*ALE_STRUCTURED_MESH_VOLUME_FILLING

Purpose: Perform volume filling operations on a structured ALE mesh generated by the *ALE_STRUCTURED_MESH keyword card.

In a typical Structured ALE (S-ALE) simulation, *ALE_STRUCTURED_MESH is used first to construct the S-ALE mesh, which includes a set of hex solid elements and their nodes. Secondly, "material parts" which contains all ALE material properties need to be defined and listed under *ALE_MULTI-MATERIAL_GROUP card. Those "material part" definitions are used as wrappers to contain material properties (*MAT_+*EOS_+*HOURGLASS_). As the name suggests, "material parts" have no mesh.

Now we have the S-ALE mesh which defines our domain of ALE simulation, and the materials flowing inside. But we have no idea of how those materials occupy the domain. There are two ways to do it. The first is to use *INITIAL_VOLUME_FRACTION and list element one by one and then for each AMMG in each element, its volume fraction. This approach is tedious and impractical, therefore rarely used. The second way is to do volume filling automatically, based on user-provided instructions. *ALE_STRUCTURED_MESH_VOLUME_FILLING card is used to set up these instructions.

Each card represents an instruction; and those instructions are executed consecutively, based on the order of appearance in the input file. Each instruction is to fill the volume either inside or outside of a geometry type, with certain AMMG. Those geometry types are: ALL, PARTSET, PART, SEGSET, PLANE, CYLINDER, BOX defined by coordinates (BOXCOR), BOX defined by S-ALE mesh indices (BOXCPT) and ELLIPSOID.

Each *ALE_STRUCTURED_MESH_VOLUME_FILLING keyword contains two cards. Multiple *ALE_STRUCTURED_MESH_VOLUME_FILLING keywords can be defined and executed in the order of appearance. Please see the examples below.

Card 1	1	2	3	4	5	6	7	8
Variable	MSHID		AMMGTO		NSAMPLE			VID
Туре	Ι		I		Ι			I
Default	0		0		3			none

Card 2	1	2	3	4	5	6	7	8
Variable	GEOM	IN/OUT	E1	E2	E3	E4	E5	
Туре	А	I	l or F	l or F	l or F	l or F	l or F	
Default	none	0	none	none	None	none	none	
VARI	ABLE				DESCRI	PTION		
MS	HID	S	-ALE Mes	h ID. A ur	nique numb	er must be	specified.	
AMM	IGTO		"he ID o ALE_MUI		0	U	•	ase see
NSAN	NSAMPLE Number of sampling points. In case of an element is partial filled, in each direction, 2*NSAMPLE+1 points are generate These (2*NSAMPLE+1)^3 points, each representing a volum are used to determine if its volume is in or out.							enerated.
V	ID	ir (2 th	D of *DEF nitial veloc XT,YT,ZT ne initial tr elow for us	to mat of the *Dl anslational	erial fillin EFINE_VE	g the dom ECTOR car	ain. Field d are used	1 2 to 5 to define
GE	ОМ	Р	eometry t LANE, CY ne table bel	LINDER,	BOXCOR			
IN/OUT To fill inside or outside. For PARTSET/PART/SEGSET optic inside are taken as the normal direction of their contain segments.							-	
			EQ.0: ins	side (defau	lt)			
			EQ.1: ou	tside				
E1, E2, E	3, E4, E5		hese values he table bel			tions for di	fferent opti	ons. See

The "GEOM" column in the table below enumerates the allowed values for the geometry variable as well as describing E1, ..., E5 for each geometry type. Each of the following operations accepts up to 5 arguments but may take fewer. Values of En left unspecified are ignored.

*ALE_STRUCTURED_MESH_VOLUME_FILLING

OPTION	DESCRIPTION
ALL	Fill all volume inside the mesh. No additional variables needed.
PARTSET	Geometry defined by PARTSET. E1 is the shell part set ID. E2 is the offset distance.
PART	Geometry defined by PART. E1 is the shell part ID. E2 is the offset distance.
SEGSET	Geometry defined by SEGSET. E1 is the segment set ID. E2 is the offset distance.
PLANE	Geometry defined by PLANE. E1 is the node ID of a node on the plane. E2 is another node ID off the plane. And vector $E2 - E1$ is normal to the plane.
CYLINDER	Geometry defined by CYLINDER. E1, E2 are node IDs of the center nodes at two ends. E3, E4 are the radii at those two ends.
BOXCOR	Geometry defined by BOX. E1 is the BOX ID. Please refer to *DEFINE_BOX for details on setting up a box in global coordinate system or *DEFINE_BOX_LOCAL in local coordinate system.
BOXCPT	Geometry defined by BOX. The box is defined using S-ALE control points (CPT). E1 is BOX ID. Please refer to *DEFINE_BOX for details on setting up a box.
ELLIPSOID	Geometry defined by ELLIPSOID. E1 is the node ID of the ellipsoid center node. E2, E3, E4 are the radii along x, y, z directions. E5 is the local coordinate system ID if a local coordinate system is used. Please refer to *DEFINE_COORDINATE_SYSTEM.

Examples:

1. This example uses two *ALE_STRUCTURE_VOLUME_FILLING cards. The first fills all volume in a mesh with AMMG 1. The second fills AMMG2 in a spherical domain. We use the same mesh as the example in the *ALE_STRUCTURED_MESH card manual page.

*ALE_STRUCTURED_MESH \$ mshid pid nbid ebid 200001 200001 1 1 \$ nptx npty nptz 1001 1001 1001 *ALE_STRUCTURED_MESH_VOLUME_FILLING mshid ammgto nsample \$ 1 1

vid

\$	geom ALL							
*ALE		TURED MESH VOLU	ME FILLI	NG				
\$	mshid	a	mmgto		nsample			vid
	1		2					
\$	geom	in/out	node	rx	ry	rz	lcsid	
ELI	IPSOID			0.03			234	
*DEF	INE_CO	ORDINATE_NODES						
\$	cid	nid1	nid2	nid3	flag			
	234	2	3	4	1			
*NOE	Ε							
	1	0.0000000e+00	0.0000	000e+00	0.0000000e+00			
	2	0.0000000e+00	0.0000	000e+00	0.0000000e+00			
	3	0.1000000e+00	0.0000	000e+00	0.0000000e+00			
	4	0.0000000e+00	0.1000	000e+00	0.0000000e+00			
	5	0.1000000e+00	0.1000	000e+00	0.1000000e+00			
*END)							

Or we could fill every elements with AMMG2 and then switch domain outside of sphere to AMMG1 as follows:

*ALE \$	E_STRUCTU mshid 1	RED_MESH_VC	LUME_FILLI ammgto 2		ample			vid
\$	geom		_					
	ALL							
*ALE	E STRUCTU	RED MESH VC	LUME FILLI	NG				
\$	mshid		ammgto	ns	ample			vid
	1		1					
\$	geom	in/out	node	rx	ry	rz	lcsid	
ELI	JIPSOID	1		0.03			234	

If we want to give the sphere filled in by AMMG2 an initial velocity, simply define a *DEFINE_VECTOR card as below and assign its ID to field VID.

*ALE	E_STRUCTU	RED_MESH_VO	LUME_FILLI	NG				
\$	mshid		ammgto	ns	ample			vid
	1		2					1
\$	geom	in/out	node	rx	ry	rz	lcsid	
ELI	LIPSOID			0.03			234	
*DEE	FINE_VECT	OR						
\$	vid	xt	yt	zt				
	1	100.	-20.	0.0				

2. In this model, we fill the whole mesh with AMMG4 first. And then fill AMMG1, AMMG2 and AMMG3 into 3 containers, each defined by a LAG shell part. 4 cards are needed to do that.

*AL	E_STRUCTUREI	_MESH_VOLUME_FILLING		
\$	mshid	ammgto	nsample	vid
	1	4		
\$	geom			
	ALL			
*AL	E_STRUCTUREI	_MESH_VOLUME_FILLING		
\$	mshid	ammgto	nsample	vid
	1	1		

*ALE_STRUCTURED_MESH_VOLUME_FILLING

\$	geom PART	in/out	pid 2001	offset		
*ALE	E STRUCTU	RED MESH V	OLUME FILL	ING		
\$	mshid		ammgto		nsample	vid
	1		2			
\$	geom	in/out	pid	offset		
	PART		2002			
*ALE	E_STRUCTU	RED_MESH_V	OLUME_FILL	ING		
\$	mshid		ammgto		nsample	vid
	1		3			
\$	geom	in/out	pid	offset		
	PART		2003			

The above filling by PART cards assume shell normal pointing inward to the container. If the shell normal points outwards, we need to assign the in/out value to 1. Assuming shell part 2003's normal is pointing outwards, the card need to be set as:

*ALE	_STRUCTU	RED_MESH_V	OLUME_FILL	ING		
\$	mshid		ammgto		nsample	vid
	1		3			
\$	geom	in/out	pid	offset		
	PART	1	2003			

3. To use BOXCPT, we define a box using S-ALE control point indices.

*ALE_STRUCTURED_MESH_VOLUME_FILLING								
\$	mshid		ammgto		nsample			vid
	1		1					
\$	geom							
	ALL							
*ALI	E_STRUCTU	RED_MESH_V	OLUME_FILLIN	G				
\$	mshid		ammgto		nsample			vid
	1		2					
\$	geom	in/out	boxid					
	BOXCPT		1					
*DEI	FINE_BOX							
\$	boxid	xmn	xmx	ymn	ymx	zmn	zmx	
	1	8	15	8	15	8	15	
*ENI	D							