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Background  

Rebar reinforced concrete is commonly used in construction industries.  Its mechanical 

properties are of interest to people working in various engineering fields.  While experimental, 

theoretical studies provided us essential guidelines to utilize this material efficiently and 

effectively, numerical simulations also showed their usefulness in predicting the overall structure 

behavior. 

There are different techniques to simulate rebar reinforced concrete.  One is to construct an 

inhomogeneous material model in which the concrete and the rebars inside were treated as a 

whole.  This way, there is not explicit modeling of rebars.  Instead they are assumed to be 

aligned along some specific directions inside the concrete solid elements.   

Another way is to discretize rebars as beams and concrete as solids and make them share the 

same sets of nodes.  Of course this requires extra efforts in mesh generations.  It is not always 

doable if not cumbersome enough.   

So an alternative technique becomes appealing to our users.   It is to apply constraints between 

two set of nodes.  One is for beams and another for solids.  This way we avoid the meshing 

difficulties in “shared nodes” technique.  Also, we don’t need to construct complicated material 

models with the “composite material” approach. 

Motivation 

The rebar-concrete constraint coupling was done through a legacy keyword called 

*CONSTRAINED_LAGRANGE_IN_SOLID.  This keyword is shared by two totally different 

applications.   CTYPE=2 is used to model rebar coupling while CTYPE=4/5 is used to perform 

ALE fluid structure interactions.  We will refer its rebar coupling function as “CLIS CTYPE 2” 

in the discussion below. 

The CLIS CTYPE 2 had been widely used and proved being quite helpful in solving our users’ 

problems.  However, there are several flaws and shortcomings found by both our users and the 

author.  Efforts were made to fix and enhance this function.  But later the author found it was not 

possible to solve the fundamental error without overhauling it coding structure.  He also found its 

implementation made it is very hard to add in new features requested by users.   



In early 2015, the author started to develop *CONSTRAINED_BEAM_IN_SOLID to perform 

rebar constraint coupling.  A new keyword was introduced for two reasons.  First, the fix for 

CLIS CTYPE 2 was designed for beam only.  However the “slave” in the legacy CLIS could also 

be other Lagrange entities such as node set, segment set and parts other than beams.   The second 

reason is to be user-friendly.  Too many times, the author witnessed users’ confusion caused by 

the dual functionalities of the CLIS card.  Also it has become a heavy, lengthy one with way too 

many flags so that even the most experienced user would frequently make input mistakes.  So the 

author thought it would be the best to separate these two functionalities by giving rebar coupling 

a new, dedicated keyword contains minimum input fields.  This way, the author could also 

secure the input fields needed for new features. 

Constraint coupling 

Rebars and concrete are modeled by beams and solids, respectively.  Beam mesh is submerged in 

solid mesh.  Each of them has its own independent motion.  Without some kind of coupling 

algorithm, they will move freely as if the other one doesn’t exist at all.  The way we couple these 

two is called “constraint method”.  There are always two parties involved in a constraint 

coupling.  One is “master” and the other “slave”.  The slave contributes to the master and the 

master constraints the salve. 

Typically both velocity and acceleration need to be constraint.  The first is to ensure momentum 

conservation and the second force balance.  The algorithm is exactly the same for both velocity 

and acceleration.  For simplicity, we will limit the discussion below to velocity only. 

We start with an incompatible velocity field.  Beam nodes are slave and denoted by lower case 

characters; solid nodes are master and upper case ones.   

1. The first step is for slave beam nodes to distribute their nodal mass and momentum to 

master solid nodes.   

2. Next we update the master nodal velocity by dividing the new momentum by new mass. 

3. Finally we assign the interpolated velocity back to slave nodes. 

Now we have slave nodes moving exactly the same way as master nodes.  The process is shown 

in the figure below. 

 



 

 

Problems 

The theory is straightforward.  However, in real cases, the beam nodes are not always placed that 

well so that all solid elements contain at least one beam node.  If a beam crossed certain solid 

element but its nodes did not fall in that solid, this solid won’t get any distribution from this 

beam and the algorithm simply would fail.   

So in both CLIS CTYPE 2 and CBIS we have an option to put extra “coupling points” in 

between the two end nodes of a beam element.  This way, solid nodes get distributions either 

from beam nodes or these coupling points.  This field is referred as “NQUAD” in CLIS or 

“NCOUP” in CBIS. 

 



Now comes the puzzle, we all know each beam node has its nodal mass.  This mass comes out 

naturally from discretization.  Also it has its nodal velocity.  These two entities are “physical”.  

But for these artificially generated coupling points, there are no such properties.  For velocity, it 

is pretty straightforward.  We simply assume the velocity at a coupling point should be 

interpolated from the beam end nodes.  How about mass? 

Unfortunately CLIS CTYPE 2 did not do it right.  It moved half the beam element mass from 

nodes to these coupling points.  This approach is rather arbitrary and lacks of theoretical basis.  

Another mistake it made was in the constraint process.   The velocity was mapped only from 

master nodes to beam nodes, not to coupling points.  So the overall process is not complete.  

These two errors won’t reveal themselves if we only look at the structure motion.  But when we 

checked the energy plot, we saw a spurious large internal energy increase. 

Bridging Coupling 

So how should we address this problem?  The author came up with an idea which he called 

“bridging coupling”.  As the beam mesh is too coarse to be directly coupled to the solid elements, 

a “slave beam” is constructed in between to couple to both “master beam” and “master solid”.  

Now we have two couplings.  The first is between the “slave beam” and the “master beam”; the 

second between the “slave beam” and the solid mesh.  “Slave beam” serves as a “bridge” 

connecting the real beam and solid elements.  The concept is shown in the figure below. 

 

We could see from the following figure that with the new CBIS implementation, the previously 

shown spurious energy increase disappeared.  This mysterious spurious energy increase had 

puzzled both the author and our users for quite some time. 



 

The mass at coupling point now simply takes the value of the “slave beam” nodal mass.  It has a 

clear physical meaning and is theoretically correct. The coupling point has its velocity 

constrained by solid nodes during the “mapped-back” stage.  And it then distributes the 

corresponding momentum to the “master beam” nodes. 

The author does not intend to bother the readers with too many details.  The idea of bridging 

coupling is conceptually simple and straightforward.  However its implementation has been 

through some difficulties.   It underwent several trial and error loops.  Our users tested it 

extensively and provided valuable feedbacks.   

Bucket sorting and searching 

There were also some other improvements in CBIS.  One deserves some explanation here.  CBIS 

has an enhanced, independent bucket sorting and searching routine.   That is in contrast to CLIS 

CTYPE 2, which shares these routines with ALE FSI coupling. 

There are two advantages for CBIS to have its own sorting and searching routines.  First, only 

solid elements belong to the “master” concrete are included in the bucket sorting.   ALE 

elements won’t be included.  This brings memory reduction and a more efficient execution.   

Secondly, as most ALE elements are hexahedron, searching subroutine, for efficiency, doesn’t 

contain a separate treatment for tetrahedron and pentahedron.  Rather they are treated as 

degenerated hexahedron.  While in ALE FSI case it won’t have too much difference, it is not 

acceptable for unstructured mesh used in rebar coupling.  The new CBIS subroutine contains the 

enhanced algorithm to treat these three different solid elements separately. 

Conclusion 



By introducing the new *CONSTRAINED_BEAM_IN_SOLID keyword, we successfully fixed 

problems in the legacy *CONSTRAINED_LAGRANGE_IN_SOLID CTYPE 2.  By separating 

this functionality from ALE FSI, we achieved both a clean keyword card and a clean code base 

for future development. 

The author wants to express his gratitude towards our users for their effort testing this new 

keyword and valuable feedbacks.  And hopes it could be of help to our users in solving their 

challenging problems. 


