*BOUNDARY_SALE_MESH_FACE

Purpose: Define boundary conditions at S-ALE mesh faces. This keyword acts as a macro for other keywords to simplify specifying the boundary conditions. As a result, you can use a single keyword to apply boundary conditions.

During the keyword reader phase, this keyword translates to a combination of several different keywords. Those keywords include *SET_NODE_GENERAL (with SALEFAC option), *SET_SEGMENT_GENERAL (with SALEFAC option), *BOUNDARY_SPC_SET, and *BOUNDARY_NON_REFLECTING.

Include as many cards as needed with each card representing one boundary condition. This input ends at the next keyword ("*") card.

Card 1	1	2	3	4	5	6	7	8
Variable	BCTYP E	MSHID	NEGX	POSX	NEGY	POSY	NEGZ	POSZ
Туре	A	I	I	I	I	I	I	I
Default	none	none	0	0	0	0	0	0

VARIABLE

DESCRIPTION

BCTYPE Available boundary conditions:

EQ.FIXED: All nodes at the face are fixed in all directions.

EQ.NOFLOW: No flow allowed through the face.

EQ.SYM: The face is a symmetric plane (same as NOFLOW).

EQ.NONREFL: Non-reflective boundary condition

MSHID S-ALE Mesh ID

NEG[X,Y,Z], Determine where the boundary condition is applied to the mesh. NEGX, POS[X,Y,Z] Determine where the boundary condition is applied to the mesh. NEGX, POSX, NEGY, POSY, NEGZ, or POSZ means the mesh faces with an outward normal vector in the local -x, +x, -y, +y, -z, or +z-directions, respectively.

EQ.0: The boundary condition is *not* applied to faces with this outward normal.

EQ.1: The boundary condition is applied to faces with this outward normal.

Example:

The following input specifies no flow boundary conditions on faces with normal vectors in the -y and -z-directions and non-reflecting boundary conditions on the faces with normal vectors in the -x, +x, +y, and +z-directions.

*BOUNDARY SALE MESH FACE								
\$	option		NEGX	POSX	NEGY	POSY	NEGZ	POSZ
	NOFLOW	1			1		1	
	NONREFL	1	1	1		1		1

Internally, the above input is translated to the following keywords:

*B	OUNDARY_SPO	C_SET						
	1	_	0	1	0			
*B	OUNDARY SPO	C SET						
	2	_	0	0	1			
* S	ET NODE GEN	NERAL						
\$	_ sid							
	1							
\$	OPTION	MSHID	XMN	XMX	YMN	YMX	ZMN	ZMX
	SALEFAC	1			1			
*S	ET_NODE_GEN	VERAL						
\$	SID							
	2							
\$	OPTION	MSHID	XMN	XMX	YMN	YMX	ZMN	ZMX
	SALEFAC	1					1	
*B	OUNDARY_NON	N_REFLECTING	3					
\$	SID							
	11							
*S	ET_SEGMENT_	GENERAL						
\$	SID							
	11							
\$	OPTION	MSHID	XMN	XMX	YMN	YMX	ZMN	ZMX
	SALEFAC	1	1	1		1		1

In comparison to the translated version, *BOUNDARY_SALE_MESH_FACE provides a more streamlined, intuitive approach to facilitate the boundary condition setup for S-ALE models. This method is particularly useful when the mesh is tilted since the local coordinate system is already assumed.