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1 Introduction

1.1 Purpose of this Document

This document specifies the test case ICFD-VER-7.1. It provides general test case informa-
tion like name and ID as well as information to the confidentiality, status, and classification
of the test case.

A detailed description of the test case is given, the purpose of the test case is defined, and the
tested features are named. Results and observations are stated and discussed. Testing results
are provided in section 4.1 for the therein mentioned LS-DYNA R© version and platforms.
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2 Test Case Information

Test Case Summary

Confidentiality external use

Test Case Name Conjugate forced convection: Longitudinally periodic regime

Test Case ID ICFD-VER-7.1

Test Case Status Under consideration

Test Case Classification Verification

Metadata THERMAL PROBLEM

Table 1: Test Case Summary
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3 Test Case Specification

3.1 Test Case Purpose

This present test case aims at validating the Conjugate heat transfer solver both in 2D and
3D using the analytical solutions of conjugate heat transfer problems involving a parallel
plane channel (2D case) or a cylindrical channel (3D case) with a longitudinally periodic
regime for the temperature.
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3.2 Test Case Description

3.2.1 Introduction

In [2] and [3] the analytical solution of the conjugate heat transfer problem in a parallel-
plane channel has been studied for two kinds of boundary condition prescribed on the exterior
channel of the solid. The boundary condition is either defined by a temperature imposition
which varies longitudinally with sinusoidal law (T = T0 + ∆Tsin(βz)) or by a prescribed
heat flux (q = q0(1+λsin(βz))). In [1], the problem has been extended to the axi-symmetric
cylindrical channel case with a periodic prescribed temperature boundary condition. In all
cases, the flow is considered laminar and fully hydrodynamically and thermally developed.
Numerous industrial applications meet such conditions and are often encountered in nuclear
reactor cooling designs, heat exchangers for Stirling-cycle machines or internally finned ducts
[2]. Figure (1) offers a sketch of the complete fluid-solid conjugate heat transfer problem.

U

z

y

y0

y1

q=q0[1+λ sin(βz)]

(ρ,μ,kf)

ks

T=T0+ΔT sin(βz)

or

q=q0[1+λ sin(βz)]

T=T0+ΔT sin(βz)

or

solid

fluid

Figure 1: Sketch of the longitudinal section of the channel

3.2.2 Dimensionless Parameters

As in most fluid mechanics problems, it is often more convenient to work in dimensionless
quantities :
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η =
y

y0

(1)

ε =
z

z0

(2)

σ =
y1

y0

(3)

θTBL =
T − T0

∆T
(4)

θHFBL = kf
T − T0

q0y0

(5)

γ =
ks
kf

(6)

B = Peβy0 (7)

u =
U

U0

(8)

with y0 the half height of the internal channel wall, y1 the half height of the exterior channel
wall, z the axial coordinate of the channel, θTBL and θHFBL the adimensional temperature
in the cases where the temperature or the heat flux are imposed as boundary condition,
T the temperature (T0, ∆T , q0 and λv are input parameters that can be determined by
the boundary condition imposed on the solid exterior channel wall), ks and kf the solid
and fluid thermal conductivities respectfully, β the angular frequency, U and U0 the longi-
tudinal component of the fluid velocity and its mean value, and finally Pe the Peclet number.

The Peclet number is a dimensionless number relevant in the study of transport phenomena
in fluid flows. It is defined as the rate of advection to the rate of diffusion of a given physical
quantity which in the context of heat transports makes it equivalent to the product of the
Prandtl and the Reynolds number :

Pe = Pr ×Re =
U0y0

αf
(9)

where αf is the fluid thermal diffusivity equal to :

α =
k

ρcp
(10)

where ρ is the fluid’s density and cp is the fluid’s heat capacity.
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3.2.3 The analytical solution - 2D Temperature boundary condition

The temperature distribution has been obtained analytically in [2] by expressing the energy
balance equation as a complex-valued hypergeometric confluent equation. The temperature
profile (θTBL, simply given as θ here) can be written as :

θ(η, ε) = θ0(η) + θ1(η)sin(
Bε

Pe
) + θ2cos(

Bε

Pe
) (11)

where it has been shown in [2] that θ0 = 0 and θ1, θ2 can be expressed as the real and
imaginary parts of the complex valued function ψ(η) :

ψ(η) =

 C1e
Hη2

4 1F1(2+H
8

; 1
2
;−H

2
η2) for 0 6 η 6 1

C2e
ηB
Pe + C3e

− ηB
Pe for 1 6 η 6 σ

where H = (i− 1)
√

3B, 1F1 is the confluent hypergeometric function and C1,C2,C3 are com-
plex constant calculated using the temperature boundary conditions and given in [2].

Figure (2) and Figure (3) offer a 3D view of the dimensionless temperature behavior function
of η and ε in the fluid and in the fluid+solid domain. The boundary between the solid and the
fluid can be clearly identified with a change in temperature slope. A comparison between
the two figures shows how the conductivity of the channel wall affects the temperature
distribution. As expected with a more conductive solid, the gradient of temperature in the
wall is less important. In cases where the wall conductivity is very high compared to the
fluid conductivity, one can neglect the transverse temperature gradient and directly impose
the solid temperature boundary condition on the fluid (CFD only analysis).

3.2.4 The analytical solution - 2D Heat flux boundary condition

The temperature distribution has been obtained analytically in [3] by expressing the energy
balance equation as a complex-valued hypergeometric confluent equation. The temperature
profile (θHFBL, simply given as θ here) is defined up to an arbitrary additive constant :

θ(η, ε) =
Aε

Pe
+ θ0(η) + θ1(η)sin(

Bε

Pe
) + θ2cos(

Bε

Pe
) (12)

where A = 1.

θ0 can be expressed as ([3]) :

θ0(η) =

 3
4
η2 − 1

8
η4 for 0 6 η 6 1

η
γ

+ 5
8
− 1

γ
for 1 6 η 6 σ
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a) b)

Figure 2: Analytical solution : dimensionless temperature distribution versus η and ε for
σ = 1.2, B = 100, Pe = 100 and γ = 3, a) Fluid domain only, b) Fluid and Solid coupled
domains.

a) b)

Figure 3: Analytical solution : dimensionless temperature distribution versus η and ε for
σ = 1.2, B = 100, Pe = 100 and γ = 0.5, a) Fluid domain only, b) Fluid and Solid coupled
domains.
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And θ0 = 0 and θ1, θ2 can be expressed as the real and imaginary parts of the complex
valued function ψ(η) :

ψ(η) =

 C1e
Hη2

4 1F1(2+H
8

; 1
2
;−H

2
η2) for 0 6 η 6 1

C2e
ηB
Pe + C3e

− ηB
Pe for 1 6 η 6 σ

(13)

where H = (i− 1)
√

3B, 1F1 is the confluent hypergeometric function and C1,C2,C3 are com-
plex constant calculated using the heat flux boundary conditions and given in [3].

Figure (6) offers a 3D view of the dimensionless temperature behavior function of η and
ε in the fluid+solid domain. When compared to Figure (3) and the imposed temperature
boundary condition, it is interesting to note that the temperature behavior differs and seems
to show a linear growth along the channel length. A higher λ value yields bigger amplitude
differences.

ε
εη η

a) b)

Figure 4: Analytical solution : dimensionless temperature distribution versus η and ε for
σ = 1.2, B = 100, Pe = 100 and γ = 3, a) λ = 1, b) λ = 0.5.

3.2.5 The analytical solution - 3D Temperature boundary condition

For the 3D case, the 2D-axisymmetric analytical solution has been demonstrated by [1] for
a periodic temperature boundary condition as :

θ(η, ε) = θ0(η) + θ1(η)sin(
Bε

Pe
) + θ2cos(

Bε

Pe
) (14)

where η = r
r0

and r is the channel radius. It has been shown in [1] that θ0 = 0 and θ1, θ2

can be expressed as the real and imaginary parts of the complex valued function ψ(η). ψ(η)
can be expressed in the fluid domain as the following power series :

8 LSTC-QA-LS-DYNA-ICFD-VER-7.1-1



ψ(η) =


C1

(
Γ(1−w

2
)
)−1√

2w e−wη
2 ×

∞∑
n=0

Γ(n+ 1−w
2

)

n!n!
(2wη2)n for 0 6 η 6 1

C2I(0, B
Pe
η) + C3K(0, B

Pe
η) for 1 6 η 6 σ

where Γ is the gamma function and I, K are the first and second type Bessel functions
respectively. Figure (5) offers a 3D view of the dimensionless temperature behavior function
of η and ε in the fluid+solid domain.

a) b)

Figure 5: Analytical solution : dimensionless temperature distribution versus η and ε for
γ = 3, B = 100, Pe = 100 and, a) σ = 1.2, b) σ = 1.4.
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3.3 Model Description

Table (2), Table (3) and Table (4) offer some information on the model’s chosen dimensions,
mesh and parameters. For the sake of the analysis, Pe, B and γ and the solid thickness σ will
be varied. The total length of the problem has been chosen so as to ensure a fully developed
profile at the fluid-solid interface for the range of tested parameters. The 3D channel is half
as long as the 2D channel in order to save some computational time but still long enough
to ensure that a fully developed profile exists for all tested cases. Figure (6) offers a view of
the mesh.

Model dimensions

y0 1

2D channel Length 120

3D channel Length 60

Table 2: Test Case Geometry Information

Model information

Fluid Surface Element size 0.05

2D Fluid Volume Nodes 35 000

2D Fluid Volume Elements 68 000

3D Fluid Volume Nodes 350 000

3D Fluid Volume Elements 2 000 000

Number of elements through solid thickness 5

Anisotropic elements added to the bound-
ary layer mesh

2

Table 3: Test Case Mesh Information
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Model physical parameters

Fluid Density 1

Viscosity 0.005

Inflow velocity (= U0) 0.5

Reynolds number 100

Fluid thermal conductivity 1

Fluid thermal heat capacity variable

T0 80

∆T 20

q0 10

B variable

γ variable

λ variable

σ variable

Table 4: Test Case Parameters

a) b)

Figure 6: a) 3D surface mesh view, b) 2D mesh view
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4 Test Case Results

4.1 Test Case observations

4.1.1 2D-Constant Temperature Boundary Condition case

The continuity of temperature at the interface is well insured by the numerical simulation
as can be observed on Figure (7). Figure (8) offers a qualitative comparison between the
analytical and the numerical temperature profiles at the solid-fluid interface. In Figure
(9), the dimensionless temperature distribution at the solid-fluid interface is reported and a
comparison is made with the analytical solution for B = 100, σ = 1.2, γ = 3 and for three
different values of the Pe number. A higher Peclet number yields a smaller amplitude at
the interface. This is consistent as a higher Peclet number value implies more temperature
advection and on the other hand, an infinitely small Pecklet number would mean that the
fluid has no influence on the solid temperature distribution. In Figure (10), the dimensionless
temperature distribution at the solid-fluid interface is reported and a comparison is made
with the analytical solution for Pe = 100, σ = 1.2, γ = 3 and for three different values of B.
The figure shows that the period of the axial temperature distribution strongly differs in the
three considered cases, while the oscillation amplitude does not display strong differences.
Figure (11) shows again the dimensionless temperature distribution at the interface for three
different values of γ. As expected, a higher γ value yields a temperature distribution closer to
the boundary condition profile imposed at η = σ. Finally Figure (12) and Figure (13) show
for two different sets of B and Pe the temperature profiles at different η along the channel.
In both cases for all η values, the progressive alignment of the numerical solution with the
analytical solution can be observed i.e the progressive establishment of the developed thermal
profile. As a conclusion, all figures show an excellent agreement with the analytical solutions.

Figure 7: Numerical solution : temperature distribution in the fluid-solid domain for σ = 1.2,
γ = 3, Pe = 100 and B = 100
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Figure 8: Dimensionless temperature : Qualitative comparison between the numerical and
analytical results for the dimensionless temperature at η = 1 and for σ = 1.2, γ = 3,
Pe = 100 and B = 100

Figure 9: Dimensionless temperature distribution : comparison between the analytical so-
lution (in Blue) and the numerical solution for η = 1, σ = 1.2, γ = 3, B = 100 and for
three different values of the Peclet number in the hydrodynamically and thermally developed
region.
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Figure 10: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for η = 1, σ = 1.2, γ = 3, Pe = 100 and for
three different values of the parameter B in the hydrodynamically and thermally developed
region.
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Figure 11: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for η = 1, σ = 1.2, B = 100, Pe = 100 and for
three different values of the parameter γ in the hydrodynamically and thermally developed
region.
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Figure 12: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for γ = 3, σ = 1.2, B = 10, Pe = 10 and for
three different values of the parameter η along the channel
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Figure 13: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for γ = 3, σ = 1.2, B = 100, Pe = 100 and for
three different values of the parameter η along the channel
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4.1.2 2D-Constant Heat Flux Boundary Condition case

Figure (14) shows the dimensionless temperature evolution across the channel for different
values of η. The linear growth observed for the analytical solution is perfectly captured and,
as in the temperature boundary condition case, the distance required for the temperature
profile to be fully developed can again be observed. Figure (15) shows the fully developed
dimensionless temperature distribution for two values of the λ parameter. Again, good
agreement with the analytical solution can be observed.

Figure 14: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for γ = 3, σ = 1.2, B = 100, Pe = 100,
q0 = 10, λ = 1 and for four different values of the parameter η along the channel
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Figure 15: Dimensionless temperature distribution : comparison between the analytical
solution (in Blue) and the numerical solution for σ = 1.2, γ = 3, B = 100, Pe = 100,
q0 = 10 at the solid fluid interface for two λ values
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4.1.3 3D-Constant Temperature Boundary Condition case

As for the 2D case, the continuity of temperature between the solid and the fluid can be
distinctly observed on Figure (16). Figure (17) further confirms the consistent behavior of the
numerical solution. As expected, a higher Pe yields a higher temperature amplitude at the
interface, a higher periodicity at the boundary impacts the frequency at the interface without
impacting the amplitude, a lower thermal conductivity ratio gives a lower temperature at the
interface as well as a bigger solid thickness which allows more temperature diffusion through
the solid. The numerical solutions are in excellent agreement with the analytical solutions.

a) b)

Figure 16: Numerical solution : temperature distribution in the fluid-solid domain for σ =
1.2, γ = 3, Pe = 100 and B = 100. a) 3D cut view b) Channel section cut.
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a) b)

c) d)

Figure 17: Dimensionless temperature distribution at the solid fluid interface : comparison
between the analytical solution (in Blue) and the numerical solution for a) σ = 1.2, γ = 3,
B = 100 and Pe = variable, b) σ = 1.2, γ = 3, B = 50 and Pe = 100, c) σ = 1.2,
γ = variable, B = 100 and Pe = 100, d) σ = variable, γ = 3, B = 100 and Pe = 100
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