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1 Introduction

1.1 Purpose of this Document

This document specifies the test case ICFD-BENCH-4.1. It provides general test case infor-
mation like name and ID as well as information to the confidentiality, status, and classifica-
tion of the test case.

A detailed description of the test case is given, the purpose of the test case is defined, and the
tested features are named. Results and observations are stated and discussed. Testing results
are provided in section 4.1 for the therein mentioned LS-DYNA R© version and platforms.
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2 Test Case Information

Test Case Summary

Confidentiality external use

Test Case Name Galloping and fluttering: Vortex induced oscillations of buff
bodies

Test Case ID ICFD-BENCH-4.1

Test Case Status Under consideration

Test Case Classification Benchmarking

Metadata FSI

Table 1: Test Case Summary
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3 Test Case Specification

3.1 Test Case Purpose

The purpose of this FSI test case is to study the capabilities of the ICFD solver to solve vortex
induced oscillations of rigid body spring-damper systems. A three step approach has been
adopted. First, the vertical galloping motion will be studied. Next, the rotational degree of
freedom will be released in order to study rotational galloping. Finally, the complete bridge
fluttering problem will be analyzed. The collapse of the Tacoma Narrows bridge in 1940
reminds us of the importance of such investigations which are still the focus of a substantial
body of contemporary research.

3.2 Model Description

3.2.1 Vertical Galloping

In this example, a square is immersed in a uniform flow field. It is mounted on a spring-
damper support such that it can perform oscillations perpendicular to the direction of the
flow (with all the other degress of freedom fixed). The channel is large enough to be regarded
as infinite. Figure (1) shows the geometry of the problem. A box of finer mesh is defined
around the object of interest. Different Reynolds numbers are considered. As described in
[1], one characteristic behavior of this system is the ’lock in’ phenomena i.e an interval of
Reynolds number (Re ≈ 50−55)) for which the vortex shedding frequency fv coincides with
the natural frequency fn and the oscillation frequency f0 of the square-spring system. The
natural frequency can be calculated as :

fn =
1

2π

√
ky
m

(1)

where m is the mass of the solid and k the spring stiffness.

In this ’lock-in’ zone, the square performs stable oscillations. Around this interval, no oscil-
lations occur and the vortex shedding frequency fv starts increasing. For higher Reynolds
numbers (Re ≈ 150), the rigid body starts large amplitude oscillations and the oscillation
frequency coincides with the natural frequency fn while the vortex shedding frequency keeps
increasing almost linearly. The results will be compared to those obtained by [1].

3.2.2 Rotational Galloping

In this example, the objective is to simulate the phenomena of rotational galloping. The
set-up and geometry is almost identical to the vertical galloping case (see Figure(2)) except
that the length of the rigid body under consideration will be varied from two to five times
its thickness is order to reproduce the results by [3] ( with Λ = L/D the ratio between
length and thickness andD = 1). The rigid body is now free to rotate but fixed in the x
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Figure 1: Test Case Sketch - Vertical Galloping

and y directions. The rotational degree of freedom is associated with an elastic spring and
a certain amount of linear damping. The natural frequency can be calculated as :

fn =
1

2π

√
kθ
Iθ

(2)

Figure 2: Test Case Sketch - Rotational Galloping
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3.2.3 Bridge Fluttering

In this example, a rigid H profile bridge is considered based on the model by [2] and used in
[1] (See Figure (3)). It is supported with a rotational and a vertical translation linear elastic
spring. The horizontal motion is fixed to zero. The rigid body is exposed to uniform fluid
flow in the horizontal direction. Bridge oscillations may consequently occur due to vertical
or rotational galloping. Coupled galloping of two or more degrees of freedom is commonly
known as flutter [1].
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12

Figure 3: Test Case Sketch - Bridge Fluttering

LSTC-QA-LS-DYNA-ICFD-BENCH-4.1-1 5



3.3 Model Description

3.3.1 Vertical galloping

The properties of the body and the spring damper system are given in Table (2) as well as
the properties of the fluid. The velocity will be varied in order to simulate a Reynolds range
from 40 to 250. Figure (4) and Table (3) offer some additional information on the mesh.
The mesh size has been chosen fine enough in order to consider that mesh convergence has
been achieved.

Stiffness ky 3.08425

Damping Factor cy 0.0581195

Mass 20

Fluid Density 1

Fluid Viscosity 0.01

Time step used 0.025

Table 2: Test Case Parameters - Vertical Galloping

Model information

Cylinder Surface Element size 0.025

Meshing Box Element size 0.05

Exterior Domain Element size 1

Elements added to the Cylinder boundary
layer

2

Volume Elements 73000

Volume Nodes 36000

Table 3: Test Case Mesh - Vertical Galloping

3.3.2 Rotational galloping

The properties of the rigid body-spring system are given in Table (4). They are chosen
similar to [1], with a Reynolds number Re = u∞Dρ/µ = 250 and a natural frequency of
fn =

√
kθ/Iθ/(2π)) = 0.0635 and is such a way to be able to compare with the results by

[3]. Figure (5) and Table (5) offer some information on the mesh.
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Figure 4: Overall view of the mesh, various levels of zoom on the zone close to the square
and solid mesh

Figure 5: Overall view of the mesh for rotational galloping and Λ = 4
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Inlet Velocity 2.5

Fluid Density 1

Fluid Viscosity 0.01

Time step used 0.005

Λ = 2

Stiffness kθ 15.4212

Damping Factor cθ 7.854

Inertia 100

Λ = 3

Stiffness kθ 15.4212

Damping Factor cθ 39.27

Inertia 100

Λ = 4

Stiffness kθ 61.685

Damping Factor cθ 78.54

Inertia 400

Λ = 5

Stiffness kθ 61.685

Damping Factor cθ 188.495

Inertia 400

Table 4: Test Case Parameters - Rotational Galloping
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Model information

Cylinder Surface Element size 0.025

Meshing Box Element size 0.05

Exterior Domain Element size 1

Elements added to the Cylinder boundary
layer

2

Volume Elements ≈ 254000

Volume Nodes ≈ 127000

Table 5: Test Case Mesh - Rotational Galloping

3.3.3 Bridge fluttering

The properties of the rigid body-spring system are given in Table (6). Structural damping
is ignored. Figure (6) and Table (7) offer some information on the mesh.

Stiffness ky 2000

Stiffness kθ 40000

Mass 3000

Intertia 25300

Inflow velocity 10

Fluid Density 1.25

Fluid Viscosity 0.1

Time step used 0.005

Table 6: Test Case Parameters - Bridge fluttering
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Model information

Bridge deck Element size 0.025

Exterior Domain Element size 1

Elements added to the boundary layer 2

Volume Elements 200000

Volume Nodes 100000

Table 7: Test Case Mesh - Bridge fluttering

Figure 6: Overall view of the mesh for the bridge fluttering
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4 Test Case Results

4.1 Vertical Galloping

Figure (7) offers a view of the Vortex shedding happening behind the square. Figure (8)
and (9) show the results in the (Re ≈ 50 − 55) region and (Re ≈ 150) region. The lock-
in phenomenon is correctly captured with an oscillation amplitude slowly decreasing from
Re = 55 to Re = 60. The vortex shedding frequency is coincident with the oscillation
frequency and in the vicinity of the natural frequency. After the oscillations start, both
frequencies start slowly increasing. The large amplitude zone starts around Re = 140 which
is a little bit earlier than the results by [1] where it starts around Re = 150. In that case,
the oscillation frequency is very close to the natural frequency while the vortex shedding
frequency keeps increasing. The amplitude of the oscillations also keeps increasing with a
small overestimation compared to the results by [1]. On Figure (10), it can be observed that
for the large amplitude zone, the oscillations reach a steady state earlier as the Reynolds
number increases. Globally the results are in good agreement with the reference results of [1].

Figure 7: Test Case velocity fringes - Vertical Galloping
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Figure 8: Test Case results regarding the Amplitude ratio (Y/D), the structure oscillation
frequency f0 and the vortex shedding frequency fv.
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Figure 9: Test Case results regarding the Amplitude ratio (Y/D), the structure oscillation
frequency f0 and the vortex shedding frequency fv.
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Re=55

Re=150

Re=175

Re=250

Figure 10: Behavior of the square oscillations during the transitory phase for different
Reynolds numbers.
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4.2 Rotational Galloping

Figure (11) offers a view of the Vortex shedding happening for Λ = 4 at two points of
minimum and maximum amplitude respectfully. Figure (12), (13), (14) and (15) show the
evolution of the θ rotation angle as well as the lift coefficient for the different Λ cases. The
angular displacement seems to be in very good agreement with the results shown by [3]
and [1]. This is further confirmed when the maximum angle and oscillation frequency is
compared to the approximate values extracted from [3] in Table (8).

t=180s

t=186s

a)

b)

Figure 11: Test Case velocity fringes at a) θ ≈ 0circ and b) θ ≈ max(θ) for Λ = 4
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a)

b)

Figure 12: Rotational Galloping. Evolution of a) θ angle and of b) lift coefficient for Λ = 2

Λ = 2 Λ = 3 Λ = 4 Λ = 5

max(θ) fo max(θ) fo max(θ) fo max(θ) fo

Current
results

0.230 0.0733 0.192 0.0488 0.248 0.0488 0.206 0.0366

Results
by [3]

≈ 0.262 ≈ 0.062 ≈ 0.216 ≈ 0.051 ≈ 0.262 ≈ 0.048 ≈ 0.209 ≈ 0.035

Table 8: Rotational galloping - Results
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a)

b)

Figure 13: Rotational Galloping. Evolution of a) θ angle and of b) lift coefficient for Λ = 3
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a)

b)

Figure 14: Rotational Galloping. Evolution of a) θ angle and of b) lift coefficient for Λ = 4
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a)

b)

Figure 15: Rotational Galloping. Evolution of a) θ angle and of b) lift coefficient for Λ = 5

LSTC-QA-LS-DYNA-ICFD-BENCH-4.1-1 19



4.3 Bridge fluttering

Figure (16) shows some of the rotational motion across one period with violent angle changes
over one period. It appears clearly that the rotation is the dominant motion with severe
oscillations. This is further confirmed by the rotational and translation frequencies which
coincide at f0 = 0.183s−1 which is close to the natural rotational frequency (fθ = 0.200s−1

and fy = 0.13s−1). Figure (17) shows the establishment of the translational and rotational
oscillations. The amplitude of the rotations is max(θ) = 57◦ and the maximum vertical
displacement is obtained as 0.72 ≤ max(Y ) ≤ 0.84 which is again is very good agreement
with the results by [1].
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a) b)

c) d)

e) f)

a)

b)

c)
d)

e)

d)

Figure 16: Flutter of the bridge deck, typical flow behavior across one period.
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Figure 17: Flutter of the bridge deck, Y displacement, θ rotation and lift force
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