Ansys

Powering Innovation That Drives Human Advancement

ADIABATIC EXPANSION OF HIGH EXPLOSIVE DETONATION PRODUCTS

S-ALE 2D axisymmetric Model

Eric Piskula

eric.piskula@ansys.com

Summary

- The cylinder test was developed at Lawrence Livermore Laboratory (LLNL) with the aim of characterizing the
 adiabatic expansion of the detonation products, by measuring the motion of the cylinder wall while it is expanded
 by the detonation products of the explosive charge inside. The cylinder test typically yields an expansion radius
 history curve that can be associated with the relative expansion volume and the Gurney-type energy density, from
 which the detonation products energy along its expansion can be obtained. The expansion energy function of the
 volume is used to derive the detonation products equation of state, of which the JWL (Jones-Wilkins-Lee) is the
 most widely used.
- Numerical modeling simulations to assess the quality of the JWL parameter sets obtained have been carried out with the LS-DYNA hydrocode. 2D axisymmetric models with Eulerian formulation for the explosive and 2 different modeling techniques for the cylinder wall (Lagrangian, Arbitrary Lagrangian Eulerian) have been used

2D axisymmetric

S-ALE domain

• Surrounding air domain enough big to cylinder deformations

↑	Keyword Input Form
	NewID Draw RefBy Pick Add Accept Delete Default Done 1
	Use *Parameter Comment (Subsys: 1 2Dlag.k) Setting
	*ALE_STRUCTURED_MESH (1)
35.5cm	1 MSHID DPID NBID EBID UNUSED UNUSED TDEATH 1 1000 0 0 1.000e+16 2 CPIDX CPIDX CPIDZ NID0 LCSID 1001 1002 0 0 0 0 Keyword Input Form VewD RefBy Add Accept Delete Default Done USe "Parameter Comment (Subsys: 1 2Dlag,k) Setting 1002 1 CPID UNUSED ICASE SFO UNUSED OFFO
	1 0.0 0.26 1 0.0 0.26 1 0.0 0.26 1 0.0 0.26 1 0.0 0.26 2 230 60.0 0.26 3 300 120.0 0.0 Replace Insert Insert Delete Help 'ALE_STRUCTURED_MESH_CONTROL_POINTS (2)
	1 CPID UNUSED ICASE SFQ UNUSED OFFO ^ 1002 0 1.000000 -13.000000 -13.000000 - Researed Data by Button and List
	N X RATIO/XL 1 0.0 0.0
<pre></pre>	1 1 0.0 0.0 Data Pt. 1 2 1365 355.0 0.0 Desize Inset
60cm	Delete Help

4

Materials

Copper

- Johnson Cook (Mat 15) + EOS Gruneisen

				^MAI_JO	HNSON_COO	K_(111LE) (015)) (1)	
1	MID	<u>R0</u>	G	E	PR	DTF	VP	RATEOP
	3	8.960e-06	45.925999	0.0	0.3500000	0.0	0.0 ~	0.0 ~
2	Δ	B	N	<u>C</u>	M	TM	TR	EPSO
	0.0900000	0.2920000	0.3100000	0.0250000	1.0900000	1656.0000	293.00000	1.0000000
3	<u>CP</u>	<u>PC</u>	SPALL	Π	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>
	383.00000	0.0	2.0000000	0.0 ~	0.0	0.0	0.0	0.0
4	<u>D5</u>	C2/P/XNP/D	EROD	EFMIN	NUMINT	K	EPS1	
	0.0	0.0	0.0	1.000e-06	0.0	0.0	0.0]
				Plot	Raise	New	Padd	

			*E(OS_GRUNEISE	N_(TITLE) (1)	
TITLE							
1 EOSID	<u>C</u>	<u>S1</u>	<u>S2</u>	<u>S3</u>	GAMMA0	Δ	<u>E0</u>
2	3940.0000	1.4890000	0.0	0.0	1.9700000	0.4700000	0.0
2 <u>vo</u>	UNUSED	LCID •					
1.0000000		0	7				

Materials

• TNT

- High Explosive Burn(Mat 08) + EOS JWL

			*MAT_HIGH		BURN_(TITLE)	(008) (1)																			
													*EOS_JWL_(TTLE) (1)											
TITLE								_	TITLE								_			*AI	LE_STRUCTUR	ED_MULTI-MA	TERIAL_GROU	IP_AXISYM (2)
																	AM	MMGNM	MID •	EOSID •	UNUSED	UNUSED	UNUSED	UNUSED	PREF
MID	<u>R0</u>	D	PCJ	BETA	K	G	<u>SIGY</u>	1	EOSID	A	B	<u>R1</u>	R2	OMEG	E0		T	NT	1	1					0.0
1	1.630e-06	6930.0000	21.000000	0.0	V 0.0	0.0	0.0			571.20555	3.7230000	4.1500001	0.9500000	0.5000000	7.000000	0.0									

• Air

- Null (Mat 09) + EOS Linear Polynomial

				*N	/AT_NULL_(TIT	TLE) (009) (1	1)						*EOS	LINEAR_POI	YNOMIAL_(TIT	LE) (1)											
	TITLE									TITLE											*A	LE_STRUCTUR	ED_MULTI-MA	ATERIAL_GROU	P_AXISYM (4)	
[75000	CER 0.0	200		1	EOSID	<u>C0</u>	<u>C1</u>	<u>C2</u>	<u>C3</u>	<u>C4</u>	<u>C5</u>	<u>C6</u>	1 <u>AMN</u>	1 <u>GNM</u>	MID	EOSID •	UNUSED	UNUSED	UNUSED	UNUSED	PREF	
1	4 4	RO 1.000e-09	<u>PC</u> 0.0	0.0	0.0	0.0	<u>YM</u> 0.0	0.0	2	3 ! <u>E0</u>	<u>vo</u>	0.0	0.0	0.0	0.400000	0.4000000	0.0	Air		4	3					0.0	

S-ALE Filling for Air & TNT

• Initialization by a full filling with Air

			*ALE_STRUC	TURED_MESH	_VOLUME_FIL	LING (2)	
MSHID •	UNUSED	AMMGTO	UNUSED	NSAMPLE	UNUSED	UNUSED-	
1		1		3			0
GEOM	IN/OUT	<u>E1</u>	<u>E2</u>	<u>E3</u>	<u>E4</u>	<u>E5</u>	_
ALL 🗸	~ 0 ~	0.0	0.0	0.0	0.0	0.0	

• Filling Explosive in using a dummy Lagrangian part (rigid)

			_			
	<u>AMMGTO</u>	UNUSED	NSAMPLE	UNUSED	UNUSED-	VID •
1	3		3			0
GEOM IN/OUT	PID •	<u>E2</u>	<u>E3</u>	<u>E4</u>	<u>E5</u>	
PART V 0	 ✓ 1 	0.0	0	0	0	

*ALE_STRUCTURED_MESH_VOLUME_FILLING (2)

7

Initialization of explosive

- TNT explosive is detonated with a booster explosive generating a planar shockwave hitting the TNT
 - For simplification, detonation points are defined enough close to generate a planar

detonation wave

8

Case with Cylinder Wall / Lagrangian Approach

• The mesh part overlaps the Eulerian domain and FSI is required to interact Eulerian domain with the Lagrangian part

Mesh size for Lagrangian & Eulerian domain is 0.26mm

Case with Cylinder Wall / Eulerian Approach

• the Eulerian domain is just fill with dummy part (rigide) like the TNT - no FSI is required

			*ALE_STRUC	TURED_MESH	LVOLUME_FIL	LING (3)	
MSHID •	UNUSED	AMMGTO	UNUSED	NSAMPLE	UNUSED	UNUSED-	<u>VID</u> •
1		2		3			0
<u>GEOM</u>	IN/OUT	PID •	<u>E2</u>	<u>E3</u>	<u>E4</u>	<u>E5</u>	
part ~	· 0 ~	2	0.0	0	0	0	

• Copper material must be defined like a multi-material

		*AL	E_STRUCTURE	D_MULTI-MAT	TERIAL_GROU	P_AXISYM (4)	
AMMGNM	MID	EOSID •	UNUSED	UNUSED	UNUSED	UNUSED	<u>PREF</u>	
COPPER	3	2					0.0	

• As MAT Johnson-Cook (015) allows failure -> a Vacuum material must be defined

	*ALE_STRUCT	URED_MULTI-M	ATERIAL_GROU	JP_AXISYM	(4)		*MAT_VACUUM_(TITLE) (140) (1)
1 AMMGNM MID • vaccum 5	EOSID UNUSED	UNUSED	UNUSED	UNUSED	0.0	TITLE	
						MID 5	RHO 1.000e-09

Case with Cylinder Wall / Eulerian Approach

Keyword Input Form

- 4 ALE multi materials are defined :
 - Air 1
 - Copper 2
 - TNT 3
 - Vacuum 4

NewID		RefBy	Pick Ad	dd Accept	Delete Defaul	t Done
Use *Parameter 🗌 Commer	ıt				(Subsys: 1 test_2D.k)	Setting
	*ALE_STRUCTURE	D_MULTI-MATER	RIAL_GROUP_A	XISYM (4)		
1 AMMGNM MID EC	SID UNUSED	UNUSED U	UNUSED UN	NUSED PREF		

Results

Lagrangian

Results

Lagrangian

LS-DYNA keyword deck by LS-PrePost Time = 0.043794 Post 0.0437944 nate @ 1, 23.181 43794, 23.181)

Eulerian

Comparison with real test

Powering Innovation That Drives Human Advancement

Ansys