outgoing waves, for the modelling of the unbounded domain. Typical absorbing boundaries

belong to one of two broad categories: (1) rigorous, non-local boundaries [5–8], or (2) approximate, local
boundaries [9–11]. The various absorbing boundaries, local or not, are not without drawbacks. The

rigorous boundaries are highly accurate and thus may be used with a small bounded domain. However,

the low computational cost due to the small size of the domain may be negated by the expense due to not

only the non-local nature of such boundaries but also the computation of the boundary terms. Moreover,

rigorous boundaries may not be available for all problems of interest. The approximate boundaries,

although local and cheaply computed, may require large bounded domains for satisfactory accuracy,

since typically they absorb incident waves well only over a small range of angles-of-incidence. Moreover,

high-order approximate boundaries require the use of special finite elements [12,13] for proper imple-
mentation. Various absorbing layer models [14–16] surrounding a bounded elastic domain have also been

proposed as alternatives to absorbing boundaries; however, obtaining satisfactory performance from such

V (in subscript) vertical DOF of rigid strip-footing

w, wi, w arbitrary weighting function in weak form

x, xi, x real coordinate(s)
~xx, ~xxi, ~xx complex stretched coordinate(s)

Greek symbols

dij Kronecker delta

e, ei, eij, e infinitesimal strain tensor (scalar for one-dimensional and vector for anti-plane)

f hysteretic damping ratio for viscoelastic medium

h angle of incidence of outgoing wave on perfectly matched layer (PML)

j, j� bulk modulus

k, ki complex coordinate stretching function(s)eKK, eKKij left stretch tensor
K, Kij right stretch tensor

l, l� shear modulus

m Poisson�s ratio
q mass density

r, ri, rij, r stress tensor (scalar for 1D and vector for anti-plane)

x excitation frequency

X entire bounded domain used for computation

Xe element domain
XBD elastic domain

XPM perfectly matched layer

X1PM unbounded perfectly matched medium (PMM)
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models may require careful formulation and implementation, since the change in material properties from
the elastic medium to the absorbing layer causes reflection of incident waves [17]. Also notable are special

absorbing boundaries such as the superposition boundary [18] and infinite elements [19,20]; although

based on interesting ideas, use of these boundaries may prove to be cumbersome and may be compu-

tationally expensive.

A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that absorbs,

almost perfectly, propagating waves of all non-tangential angles-of-incidence and of all non-zero fre-

quencies. The concept of a PML was first introduced by B�eerenger [21] in the context of electromagnetic

waves. More significantly, Chew and Weedon [22] showed – almost immediately – that the B�eerenger
PML equations arise from a complex-valued coordinate stretching in the electromagnetic wave equations.

Since the introduction of these seminal ideas, extensive research has been conducted on various aspects

of PMLs for electromagnetic waves; this is mentioned without references: a review of electromagnet-

ics PMLs is beyond the scope of this paper. PMLs have been formulated for other linear wave equations

too: the scalar wave equation or the Helmholtz equation [23–25], the linearised Euler equations [26],

the wave equation for poroelastic media [27], and, as discussed below, to the elastodynamic wave

equation.

To the authors� best knowledge, the idea that PMLs could be formulated for the elastodynamic wave
equation was first introduced by Chew and Liu [28]: they used complex-valued coordinate stretching to

obtain the equations governing the PML and presented a proof of the absorptive property of the PML.

Furthermore, they presented a finite-difference-time-domain (FDTD) formulation obtained through field

splitting or an unphysical additive decomposition of the velocity and stress fields. Contemporaneously,

Hastings et al. [29] applied B�eerenger�s original split-field formulation of the electromagnetics PML directly

to the P- and S-wave potentials and obtained a two-dimensional FDTD scheme for implementing the

resultant formulation. Liu [30] later applied the coordinate stretching idea to the velocity–stress formula-

tion of the elastodynamic equation to obtain split-field PMLs for time-dependent elastic waves in cylin-
drical and spherical coordinates. Zhang and Ballmann [31] and Collino and Tsogka [32] have also obtained

split-field, time-domain PMLs for the velocity–stress formulation and presented FDTD implementations.

The latter have also implemented the PML using a two-dimensional mixed finite-element (FE) scheme [33]

in which the degrees-of-freedom of each element are the velocity, the shear stress, and split-field compo-

nents of the axial stresses.

The objective of this paper is twofold: (a) develop the concept of a PML in the context of time-har-

monic elastodynamics in Cartesian coordinates, utilising some of the insights obtained in the context of

electromagnetics [34–36], and (b) present a novel displacement-based, symmetric FE implementation of
the PML for time-harmonic plane-strain or three-dimensional motion. The PML concept is illustrated

through the one-dimensional example of a rod on elastic foundation and through the two-dimensional

example of the anti-plane motion of a continuum, governed by the Helmholtz equation. The PMLs for

these two systems are studied through analytical and numerical (FE) results for the dynamic stiffness of a

semi-infinite rod on elastic foundation, and through numerical results for the anti-plane dynamic stiffness

of a semi-infinite layer on rigid base. The PML for plane-strain and three-dimensional motion is pre-

sented next, together with its FE implementation. Numerical results are presented for the classical soil–

structure interaction problems of a rigid strip-footing on a (i) half-plane, (ii) layer on a half-plane, and
(iii) layer on a rigid base.

Tensorial and indicial notation will be used interchangeably in this paper; the summation convention will

be assumed unless an explicit summation is used or it is mentioned otherwise. An italic boldface symbol will

represent a vector, e.g., x, an upright boldface symbol will represent a tensor or its matrix in a particular

orthonormal basis, e.g., D, and a sans-serif boldface symbol will represent a fourth-order tensor, e.g., C; the
corresponding lightface symbols with Roman subscripts will denote components of the tensor, matrix or

vector.
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2. A one-dimensional system

2.1. Semi-infinite rod on elastic foundation

Consider a semi-infinite rod on elastic foundation (Fig. 1), not subjected to any body forces, but sub-

jected to an imposed displacement u0 expðixtÞ at the left end ðx ¼ 0Þ, and a radiation condition for x!1,

with x the frequency of excitation. This excitation causes time-harmonic displacements uðxÞ expðixtÞ, which
are governed by the following equations:

dr
dx
� kg
A
u ¼ �x2qu; ð1aÞ

r ¼ Ee; ð1bÞ

e ¼ du
dx

; ð1cÞ

where r and e are the axial stress and infinitesimal strain in the rod, E is the Young�s modulus of the rod, A
its cross-sectional area, q its mass density, and kg the static stiffness per unit length of the foundation.

The frequency-response of this system can be expressed in terms of a dimensionless frequency a0 ¼
xr0=cl, where r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=kg

p
is a characteristic length quantity and cl ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
is the wave velocity in the

rod. For a0 < 1, Eq. (1) admits rightward- and leftward-evanescent-wave solutions of the form

uðxÞ ¼ exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q x
r0

�
and uðxÞ ¼ exp

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q x
r0

�
; ð2Þ

and admits rightward- and leftward-propagating-wave solutions of the form

uðxÞ ¼ exp

�
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q x
r0

�
and uðxÞ ¼ exp

�
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q x
r0

�
ð3Þ

for a0 > 1, with a0 ¼ 1 the cut-off frequency of the system; the radiation condition allows only the right-

ward modes in the system. The dynamic stiffness at x ¼ 0, which is the axial force �rA required in the
positive x-direction at x ¼ 0 to maintain u0 ¼ 1, can be obtained using Eqs. (1b), (1c), (2a), (3a) as

S1ða0Þ ¼ K1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
; ð4Þ

where K1 ¼
ffiffiffiffiffiffiffiffiffiffi
EAkg

p
is the static stiffness coefficient of the system. The dimensionless dynamic stiffness,

corresponding to K1 ¼ 1, is defined as

S
1ða0Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
: ð5Þ

Fig. 1. Homogeneous (visco)elastic semi-infinite rod on elastic foundation.
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The motion of a viscoelastic system, where material damping is introduced through the correspon-
dence principle [37], is also described by the above equations, but with complex-valued material moduli

E� ¼ Eð1þ 2ifÞ and k�g ¼ kgð1þ 2ifÞ in place of the real moduli E and kg, f being the hysteretic damping

ratio. The introduction of complex moduli results in a complex-valued wave speed c�l ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if
p

and

complex-valued dimensionless frequency a�0 ¼ a0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if
p

.

The solutions for the displacement and dynamic stiffness of the semi-infinite rod are obtained by ana-

lytically solving Eq. (1) on the unbounded domain ½0;1Þ using appropriate boundary conditions. Nu-

merical solution of this unbounded domain problem requires the solution of Eq. (1) on a bounded domain

augmented by an artificial absorbing boundary or layer; a PML is an absorbing layer model that can be
used towards this purpose.

2.2. Perfectly matched medium

Consider a system of equations of the same form as Eq. (1), but with x replaced by a stretched coordinate
~xx, defined as [34]

~xx :¼
Z x

0

kðsÞds; ð6Þ

where k is a nowhere-zero, continuous, complex-valued coordinate stretching function. By the continuity

of k,

d~xx
dx
¼ kðxÞ; ð7Þ

which formally implies

d

d~xx
¼ 1

kðxÞ
d

dx
: ð8Þ

Thus this aforementioned system of equations can be defined as

1

kðxÞ
dr
dx
� kg
A
u ¼ �x2qu; ð9aÞ

r ¼ Ee; ð9bÞ

e ¼ 1

kðxÞ
du
dx

; ð9cÞ

as a modification of Eq. (1), where the constitutive relation, Eq. (9b), remains the same as for the elastic

medium. A perfectly matched medium (PMM) for a rod on elastic foundation is defined to be a medium

where the field variable u is governed by Eq. (9). The (visco)elastic medium is a special PMM, where

kðxÞ � 1.

Eq. (9) is only motivated by, but defined independently of Eq. (8); using the latter to derive the PMM

equations from Eq. (1) would involve issues of complex differentiability, all of which are neatly avoided by
the independent definition of the PMM. The assumption of continuity on k could presumably be dropped,

by considering one-sided derivatives, or possibly even weak derivatives, in Eq. (7); such technical issues are

avoided by this convenient assumption. Note that the assumption of a continuous k is not restrictive in the

least: the stretching function is specified a priori, and is not a physical quantity that is intrinsically dis-

continuous.
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As is to be expected from the coordinate-stretching motivation, Eq. (9) admits solutions similar in form
to those in Eqs. (2) and (3) admitted by the elastic medium, but with x replaced by ~xx. Evanescent-wave-type
solutions are of the form

uðxÞ ¼ exp

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
~xx
r0

#
and uðxÞ ¼ exp

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
~xx
r0

#
ð10Þ

for a0 < 1, and propagating-wave-type solutions are of the form

uðxÞ ¼ exp

"
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q
~xx
r0

#
and uðxÞ ¼ exp

"
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q
~xx
r0

#
ð11Þ

for a0 > 1; that these are solutions of Eq. (9) can be shown by utilising the continuity of k through Eq. (7).

A special property of these PMMs is that if two PMMs with different k are placed adjacent to each other,

with the functions k such that they match at the interface of the two media, then a wave-type motion will

pass through the interface without generating any reflected wave; this is the perfect matching property of the

PMM. Without loss of generality, consider two PMMs: one is defined on ð�1; 0Þ with kðxÞ :¼ kltðxÞ, and
the other on ½0;1Þ with kðxÞ :¼ krtðxÞ, with the stretching functions such that kltð0Þ ¼ krtð0Þ. These two
PMMs can be considered as only one PMM but with a continuous k defined piecewise on ð�1; 0Þ and
½0;1Þ; thus, there is no interface, precluding the possibility of the generation of any reflected wave. The

Perfect matching property holds for both solutions in Eq. (11) as well as for those in Eq. (10), i.e., it is

independent of the type of wave, of the direction of propagation, and of the frequency a0.
Another special property of the PMMs is that for suitable choices of k, the solutions in the PMM take the

form of the corresponding elastic-medium solution but with an imposed spatial attenuation. Consider, for

a0 > 1, k defined in terms of a real-valued, continuous function f as

kðxÞ :¼ 1� i
f ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

p : ð12Þ

Then

~xx
r0
¼ x
r0
� i

F ðx=r0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

p ; ð13Þ

where

F ð�xxÞ :¼
Z �xx

0

�ff ð�nnÞd�nn; ð14Þ

with �nn ¼ n=r0 and �ff ð�nnÞ ¼ f ðr0 �nnÞ ¼ f ðnÞ. On substituting for ~xx from Eq. (13) into Eq. (11a), the solution is

obtained as

uðxÞ ¼ exp½�F ðx=r0Þ� exp
�
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q x
r0

�
: ð15Þ

Thus, if F ðx=r0Þ > 0, then uðxÞ is a rightward propagating wave that is attenuated in that direction, with the

attenuation independent of the frequency due to the choice of kðxÞ; the function f is termed the attenuation
function. Furthermore, for a0 < 1, consider k defined as

kðxÞ :¼ 1þ f ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

p ; ð16Þ
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then Eq. (10a) is transformed to

uðxÞ ¼ exp½�F ðx=r0Þ� exp
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q x
r0

�
; ð17Þ

i.e., an evanescent wave with additional attenuation.

The above choices for the stretching function are merely illustrative choices that exploit prior knowledge

of the solution. A more realistic choice for k would be in terms of two non-negative attenuation functions f e

and f p, as

kðxÞ :¼ 1

�
þ f

eðxÞ
a0

�
� i

f pðxÞ
a0

: ð18Þ

This function does not assume knowledge of the frequency equation of the system, nor does a priori dis-

tinguish between evanescent and propagating waves. This choice for k imposes a frequency-dependent

attenuation and a phase change on the rightward propagating wave: Eq. (11a) is transformed into

uðxÞ ¼ exp

"
� F pðx=r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

a20

s #
exp

�
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q x
r0

�
þ F

eðx=r0Þ
a0

��
; ð19Þ

where F
e
and F

p
are appropriately-defined integrals of f e and f p, respectively. Using Eq. (18) imposes an

attenuation and a harmonic mode on evanescent waves: Eq. (10a) transforms to

uðxÞ ¼ exp

"
� F eðx=r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a20
� 1

s #
exp iF

pðx=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a20
� 1

s" #
exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q x
r0

�
: ð20Þ

Thus, f e imposes an attenuation on evanescent waves and f p on propagating waves.

2.3. Perfectly matched layer

These special properties of the PMM can be used to define an absorbing layer adjacent to a bounded

domain such that the layer and the domain together model the unbounded domain.

Consider the system shown in Fig. 2(a): XBD ð:¼ ½0;L�Þ is the bounded domain governed by Eq. (1), and

X1PM ð:¼ ðL;1ÞÞ is the unbounded PMM, governed by Eq. (9). The stretch k is taken to be of the form in

Eq. (12) for a0 > 1 and Eq. (16) for a0 < 1, with f chosen such that f ðLÞ ¼ 0. Alternatively, k can be chosen

as in Eq. (18) for all a0, with the attenuation functions such that f eðLÞ ¼ f pðLÞ ¼ 0. Since the medium in

XBD is a special PMM, ðkðxÞ � 1Þ and since the admissible choices of attenuation functions impose that the

functions k for the two domains are matched at the interface, all waves propagating outwards from XBD are

Fig. 2. (a) Perfectly matched medium; (b) Perfectly matched layer, adjacent to the bounded domain for the semi-infinite rod on elastic

foundation.
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completely absorbed into and then attenuated in X1PM. Thus, the displacements of this system in XBD are
exactly the same as the displacements of the semi-infinite rod in XBD.

If the waves are attenuated enough in a finite distance, X1PM can be terminated with a fixed boundary

condition at that distance without any significant reflection of the waves. Shown in Fig. 2(b), this bounded

PMM XPM ð:¼ ðL; Lþ LP �Þ is termed the PML. If the wave reflection from the fixed boundary is not sig-

nificant, the displacements of the entire bounded system X ð:¼ XBD [ XPMÞ in XBD should be almost the

same as the displacements of the semi-infinite rod in XBD.

2.4. Effect of fixed-end termination of the PML

The effect of domain termination in the PMM is studied analytically, first by calculating the amplitude of

waves reflected back from the fixed boundary and then by investigating the effects of L, LP and f on the

(normalised) dynamic stiffness Sða0Þ of X at x ¼ 0.

The reflected-wave amplitude is calculated by considering a PMM defined on ½0; LP � with an imposed

displacement uðLP Þ ¼ 0. The stretch is chosen as in Eq. (12) for a0 > 1 and as in Eq. (16) for a0 < 1. A

rightward propagating wave (a0 > 1) with an unit amplitude as it enters the PML, alongwith a wave re-

flected back from the fixed boundary, can be represented as

uðxÞ ¼ exp

"
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q
~xx
r0

#
þ R exp

"
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

q
~xx
r0

#
: ð21Þ

Imposing uðLP Þ ¼ 0 gives

jRj ¼ exp½�2F ðLP=r0Þ�; ð22Þ
which is the amplitude of the reflected wave as it exits the PML. A similar calculation for evanescent waves
using Eq. (16) shows that jRj in Eq. (22) is the additional attenuation imposed by the PML on the reflected

evanescent wave. This reflection coefficient jRj due to the PML is controlled by the choice of the parameters

f and LP , independently of the size of the bounded domain to which the PML is adjacent. This suggests that

if displacement and stress quantities near x ¼ 0 for the semi-infinite elastic medium are the quantities of

interest in the analysis, the bounded domain may be restricted to the region of interest, thus lowering the

computational cost, if the parameters of the PML are chosen appropriately.

A choice of k as in Eq. (18) leads to

jRj ¼ exp

"
� 2F

pðLP=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

a20

s #
ð23Þ

for a0 > 1, and

jRj ¼ exp

"
� 2F

eðLP=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a20
� 1

s #
exp

�
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q LP
r0

�
ð24Þ

for a0 < 1; an additional attenuation is imposed upon evanescent waves.

The dynamic stiffness of X at x ¼ 0 is calculated as follows: (1) assume a solution of the form

uðxÞ ¼ B1 exp

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
~xx
r0

#
þ B2 exp

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
~xx
r0

#
; ð25Þ

in terms of constants B1 and B2, with imaginary square roots for a0 > 1, and k in ~xx defined as

kðxÞ � 1 for x 2 ½0; L�; ð26aÞ

U. Basu, A.K. Chopra / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337–1375 1345



and, following Eqs. (16) and (12), in terms of a non-negative attenuation function f as

kðxÞ ¼ 1þ f ðx� LÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

p
if a0 < 1

1� if ðx� LÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 1

p
if a0 > 1



for x 2 ðL; Lþ LP �; ð26bÞ

(2) impose boundary conditions uð0Þ ¼ 1 and uðLþ LP Þ ¼ 0 to calculate B1 and B2, and (3) compute the

dynamic stiffness as �ðrAÞjx¼0 using Eqs. (9b) and (9c). The dimensionless dynamic stiffness of X is thus

obtained as

Sða0Þ ¼ S
1ða0Þ

1þ jRj exp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

p
ðLþ LP Þ=r0

h i
1� jRj exp � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

p
ðLþ LP Þ=r0

h i ; ð27Þ

with S
1ða0Þ given by Eq. (5), jRj given by Eq. (22). Here Sða0Þ ! S

1ða0Þ as jRj ! 0, i.e., the dynamic

stiffness of the entire bounded domain is a good approximation to that of the unbounded domain if the

reflection coefficient is suitably small.

If k is chosen as

kðxÞ ¼ 1

�
þ f

eðx� LÞ
a0

�
� i

f pðx� LÞ
a0

; ð28Þ

in ðL; Lþ Lp�, following Eq. (18), then the dynamic stiffness for all a0 is still given by Eq. (27), but with jRj
replaced by

exp

"
� 2F

eðLP=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a20
� 1

s #
exp 2iF

pðLP=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a20
� 1

s" #
:

Thus, the accuracy of the bounded-domain approximation is controllable through f e for evanescent waves
and through f p for propagating waves.

2.5. Effect of PML parameters on accuracy of results

Eq. (27), with jRj given by Eq. (22), is used to investigate the effect of the PML parameters LP and f on

the dynamic stiffness Sða0Þ, represented in terms of frequency-dependent stiffness, kða0Þ, and damping,

cða0Þ, coefficients given by the relation

Sða0Þ ¼ kða0Þ þ ia0cða0Þ: ð29Þ
This approximation to the stiffness of the unbounded medium is compared against the exact stiffness

S
1ða0Þ, also decomposed into stiffness and damping coefficients.

To facilitate a meaningful discussion of the effects of these parameters, the attenuation function is chosen

to be of the form

f ðxÞ :¼ f0
x
LP

� �m

; ð30Þ

which gives

F ðLP=r0Þ ¼
f0ðLP=r0Þ
mþ 1

: ð31Þ

Thus the reflection coefficient jRj in Eq. (22) depends on the maximum value of the attenuation function,
f0½¼ f ðLP Þ�, the depth of the PML, LP=r0, and the degree of the polynomial attenuation function, m. Eq.
(31) suggests that the accuracy will be related directly to f0 and to LP=r0, but inversely to m.

It is demonstrated that it is the depth LP of the PML that is significant, rather than the size L of the

bounded domain. Fig. 3(a) shows that if LP=r0 is not large enough, then increasing L=r0 does not improve
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the accuracy of the results. However, as shown in Fig. 3(b), for a sufficiently large PML (LP=r0 ¼ 1), the size
of the bounded domain does not affect the results: in the ‘‘eye-norm’’, there is no difference between either

approximate result and the exact one.

Fig. 4 shows the effect of the choice of the attenuation function on the accuracy of results. As was

predicted from Eq. (31), increasing f0 increases the accuracy of results, but increasing m leads to less ac-

curate results. This suggests that the attenuation function should be chosen as a linear polynomial and that

the accuracy should be controlled through f0. An adequate value of f0 can be established through a ru-

dimentary trial-and-error procedure; it is not appropriate to choose a value of f0 by choosing an adequate

value of jRj in e.g., Eq. (22), because adequacy of the value of jRj is equivalent to adequacy of the value of
f0.

If the dynamic stiffness of the bounded domain is calculated for k in the PML given by Eq. (28) with

f e ¼ f p ¼ f , then the effects of L, LP , f0 and m on the dynamic stiffness is qualitatively similar to their effects

for k in the PML given by Eq. (26b), shown in Figs. 3 and 4; therefore, these results are not presented here.

In fact, a highly accurate dynamic stiffness is still obtained by choosing the parameter values L=r0 ¼ 1=2,
LP=r0 ¼ 1, f0 ¼ 10 and m ¼ 1.

Although not presented here, accurate results are also obtainable for a viscoelastic rod, for either of the

choices of k given above.

Fig. 3. Effect of size of bounded domain on the accuracy of dynamic stiffness of the elastic rod for two different depths of the PML;

f0 ¼ 10, m ¼ 1: (a) LP=r0 ¼ 1=2 and (b) LP=r0 ¼ 1.
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2.6. Finite-element implementation

The PMM is equivalently interpreted as an inhomogeneous viscoelastic medium, which is then imple-

mented using standard displacement-based finite elements [38]. Because the displacement formulation is

well known, only the salient steps of the implementation are presented.

Eq. (9) is rewritten as follows: Eq. (9a) is multiplied by kðxÞ, and e in Eq. (9c) is redefined as e kðxÞe to
obtain an equivalent system of equations

dr
dx
� kg
A

kðxÞu ¼ �x2qkðxÞu; ð32aÞ

r ¼ E
1

kðxÞ e; ð32bÞ

e ¼ du
dx

: ð32cÞ

Here, the coordinate stretch has been transformed into a change in the material parameters; this PMM can

thus be interpreted to be an inhomogeneous viscoelastic medium.

The weak form of Eq. (32a) is derived as follows: the equation is first multiplied by an arbitrary weighting

function, w, residing in an appropriate admissible space, and then integrated over X using integration-

by-parts to get

Fig. 4. Effect of attenuation function on the accuracy of dynamic stiffness of the elastic rod; L=r0¼ 1=2, LP=r0¼ 1: (a) m¼ 1 and (b) f0¼ 10.
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Z
X

dw
dx

rdXþ
Z

X

kg
A

kðxÞwudX� x2

Z
X

qkðxÞwudX ¼ ðwrÞjoX: ð33Þ

The functions u and w are interpolated elementwise in terms of nodal quantities using N , a vector of nodal

shape functions, and Eqs. (32b) and (32c) are substituted into the integrals on the left hand side of Eq. (33).

Restricting the integrals to Xe, the element domain, gives the stiffness and mass matrices for a PML element:

keIJ ¼
Z

Xe

dNI

dx
E

1

kðxÞ
dNJ

dx
dXþ

Z
Xe

kg
A

kðxÞNINJ dX; ð34aÞ

me
IJ ¼

Z
Xe

qkðxÞNINJ dX; ð34bÞ

keIJ and me
IJ are the nodal submatrices of the entire element matrices ke and me, with I and J the node

numbers and NI the shape function corresponding to node I . In Eq. (34), k is defined globally on the

computational domain, not elementwise.

The element stiffness and mass matrices obtained above are symmetric, but are intrinsically complex-

valued and frequency-dependent because of the choice for k (Eq. (12) or Eq. (18)). Hence, the system

matrices for X will be complex, symmetric, and banded, the PML contributions to which will have to
computed anew for each frequency.

2.7. Numerical results

The dynamic stiffness, Sða0Þ, of X at x ¼ 0, with k as defined in Eq. (26), is computed using a FE model

consisting of two-noded linear isoparametric elements. The mesh is chosen to have nb elements in a length of

r0 in the bounded domain and np elements per r0 length in the PML; nb and np are parameters in the analysis.

For a sufficiently dense mesh (nb ¼ np ¼ 30), the results from the FE model for either choice of k in the
PML (Eq. (26b) or Eq. (28)) match the corresponding analytical results for the dynamic stiffness of the

bounded domain, e.g., the results presented in Figs. 3 and 4; therefore, the numerical results are not pre-

sented separately.

The effect of mesh density on the accuracy of the computed dynamic stiffness is investigated. Because the

mesh should adequately capture significant spatial variations in the displacements, the mesh density in the

PML should be governed by both the wavelength and the sharpness of the spatial attenuation. If the spatial

attenuation is independent of the frequency, in the case of low frequencies the density should be governed

by the sharpness of the attenuation and by the wavelength for high frequencies. The qualifiers ‘‘high’’ and
‘‘low’’ are characterised by the relation of the wavelength to the sharpness of the attenuation. Thus, it

should suffice to choose the mesh density in the entire bounded domain to be adequate for a high enough

frequency, with the density in the PML similar to that in the bounded domain.

Fig. 5 shows the effect of mesh density in the PML on the accuracy of the dynamic stiffness for two values

of nb. The stiffness coefficient computed with np ¼ nb ¼ 10 shows a slight oscillation about the exact so-

lution, with its amplitude increasing with frequency. Increasing np gives accurate results for a0/4; the error

found in the higher frequencies is because nb ¼ 10 is not adequate in that range. The slight deterioration in

accuracy of results for np ¼ 4nb over those for np ¼ 2nb may be due to the contrast between the densities in
XBD and XPM. For a larger nb (¼ 20), both np ¼ nb and np ¼ 2nb give highly accurate results. This dem-

onstrates that if the mesh density in the entire bounded domain is adequate for the range of frequencies

considered, the accuracy may not be significantly sensitive to the choice of np, provided np P nb.
It is computationally advantageous to choose k in the PML so that the attenuation does not increase too

strongly with frequency, especially for higher frequencies, as is indeed the case for functions k in both Eq.

(26b) and Eq. (28). An alternate choice of
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Fig. 5. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic rod for two different mesh densities in the elastic

domain; L=r0 ¼ 1=2, LP=r0 ¼ 1, f0 ¼ 10, m ¼ 1: (a) nb ¼ 10 and (b) nb ¼ 20.

Fig. 6. Effect of frequency dependence of stretching function on the accuracy of the FE solution, with k in the PML as defined in (a)

Eq. (28), and (b) Eq. (35); nb ¼ np ¼ 30; L=r0 ¼ 1=2, LP=r0 ¼ 1, f0 ¼ 10, m ¼ 1.
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kðxÞ ¼ 1þ f eðx� LÞ � if pðx� LÞ ð35Þ
in the PML results in sharper attenuation for higher frequencies, thus requiring higher densities over-and-

above the usual high density requirements for high frequencies. As shown in Fig. 6, the FE solution ob-

tained using Eq. (28) is close to the exact result. The error in cða0Þ for very low frequencies is due to the

division of ImSða0Þ by small values of a0. In contrast, the FE solution for Eq. (35) does show a slight error

in kða0Þ for a0 > 3 which is due to inadequate mesh density in the PML. Although not presented here, this
error is not found in either the corresponding analytical solution or the FE solution for a denser PML mesh

(nb ¼ 30, np ¼ 60).

3. Anti-plane motion

3.1. Elastic medium

Consider a two-dimensional homogeneous isotropic elastic continuum undergoing only time-harmonic

anti-plane displacements in the absence of body forces. For such motion, if the x3-direction is taken to point

out of the plane, only the 31- and 32-components of the three-dimensional stress and strain tensors are non-

zero. The displacements (in the form uðxÞ expðixtÞ, with x the excitation frequency) are governed by fol-

lowing equations (i 2 f1; 2g):X
i

ori
oxi
¼ �x2qu; ð36aÞ

ri ¼ lei; ð36bÞ

ei ¼
ou
oxi

; ð36cÞ

where l is the shear modulus of the medium and q its mass density; ri and ei represent the 3i-components of

the stress and strain tensors.

On an unbounded domain, Eq. (36) admits plane shear wave solutions [39] of the form

uðxÞ ¼ exp½�iksx � p�; ð37Þ
where ks ¼ x=cs is the wave number, with wave speed cs ¼

ffiffiffiffiffiffiffiffi
l=q

p
, and p is a unit vector denoting the prop-

agation direction. Furthermore, consider the domain shown in Fig. 7, which consists of a layer of thickness d
with material constants ll and ql, with a traction-free surface at x1 ¼ �d, and supported by a half-plane with

material constants lh and qh. On such a domain, Eq. (36) admits Love-wave solutions of the form

uðxÞ ¼ ðB1 e
�iblx1 þ B2 e

þiblx1Þe�ikvx2 in the layer; ð38aÞ

uðxÞ ¼ B3 e
�bhx1e�ikvx2 in the half-plane; ð38bÞ

if cls < chs , where c
l
s and c

h
s are the shear wave velocities in the layer and the half-plane respectively. In Eq.

(38) B1, B2 and B3 are constants, b2
l ¼ ðklsÞ

2 � k2v and b2
h ¼ k2v � ðkhs Þ

2
, with kls ¼ x=cls, k

h
s ¼ x=chs , and

kv ¼ x=cv; cv is the wave speed in the x2-direction, satisfying cls < cv < chs , and governed by the equation

lhbh � llbl tanðbldÞ ¼ 0: ð39Þ
A viscoelastic medium, with damping introduced through the correspondence principle, can also

be described using the above equations, but with a complex-valued shear modulus l� ¼ lð1þ 2ifÞ, f being

the hysteretic damping ratio, leading to a complex-valued wave speed c�s ¼ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if
p

and wave number
k�s ¼ ks=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if
p

.

U. Basu, A.K. Chopra / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337–1375 1351



3.2. Perfectly matched medium

The summation convention is abandoned in this section.

Consider a system of equations of the same form as Eq. (36), but with xi replaced by stretched coor-

dinates ~xxi, defined as [34]

~xxi :¼
Z xi

0

kiðsÞds; ð40Þ

where ki are nowhere-zero, continuous, complex-valued coordinate stretching functions. This coordinate

stretching formally implies

o

o~xxi
¼ 1

kiðxiÞ
o

oxi
; ð41Þ

thus, this system of equations can be defined asX
i

1

kiðxiÞ
ori
oxi
¼ �x2qu; ð42aÞ

ri ¼ lei; ð42bÞ

ei ¼
1

kiðxiÞ
ou
oxi

; ð42cÞ

as a modification of Eq. (36), where the constitutive relation (Eq. (42b)) remains the same as for the elastic

medium. A PMM for anti-plane motion of a two-dimensional elastic continuum is defined to be one

governed by Eq. (42); a (visco)elastic medium corresponds to kiðxiÞ � 1. Eq. (42) is defined independently
of, but motivated by, the definition of ~xxi; this is comparable to the definition of Eq. (9) for the one-

dimensional PMM.

Given the continuity of ki, solutions admitted in the PMM are similar in form to those in Eqs. (37) and

(38) admitted in the elastic medium, but with xi replaced by ~xxi. On an unbounded domain, Eq. (42) admits

plane-wave-type solutions of the form

uðxÞ ¼ exp½�iks~xx � p�: ð43Þ

Furthermore, on the domain shown in Fig. 7 and given k1ðx1Þ � 1, Eq. (42) admits Love-wave-type so-

lutions of the form

uðxÞ ¼ ðB1 e
�iblx1 þ B2 e

þiblx1Þe�ikv~xx2 in the layer; ð44aÞ

Fig. 7. Layer with a free surface supported on a half-plane; this geometry admits Love-wave motion.
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uðxÞ ¼ B3 e
�bhx1e�ikv~xx2 in the half-plane; ð44bÞ

with bl, bh, kv etc., as defined for the elastic medium.

The perfect matching property of these PMMs is that if two PMMs with different ki are placed adjacent

to each other, with the functions ki for the two media such that they match at the interface of the media,

then a propagating wave will pass through the interface without generating any reflected wave. This
property is shown as follows. It is implicitly assumed in the definition of the PMM that ki is a function of xi
only, i.e., the coordinate stretches are uncoupled [34]. Consider the x1–x2 plane, with two PMMs defined on

it: one on the left half plane (:¼ fðx1; x2Þjx1 < 0g) with kiðxiÞ :¼ klt
i ðxiÞ, and another on the right half plane

(:¼ fðx1; x2Þjx1 P 0g) with kiðxiÞ :¼ krt
i ðxiÞ. If klt

2 ¼ krt
2 , and if klt

1 ð0Þ ¼ krt
1 ð0Þ, then the two PMMs can be

considered as one PMM, wherein a continuous k1 is defined piecewise on the two half planes, and each ki is
a function of xi only; thus there is no interface to generate any reflected wave. This Perfect matching

property holds for any wave solution admitted by the PMM. In particular, for a plane-wave-type solution

as in Eq. (43), the matching is independent of the direction of propagation p and of the wave number ks (or
frequency x).

A suitable choice of ki imposes an attenuation on the wave solutions to Eq. (42). Consider the plane

wave-type solution in Eq. (43). If the functions ki are defined in terms of real-valued, continuous attenu-

ation functions fi as

kiðxiÞ :¼ 1� i
fiðxiÞ
ks

; ð45Þ

then

~xxi ¼ xi � i
FiðxiÞ
ks

; ð46Þ

where

FiðxiÞ :¼
Z xi

0

fiðnÞdn: ð47Þ

Substituting Eq. (46) into Eq. (43) gives

uðxÞ ¼ exp

"
�
X
i

FiðxiÞpi

#
exp½�iksx � p�: ð48Þ

Thus, if FiðxiÞ > 0 and pi > 0, then uðxÞ is attenuated as exp½�FiðxiÞpi� in the xi-direction, and the attenu-

ation is independent of the frequency if pi is. Furthermore, consider the Love-wave-type solution in Eq.

(44); if k2 for the layer and for the half-plane are chosen as in Eq. (45), as

kl2ðx2Þ :¼ 1� i
f2ðx2Þ
kls

ð49aÞ

in the layer, and

kh2ðx2Þ :¼ 1� i
f2ðx2Þ
khs

ð49bÞ

in the half-plane, then the expð�ikv~xx2Þ term in Eq. (44), which represents a wave propagating in the positive

x2-direction, is transformed to

exp

�
� F2ðx2Þ

cls
cv

�
e�ikvx2
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in the layer, and to

exp

�
� F2ðx2Þ

chs
cv

�
e�ikvx2

in the half-plane. Since cv depends on x through Eq. (39), the attenuation is not independent of frequency

for the choices of k2 given above. The use of kv in place of kls and k
h
s in Eq. (49) would, of course, make the

attenuation independent of frequency, but would require the solution of Eq. (39) to determine kv.
In a PMM for viscoelastic medium, with damping incorporated through the correspondence principle,

the complex wave number k�s may be used in place ks throughout, even in the stretching function, e.g., in Eq.

(45).

3.3. Perfectly matched layer

Consider a wave of the form in Eq. (37) propagating in an unbounded elastic domain, the x1–x2 plane,
governed by Eq. (36). The objective of defining a PML is to simulate this wave propagation by using a

corresponding bounded domain. Consider the replacement of the unbounded domain by XBD [ X1PM as

shown in Fig. 8(a), where XBD is a ‘‘bounded’’ (truncated) domain, governed by Eq. (36), and X1PM is the

unbounded PMM, governed by Eq. (42), with k1 of the form in Eq. (45), satisfying f1ð0Þ ¼ 0, and k2 � 1.

Because a) the medium in XBD is a special PMM (kiðxiÞ � 1, no summation), and b) the functions ki for the
two media are chosen to be matched at the interface, all waves of the form in Eq. (37) propagating out-

wards from XBD (waves with p1 > 0) are completely absorbed into and then attenuated in the x1-direction in

X1PM. Thus the displacements in XBD due to an outward propagating wave are exactly the same as the
displacements of the original unbounded elastic medium in XBD due to the same wave.

If this outward propagating wave is attenuated enough in a finite distance, then X1PM can be truncated by

a fixed boundary without any significant reflection of the wave. Shown in Fig. 8(b), this layer XPM of the

PMM is termed the PML. If the wave reflection from the fixed boundary is not significant, then the dis-

placements of this system (XBD [ XPM) in XBD should be almost the same as those of the unbounded elastic

Fig. 8. (a) A PMM adjacent to a ‘‘bounded’’ (truncated) domain attenuates an outgoing plane wave; (b) a PML with a fixed edge also

reflects the wave back towards the bounded domain.
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domain in XBD. A PML for the system shown in Fig. 7 can be constructed similarly by using a vertical layer
consisting of two different PMMs with material properties matched to the physical layer and the half-plane.

The effect of domain truncation in the PMM is analysed by studying the reflection of plane waves by the

fixed boundary. As shown in Fig. 8(b), the plane wave, incident at an angle h and of unit amplitude as it

enters the PML, is reflected from the fixed boundary. Therefore, the total wave motion can be represented

as

uðxÞ ¼ exp½�iks~xx � pðIÞ� þ R exp½�iks~xx � pðRÞ�; ð50Þ
where pðIÞ and pðRÞ are the propagation directions of the incident and reflected waves respectively. Imposing

uðxÞ � 0 for x1 ¼ LP and for all x2, and substituting pðIÞ1 ¼ cos h, gives

jRj ¼ exp½�2F1ðLP Þ cos h�; ð51Þ
which is also the amplitude of the reflected wave as it exits the PML. This reflection coefficient is controlled

by the choice of the parameters f1 and LP––independently of the size of the bounded domain to which the

PML is adjacent––and is influenced by the angle of incidence. This suggests that the bounded domain may

be restricted to the region of interest in the analysis, thus lowering the computational cost, if the parameters

and the orientation of the PML are chosen appropriately.

3.4. An alternate interpretation of the PMM

Below is an equivalent interpretation of the anti-plane PMM as an anisotropic, inhomogeneous visco-

elastic medium, obtained by transforming the coordinate stretch into a change in the constitutive relation.

Consider two rectangular Cartesian coordinate systems for the plane as follows: (1) an xi system, with

respect to an orthonormal basis feig, and (2) an x0i system, with respect to another orthonormal basis fe0ig,
with the two bases related by the rotation-of-basis matrix Q, with components Qij :¼ ei � e0j. Eq. (42) can be

re-written in terms of the coordinates x0i by replacing xi by x0i throughout, as (no summation)X
i

1

kiðx0iÞ
or0i
ox0i
¼ �x2qu; ð52aÞ

r0i ¼ le0i; ð52bÞ

e0i ¼
1

kiðx0iÞ
ou
ox0i

; ð52cÞ

representing a PMM wherein waves are attenuated in the e01 and e02 directions instead of in the e1 and e2
directions as in Eq. (42); r0i and e0i are the 3i components in the basis fe0ig of the stress and strain tensors. By

multiplying Eq. (52a) with k1ðx01Þk2ðx02Þ and using the fact that ki is a function of x0i only, Eq. (52) can be re-

written as

$0 � ðeKK 0r0Þ ¼ �x2q½k1ðx01Þk2ðx02Þ�u; ð53aÞ

r0 ¼ le0; ð53bÞ

e0 ¼ K0ð$0uÞ; ð53cÞ
where

r0 :¼ r01
r02


 �
; e0 :¼ e01

e02


 �
; $0 :¼

o

ox01
o

ox02

8>><>>:
9>>=>>;; ð54Þ
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and eKK 0 :¼ k2ðx02Þ �
� k1ðx01Þ

� �
; K0 :¼ 1=k1ðx01Þ �

� 1=k2ðx02Þ

� �
: ð55Þ

The various primed quantities in Eq. (53) can be transformed to the basis fe0ig to obtain

$ � ðeKKrÞ ¼ �x2q½k1ðx01Þk2ðx02Þ�u; ð56aÞ

r ¼ le; ð56bÞ

e ¼ Kð$uÞ; ð56cÞ
where

r :¼ r1

r2


 �
¼ Qr0; e :¼ e1

e2


 �
¼ Qe0; $ :¼

o

ox1
o

ox2

8><>:
9>=>; ¼ Q$0; ð57Þ

and eKK ¼ QeKK0QT; K ¼ QK0QT; ð58Þ
the tensors eKK and K are termed the left and right stretch tensors, respectively. Furthermore, because these

stretch tensors are diagonal in the basis fe0ig, this basis is termed the characteristic basis of the PMM.

Redefining r as r eKKr and e as e K�1e in Eq. (56), and defining

fm :¼ k1ðx01Þk2ðx02Þ ð59Þ
gives an equivalent system of equations:

$ � r ¼ �x2qfmu; ð60aÞ

r ¼ lDe; ð60bÞ

e ¼ $u; ð60cÞ
where

D :¼ eKKK ¼ QeKK0K0QT: ð61Þ
The coordinate-stretching in the PMM, represented by eKK and K in Eq. (56), has thus been transformed

into a change in the constitutive relation, thus leading to an interpretation of this PMM as an anisotropic,

inhomogeneous viscoelastic medium. This interpretation of the PMM is comparable to the inhomo-

geneous-media interpretation of the one-dimensional PMM presented earlier and is also related to similar

interpretations of electromagnetics PMLs [35,40].

3.5. Finite-element implementation

Next, the anisotropic, inhomogeneous medium form of the PMM, given by Eq. (60), is implemented

using standard displacement-based finite elements. The weak form of Eq. (60a) is derived by multiplying it

with an arbitrary weighting function w residing in an appropriate admissible space, and then integrating

over the entire computational domain X using integration-by-parts and the divergence theorem to obtainZ
X

$w � rdX� x2

Z
X

qfmwudX ¼
Z

C
wr � ndC; ð62Þ

where C :¼ oX is the boundary of X and n is the unit normal to C. Assuming elementwise interpolations of

u and w in terms of nodal shape functions N , imposing Eqs. (60b) and (60c) pointwise in Eq. (62), and
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restricting the domain integrals to the element domain X ¼ Xe gives the stiffness and mass matrices for a

PML element. In terms of nodal submatrices, these are

keIJ ¼
Z

Xe

ð$NIÞTlDð$NJÞdX; ð63aÞ

me
IJ ¼

Z
Xe

qfmNINJ dX; ð63bÞ

where I and J denote node numbers of the element. In Eq. (63), the functions ki in D and in fm are defined

globally on the computational domain, not elementwise. Note that a FE implementation of Eq. (56) would

also have resulted in the stiffness and mass matrices in Eq. (63), because the coordinate-stretch model of the

PMM (Eq. (56)) is equivalent to the anisotropic-medium model (Eq. (60)).

The above is, of course, the FE implementation presented by Collino and Monk [41] and studied further
by Harari et al. [25]. These element matrices are symmetric, but intrinsically complex-valued and frequency-

dependent. Hence, the system matrices for X will be complex, symmetric, and banded, the PML contri-

butions to which will have to computed anew for each frequency.

3.6. Numerical results

Consider a homogeneous isotropic semi-infinite layer of depth d on a rigid base, as shown in Fig. 9(a),

whose anti-plane motion is governed by Eq. (36) with the following boundary conditions:

uðxÞ ¼ 0 at x2 ¼ 0; 8x1 > 0; ð64aÞ

r2 ¼ 0 at x2 ¼ d; 8x1 > 0; ð64bÞ

uðxÞ ¼ u1N1ðx2=dÞ þ u2N2ðx2=dÞ at x1 ¼ 0; 8x2 2 ½0; d�; ð64cÞ
and a radiation condition for x1 !1, where u1 and u2 are the displacements at nodes 1 and 2 and N1 and

N2 are shape functions, defined as

N1ðnÞ ¼ 4nð1� nÞ; N2ðnÞ ¼ nð2n� 1Þ; n 2 ½0; 1�: ð65Þ
The wave motion in this waveguide system is similar to Love-wave motion: it is dispersive, and consists of
not only propagating modes but also an infinite number of evanescent modes, with the propagation (and

decay) in the x1-direction [42, Appendix A.3].

The nodal forces P1 and P2 at nodes 1 and 2 are related to the nodal displacements through the dynamic

stiffness matrix S1ða0Þ as

Fig. 9. (a) Homogeneous isotropic (visco)elastic semi-infinite layer of depth d on a fixed base; (b) a PML model.
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P1
P2


 �
¼ S1ða0Þ

u1
u2


 �
; ð66Þ

where

S1ða0Þ ¼ 2l
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
n � a20

p
a4
n

ð�4þ ð�1Þn8=anÞ2 �12þ ð�1Þn40=an � 32=a2
n

�12þ ð�1Þn40=an � 32=a2
n ð3� ð�1Þn4=anÞ2

� �
; ð67Þ

with a0 ¼ ksd and an ¼ ð2nþ 1Þp=2. Furthermore, the components Sijða0Þ of S1ða0Þ can be decomposed

into dimensionless, frequency-dependent stiffness, kða0Þ, and damping, cða0Þ, coefficients as

Sijða0Þ ¼ Sijð0Þ½kijða0Þ þ ia0cijða0Þ� ðno summationÞ: ð68Þ
This semi-infinite layer is modelled using the bounded-domain-PML model shown in Fig. 9(b), composed

of a bounded domain XBD and a PML XPM. Motivated by the realistic choice of a stretching function in Eq.

(18), the stretching functions ki are chosen as

kiðxiÞ :¼ 1

�
þ fiðxiÞ

k�s

�
� i

fiðxiÞ
k�s

ð69Þ

to attenuate both propagating and evanescent waves in the system, with f1 chosen to be linear in the

PML––in view of the conclusions of Section 2.5––and f2 ¼ 0 matching the corresponding function in XBD;

recall that k�s ¼ ks for an elastic medium. However, a stretching function of the form

kiðxiÞ :¼ ½1þ fiðxiÞ� � i
fiðxiÞ
ks

ð70Þ

will not be adequate for all evanescent modes, an observation mirrored in electromagnetics literature

[43,44], where alternative choices of the stretching function have been suggested for attenuating evanescent

waves.

A uniform FE mesh of four-node bilinear isoparametric elements is used to discretise the entire bounded
domain. The mesh is chosen to have nd elements per unit d, nb elements per unit L=d across the width of

XBD, and np elements per unit LP=d across XPM, where nd , nb and np are parameters in the analysis.

Figs. 10 and 11 show the effect of mesh density in the PML on the accuracy of the dynamic stiffness for

two different values of nb. Note that a denser mesh in the PML does not affect the results for low frequencies

and, in fact, may lead to a deterioration in accuracy for higher frequencies. This suggests that the mesh

density in the PML should be chosen to be similar to that in the bounded domain, echoing conclusions

reached by an earlier dispersion analysis [25].

For purposes of comparison, the layer is also modelled using a viscous dashpot model [10], with con-
sistent dashpots placed at the edge x1 ¼ Lþ LP , and the entire domain XBD [ XPM taken to be elastic. The

placement of the viscous dashpots is such that the mesh is comparable to that in the PML model. Fig. 12

presents stiffness and damping coefficients calculated for an elastic medium using the PML model and the

viscous dashpot model. It is seen that the results from the PML model are highly accurate, even though

they are obtained using a small computational domain and at a low cost: the cost of the PML model is

similar to that of the viscous dashpot model, and the grossly inaccurate results from the viscous dashpot

model emphasize the small size of the computational domain. Significantly, the high accuracy of the PML

results demonstrates that the stretching function of Eq. (69) adequately attenuates the infinite number of
evanescent modes in this waveguide.

Fig. 13 shows that the PML model gives highly accurate results for a viscoelastic medium with f ¼ 0:05.
The appreciable inaccuracy in the results from the viscous dashpot model, even for this viscoelastic me-

dium, further emphasizes the small size of the computational domain.
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4. Plane-strain and three-dimensional motion

4.1. Elastic medium

Consider a homogeneous isotropic elastic medium undergoing time-harmonic motion in the absence of

body forces, with displacements of the form uðxÞ expðixtÞ, where x the excitation frequency. Such a me-

dium is governed by the equationsX
j

orij
oxj
¼ �x2qui; ð71aÞ

rij ¼
X
k;l

Cijklekl; ð71bÞ

eij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
; ð71cÞ

where Cijkl written in terms of the Kronecker delta dij is

Cijkl ¼ j

�
� 2

3
l

�
dijdkl þ lðdikdjl þ dildjkÞ; ð72Þ

Fig. 10. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic semi-infinite layer on fixed base; L ¼ d=2, LP ¼ d,
nd ¼ 15, f1ðx1Þ ¼ 10hx1 � Li=LP ; hxi :¼ ðxþ jxjÞ=2.
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rij and eij are the components of r and e, the stress and infinitesimal strain tensors, and Cijkl are the

components of C, the material stiffness tensor; j is the bulk modulus, l the shear modulus, and q the mass

density of the medium. If i; j; k; l 2 f1; 2g, then Eq. (71) describes plane-strain motion; if i; j; k; l 2 f1; 2; 3g
it describes three-dimensional motion. Eq. (71) also describes plane-stress motion, with i; j; k; l 2 f1; 2g, if j
is re-defined appropriately.

On an unbounded domain, Eq. (71) admits body-wave solutions [39] in the form of (1) P waves:

uðxÞ ¼ q exp½�ikpx � p�; ð73aÞ
where kp ¼ x=cp, with cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 4l=3Þ=q

p
the P-wave speed, p is a unit vector denoting the propagation

direction, and q ¼ �p the direction of particle motion, and (2) S waves:

uðxÞ ¼ q exp½�iksx � p�; ð73bÞ
where ks ¼ x=cs, with cs ¼

ffiffiffiffiffiffiffiffi
l=q

p
the S-wave speed, and q � p ¼ 0. Eq. (71) also admits interface-guided

waves, such as Rayleigh waves and Stoneley waves. Rayleigh waves propagate along a free surface, and

Stoneley waves may propagate along the interface of two semi-infinite elastic media. Both types of waves

propagate with exponentially-decreasing amplitude in the direction normal to and away from the surface or

interface, respectively.

A viscoelastic medium is described by the above equations, but with complex-valued moduli j� ¼
jð1þ 2ifÞ and l� ¼ lð1þ 2ifÞ, with f the hysteretic damping ratio, and corresponding complex-valued
wave speeds.

Fig. 11. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic semi-infinite layer on fixed base; L ¼ d=2, LP ¼ d,
nd ¼ 15, f1ðx1Þ ¼ 10hx1 � Li=LP .
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4.2. Perfectly matched medium and layer

The summation convention is abandoned in this section.

A PMM for plane-strain or three-dimensional elastodynamic motion is defined to be a medium governed

by the following equations:X
j

1

kjðxjÞ
orij
oxj
¼ �x2qui; ð74aÞ

rij ¼
X
k;l

Cijklekl; ð74bÞ

eij ¼
1

2

1

kjðxjÞ
oui
oxj

�
þ 1

kiðxiÞ
ouj
oxi

�
; ð74cÞ

where ki are nowhere-zero, continuous, complex-valued coordinate stretching functions; the constitutive

relation Eq. (74b) is the same as for the elastic medium. Consequently, Eq. (74) also describes a PMM for

plane-stress motion, if j is re-defined appropriately. A (visco)elastic medium corresponds to kiðxiÞ � 1. Eq.
(74) is defined independently of, but motivated by, the definition of ~xxi given by Eq. (40).

The continuity of ki can be used to show that on an unbounded domain, Eq. (74) admits solutions of the

same form as Eq. (73), but with x replaced by ~xx. A P-type wave solution is of the form

uðxÞ ¼ q exp½�ikp~xx � p�; ð75aÞ

Fig. 12. Dynamic stiffness coefficients of elastic semi-infinite layer on fixed base computed using a PML model as well as a viscous

dashpot boundary model; L ¼ d=2, LP ¼ d, nb ¼ np ¼ 15, nd ¼ 15, f1ðx1Þ ¼ 10hx1 � Li=LP .
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with q ¼ �p, and an S-type wave solution is of the form

uðxÞ ¼ q exp½�iks~xx � p�; ð75bÞ
with q � p ¼ 0. It can be argued that for appropriately defined ki and appropriate boundary conditions, Eq.

(74) also admits solutions of the forms of Rayleigh and Stoneley waves. This is similar to the earlier ob-

servation that a PMM for anti-plane motion admits solutions of the form of Love waves.

These PMMs exhibit the perfect matching property: if two PMMs with different ki are placed adjacent to

each other, with the functions ki for the two media such that they match at the interface of the media, then

any propagating waveform will pass through the interface without generating any reflected wave. The

argument for this claim is the same as that for PMMs for anti-plane motion.
A choice of ki of the form in Eq. (45) leads to attenuated solutions of the form

uðxÞ ¼ exp

"
� cs
cp

X
i

FiðxiÞpi

#
q exp½�ikpx � p� ð76aÞ

for P-type waves and

uðxÞ ¼ exp

"
�
X
i

FiðxiÞpi

#
q exp½�iksx � p� ð76bÞ

for S-type waves if FiðxiÞ > 0 and pi > 0, with Fi defined in Eq. (47); the attenuation is independent of the

frequency if pi is. It can be argued that suitable choices of ki lead to Rayleigh-type (and Stoneley-type) wave

solutions that are attenuated in the direction of their propagation.

Fig. 13. Dynamic stiffness coefficients of viscoelastic semi-infinite layer on fixed base computed using a PML model as well as a viscous

dashpot boundary model; L ¼ d=2, LP ¼ d, nb ¼ np ¼ 15, nd ¼ 15, f1ðx1Þ ¼ 10hx1 � Li=LP ; f ¼ 0:05.
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The absorptive and attenuative properties of the PMM can be used to define an absorbing layer––the
PML––adjacent to a bounded domain, e.g., as shown in Fig. 8(b). The argument for this claim is as for anti-

plane motion.

The absorptive capability of such a layer is analysed by studying the reflection of plane waves from the

fixed boundary. Consider plane-strain motion in the domain shown in Fig. 8(b), with XBD governed by Eq.

(71) and XPM governed by Eq. (74), with k1 of the form in Eq. (45), satisfying f1ð0Þ ¼ 0, and k2 � 1.

Furthermore, consider a P-wave with unit amplitude as it enters the PML at an angle of incidence h. The
incident wave will be reflected from the boundary as a P-type wave and an S-type wave, with the total wave

motion represented as

uðxÞ ¼ qðIÞp exp½�ikp~xx � pðIÞp � þ Rppq
ðRÞ
p exp½�ikp~xx � pðRÞp � þ Rspq

ðRÞ
s exp½�iks~xx � pðRÞs �; ð77Þ

where the s and p subscripts refer to S-type and P-type waves, respectively, and superscripts (I) and (R)

refer to incident and reflected waves, respectively. Imposing uðxÞ � 0 for x1 ¼ LP and for all x2, and ex-

pressing the directions of propagation and of particle motion in terms of h, gives

jRppj ¼
cosðhþ hsÞ
cosðh� hsÞ

exp

�
� 2

cs
cp
F1ðLP Þ cos h

�
; ð78aÞ

jRspj ¼
sin 2h

cosðh� hsÞ
exp

�
� F1ðLP Þ

cs
cp

cos h

�
þ cos hs

��
; ð78bÞ

with hs given by

sin hs ¼
cs
cp

sin h;

a similar analysis can be performed to determine the reflection coefficients due to an incident S-type wave.

The amplitudes of the reflected P- and S-type waves as they exit the PML, given by jRppj and jRspj, re-
spectively, are controlled by the choice of parameters f1 and LP––independently of the size of the bounded

domain to which the PML is adjacent––and are also influenced by the angle of incidence. This suggests that

the bounded domain may be restricted to the region of interest in the analysis, thus lowering the com-

putational cost, if the parameters and the orientation of the PML are chosen appropriately.

4.3. Finite-element implementation

Unlike the PMM for anti-plane motion, the PMM for plane-strain or three-dimensional motion is not
amenable to interpretation as an anisotropic, inhomogeneous viscoelastic medium; however, a symmetric

FE implementation of this PMM can still be obtained, by expressing the PMM equations in a tensorial

form. The implementation of only the plane-strain PMM is presented here; the implementation of the three-

dimensional PMM follows similarly.

Consider two rectangular Cartesian coordinate systems for the plane: (1) a xi system, with respect to an

orthonormal basis feig, and (2) a x0i system, with respect to another orthonormal basis fe0ig, with the two

bases related by the rotation-of-basis matrix Q, with components Qij :¼ ei � e0j. Eq. (74) can be re-written in

the basis fe0ig as (no summation)

X
j

1

kjðx0jÞ
or0ij
ox0j
¼ �x2qu0i; ð79aÞ
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r0ij ¼
X
k;l

C0ijkle
0
kl; ð79bÞ

e0ij ¼
1

2

1

kjðx0jÞ
ou0i
ox0j

"
þ 1

kiðx0iÞ
ou0j
ox0i

#
; ð79cÞ

where the various primed quantities represent the components in the basis fe0ig of the corresponding vector

or tensor. This represents a PMM where waves are attenuated in the e01 and e02 directions. On multiplying

Eq. (79a) with k1ðx01Þk2ðx02Þ and using the fact that ki is a function of x0i only, Eq. (79) can be re-written in

matrix notation as

ðr0 eKK0Þ$0 ¼ �x2q½k1ðx01Þk2ðx02Þ�u0; ð80aÞ

r0 ¼ C0e0; ð80bÞ

e0 ¼ 1
2
½ðu0$0TÞK0 þ K0Tðu0$0TÞT�; ð80cÞ

where

r0 :¼ r011 r012
r021 r022

� �
; e0 :¼ e011 e012

e021 e022

� �
; u0 :¼ u01

u02


 �
; $0 :¼

o

ox01
o

ox02

8>><>>:
9>>=>>; ð81Þ

and

eKK 0 :¼ k2ðx02Þ �
� k1ðx01Þ

� �
; K0 :¼ 1=k1ðx01Þ �

� 1=k2ðx02Þ

� �
; ð82Þ

Eq. (80b) is understood in indicial notation. Eq. (80) can be transformed to the basis feig to obtain

ðreKKÞ$ ¼ �x2q½k1ðx01Þk2ðx02Þ�u; ð83aÞ

r ¼ Ce; ð83bÞ

e ¼ 1
2
½ðu$TÞKþ KTðu$TÞT�; ð83cÞ

where the unprimed quantities, e.g.,

r :¼ r11 r12

r21 r22

� �
; e :¼ e11 e12

e21 e22

� �
; u :¼ u1

u2


 �
and $ :¼

o

ox1
o

ox2

8><>:
9>=>; ð84Þ

are obtained from the corresponding primed quantities in Eq. (80) via the usual change-of-basis rules for

vector and tensor components, e.g.,eKK ¼ QeKK0QT and K ¼ QK0QT: ð85Þ
Note that the stretch tensors eKK and K are diagonal in the characteristic basis fe0ig of the PMM. In tensorial
notation, Eq. (83) becomes

divðreKKÞ ¼ �x2q½k1ðx01Þk2ðx02Þ�u; ð86aÞ
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r ¼ Ce; ð86bÞ

e ¼ 1
2
½ðgraduÞKþ KTðgraduÞT�: ð86cÞ

The weak form of Eq. (86a) is derived by taking its inner product with an arbitrary weighting function w
residing in an appropriate admissible space, and integrating the resultant scalar over the entire computa-

tional domain X using integration-by-parts and the divergence theorem to obtainZ
X

~ee : rdX� x2

Z
X

qfmw � udX ¼
Z

C
w � reKKndC; ð87Þ

with C :¼ oX the boundary of X and n the unit normal to it, and fm defined by Eq. (59). The symmetry of r

has been used to obtain the first integral on the left hand side, with

~ee ¼ 1
2
½ðgradwÞeKK þ eKKTðgradwÞT�: ð88Þ

Assuming elementwise interpolations of u and w in terms of shape functions N , imposing Eqs. (86b) and

(86c) pointwise in Eq. (87), and restricting the integrals to the element domain X ¼ Xe gives the stiffness
and mass matrices for a PML element. In terms of nodal submatrices, with I and J the node numbers, these

are

keIJ ¼
Z

Xe

eBBT
I DBJ dX; ð89aÞ

me
IJ ¼

Z
Xe

qfmNINJ dX I; ð89bÞ

where I is the identity matrix of size 2� 2, and

D :¼
jþ 4l=3 j� 2l=3 �
j� 2l=3 jþ 4l=3 �
� � l

24 35; eBBI :¼
N ð1ÞI1 �
� N ð1ÞI2

N ð1ÞI2 N ð1ÞI1

264
375; BI :¼

N ð2ÞI1 �
� N ð2ÞI2

N ð2ÞI2 N ð2ÞI1

264
375; ð90Þ

with

N ð1ÞIi :¼ eKK ijNI;j and N ð2ÞIi :¼ KijNI ;j: ð91Þ

In Eq. (89), the functions ki in eBB, B and in fm are defined globally on the computational domain, not ele-

mentwise. The right hand side in Eq. (87) can be ignored by assuming that the traction-like term reKKn ¼ 0

on a free boundary of the PMM. Note the evidence of coordinate-stretching in the FE matrices in Eq. (89):

the stretch tensors eKK and K are incorporated in the nodal compatibility matrices eBBI and BI , not in the

material moduli matrix D (Eq. (90)). As a corollary, this plane-strain FE formulation can be applied to
plane-stress problems by re-defining j appropriately.

It is argued that the stiffness matrix given by Eq. (89a) is indeed symmetric, by first deriving an alternate

expression for the nodal submatrix keIJ . Consider the first integrand on the left hand side of Eq. (87). By the

minor symmetries of Cijkl,

~ee : r ¼ ~eeijrij ¼ wi;j
eCCijkluk;l; ð92Þ

whereeCCijkl :¼ eKKjmCimknKln ¼ jð � 2
3
l
�eKKijKkl þ lðdik eKKjnKln þ eKKjkKilÞ ð93Þ

by Eq. (72). The functions wi and uk are interpolated as

wi ¼ NIcIi and uk ¼ NJdJk ; ð94Þ

U. Basu, A.K. Chopra / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1337–1375 1365



where dJk is the nodal displacement at node J in the direction ek, and cIi is an arbitrary quantity associated

with the direction ei at node I . Introducing these interpolations into Eq. (87) and restricting the integral to

Xe gives the nodal stiffness submatrix in terms of its components as

ðkeIJ Þik ¼
Z

Xe

NI;j
eCCijklNJ ;l dX: ð95Þ

The stiffness matrix is symmetric if ðkeIJ Þik ¼ ðk
e
JIÞki, which holds if eCCijkl ¼ ~CCklij, i.e., if eCCijkl has major

symmetry.

It is argued that eCCijkl given by Eq. (93) indeed has major symmetry. Because major symmetry is preserved

by a change of basis, it suffices to consider diagonal stretch tensors

eKK :¼ k2ðx2Þ �
� k1ðx1Þ

� �
and K :¼ 1=k1ðx1Þ �

� 1=k2ðx2Þ

� �
ð96Þ

corresponding to the characteristic basis of the PMM; the primes on the coordinates have been discarded in

the interest of notational convenience. Major symmetry of a fourth order tensor with indices ijkl can be

shown by expressing it in matrix form through Voigt indexing, wherein a tensor index pair ij is mapped to a

single Voigt index a. The rows of the Voigt-indexed matrix are taken to correspond to indices ij and the
columns to kl, with both index pairs enumerated in the same order. Major symmetry of a fourth order

tensor is then equivalent to the symmetry of this matrix. Under the Voigt indexing given by

Voigt index a : 1 2 3 4

Tensor index ij : 11 22 12 21

the various terms in the expression for eCCijkl in Eq. (93) have the following matrix representations:

eKK ijKkl �

k2=k1 1

1 k1=k2

0

0

26664
37775 dik eKKjnKln �

k2=k1

k1=k2

k1=k2

k2=k1

26664
37775

and eKKjkKil �

k2=k1

k1=k2

0 1

1 0

26664
37775: ð97Þ

The symmetry of these matrices thus implies the symmetry of the stiffness matrix.

Thus, the FE matrices are symmetric, but intrinsically complex-valued and frequency-dependent. Hence,

the system matrices for X will be complex, symmetric, and banded, the PML contributions to which will
have to computed anew for each frequency.

4.4. Numerical results

Numerical results are presented for the classical plane-strain soil–structure interaction problems of a rigid

strip-footing on a (1) half-plane, (2) layer on a half-plane, and (3) layer on a rigid base.

Fig. 14(a) shows a cross-section of a rigid strip-footing of half-width b with its three degrees-of-freedom

identified––vertical (V ), horizontal (H ), and rocking (R)––supported by a homogeneous isotropic (vi-
sco)elastic half-plane with shear modulus l, mass density q, Poisson�s ratio m, and hysterstic damping ratio f
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for the viscoelastic medium. Let Pi and Di, i 2 fV ;H ;Rg, denote the amplitudes of the harmonic force and

of the harmonic displacement, respectively, along the ith DOF. The two are related through the dynamic
flexibility matrix F1ða0Þða0 ¼ xb=csÞ as follows:

DV

DH

bDR

8<:
9=; ¼ F1ða0Þ

PV
PH
PR=b

8<:
9=; ¼

FVV ða0Þ 0 0

0 FHH ða0Þ FHRða0Þ
0 FRH ða0Þ FRRða0Þ

24 35 PV
PH
PR=b

8<:
9=;: ð98Þ

This unbounded-domain system is modelled using the bounded-domain-PML model shown in Fig. 14(b),

composed of a bounded domain XBD and a PML XPM. The stretching functions ki are chosen as in Eq. (69),

with the attenuation functions chosen to be linear in the PML, following Section 2.5. Note that the choice
of attenuation functions, especially in the corner regions, follows naturally from the requirements that

fi � 0 in XBD, fi be a function of xi only, and that fi be continuous in the entire computational domain. A

FE mesh of four-node bilinear isoparametric elements are used to discretise the entire bounded domain.

The mesh is chosen to be adequately dense for the range of frequencies considered, and is graded to capture

adequately sharp variations in stresses near the footing. For purposes of comparison, the half-space is also

modelled using a viscous dashpot boundary model [9], wherein the entire domain XBD [ XPM is taken to be

(visco)elastic and consistent viscous dashpot elements replace the fixed outer boundary. The mesh used for

the dashpot model is thus comparable to that used for the PML model.
Fig. 15 presents the dynamic flexibility coefficients computed for an elastic medium from the PML model

and from the dashpot model, against ‘‘exact’’ analytical results [45]. The domain size parameters are chosen

to be L ¼ 3b=2, h ¼ b=2, LP ¼ b. Note that the bounded domain chosen is small, extending only upto b=2
on either side of the footing and below it, and the PML width equal to b, the half-width of the footing.

Using this small domain, the results obtained from the PML model are highly accurate, even though they

are obtained at a low computational cost: the cost of the PML model is similar to that of the viscous

dashpot model. The gross inaccuracy of the results from the viscous dashpot model emphasizes the small

size of the computational domain. Fig. 16 compares results for a viscoelastic medium with f ¼ 0:05,
computed for the same meshes used for the elastic medium, with ‘‘exact’’ semi-analytical results [46]. The

Fig. 14. (a) Cross-section of a rigid strip of half-width b on a homogeneous isotropic (visco)elastic half-plane; (b) a PML model.
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results from the PML model are highly accurate, even though the domain is too small for the dashpot

model to produce accurate results for this viscoelastic medium.

Fig. 17(a) shows a cross-section of the rigid strip supported by a viscoelastic layer on a half-plane, and

Fig. 17(b) shows a corresponding PML model where ki are of the form in Eq. (69) with linear attenuation

functions in the PMLs. The PMLs employed for the layer and the half-plane have different moduli, cor-

responding to the moduli for the elastic media. For comparison, a viscous dashpot model is also employed,
where the entire bounded domain is taken to be viscoelastic, and consistent dashpots replace the fixed outer

boundary. Fig. 18 compares results from the PML model and from the dashpot model against semi-ana-

Fig. 15. Dynamic flexibility coefficients of rigid strip on elastic half-plane computed using a PML model as well as a viscous dashpot

boundary model; L ¼ 3b=2, h ¼ b=2, LP ¼ b, f1ðx1Þ ¼ 10hx1 � hi=LP , f2ðx2Þ ¼ 10hjx2j � Li=LP ; hxi :¼ ðxþ jxjÞ=2; l ¼ 1, m ¼ 0:25.
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lytical results [47,48]. The results from the PML model are reasonably accurate, even though the compu-

tational domain is small and the cost is comparable to that of the dashpot model. The smallness of the
domain is evident in the inaccuracy of results from the dashpot model, especially for vertical and for

horizontal motion.

Fig. 19(a) shows a cross-section of the rigid strip supported by a viscoelastic layer on a rigid base, and

Fig. 19(b) shows a corresponding PML model where ki are of the form in Eq. (69) with f1ðx1Þ ¼ 0 and f2ðx2Þ
linear in the PML. Fig. 20 presents results from the PML model and from a comparable viscous dashpot

Fig. 16. Dynamic flexibility coefficients of rigid strip on viscoelastic half-plane computed using a PML model as well as a viscous

dashpot boundary model; L ¼ 3b=2, h ¼ b=2, LP ¼ b, f1ðx1Þ ¼ 10hx1 � hi=LP , f2ðx2Þ ¼ 10hjx2j � Li=LP ; E ¼ 1, m ¼ 0:33, f ¼ 0:05,

a0 ¼ xb=
ffiffiffiffiffiffiffiffiffi
E=q

p
.
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model against semi-analytical results [47,48]. The PML model produces reasonably accurate results at a

cost comparable to that of the dashpot model. The boundedness of the domain in the horizontal direction is
made prominent by the gross inaccuracy of results for FHH as computed from the dashpot model. Notably,

accurate PML results are obtained for this waveguide system with significant evanescent modes. Thus, the

stretching function of Eq. (69) is adequate for these evanescent modes, but with fiðLP Þ ¼ 20, rather than the

value of 10 used for other examples in this paper; a value of fiðLP Þ ¼ 10 for this problem produces results

that are slightly less accurate.

5. Conclusions

The concept of a PML has been developed in the context of time-harmonic elastodynamics by utilising

insights obtained in the context of electromagnetics. The concept has been developed through the pre-

sentation of perfectly matched media for three different systems: (1) a rod on elastic foundation, (2) a

continuum undergoing anti-plane motion, and (3) a continuum undergoing plane-strain or three-dimen-

sional motion.

The PML concept is summarised as follows. A perfectly matched medium (PMM) is defined as one

governed by a modification of the equations for the elastic medium, with the modification motivated by a
continuous, complex-valued, uncoupled coordinate stretching. Solutions admitted by the PMM are of the

form of those admitted by the elastic medium, but with the stretched coordinates replacing the real co-

ordinates. PMMs exhibit the perfect matching property: if the stretching functions of two adjacent PMMs

match at their interface, then the interface is invisible to all wave-type solutions in the PMMs and no

reflected wave is generated when a wave travels from one PMM to the other. This property holds irre-

spective of the direction of propagation of the wave or its frequency. Furthermore, if choices of the

Fig. 17. (a) Cross-section of the rigid strip of half-width b on a homogeneous isotropic viscoelastic layer on half-plane; (b) a PML

model.
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stretching functions are appropriate, the solutions in the PMM take the form of the corresponding elastic-

medium solution, but with an imposed spatial attenuation. Realistic choices of the stretching function can

impose attenuation on both propagating and evanescent waves. Notably, the imposed attenuation is di-

rectly spatial: it is not imposed through a temporal attenuation, or damping. The perfect matching and the

attenuative properties of the PMM is employed to build an absorbing layer––the PML––around a bounded
domain such that the layer absorbs and attenuates outward-propagating waves of all non-tangential angles-

of-incidence and of all non-zero frequencies. Termination of the layer by a fixed boundary causes reflection

Fig. 18. Dynamic flexibility coefficients of rigid strip on viscoelastic layer on half-plane computed using a PML model as well as a

viscous dashpot boundary model; L ¼ 3b=2, LP ¼ b, h ¼ b=2, f1ðx1Þ ¼ 10hx1 � ðd þ hÞi=LP , f2ðx2Þ ¼ 10hjx2j � Li=LP ; d ¼ 2b, lh ¼ 4ll,
ll ¼ 1, m ¼ 0:4, f ¼ 0:05, a0 ¼ xb=

ffiffiffiffiffiffiffiffiffiffi
ll=q

p
.
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of the waves back towards the bounded domain, with the amplitude of reflected waves controllable––in-

dependently of the size of the bounded domain––by the choice of the PML parameters: (a) the depth of the

layer and (b) the attenuation profile in it. Thus, wave propagation in an unbounded domain can be

modelled through a bounded domain that is restricted to the region of interest in the analysis, and a
suitably-defined PML surrounding it.

The one-dimensional problem of the semi-infinite rod on elastic foundation has been used to analytically

study a bounded-domain-PML model. The stretching function is expressed in terms of an attenuation

function, which controls the reflection due to the finite depth of the PML. The reflection coefficient is related

to the dynamic stiffness of the rod, and it is shown that the dynamic stiffness of the PML model approaches

that of the unbounded-domain system as the reflection coefficient approaches zero. It is argued analytically

that the attenuation function should be chosen to increase linearly from zero at the bounded-domain-PML

interface to a maximum value at the end of the layer, and that this maximum value, as well as the depth of the
layer, should be used to control the accuracy of results; this conclusion is validated through analytical re-

sults. It is expected that a rudimentary trial-and-error procedure should be sufficient to establish an adequate

maximum value of the attenuation function. Also proposed is a realistic choice of the stretching function that

does not employ prior knowledge of the frequency equation of the system, but is adequate for both eva-

nescent and propagating waves; this adequacy is confirmed through analytical and numerical results.

It has been shown that the one-dimensional and the anti-plane PMM, although formulated through

coordinate-stretching, can be also be interpreted as anisotropic, inhomogeneous viscoelastic media, echoing

similar interpretations of electromagnetics PMLs [35,40]. These equivalent interpretations have then been
used to obtain symmetric FE implementations of these PMMs, with the implementation of the anti-plane

PMM matching those presented in earlier works [25,41]. The PMM for plane-strain or three-dimensional

motion is not amenable to a similar equivalent interpretation; however, a novel displacement-based,

symmetric FE implementation of this PMM is still obtained, by expressing the PMM equations in a ten-

sorial form. The FE matrices obtained are symmetric, but intrinsically complex-valued and frequency-

dependent. Thus the system matrices for the entire bounded domain are complex, symmetric and banded,

the PML contributions to which have to be computed anew for each frequency.

These FE implementations have been applied to the following canonical problems: (1) the one-dimen-
sional semi-infinite rod on elastic foundation, (2) the anti-plane motion of a semi-infinite layer on rigid

base, and (3) the classical plane-strain soil–structure interaction problems of a rigid strip-footing on a

Fig. 19. (a) Cross-section of the rigid strip of half-width b on a homogeneous isotropic viscoelastic layer on rigid base; (b) a PML

model.
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(i) half-plane, (ii) layer on a half-plane, and (iii) layer on a rigid base. Highly accurate results have been

obtained from PML models using small bounded domains at low computational costs; the computational

cost of the PML models was seen to be similar to that of comparable viscous dashpot models, and the

inaccuracy of results from these dashpot models emphasized the small size of these bounded domains.
Notably, accurate PML results have been obtained even for the waveguide system of a layer on a rigid base,

undergoing either anti-plane or plane-strain motion, where evanescent modes are significant. This is

achieved through the realistic choice of the stretching function proposed in the one-dimensional analysis;

Fig. 20. Dynamic flexibility coefficients of rigid strip on viscoelastic layer on rigid base computed using a PML model as well as a

viscous dashpot boundary model; L ¼ 3b=2, LP ¼ b, f1ðx1Þ ¼ 0, f2ðx2Þ ¼ 20hjx2j � Li=LP ; d ¼ 2b, l ¼ 1, m ¼ 0:4, f ¼ 0:05.
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such a stretching function is thus seen to be adequate even for systems with many evanescent modes.
Preliminary numerical investigations of the effect of mesh density on the accuracy of results suggest that the

mesh density in the PML should be chosen to be similar to that in the bounded domain, echoing con-

clusions reached by an earlier dispersion analysis [25].

This paper presents PMLs for homogeneous, isotropic media only. However, the same motivation of

complex-valued coordinate stretching is utilised for all three systems to define the PMM corresponding to

the elastic medium. Consequently (1) all three PMMs exhibit the perfect matching property, (2) propa-

gating harmonic waveforms in the elastic medium are transformed to attenuated waveforms in the PMM,

and (3) the constitutive relation is not affected by the coordinate-stretching, i.e., the constitutive relation in
the PMM is the same as that in the elastic medium. These observations––especially the third––mirror

similar ones made in the context of electromagnetic waves [34,36,49], where PMLs have been formulated

for anisotropic, inhomogeneous media [36], underscoring the possibility of extending these elastodynamic

PML formulations to anisotropic, continuously-inhomogeneous elastic media with at most minimal

modifications. In fact, the PMMs presented in this paper, as well as any such extensions, could be seen as

verifications of an assertion by Teixeira and Chew [35]. They provide a geometric interpretation of the PML

concept, as a change in the metric of the coordinate space, and state: ‘‘. . .the PML concept does not depend

on the particular form of field equations and is applicable to any linear wave phenomena.’’
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