Preload - Introduction

- Sometimes it's important to induce a steady state preload before performing a transient dynamic analysis.
 - Rotating fan or turbine blades, rotating flywheels
 - Gravity
 - Pressure vessels or tires
 - Interference-fit assemblies
 - Stresses induced by a torqued bolt

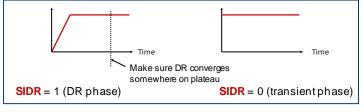
LSTC. Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 1

Preloads in LS-DYNA

- Preload Analysis Techniques (General)
 - Explicit dynamic relaxation
 - Normal transient analysis with mass damping
 - Implicit methods
 - 2 separate runs: Implicit preload followed by Explicit
 - Implicit/Explicit switching
 - Implicit by *CONTROL_DYNAMIC_RELAXATION

Specific ways to preload Bolts

- Thermal load
- Interference contact
- Initialize stress in solid cross-section
- Initialize force in beams


Explicit Dynamic Relaxation (DR)

- Explicit Dynamic Relaxation is an optional transient analysis that takes place in 'pseudo-time' (precedes normal transient analysis).
- DR is typically used to preload a model before onset of transient loading. Preload stresses are typically elastic and displacements are small.
- In explicit DR, the computed nodal velocities are reduced each time step by the **dynamic relaxation factor** (default = .995). Thus the DR solution undergoes a form of damping.
- The distortional kinetic energy is monitored. When this energy has been sufficiently reduced, the DR phase terminates and the solution automatically proceeds to the normal transient analysis.
- Alternatively, DR can be terminated at a preset termination time.

Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 3

Explicit Dynamic Relaxation

- DR is typically invoked by setting the variable SIDR to 1 or 2 in *DEFINE_CURVE. This makes the load defined by the curve applicable to the DR phase.
- Curve guidelines
 - Ramp the load during the DR phase and then hold load constant until solution "converges", i.e., until the distortional KE becomes sufficiently small.
 - Maintain the preload in subsequent transient analysis phase (use separate load curve without the ramp)

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 4

Explicit Dynamic Relaxation

*CONTROL_DYNAMIC_RELAXATION variables

- NRCYCK: Iterations between convergence checks (default=250)
 Also affects output interval for binary output *d3drlf*
- DRTOL: Convergence tolerance (default=0.001)
 - Ratio of distortional KE at convergence to peak distortional KE
 - Smaller value results in converged solution nearer to steady state but DR solution will take longer
- DRFCTR: Dynamic relaxation factor (default=0.995)
 - Scaling factor for nodal velocities each time step
 - If value is too small, model may never reach steady state due to overdamping
- DRTERM: Optional termination time for DR
 - DR will stop when time reaches DRTERM even if DR solution is not converged
- TSSFDR: Time step scale factor used during DR; can be different than TSSFAC used for normal transient phase.

LSTC ____ Copyright @ 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 5

*CONTROL_DYNAMIC_RELAXATION parameters cont'd

IDRFLG

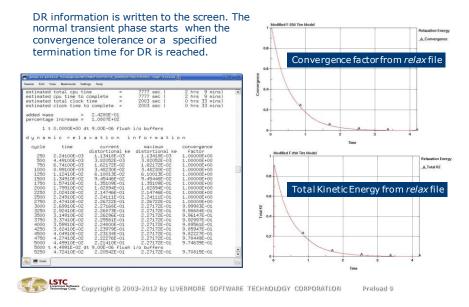
- EQ.-999: DR not activated. Overrides **SIDR** in *DEFINE_CURVE.
- EQ.0: Explicit DR not activated unless by SIDR in *DEFINE_CURVE
- EQ.1: Explicit dynamic relaxation activated with convergence test based on distortional KE of **all parts**
- EQ.3: Explicit dynamic relaxation activated with convergence test based only on distortional KE of parts in part set DRPSET
- EQ.2: Invokes a completely different and faster initialization approach ... Initialization by Prescribed Geometry (see next slide)

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 6

*CONTROL_DYNAMIC_RELAXATION parameters cont'd

IDRFLG

- EQ.2: Invokes a completely different and faster initialization approach ... Initialization by Prescribed Geometry
 - Requires a supplemental input file containing the nodal displacements and rotations corresponding to the preloaded state.
 - Such a file *drdisp.sif* is produced by LS-DYNA at the conclusion of a standard DR run .
 - LS-PrePost can also produce this file via Output button, but it won't include the nodal rotations required of beams and shells.
 - Must include "m=drdisp.sif" on execution line.
 - When IDRFLG=2, LS-DYNA runs a precursor explicit analysis, ramping linearly to the specified nodal displacements and rotations in NC time steps (default=100 time steps).

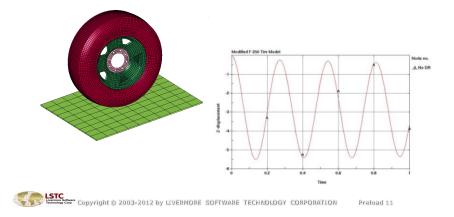

STC Land Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 7

Output Related to Dynamic Relaxation

- ASCII output files are <u>NOT</u> written during DR phase, e.g., *glstat*, *matsum*, *rcforc*, etc.
- Time history data of specified nodes and elements (*DATABASE_HISTORY_option) are written to binary *d3thdt* (*DATABASE_BINARY_D3THDT) if **IDRFLG**=-1
- Binary database *d3drlf* is written by including command *DATABASE_BINARY_D3DRLF. If output interval set to 1, then a plot state is written to *d3drlf* whenever convergence is checked during explicit DR
 - *d3drlf* is to explicit DR phase what *d3plot* is to normal transient phase
- ASCII *relax* file, containing time histories of distortional KE and convergence factor, is produced by default. Data can be plotted using LS-PrePost.
- At the conclusion of DR, *d3dump01* and *drdisp.sif* are written. The latter contains nodal displacements and rotations.

ESTC Lopyright © 2003-2012 by LiverMore SOFTWARE TECHNOLOGY CORPORATION Praibad 8

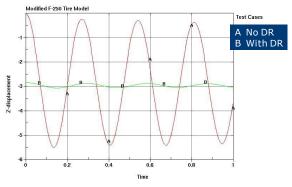
Output - Explicit Dynamic Relaxation



Loads during Dynamic Relaxation

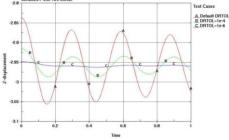
- Gravity loads and centrifugal loads (spinning bodies) are imposed using *LOAD_BODY_option.
 - LCID and LCIDDR are separate curves for normal transient phase and DR phase, respectively.
- Temperatures are prescribed using *LOAD_THERMAL_option.
 - Parts, e.g., bolts, defined with a coefficient of thermal expansion will respond to the temperature
 - LCID and LCIDDR in *LOAD_THERMAL_LOAD_CURVE are separate curves of temperature for normal transient phase and DR phase, resp.
- Other load types or boundary conditions can also be applied during DR if SIDR in corresponding *DEFINE_CURVE is set to 1 or 2. Example: *LOAD_SEGMENT, *BOUNDARY_PRESCRIBED_MOTION_option.
- *CONTACT_..._INTERFERENCE imposes forces associated with geometric interference, as in a press-fit assembly.
- *INITIAL_... (more on that later)

Explicit Dynamic Relaxation Example – Gravity Loading on a Tire


Consider a tire with a constant gravity load. Without DR, the tire bounces during the simulation as seen when plotting the Zdisplacement for a node on the tire rim. Now see the case with DR on the next slide.

Dynamic Relaxation

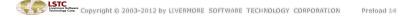
Example – Gravity Loading on a Tire (cont'd)


DR was then included with a ramped gravity curve for the DR phase, i.e., load curve LCIDDR (*LOAD_BODY_Z) has SIDR (*DEFINE_CURVE) set to 1. The ramp time covers approximately 2000 time steps. The *CONTROL_DYNAMIC_RELAXATION parameters are all set to default. The response during the normal transient phase following the DR phase is shown in curve B below.

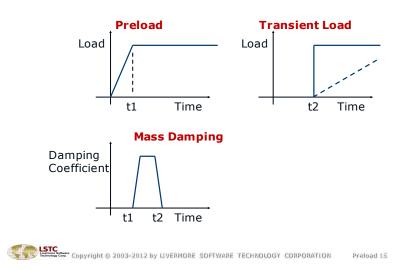
ESTER LAND Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Proload 12

Dynamic Relaxation Example – Gravity Loading on a Tire (con'td)

Three different settings of the energy convergence tolerance, **DRTOL**, were then tried: 1e-3 (default), 1e-4 and 1e-6. This tolerance is the only change in the model. 9.0 Modified F-250 Tire Model


The value of **DRTOL** offers a tradeoff between run time and amplitude of residual dynamic oscillation.

DRTOL	1e-3	1e-4	1e-6
Elapsed Time (sec)	3808	5032	13755


CODVIGHT © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 13

Preload during Normal Transient Analysis

- As an *alternative* to using DR, in some cases the preload can be established in the early part of a normal transient analysis.
 - Ramp up preload over a finite time and then hold load steady.
 - Use time-dependent mass damping (*DAMPING GLOBAL with a curve) to inhibit dynamic response during preloading.
 - Drop damping constant to zero after a near steady state preload solution is established and transient loading is ready to be applied.
 - Apply transient loads AFTER preload is established. .
 - Use *INITIAL_VELOCITY_GENERATION_START_TIME for problems whose transient response is driven by initial velocity in order to delay onset of "initial" velocity until after the preload is established.
 - Use nonzero birthtime or nonzero arrival time for transient loads

Preload during Normal Transient Analysis

Preload via Implicit Analysis

- In general, implicit static and quasi-static, implicit dynamic analyses are well-suited to inducing preload. The latter will tolerate rigid body modes and is less likely to encounter difficulty in attaining convergence.
- Implicit analysis requires the command *CONTROL_IMPLICIT_GENERAL
- Other implicit-related commands commonly used are:
 - *CONTROL_IMPLICIT_AUTO automatically adjusts step size based on ease or difficulty in achieving convergence
 - *CONTROL_IMPLICIT_DYNAMICS is used to make the implicit solution dynamic rather than static

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 16

Preload via Implicit Analysis

- Approach 1: Make 2 separate runs; preload run followed by transient run
 - Make an implicit run applying only the preload. Include *INTERFACE_SPRINGBACK_LSDYNA in the input. This creates an ASCII file called *dynain* when the simulation is finished. The *dynain* file contains keyword commands describing the preloaded state in terms of deformed geometry, stresses, and plastic strains. Merge these commands into a copy of the original input deck, deselect the implicit cards, incorporate the transient loading, and use this deck to run a second simulation (explicit) that effectively starts from the preloaded state.
 - The *dynain* file does not include contact forces nor does it contain nodal velocities. Thus these quantities from the preload analysis do not carry over to the second analysis.
 - Using data from the last state of the first run's d3plot, LS-PrePost[®] can output a dynain file via Output > Format: Dynain Ascii > Write.

LSTCC LEARNING Copyright @ 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Preload 17

Preload via Implicit Analysis

- Approach 2: Single run employing implicit/explicit switching
 - Use one input deck where switching between implicit and explicit solvers is determined by a curve.
 - The abscissa of the curve is time and the ordinate is set to 1.0 for implicit and to 0.0 for explicit (curve is a step function).
 - This switching is activated by setting IMFLAG in *CONTROL_IMPLICIT_GENERAL to -|curve ID|. Switching from one analysis to the other is seamless and has no CPU or I/O overhead.
 - The objective is to apply the preload using the implicit solver and then switch to explicit on-the-fly to begin the transient solution.

Preload via Implicit Analysis

- Approach 3: Single run featuring implicit by *CONTROL_DYNAMIC_RELAXATION
 - IDRFLG=5 or 6 activates precursor implicit solution to achieve preloaded state.
 - Only part set DRPSET is active during implicit phase if IDRFLG=6
 - Set DRTERM to termination time of implicit preload solution.
 - *CONTROL_IMPLICIT_... commands provide controls on implicit preload solution.
 - Set implicit step size DTO in *CONTROL_IMPLICIT_GENERAL
 - Leave IMFLAG=0 so only the precursor, preload solution is implicit
 - Other implicit controls are at the discretion of the analyst (static vs.implicit transient, automatic step adjustment, etc.)
 - Regular, explicit solution commences from t=0, starting from the preloaded state.

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 19

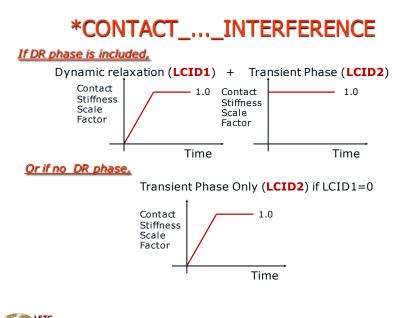
Preloading Bolts

Iterative Loading Types

- Require multiple runs to tune load in order to give desired bolt stress
- *LOAD_THERMAL_LOAD_CURVE
- *CONTACT_INTERFERENCE

Non-iterative Loading Types

- Bolt stress is specified directly.
- *INITIAL_STRESS_SECTION
 - Solid elements only
- *INITIAL_AXIAL_FORCE_BEAM
 - Type 9 beams only

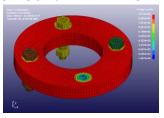

*LOAD_THERMAL_LOAD_CURVE

- In this method, we shrink the bolt by cooling it. As the bolt contracts during the DR phase, preload is induced.
- Coefficient of thermal expansion (CTE) must be given for bolt material, e.g., via *MAT_ADD_THERMAL_EXPANSION.
- Negative temperature is prescribed using *LOAD_THERMAL_LOAD_CURVE.
 - LCID = curve of temperature vs. time for transient phase (constant T).
 - **LCIDDR** = curve of temperature vs. time for DR phase.
 - SIDR=1 in *DEFINE_CURVE.
 - Ramp T and then hold constant.
- Temperature T (or CTE) necessary to produce a target bolt stress σ can be estimated.
 - σ = E * CTE * -T
 - Adjust T (or CTE) in subsequent run to fine tune the final bolt stress
- Example: http://ftp.lstc.com/anonymous/outgoing/jday/bolt.thermal.k.gz

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 21

*CONTACT_..._INTERFERENCE

- Developed for modeling interference-fit assemblies.
- Define the mesh to include finite initial penetration between parts. The meshed geometry represents the unstressed state.
- Initial penetrations are not removed during start up of analysis but rather are allowed to generate contact forces.
- To avoid sudden, large contact forces, the contact stiffness is scaled with time using LCID1 (DR phase) and LCID2 (Transient phase).
- Shell thickness offsets are considered.
- Orientation of contact segments is important.
- Keyword commands for interference contact:
 - *CONTACT_NODES_TO_SURFACE_INTERFERENCE
 - *CONTACT_ONE_WAY_SURFACE_TO_SURFACE_INTERFERENCE
 - *CONTACT_SURFACE_TO_SURFACE_INTERFERENCE



STC. Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 23

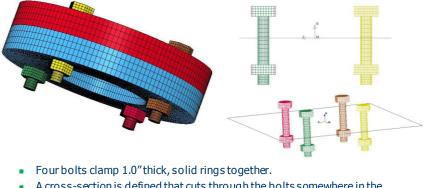
*CONTACT_..._INTERFERENCE

Example: http://ftp.lstc.com/anonymous/outgoing/jday/bolt.interf.k.gz

- Four bolts clamp 1.0" thick, solid rings together.
- Mesh is defined so each bolt head and each nut overlap (penetrate) the solid ring surface by 0.003".
 - Trial overlap based loosely on target bolt stress/(bolt length * E)
- *CONTACT_SURFACE_TO_SURFACE_INTERFERENCE defined between overlapping surfaces.
- Contact stiffness is ramped up during DR phase.
- Overlap can be adjusted in subsequent trials to fine tune the bolt stress.

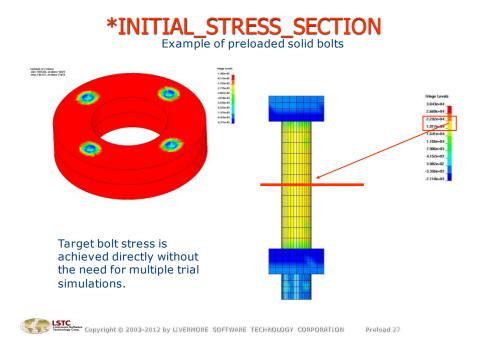
Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 24

Preloading Bolts Modeled with Solid Elements


- *INITIAL_STRESS_SECTION is yet another method for preloading bolts. It acts by prescribing a stress value to solid elements cut by a cross-section.
 - Stress (normal to the cross-section) is defined via *DEFINE_CURVE (stress vs. time).
 - This curve is typically flagged with **SIDR**=1, so that dynamic relaxation is invoked for applying the preload.
 - Curve should ramp stress from zero and then hold target stress value long enough for a state of near equilibrium in the model to be reached, i.e., long enough for DR to converge.
 - Physical location of cross-section is defined via *DATABASE_CROSS_SECTION.
 - A part set, together with the cross-section, identify the elements subject to the prescribed stress.
 - Contact damping (VDC) and/or *DAMPING_PART_STIFFNESS may be necessary to attain convergence during the DR phase.

LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 25

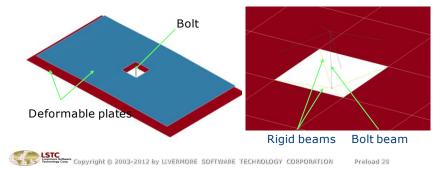
*INITIAL_STRESS_SECTION


Example:

http://ftp.lstc.com/anonymous/outgoing/jday/bolt.initial_stress_section.4not1.k.gz

- A cross-section is defined that cuts through the bolts somewhere in the middle.
- The bolt elements cut by the cross-section have longitudinal stress ramped to 20,000 psi during DR phase using *INITIAL_STRESS_SECTION.
- The direction of prestress is normal to the plane.

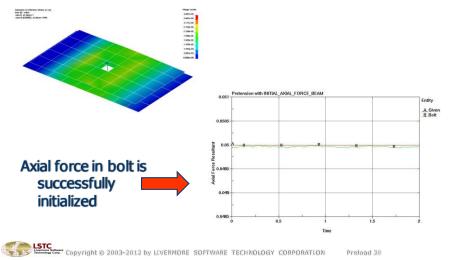
Copyright © 2003-2012 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Praload 26


Preloading Bolts Modeled with Beam Elements

- *INITIAL_AXIAL_FORCE_BEAM will preload beam elements to a prescribed axial force.
 - The preload curve (axial force vs. time) is defined with *DEFINE_CURVE.
 - The curve is typically flagged with **SIDR**=1 so preload is applied during the DR phase.
 - Curve should ramp force from zero and then hold target force value long enough for a state of near equilibrium in the model to be reached, i.e., long enough for DR to converge.
 - The beams to be loaded are given by *SET_BEAM.
 - Beam formulation (ELFORM) must be set to 9 (spot weld beam) and the material model should be *MAT_SPOTWELD.
 - Contact damping (VDC=20) is recommended.
 - *DAMPING_PART_STIFFNESS (COEF=0.1) may speed up convergence during DR phase.

*INITIAL_AXIAL_FORCE_BEAM

Example: http://ftp.lstc.com/anonymous/outgoing/jday/initial_axial_force_beam_drelax.k


- The bolt is modeled with a type 9 beam and *MAT_100.
- The bolt beam is attached to the plates being bolted by 4 rigid beams at each end.
- The bolt is preloaded by ramping the axial force to 0.05 during the DR phase using *INITIAL_AXIAL_FORCE_BEAM.
- No additional load is applied in subsequent transient phase.

*INITIAL_AXIAL_FORCE_BEAM

Example of preloaded beam bolt (cont'd)

Stress at conclusion of DR phase due to bolt preload.

