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Abstract: A description and results from validation studies for the Karagozian & Case (K&C) concrete (KCC) model are presented in this
paper. This material model is primarily intended for modeling the dynamic responses of RC structural components. It is based on a partially
associative plasticity theory and has proven itself capable of replicating most of the key behaviors of concrete, such as those related to
hardening, softening, rate effects, confinement, shear dilatancy, and fracture. Three pressure-sensitive, independent strength surfaces are
used by the KCC model to capture the variations in hardening and softening behaviors exhibited by concrete. These three strength surfaces
are used to compute a failure surface that reflects the influence on the concrete’s behavior of the current stress and strain states at a material
point. This dynamic form of the failure surface is realized by interpolating between pairs of fixed-strength surfaces on the basis of the value of
a damage parameter computed by the KCC model. Partial associativity is introduced in the flow rule so that the magnitude of the computed
shear dilation can be calibrated to match test data. Numerical results obtained from both finite-element (FE) and mesh-free formulations are
presented to show the excellent performance of the KCC model for concrete responses induced by quasi-static, blast, and impact loadings.
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Introduction

Concrete by itself and in its reinforced form is a common structural
material that is used in a wide variety of engineering applications,
such as highway and airport pavements, building and bridge con-
structions, nuclear containment structures, and hardened military
facilities. The safety and performance of these structures under
blast, impact, and other forms of extreme loadings has been one
of the major concerns for designers in recent years. Because of
the high cost and difficulty in conducting experiments to evaluate
responses to extreme loadings, physics-based numerical analyses
are often the only practical way to evaluate the behaviors engen-
dered by these types of loading. As a consequence, physics-based
numerical analysis methods have been developed (for both finite-
element and mesh-free formulations) that are able to accurately
compute the significant behaviors of concrete and the performance
of concrete components even in highly damaged states. This is of
particular importance to engineers who have been charged with
gauging the performance of structures under extreme loadings
and mitigating these sorts of risks. For this purpose, having a
reliable and effective high-fidelity physics-based concrete constit-
utive model is crucial to addressing these forms of structural analy-
sis problems.

Modeling Concrete

To realistically predict the behaviors of concrete and RC structures
by numerical approaches, the concrete constitutive model must be

able to simulate concrete behaviors over a wide range of circum-
stances. This includes those exhibited by small material specimens
up to full-scale structural systems and their components across a
broad array of designs and types of loading. This also includes cap-
turing correctly the relatively peculiar behaviors of concrete as a
material, including such key traits as its increasing strength and
ductility with increasing confinement pressures and performing ef-
fectively even when extensive cracking is present.

However, concrete is a material that is difficult to characterize
because of its heterogeneous nature, history-dependent responses,
and the profound influence of confinement on its properties. Be-
cause of the mesoscale complexities of concrete’s behaviors when
in highly damaged states, it is impractical to predict the behavior of
concrete on the basis of the response of its constituent materials;
consequently, concrete constitutive models are generally consti-
tuted at a macroscale level as a homogenous material. This readily
lends itself to a characterization using a plasticity formulation,
which provides a straightforward scheme to capture the basic
stress-strain behaviors of concrete as exhibited over a small region
of the concrete continuum. These basic behaviors include the
significant differences in peak tensile and compressive strengths,
prepeak strength hardening (yielding), postpeak softening, en-
hancements in strength and ductility caused by confinement
(i.e., the so-called confinement effect), shear dilatancy, and strain
rate enhancement.

Many attempts have been made by researchers to address the
heterogeneity of concrete by developing anisotropic concrete con-
stitutive models, such as the ones based on the general framework
of the internal variable theory of thermodynamics by Yazdani and
Schreyer (1988), on damage mechanics by Papa and Taliercio
(1996), and on the framework of multisurface elastoplasticity-
damage theory by Meschke et al. (1998). Cofer and Kohut (1994)
presented a general nonlocal microplane model to include the effect
of crack formation. Hu and Schnobrich (1989) proposed an elastic
strain-hardening plastic (nonassociative) model for modeling
concrete. Grassl et al. (2002) introduced a nonassociative plas-
ticity model for concrete by using the volumetric plastic strain as
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hardening parameter. Rabczuk and Eibl (2003) used a strain rate-
dependent coupled damage-plasticity model in their simulations
of high-velocity impact on concrete structures. However, most of
these models are not available in any commercial software; there-
fore, their application is limited and not readily validated.

Another branch of efforts in concrete constitutive modeling is to
treat concrete as a homogeneous material and mimic its behaviors
by using a plasticity formulation. The goal of this type of phenom-
enological model is to reproduce mathematically the macroscopic
stress-strain relations for different loading conditions, ignoring the
microscopic and mesoscale mechanisms of the concrete’s behavior.
The multisurface models such as those proposed by Mroz et al.
(1967, 1978), Chen (1982), and Malvar et al. (1997) provide an
appropriately rigorous means to realize the sort of hardening and
softening behaviors observed in concrete with a plasticity model.
The shape of these surfaces in the principal stress-pressure plane
(PI-plane) is important in characterizing one of concrete’s unique
features related to differences observed in responses between triax-
ial extension and compression tests. These differences are captured
by such surfaces as those computed by the Ottosen four-parameter
model (Ottosen 1977), the Hsieh-Ting-Chen four-parameter model
(Hsieh et al. 1982), and the Willam-Warnke five-parameter model
(Willam and Warnke 1975).

Homogenous plasticity material models are relatively easier to
commercialize and evaluate for accuracy and are more efficient
than anisotropic models. Several of these kinds of concrete material
model are embedded in widely used numerical analysis codes and
are used by many engineering practitioners. In this regard, the com-
mercial software LS-DYNA [Livermore Software Technology
Corporation (LSTC) 2014], which is widely applied in analyzing
structural responses of concrete structures subjected to extreme
loadings (e.g., blast effects loads), offers such concrete constitutive
models as the continuous surface cap model (CSCM or MAT159;
Murray 2007; Schwer and Murray 1994), the Riedel-Hiermaier-
Thomas (RHT) model (MAT272, Riedel et al. 1999), the Winfrith
model (MAT084, Broadhouse 1995), and the Karagozian & Case
(K&C) concrete (KCC) model (MAT072, Crawford et al. 2011;
Malvar et al. 1997).

The KCC Model

Twenty years ago, K&C found that the material models available
for simulating the blast responses of RC structural systems and
components afforded poor comparisons between the data generated
by high-fidelity physics-based (HFPB) models and those measured
in precision blast effects tests. This finding led to an extensive R&D
(research and development) effort to improve the capability of
HFPB models to predict blast effects responses, which leads to
the development of the K&C concrete (KCC) model. However,
a complete set of theoretical formulations and implementation de-
tails has not been published since the model was first introduced in
1997 (Malvar et al. 1997). How to properly select and determine
the parameters for the KCC model has never been published either.
To help users to better understand and operate the KCC model, the
extensive details of its formulation, numerical implementation, and
parameter determination are presented in this paper.

The KCC model, which has been embedded in LS-DYNA
for more than 10 years, has been extensively used in many appli-
cations involving extreme loads and is widely accepted by engi-
neers in the design-analysis community. Karagozian & Case and
other KCC model users has performed extensive validation studies
to evaluate the capability of the KCC model in both blind (pretest)
predictions (ARUP 2009; Elsanadedy et al. 2011; Hansra 2012; Li
et al. 2011; Lin et al. 2013) and posttest validation calculations

(Crawford et al. 2011, 2013; Unosson and Nilsson 2006).
Karagozian & Case has also extensively studied the capability of
other concrete models in LS-DYNA (Crawford et al. 2011, 2012,
2013). These sorts of studies clearly demonstrate the need to care-
fully verify the capability of a concrete model before using it in a
particular application and performing comprehensive studies of its
attributes and applicability to particular classes of problems.

The KCC model has also been implemented in DYNA3D (Lin
2005), PRONTO3D (Morrill et al. 1998), FEFLO (Löhner et al.
2002), and other noncommercial analysis codes. To show the
unique potential afforded by the KCC model to simulate responses
for a variety of complex concrete behaviors, results from a suite of
validation studies are presented in this paper to demonstrate this
model’s capacity to match experimental data for various forms of
responses, such as those emanating from quasi-static, blast, and
high-velocity impact loads.

The remainder of this paper is organized as follows: The formu-
lations used by the KCC model are presented and followed by their
numerical implementation. Then, selection of the parameters for
the KCC model is discussed, and results from validation studies
are demonstrated afterward. Conclusions are drawn in the last
section.

Formulations for KCC Model

Because this paper is focused on explaining the formulations used
by the KCC model and their implementation, extended discussions
concerning the modeling of various forms of concrete components
(e.g., the modeling of their reinforcement or prestressing) are omit-
ted from the paper. This paper is not intended as a tutorial in the
modeling of concrete or reinforced concrete components and as
such provides little in the way of guidance other than to demon-
strate that with sufficient expertise on the part of the modeler, good
results can be achieved for a wide range of problems using the
KCC model.

Governing Equations

When considering large deformation, the weak form of the equation
of motion for a concrete structure can be written in the following
updated Lagrangian form:Z
Ωx

ρδu · üdΩþ
Z
Ωx

ð∇S
xδuÞ∶σdΩ−

Z
Ωx

δu ·bdΩ−
Z
∂Ωt

x

δu · tdΩ¼ 0

ð1Þ
where ρ = density; u = displacement vector; overhead dot = time
differentiation; σ = Cauchy stress tensor; ∇S

x = symmetric spatial
gradient operator; b = body force; t = traction on the natural boun-
dary ∂Ωt

x; and Ωx = problem domain. All variables are evaluated in
the deformed configuration.

The evolution of the stress state σ is governed by the constitutive
laws selected to simulate the concrete’s behaviors. In this section, a
description is given of the formulations used by the KCC model,
which is based on a damage-dependent, partially associative plas-
ticity formulation. This constitutive law is used for modeling the
behaviors of concrete because of its ability to comprehensively and
efficiently simulate a wide range of concrete behaviors, particularly
those associated with the sorts of highly damaged states, which re-
sult from penetration, impact, blast, and other sorts of conditions
that might cause extreme levels of material damage.

The failure behavior in the KCC model is characterized by
a pressure-dependent yield surface ϒðp; σ;λÞ formulated as
(Crawford et al. 2011; Malvar et al. 1997)
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ϒðp;σ;λÞ ¼
ffiffiffiffiffiffiffi
3J2

p − Γðp; J3;λÞ ≤ 0 ð2Þ
where p ¼ −σkk=3 = pressure (compression in positive) calculated
by the equation of state (EOS), which represents the volumetric
responses, and is described in detail in subsequently. The damage
parameter λ is used by the constitutive law to represent the effects
of the damage imparted to the concrete by the loading, particularly
related to hardening and softening. J2 and J3 are the second and
third invariants of the deviatoric stress tensor σ 0, respectively, and
they account for the influence on the material’s responses of the
deviatoric stress.

J2 ¼
1

2
σ 0∶σ 0; J3 ¼ jσ 0j; and σ 0 ¼ σþ pI ð3Þ

To capture large deformation finite rotation effects, the
Jaumann’s objective rate σ∇ is used in updating stress states

σ∇ ¼ σ̇ − ẇσþ σẇ ¼ Cep∶ε̇ ð4Þ
with

ε̇ ¼ 1

2
ðLþLTÞ ð5Þ

ẇ ¼ 1

2
ðL −LTÞ ð6Þ

L ¼ ∇xu̇ ð7Þ
where ε̇ and ẇ = rate of strain tensor and the spin tensor, respec-
tively; L = velocity gradient; and Cep = elastoplasticity tensor.
Eq. (4) is often rearranged to decouple the material and rotational
responses, as follows:

σ̇ ¼ Cep∶ε̇þR∶ẇ ð8Þ
with R being the fourth-order rotational tensor defined as

Rijkl ¼ ðσilδjk þ σjlδik − σikδjl − σjkδilÞ=2 ð9Þ

In addition, the strain rate tensor ε̇ can be decomposed into an
elastic part ε̇e and a plastic part ε̇p

ε̇ ¼ ε̇e þ ε̇p ð10Þ

Failure Surface and Strength Surfaces

The functional Γðp; J3;λÞ in Eq. (2) defines a failure surface that is
a function of the current values computed for a specific set of state
variables ðp; J3;λÞ, which establishes the strength of the concrete.
The failure surface is dynamic, being a function of λ, and is com-
puted by using an interpolative scheme that uses a pair of fixed
surfaces defined by the user’s input. For the hardening phase of
the KCC model, this pair is denoted as the yield and maximum
strength surfaces, and for softening, this pair is denoted as the maxi-
mum and residual strength surfaces. This may be represented sym-
bolically as follows:

Γðp;J3;λÞ¼
�rf ·ΘðJ3Þ · ½ηðλÞ · ðσ̂mðpÞ− σ̂yðpÞÞþ σ̂yðpÞ� λ≤λm

rf ·ΘðJ3Þ · ½ηðλÞ · ðσ̂mðpÞ− σ̂rðpÞÞþ σ̂rðpÞ� λ≥λm
ð11Þ

where the three pressure-sensitive, independent strength surfaces
are defined as

σ̂iðpÞ ¼ a0i þ
p

a1i þ a2ip
i ¼ m; y; r ð12Þ

The parameter λ in Eq. (11) is generally called the damage
parameter, which provides the chief mechanism for effecting the
changes in strength caused by the distress imparted to the concrete
material. λ is a function of the effective plastic strain.

The influence of strain rate on concrete strength is introduced
into the KCC model by rf, the dynamic increase factor (DIF),
which is discussed further in the next section. The three indepen-
dent strength surfaces cited in Eq. (11), σ̂m, σ̂y, and σ̂r, are called
the maximum, yield, and residual strength surfaces, respectively
(Malvar et al. 1997). The nine parameters defining these surfaces
[i.e., a0i, a1i, and a2i in Eq. (12)] are input by the user and are
calibrated from experimental data.

The interpolation function ηðλÞ in Eq. (11) provides a means to
compute a value for the interpolation parameter η, which varies
monotonically as a function of the value of the damage parameter
λ. The parameter η provides the means to define through interpo-
lation the failure surface used by the KCC model on the basis of the
user-defined strength surfaces [i.e., defined in Eq. (12)]. This is
done by interpolating between σ̂y and σ̂m surfaces by using values
of η from 0.0 to 1.0 if λ ≤ λm and between σ̂m and σ̂r surfaces by
using values of η from 1.0 to 0.0 if λ ≥ λm. In other words, this
procedure provides a means to compute a dynamically evolving
failure surface by interpolating between the yield and maximum
surfaces, which mimics a material hardening response and then in-
terpolating between the maximum and residual surfaces, which
mimics a material softening response.

As such, strain hardening and softening behaviors are simply
and efficiently captured. An example of this λ − η relationship
is shown in Fig. 1. The development of this curve is explained
in the “Determination of KCC Model Parameters.” For any specific
λ, the failure surface interpolation parameter η is calculated as

ηðλÞ ¼ ηα þ ηαþ1 − ηα

λαþ1 − λα
ðλ − λαÞ ð13Þ

where α = index on the ðλ; ηÞ input pairs such that λ ∈ ½λα;λαþ1�.

Fig. 1. Failure surface interpolation function ηðλÞ
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Damage Evolution

The evolution of the damage imparted to the concrete is embodied
in the damage parameter λ. This parameter reflects the magnitude
of the plastic flow computed by the KCC model. By definition, the
plastic flow is given as

ε̇p ¼ μ̇
∂φðσ;p;λÞ

∂σ ð14Þ

where the plastic potential φðσ;p;λÞ in the KCC model is
expressed as

φðσ;p;λÞ ¼
ffiffiffiffiffiffiffi
3J2

p −ϖΓðp; J3; λÞ ð15Þ
where μ̇ = plasticity consistency parameter; and ϖ = associativity
parameter.

The evolution of the damage parameter λ is defined as a func-
tion of the rate of plastic strain tensor

λ̇ ¼ hðpÞ ˙̄εp ð16Þ
where ˙̄εp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3ε̇p∶ε̇pp
.

The damage evolution factor hðpÞ is defined as

hðpÞ ¼
(
½1þ p=ðrfftÞ�−b1=rf p ≥ 0

½1þ p=ðrfftÞ�−b2=rf p < 0
ð17Þ

where b1 and b2 = material parameters calibrated from test data.

Capturing the Differences between Extension and
Compression

Dependence on the third invariant J3 of the deviatoric stress σ 0 is
introduced into the KCC model to allow it to properly distinguish
between triaxial extension and compression behaviors. This
dependence is introduced through the functional ΘðJ3Þ in Eq. (11).

In the KCC model, ΘðJ3Þ uses an expression developed by
Willam and Warnke (1975) in the form of

ΘðJ3Þ ¼
2ð1−ψ2Þcosθþð2ψ− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1−ψ2Þcos2θþ 5ψ2 − 4ψ

p
4ð1−ψ2Þcos2θþð1− 2ψÞ2

ð18Þ
where the Lode angle θ is determined by

θ ¼ cos−1
�
3
ffiffiffi
3

p

2

J3
J3=22

��
3 ð19Þ

and ψ in Eq. (18) is the ratio between tensile and compressive
meridian. The ratio is a function of pressure and can be calculated
by (Malvar et al. 1997)

ψ ¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1

2
p ≤ 0

1

2
þ 3ft
2f 0

c
p ¼ f 0

c

3

αf 0
c

a0 m þ 2αf 0
c

3a1 mþ2a2 mαf 0
c

p ¼ 2αf 0
c

3
;α ≈ 1.15

0.753 p ¼ 3f 0
c

1.000 p ≥ 8.45f 0
c

ð20Þ

where f 0
c = unconfined compressive strength of the concrete. Linear

interpolation is applied to obtain the ψ for the pressures falling into
the different segments defined in Eq. (20).

Equation of State

Deviatoric and volumetric responses are treated separately in the
KCC model. This approach to concrete modeling provides a
straightforward means to decouple the shear and compaction
behaviors of concrete, which for the classes of problems that are
the focus of this model appears to be a wise choice. Although the
KCC model provides an excellent means to capture shear dilatancy
behaviors, it ignores shear compaction behaviors, which were seen
as a needless complication for a model intended to address the
response of cementitious materials.

The deviatoric response is determined by the constitutive
equation, whereas the volumetric response (i.e., the response to
pressure p) is governed by the EOS. A piecewise nonlinear rela-
tionship between the volumetric deformation and the pressure and
unloading bulk modulus is used for the EOS component of the
KCC model, which is calibrated by using test data. This EOS cal-
culates the pressure p as

p ¼ pEOS þ KΔεev ð21Þ
whereΔεev = incremental elastic volumetric strain; pEOS = pressure
from the EOS input; and K = bulk modulus. Both pEOS and K are
defined by the user as a function of volumetric strain (e.g., as
depicted in Fig. 2). The initial bulk modulus is obtained by
K ¼ E=3ð1 − 2νÞ, where Young’s modulus E is estimated as
E ≈ 4734

ffiffiffiffiffi
f 0
c

p
, with f 0

c in megapascals, and Poisson ratio ν is
set as ν ¼ 0.19. Fig. 2 shows the input for the EOS developed
for the K&C generic concrete.

Numerical Aspects in Implementation

The KCC model has been implemented for application with both
finite-element (FE) and mesh-free formulations. For finite-element
formulation, it is available in the commercially available software
LS-DYNA (LSTC 2014) and in some less readily available analysis
tools such as DYNA3D (Lin 2005), FEFLO (Löhner 2002), and
PRONTO3D (Morrill et al. 1998). A coupled FE and mesh-free
formulation using the KCC model is also available, which is imple-
mented in the KC-FEMFRE code (Wu et al. 2014a, c). This analy-
sis software was developed by K&C specifically for problems
involving extreme distortions.

KC-FEMFRE (Wu et al. 2013, 2014a, c) uses an evolutionary
coupling technique whereby the initial analysis model is formulated
by using a FE formulation that, as distortions and material damage
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Fig. 2. Equation of state input for the K&C generic concrete
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within a region become excessive, is automatically converted to
a mesh-free formulation. The mesh-free formulation in the KC-
FEMFRE code is based on the reproducing kernel particle method
(RKPM) (Chen et al. 1996; Liu et al. 1995).

In this section, the implementation of the KCC model in KC-
FEMFRE code is described, which is similar to its implementation
in the finite-element formulation.

Plasticity Consistency Parameter

A backward Euler scheme is used to update the state and field var-
iables in the time domain. In a strain driven approach, the displace-
ment vector xn, deviatoric stress tensor σ 0

n, plasticity consistency
parameter μn, and damage parameter λn are known from the pre-
vious load step, and the incremental displacement Δunþ1 is known
for the current load step. The xnþ1, σ 0

nþ1, μnþ1, and λnþ1 at the
current step are to be determined. Because large deformation is
considered, the finite rotation effect needs to be properly treated
to preserve objectivity. The classical objective integration algorithm
proposed by Hughes and Winget (1980) is used to account for the
rotation effect. With the displacement increment Δunþ1, the incre-
ments of the rate of strain tensor and the spin tensor [given in
Eqs. (5) and (6)], denoted by Δε and Δw, are expressed as

Δε ¼ 1

2
ðAþATÞ ð22Þ

Δw ¼ 1

2
ðA −ATÞ ð23Þ

where the gradient A of the incremental displacement Δu with re-
spect to spatial coordinate x is calculated through the midpoint rule
(Hughes and Winget 1980)

A ¼ H

�
IþH

2

�−1
ð24Þ

with

HðxLÞ ¼
XNP

I¼1

BIðxLÞΔdI ð25Þ

where xL = integration point; NP = number of nodes whose shape
function is nonzero at point xL; ΔdI ¼ ½Δd1I Δd2I Δd3I� = coef-
ficient of the incremental displacement of node I; and B = gradient
matrix given as

BIðxLÞ ¼ ½NI;1ðxLÞ NI;2ðxLÞ NI;2ðxLÞ�T ð26Þ
where NI;iðxLÞ; i ¼ 1,2; 3 = gradient of (or derivatives of FE or
mesh-free) shape function of node I evaluated at point xL.

The integration of Eq. (8) then becomes (Hughes and Winget
1980)

σnþ1 ¼ Δσnþ1 þQσnQT ð27Þ
where Q = rotational matrix given by (Hughes and Winget 1980)

Q ¼ ðIþΔw=2ÞðI −Δw=2Þ−1 ð28Þ

The focus here is on the deviatoric stress σ 0
nþ1 because the

volumetric response is governed by the EOS. The deviatoric stress
increment Δσ 0

nþ1 is the pure deformation response, and it is deter-
mined from the elastoplasticity constitutive relationship. Following
the standard return-mapping algorithm (Simo and Hughes 1998),
the trial state is defined as

Δσ 0trial
nþ1 ¼ C∶Δε 0 ð29Þ

ϒtrial
nþ1 ¼ ϒðptrial

nþ1; σtrialnþ1;λnÞ ð30Þ

σtrialnþ1 ¼ σ 0
n þΔσ 0trial

nþ1 − ptrial
nþ1I ð31Þ

whereΔε 0 = incremental deviatoric strain tensor; ptrial
nþ1 = trial pres-

sure predicted by the EOS on the basis of the incremental elastic
volumetric strain, which is explained in detail subsequently in this
section.

By algebra, the increment of the consistency parameter Δμ can
be obtained (see Appendix) by imposing the plasticity consistency
condition of ϒ̇trial

nþ1 ¼ 0.

Δμ ¼ ϒtrial
nþ1

3GþϖKðΓ2
;pÞtrialnþ1 þ ðΓ;λÞtrialnþ1hðptrial

nþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
ϖðΓ;pÞtrialnþ1

3

�
2

r
ð32Þ

where G and K = shear and bulk moduli, respectively.
As a result, based on Eq. (16), the increment of the damage

parameter λ is given by

Δλ ¼ hðptrial
nþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
ϖðΓ;pÞtrialnþ1

3

�
2

s
Δμ ð33Þ

The failure surface Γ can now be updated as

Γnþ1 ¼ Γtrial
nþ1 þ ðΓ;pÞtrialnþ1

Δpþ ðΓ;λÞtrialnþ1Δλ ð34Þ

with the increment on pressure being calculated by

Δp ¼ ϖKðΓ;pÞtrialnþ1
Δμ ð35Þ

This increment on pressure is attributed to plastic flow. If the
plastic flow rule is reflective of an incompressible material
[e.g., ϖ is 0.0 in Eq. (15)], then plastic flow will not generate
any plastic volumetric expansion for additional confinement pres-
sure and, hence, no shear dilation effects. Currently, ϖ takes the
following functional form:

ϖ ¼
�
ϖ0= coshðεevÞ εev ≥ 0

ϖ0 εev < 0
ð36Þ

where ϖ0 = initial value of ϖ from user input.
By return mapping, the deviatoric stress is scaled back to the

yield surface as

σ 0
nþ1 ¼

Γnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðJ2Þtrialnþ1

q σ 0trial
nþ1 ð37Þ

and the pressure at the current state is calculated as

pnþ1 ¼ ptrial
nþ1 þΔp ð38Þ

By definition, the increment of the plastic volumetric strain is
calculated by

Δεpv ¼ Δp=K ¼ ϖðΓ;pÞtrialnþ1
Δμ ð39Þ

and the total plastic volumetric strain is

εpv;nþ1 ¼ εpv;n þΔεpv ð40Þ

© ASCE 04015051-5 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
C

L
A

 D
ig

ita
l C

ol
l S

vc
s 

on
 0

8/
31

/1
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



The damage parameter λmay now be updated by using Eq. (16)

λnþ1 ¼ λn þΔλ ð41Þ

For the purposes of visualization, the damage parameter is recast
into a normalized form called the damage index ϑ, where

ϑ ¼ 2λ
λþ λm

ð42Þ

Accordingly, the damage index ϑ equals 0.0 until the concrete
material yields, then equals 1.0 when the concrete reaches its maxi-
mum strength, and equals 2.0 when the concrete softens com-
pletely, reaching the residual strength surface. Fringe plots of the
damage index provide an excellent means to visualize the response
behaviors exhibited by concrete components, especially when sub-
jected to extreme loadings. Several examples of this sort of plot are
given when the numerical examples are presented.

Strength Surfaces

Theoretically, the three pressure-dependent strength surfaces for
the KCC model are defined in Eq. (12), and the nine parameters
are calibrated from test data. However, because of lack of data,
it may be impossible to calibrate the parameters for the whole range
of pressure. As a result of the general sparse nature of the test data,
several assumptions are built into the KCC model’s use of the
strength surfaces.

First of all, it is likely that no test data are available for calibrat-
ing the maximum strength surface for pressures less than f 0

c=3 be-
cause no damage would occur when the pressure is in this range.
Therefore, in the implementation, the maximum strength surface is
predefined as

σ̂m ¼

8>>>>>>>><
>>>>>>>>:

a0mþ p
a1mþa2mp

p ≥ f 0
c

3

3

2ψ
ðpþftÞ 0 ≤ p ≤ f 0

c

3
or λ ≤ λm and − ft ≤ p ≤ 0

3

�
p
η
þft

�
p ≤ 0 and λ> λm

ð43Þ

The segment of the strength surfaces for p ≥ f 0
c=3 is fit by using

test data. The segment, where 0 ≤ p ≤ f 0
c=3, is established by

noticing that the ratio between the tensile and compressive merid-
ian is ψ, as defined in Eq. (20). This second segment is determined
from tensile meridian data, as data are usually unavailable for
the compressive meridian in this range. The tensile meridian in
this range is defined as 1.5ðpþ ftÞ, which passes through data
points associated with failure states measured by uniaxial tension
ð−ft=3; ftÞ and triaxial tension ð−ft; 0Þ tests in the p −Δσ plane.
The third segment (i.e., for p < 0) is defined by interpolation
between the pressure cutoff point ð−ηft; 0Þ and p ¼ 0 on the
second segment, i.e., ð0,3ftÞ. The pressure cutoff is explained
subsequently in this section.

Similarly, the yield strength surface cannot be calibrated for
pressure between 0 and f 0

yc=3 (f 0
yc is the yield strength) because

yielding would not even occur when the pressure is in this range.
Therefore, the yield strength surface is modified as

σ̂y ¼

8>>>>><
>>>>>:

a0y þ
p

a1y þ a2yp
p ≥ f 0

yc

3

1.35ft þ 3p

�
1 − 1.35ft

f 0
yc

�
0 ≤ p ≤ f 0

yc

3

1.35ðpþ ftÞ p ≤ 0

ð44Þ

By investigating test data, it is suggested that the yield surface is
approximately the locus of points at σ̂y ¼ 0.45σ̂m. Accordingly, the
first segment can be determined from test data. The second segment
is the linear interpolation between points ð0; 1.35ftÞ (45% of maxi-
mum surface at p ¼ 0) and ðf 0

yc=3; f 0
ycÞ (yielding point), as there

are no data to define the yield strength surface directly in this re-
gion. The third segment is linear interpolation between the pressure
cutoff point ð−ft; 0Þ and ð0; 1.35ftÞ (45% of maximum surface at
p ¼ 0). The pressure cutoff here is −ft rather than −ηft because
λ < λm always holds for the yield strength surface.

The residual strength surface σ̂r [e.g., as depicted in Fig. 3(a)]
provides the means to model the brittle-ductile transitions that oc-
cur as values of confinement stress increase. For very high confine-
ments, concrete may even exhibit hardening behaviors, which the
KCC model captures when the residual surface is defined such that
at higher pressures it is equal or greater than the maximum surface.

Demonstration of Stress Path Calculation

An example demonstrating the capability provided by the KCC
model is given in this section to illustrate the basic features of the
model. This example, as shown in Fig. 3, pertains to using a single
solid element to compute results for a triaxial compression test with
a confinement pressure of 14.0 MPa. The example demonstrates
the way that the three independent strength surfaces are used in
calculating a particular stress path. These surfaces represent the
fit generated by K&C for a generic concrete with an unconfined
compressive strength of f 0

c ¼ 45.4 MPa; values for the parameters
of the KCC model for this fit are given in next section.

ft in Fig. 3 is the tensile strength of the concrete. According to
an expression given in ACI 318-95 [American Concrete Institute
(ACI) 1995], the concrete’s tensile strength ft may be computed
as a function of its compressive strength f 0

c as

ft ≈ 0.56
ffiffiffiffiffi
f 0
c

p
ð45Þ

with ft and f 0
c expressed in megapascals.

The stress path response depicted in Fig. 3(d) was computed by
using a single solid element [Fig. 3(c)] that is subjected to a triaxial
compression (TXC) loading, whose path is depicted in Fig. 3(b).
This path starts at the origin and then sequentially passes through
points 0, 1, 2, and 3. The loading procedure is as follows:
• From the origin to point 0 (confinement applied): The concrete

specimen is hydrostatically compressed to the specified hydro-
static pressure for the peculiar triaxial test, which represents the
confinement that this test is to be run at (in this case, 14.0 MPa).
Higher values of confinement can dramatically increase con-
crete strength, as is discussed in the first example and may be
inferred by comparing the locations of the intersections with the
three strength surfaces of a vertical line through point 0 and the
corresponding locations on the Δσ axis [Fig. 3(b)]. Because
point 0 is located on the p-axis, the value of stress difference
associated with this state is zero (Δσ ¼ 0). In this situation,
the stress difference Δσ is identical to the J2 stress invariant
in Eq. (3), which equals σa − σr [Fig. 3(c)], which is essentially
0 because σa ¼ σr ¼ p (the confinement stress).

© ASCE 04015051-6 J. Eng. Mech.
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• From point 0 to point 1 (linear elastic response): When σa is
increased while leaving σr unchanged, the stress difference in-
creases. When the stress differenceΔσ reaches point 1, the con-
crete yields and effective (or deviatoric) plastic strain is induced,
and λ starts to increase in value, reflecting the accumulation of
damage (i.e., λ ¼ 0 up to this point).

• From point 1 to point 2 (strain hardening): As the axial stress
continues to increase, plastic strain is accumulated. As a con-
sequence, ηðλÞ starts to move along the curve defined in the
½0; λm� region in Fig. 1. Between points 1 and 2, the failure
surface Γðp; J3;λÞ in Eq. (11) is computed by interpolation be-
tween the yield and maximum strength surfaces. Once the stress
difference reaches point 2, the concrete achieves its maximum
strength (λ ¼ λm).

• From point 2 to point 3 (softening commences): After reaching
its peak strength, as the concrete is further loaded, the stress
difference Δσ decreases (i.e., as the stress path moves towards
point 3), at which state the concrete is 100% softened, and
its behavior is defined solely by the residual strength surface.

During this phase, ηðλÞ varies according to the curve defined
in the ½λm;λ∞� region in Fig. 1, and the failure surface
Γðp; J3;λÞ is computed by interpolating between the maximum
and residual strength surfaces.

Equation of State and Pressure Cutoff

In the KCC model, pressure p is calculated by the EOS according
to Eq. (21). The input for the EOS is the relationship between elas-
tic volumetric strain (logarithm) and pressure and elastic volumetric
strain (logarithm) and unloading bulk modulus. The elastic volu-
metric strain at the current step is calculated as

εev;nþ1 ¼ lnðVnþ1=V0Þ − εpv;n ð46Þ
where Vnþ1 = current volume; V0 = original volume; and εpv;n =
plastic volumetric strain at the previous step.

The bulk modulus in Eq. (21) is obtained differently for loading
and unloading. For loading, it is calculated through pressure-elastic
volumetric strain relationship as

(a)

(b) (d)

(c)

Fig. 3. Example of single element triaxial compression test: (a) strength surfaces in general; (b) details of surfaces near origin; (c) single-solid element
used to compute response for stress path shown in Fig. 3(b); (d) resulting stress-strain response for stress path shown
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KL ¼
				 pα

EOS − pαþ1
EOS

εαv;EOS − εαþ1
v;EOS

				 εe;min
v;nþ1 ∈ ½εαþ1

v;EOS εαv;EOS� ð47Þ

where the subscript EOS indicates that the value is taken from the
EOS input; and superscript α implies the sequence on the EOS in-
put such that εe;min

v;nþ1 ∈ ½εαþ1
v;EOS εαv;EOS�. The loading pressure is the

interpolation between pα and pαþ1 with εe;min
v;nþ1, which is given as

pL ¼ pα
EOS − KLðεe;min

v;nþ1 − εαv;EOSÞ ð48Þ

The peak compressive elastic volumetric strain εe;min
v;nþ1 in the

entire deformation history is defined as

εe;min
v;nþ1 ¼ minðεe;min

v;n ; εev;nþ1Þ ð49Þ

By definition, εe;min
v;nþ1 ≤ 0 because logarithmic strain is used.

It reaches its minimum value at the peak compression in an uncon-
fined compression test, and it is always zero in an unconfined ex-
tension test. The volumetric strain in the EOS input is specified in
descending order (i.e., εαþ1

v;EOS < εαv;EOS), as shown in Table 1.
For unloading, the bulk modulus is computed as

KUL ¼ Kα
EOS þ

Kαþ1
EOS − Kα

EOS

εαþ1
v;EOS − εαv;EOS

ðεe;min
v;nþ1 − εαv;EOSÞ

εe;min
v;nþ1 ∈ ½εαþ1

v;EOS εαv;EOS� ð50Þ

and the unloading pressure is obtained by

pUL ¼ pα
EOS þ KULΔεev ð51Þ

with

Δεev ¼ εe;min
v;nþ1 − εe;nþ1

v ð52Þ

If unloading occurs, Δεev must be negative because εe;min
v;nþ1 is the

minimum value, and the concrete expands when unloading occurs.
Pressure cutoff is enforced on the pressure calculated by the

EOS because the EOS would return a very large negative pressure
for large volumetric extensions (Δεev → −∞) beyond cracking,
which is unphysical. The pressure cutoff is defined as (Malvar
et al. 1997)

pc ¼
� −ft λ ≤ λm

−ηft λ > λm
ð53Þ

It is noticed that the pressure cutoff is damaged after the con-
crete reaches its maximum strength surface. The scaled bulk modu-
lus and the corrected shear modulus as defined in Malvar et al.
(1997) are used in the plasticity correction [i.e., in Eq. (32) through
Eq. (39)].

Volumetric Damage

According to Eq. (32), no plastic strain will be accumulated for
an isotropic extension loading path because J2 is always zero
no matter how much the tensile pressure is; hence, by Eq. (39),
no volumetric plastic strain will be accumulated either. Then,
by Eq. (48), the loading pressure in an isotropic extension
event could be very high. However, the tensile strength of con-
crete is usually very low. Therefore, volumetric damage is intro-
duced to correct the unphysical responses that would otherwise
be predicted. The failure surface for an isotropic extension
loading path is p ¼ pc and p < 0. The yield function in this case
is written as

fðpÞ ¼ pc − p ≤ 0 ð54Þ

By Taylor expansion

fðpnþ1Þ ¼ fðpnÞ þ
∂fðpÞ
∂εpv

				
nþ1

Δεpv;nþ1 ð55Þ

Material yielding occurs if fðpnþ1Þ > 0, and then the classical
return mapping algorithm is applied to obtain the incremental volu-
metric plastic strain. By noticing that fðpnÞ ¼ 0 is satisfied just
before the yielding, Eq. (55) gives

Δεpv;nþ1 ¼
fðpnþ1Þ

∂fðpÞ
∂εpv

¼ pc − pnþ1

K
ð56Þ

where pnþ1 = pressure predicted by the EOS without enforcing
pressure cutoff. Finally, the total effective volumetric plastic strain
εpv;nþ1 is updated as shown in Eq. (40).

Strain Rate Enhancement

Rate Effects Phenomena
Several extensive studies pertaining to the characterization of rate
effects and their causes have been conducted by K&C (Crawford
et al. 2011; Magallanes et al. 2010; Malvar and Crawford 1998;
Malvar and Ross 1998), which provide the basis for the manner
in which rate effects are incorporated in the KCC model. This paper
presents in the third example results that challenge the fallacy that
rate effects can just simply be ignored.

Although a more extensive discussion concerning rate effects is
beyond the scope of this paper, a forthcoming paper by Magallanes
et al. (unpublished data, 2014) examines the rate effects in detail.
This paper shows that the approach used by the KCC model is
soundly based and captures well the phenomena associated with
both tensile and compressive rate effects observed in material tests
and the rate effects phenomena observed in blast effects tests of
RC components. Moreover, this study shows that this phenomenon
is both real and complex and needs a nuanced approach in its
consideration.

Rate Effects Characterization
The strain rate enhancement is important for the KCC model if
it is to effectively capture high strain rate events, which has been
repeatedly demonstrated in benchmark comparisons with blast ef-
fects experiments (Malvar and Crawford 1998; Malvar and Ross
1998). Strain rate enhancement effects are realized through a DIF
that modifies the failure surface [cf. Eq. (11)] to reflect apparent
changes in strength. The DIF is generally specified as a function
of strain rate, either in the form of a curve input by the user or
defined internally to the KCC model.

Table 1. EOS for the K&C Generic Concrete

εv p (MPa) K (GPa)

0.0 0.0 17.14
−0.0015 25.71 17.14
−0.0043 56.05 17.38
−0.0101 89.99 18.25
−0.0305 170.98 21.72
−0.0513 257.88 25.19
−0.0726 365.87 28.66
−0.0943 559.73 31.28
−0.1740 3,267.88 70.37
−0.2080 4,998.23 85.70
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This factor may be defined by using the following formulations.
According to Comite Euro-International du Beton (CEB) data
(CEB 1990), the compression DIF can be calculated by

rfc ¼

8>>><
>>>:

�
ε̇
ε̇s

�
1.026α

ε̇ ≤ 106=s

γ

�
ε̇
ε̇s

�
1=3

ε̇ > 106=s

ð57Þ

with

γ ¼ 106.156α−2 ð58Þ

α ¼ 1

5þ 0.9f 0
c

ð59Þ

where ε̇ = strain rate; ε̇s ¼ 3 × 10−5=s = reference strain rate; and
f 0
c is in megapascals. Magallanes et al. (2010) suggested that the

second branch of the strain rate effect showed in CEB data (CEB
1990) should be ignored because of the inertia effect.

According to Malvar et al. (Malvar and Crawford 1998; Malvar
and Ross 1998), the tension DIF can be computed as

rft ¼

8>>><
>>>:

�
ε̇
ε̇s

�
δ

ε̇ ≤ 1.0=s

β

�
ε̇
ε̇s

�
1=3

ε̇ > 1.0=s

ð60Þ

with

β ¼ 106δ−2 ð61Þ

δ ¼ 1

1þ 0.8f 0
c

ð62Þ

where ε̇ = strain rate; and ε̇s ¼ 10−6=s = reference strain rate.
Again, f 0

c is in megapascals.

Determination of KCC Model Parameters

The KCC model was constructed to afford a wide range of
capabilities in capturing phenomena associated with cementitious
materials. The model uses many parameters to calibrate its perfor-
mance so as to produce responses similar to those observed in tests
of specific kinds of cementitious materials.

Specifying values for the parameters used by the KCC model
may present a daunting task for many users, so a set of parameters
for a generic concrete (labeled in this paper as the K&C generic
concrete with f 0

c ¼ 45.4 MPa) has been developed by K&C for
use in modeling the behaviors of normal-strength concretes. This
set of parameters is labeled as the “default fit.”

Default Fit

The default fit includes 9 parameters defining the strength surfaces,
26 for the failure surface interpolation function, 30 for the EOS, 3
for damage evolution control, and possibly several more for defin-
ing the influence of rate effects. However, users are allowed to de-
fine their own failure surface interpolation function and EOS (not
necessarily 26 and 30 parameters, respectively).

The set of parametric values for the default fit is based on a
composite suite of data taken from behaviors observed for several
different concrete mixes of similar strength (45.4 MPa) and behav-
ior characteristics. These data were garnered from a variety of tests

and analytic expressions given in the literature (e.g., the expression
for Young’s modulus). The development of this fit is quite straight-
forward for some parameters, whereas for others an extensive series
of calibration studies are involved. This effort is documented in
other K&C reports and papers (Crawford 2013; Crawford et al.
2011, 2012, 2013; Magallanes et al., unpublished data, 2014).
For the most part, the default fit is derived from the concrete behav-
iors measured in basic tests of cylindrical concrete specimens. Data
from tests of simplified structural components [e.g., cylindrical
concrete specimens wrapped with carbon fiberreinforced plastic
(CFRP)] were used to establish the values for the more ambiguous
parameters (mainly those related to damage evolution).

The default fit has been used successfully and extensively by
K&C to compute a wide range of results for many different forms
of concrete and reinforced concrete components and systems sub-
jected to extreme loads, generally pertaining to blast and impact
effects (Crawford et al. 2011, 2013; Magallanes et al. 2010; Wu
et al. 2013, 2014b, c). This default fit depicts the sorts of values
used for these parameters that have been found appropriate for use
with the KCC model. Moreover, because these parameter values
have been used successfully to address a broad class of analysis
problems, they offer a definitive set of input data for the KCC
model. When used with concrete strengths other than that of the
K&C generic concrete (45.4 MPa), the scaling procedure described
in next subsection may be used to revise the model parameters
accordingly.

Strength Surface Parameters
The nine parameters that are used for defining the three strength
surfaces for the default fit, as expressed in Eq. (12), are listed in
Table 2. These parameters can be scaled to define the strength sur-
faces for other concretes, as discussed in the next subsection.

Failure Surface Interpolation Function
The 26 parameters that are used for defining the failure surface
interpolation function ηðλÞ, which appears in Eq. (11), are listed
in Table 3. This interpolation function was found valid not
only for the K&C generic concrete but also for all other concretes
examined.

Equation of State
The 30 parameters (i.e., 10 each for elastic volumetric strain,
pressure, and bulk modulus) used for defining the EOS for the
K&C generic concrete, as was discussed in previous sections,
are presented in Table 1. This default set of EOS can be scaled
to obtain the EOS for other concretes.

Damage Evolution Parameters
Table 4 lists the values for the damage evolution parameters for the
KCC model that have been found to produce meaningful results
as gauged by the results produced from several validation studies
conducted by K&C (Crawford 2013; Crawford et al. 2011, 2012,
2013). The damage evolution parameters include the b1 parameter,
which controls compression softening; the b2 parameter, which
controls tension softening; and the associativity parameter ϖ,
which controls shear dilatancy behavior. These parameters, which
can have a marked influence on responses, appear in Eqs. (15)

Table 2. Strength Surface Parameters for the K&C Generic Concrete

Parameters Yield surface Maximum surface Residual surface

a0 (MPa) 10.13 13.41 0.0
a1 0.625 0.4463 0.4417
a2 ðMPa−1Þ 0.005676 0.001781 0.002608
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and (17). The values selected for these parameters and their influ-
ence on the response should be carefully studied by the user. The
influence of element size on the b1 and b2 parameters and a dis-
cussion pertaining to the selection of ϖ are given subsequently in
this section.

Remarks on the Default Fit
The parameters for the default fit have changed little because the
KCC model was first publically introduced in a 2001 implemen-
tation in LS-DYNA. These changes mostly involved developing
expressions for the model’s parameters that control tensile and
compressive softening that reflect the influence of element size
on the results and developing closed form expressions to capture
the effects of strain rate. Also, considerable effort has been ex-
pended to provide a more definitive value for the shear dilatancy
parameter ϖ, which is crucial to determining the influence of steel
reinforcement and CFRP wrap in terms of their ability to enhance
concrete strength and ductility caused by confinement effects.

Several of the example problems shown in the next section
demonstrate the marked influence of parameter selection on the re-
sponses computed. For example, the values selected for parameters
ϖ, b1, and b2 are often crucial to correctly predict results for highly
damaged and/or well-confined RC components. Selection of both
b1 and b2 are effected by element size, and expressions for their
calculation are given subsequently in this section. The selection
of an appropriate ϖ is quite challenging and is particularly impor-
tant in effectively calculating the capacity and capability provided
by well-reinforced concrete components because it plays a crucial
role in determining the level of confinement generated as the con-
crete expands in volume because of cracking. Unfortunately, the
functionality [Eq. (36)] associated with ϖ is not constructed well,
is still in a state of flux, and tests germane to its selection are sparse.
However, recent studies by K&C have shown considerable promise
in the functionality represented by the KCC model for well-
confined concrete components using values of ϖ approximately
0.90. Some results from these studies are presented in the second

example and by Crawford (2013). These studies also showed the
remarkably poor results that are generated by the KCC model when
the shear dilatancy characterization is not selected appropriately,
which has been the case with some users of the KCC model.

Because the KCC model gives the user a great deal of flexibility
in its operation (i.e., its ability to adapt itself to fit a broad range of
behaviors of cementitious materials), it is not surprising that the
default fit is not universally applicable. Although the default fit pro-
duces reasonable results in many situations, it is important for mod-
elers to realize that it is their responsibility to select the appropriate
input for the KCC model. Moreover, to effectively use a material
model with this much capability, the user should have an extensive
knowledge of the phenomenology exhibited in both standard
material tests (i.e., those performed with small plain concrete spec-
imens) and in precision tests of RC components and of the features
of the KCC model that are related to particular aspects of this phe-
nomenology. This is crucial to effectively using a constitutive
model like the KCC model, which is intended to allow a skillful
user to simulate the actual behaviors observed, particularly under
extreme loadings.

Although the parameter values cited in this section have shown
themselves to produce reasonable results in many applications, they
do not represent a “be all, end all” resolution to the need for the user
to exercise caution in using a material model with as much capabil-
ity and flexibility as the KCC model.

Scaling of Parameters

It is highly unlikely that enough data will be available to objectively
determine values for all the parameters of the KCC model for any
particular concrete. In K&C’s development efforts, it was found
that a reasonable approximation of the fit for another concrete—
for instance, one with a compressive strength different from that
of the K&C generic concrete (i.e., as represented by the default
fit)—could be obtained by scaling the default-fit parameters of
the KCC model.

Thus, to develop a fit for another concrete with a known uncon-
fined compressive strength of f 0new

c , its strength surfaces and EOS
parameters are obtained by scaling the analogous parameters for the
known fit (e.g., the default fit). This is done as follows, assuming
the strength surfaces for the new concrete are expressed as

σ̂new
i ¼ anew0i þ p

anew1i þ anew2i p
i ¼ m; y; r ð63Þ

Then the strength surface parameters are given in terms of an-
other concrete (i.e., old concrete whose strength surface parameters
aoldji j ¼ 0; 1; 2; i ¼ m; y; r are known) as

anew0i ¼ ϕaold0i anew1i ¼ aold1i anew2i ¼ aold2i =ϕ ð64Þ

where the scaling factor ϕ is

ϕ ¼ f 0new
c

f 0old
c

ð65Þ

and f 0old
c is the unconfined compressive strength of the concrete

whose strength surfaces are known.
To reflect changes in concrete strength for the equation of state,

the volumetric strain component is assumed to remain unchanged.
Because Young’s modulus of a concrete is a function of the square
root of the unconfined compressive strength f 0

c, the bulk modulus
and pressure for the EOS (shown in Fig. 2) are scaled as follows:

Table 4. Nominal Values for Damage Evolution Parameters

Parameter Value Comment

b1 1.60 Per Eq. (67), this value for an element size of
60 mm

b2 1.35 Per Eq. (68), this value for an f 0
c ¼ 37.7 MPa,

and wlz ¼ 50 mm
ϖ <0.5 For high- and ultra-high-strength concretes

with fine aggregate
0.50.75 For poorly confined concrete components or

concretes without coarse aggregate
0.80.9 For well-confined, normal-strength concrete

components

Table 3. Failure Surface Interpolation Function for the Default Fit

λ η

0.0 0.0
8.0 × 10−6 0.85
2.4 × 10−5 0.97
4.0 × 10−5 0.99
5.6 × 10−5 1.00
7.2 × 10−5 0.99
8.8 × 10−5 0.97
3.2 × 10−4 0.50
5.2 × 10−4 0.10
5.7 × 10−4 0.00
1.0 0.00
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pnew ¼
ffiffiffi
ϕ

p
pold Knew ¼

ffiffiffi
ϕ

p
Kold ð66Þ

The parameter scaling functionality is very helpful for KCC
model users because by using it, users only need to know f 0

c (the
strength of their concrete) to generate a complete set of KCC model
parameters that can approximate the behavior of their concrete.
In LS-DYNA, this calculation is done internally by the KCC model
so that only the new value for f 0

c needs to be input and the other
KCC model parameters are automatically generated.

The failure surface interpolation function used for the default fit
seems to work well for all the normal weight concretes that K&C
has investigated; therefore, no scaling for the failure surface inter-
polation function is used. However, although this function seems to
work for a wide range of concrete strengths, some forms of cemen-
titious materials (e.g., mortar, grout) may not be so well modeled.
Similar concerns arise for the selection of the damage evolution
parameters, especially as influenced by aggregate size, moisture
content, and different forms of concrete (e.g., high-strength and
ultra-high performance concretes). In these instances, more funda-
mental changes in the KCC model parameters may be needed.
Some of these other fits for cementitious materials are developed
by Magallanes et al. (2010; unpublished data, 2014).

Regularization of Damage Evolution Parameters

Concrete under little to moderate confinement exhibits strain soft-
ening; therefore, mesh dependence is unavoidable if no treatment is
taken to mitigate it. Three parameters are combined in the KCC
model to control the damage evolution: b1, b2 in Eq. (17), and ϖ
in Eq. (15). b1 controls compressive damage evolution, b2 controls
tensile damage evolution, and ϖ is the associativity parameter,
which also controls volume expansion.

According to Crawford et al. (2011), to regularize the compres-
sion softening, b1 can be approximately estimated as

b1 ¼ 0.0135hþ 0.79 ð67Þ
where h = characteristic length of the element in millimeters.

According to CEB data (CEB 1990), b2 can be approximated by

b2 ¼ ð1.4 × 10−4w2
lz − 0.039wlz þ 3.06Þð0.516 − 8.4

× 10−5f 02
c þ 0.014f 0

cÞ ð68Þ
where wlz = localization width in millimeters, which is usually
three times the maximum aggregate size; and f 0

c is the concrete
strength in megapascals.

The regularization of b1 by using Eq. (67), related to its depend-
ence on element size, was obtained by fitting numerical responses
to a set of uniaxial compression test data (for a specific concrete).
To this point, the manner of computing b1 was found to be effective
in capturing the data from other compression tests.

In contrast, the b2 regularization is obtained by fitting the
numerical fracture energy computed by the KCC model for tension
tests to the data generated for various concretes. Therefore, there is
no explicit mesh-size dependence that has been developed by
K&C, although as of yet more research concerning the specifica-
tion of the b2 parameter is ongoing. However, the importance of
this might be mitigated by assessing whether the values selected
for the parameter are important to the problem at hand. Such guid-
ance is true for all of the damage evolution parameters (b1, b2, and
ϖ), which becomes important only in certain classes of problems.

Although the influence of element size on the selection of ϖ is
not so deterministic, element specification (size and discretization)
does play a role, as demonstrated in the second example. This is
driven by the level of localization associated with the confinement

effects that might result from the shear dilation generated by the ϖ
value chosen.

Modeling Shear Dilatancy

The associativity parameter ϖ in Eq. (15), which is the parameter
that governs the volume expansion, can have a substantial influence
on the structural responses when confinement effects are present.
For instance, the behaviors exhibited by RC columns wrapped with
CFRP and the capability of an analysis to predict them are strongly
influenced by the behaviors represented by ϖ, as shown in the
second example.

The values selected for ϖ in situations where shear dilatancy is
an important factor in the types of responses to be modeled may be
critical to achieving an appropriate result. This was the conclusion
of a study conducted by Crawford et al. (2013) of the lateral re-
sponse up to failure of RC columns wrapped with CFRP.

ϖ plays a central role in determining the proportioning between
volumetric and deviatoric components of plastic strain. A value of
ϖ ¼ 1.0 gives an associative plasticity, in which the normal to the
failure surface defines the proportionality. In contrast, a value of
ϖ ¼ 0.0 provides a Prandtl-Reuss form of plasticity, and plastic
volume strain is precluded. A partially associative formulation is
invoked for 0.0 < ϖ < 1.0.

The ϖ parameter provides a means to capture the concrete’s
expansion (shear dilation) as it cracks, which in turn, if sufficient
confinement reinforcement is provided, causes a marked increase in
the confinement stress in the concrete and thus adds to its strength
and ductility. Values of ϖ between 0.50 and 0.90 have been found
effective in previous studies by K&C.

According to Crawford et al. (2011), the suggested value for a
well-confined concrete component is 0.90. This value for ϖ was
developed by using a set of test data pertaining to plain concrete
components that are 762 mm in height with various cylindrical and
rectangular cross sections; some components were wrapped with
different amounts of CFRP. These tests and their use to develop an
appropriate value for ϖ are documented in Crawford et al. (2011).
For situations in which confinement pressures are not affected by
shear dilatancy, the value selected forϖ is not so important. This is
demonstrated by the results for the third problem, which show that
in situations in which confinement is low, the value of ϖ has little
influence on the results. In marked contrast, the results shown in the
second example are profoundly influenced by shear dilatancy and
as a result by the value of ϖ selected.

Numerical Applications

In this section, the KCC model is applied in solving various
experimental problems concerning quasi-static, blast, and impact
loadings. The problems are analyzed by either the finite-element
method, as provided in LS-DYNA, or the coupled finite-element
and mesh-free formulation (Wu et al. 2013, 2014c), as imple-
mented in KC-FEMFRE (Wu et al. 2014a). The KC-FEMFRE
code provides the capability of evolutionarily coupling the finite-
element and reproducing kernel (RK) (Chen et al. 1996; Liu et al.
1995) formulations.

In LS-DYNA, the concrete is discretized by one-point Gauss
quadrature integrated solid elements, viscous-type hourglass con-
trol is applied to mitigate the effect of zero-energy modes, and
erosion is used to remove highly distorted elements. The solutions
are compared for various concrete models, including MAT072,
MAT084, MAT159, and MAT272. In contrast, neither hourglass
control nor erosion is used by KC-FEMRE. In KC-FEMRE, the
simulation starts with a pure finite-element discretization and
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evolves into a mesh-free discretization in portions of the model
where the concrete material damage reaches a specified threshold
[e.g., a value of η less than 0.05 for λ > λm, or a value of 1.98 for
ϑ in Eq. (42)]. In KC-FEMFRE, the stabilized conforming nodal
integration (SCNI) (Chen et al. 2001, 2002) is used, so hourglass
control is not needed because SCNI provides better stability than
single-point Gauss quadrature.

The default fit for the parameters of the KCC model is used
for the analysis of the application problems given in this section.
In some instances, the strength surfaces and EOS are scaled accord-
ing to Eqs. (64) and (66), respectively, if the concrete’s strength f 0

c
is other than 45.4 MPa of the K&C generic concrete on the basis of
which the default fit was developed. Strain rate enhancement is ac-
tivated and defined according to Eqs. (57) and (60), except in the
first two problems because they concern quasi-static loadings.

Problem 1: TXC

As shown in Fig. 4, a plain concrete cylinder with a diameter of
152.4 mm and a height of 304.8 mm is used to perform a series
of TXC. The cylinder is discretized by using approximately cubic
solid elements with a side dimension of approximately 20.3 mm.
For loading, confinement pressure is applied to the side and ends
of the cylinder, and then the top surface is moved downward at
a constant velocity. The concrete has an unconfined compressive
strength of f 0

c ¼ 45.4 MPa. b1 ¼ 1.06, b2 ¼ 1.35, and ϖ ¼ 0.50
are used in the simulation.

LS-DYNA is used to compute the responses for these TXC tests,
which are conducted for various values of confining stress. The
confinement pressure (as surface traction) is applied gradually to
the exterior of the model over the first 50 ms to inhibit wave propa-
gation noise, and afterward the top surface is pushed down at a
velocity of 76.2 mm=s. The bottom surface is completely fixed,
and the top surface is constrained laterally.

Plots of axial strain versus stress difference computed by the
model for confinement pressures of 0.0, 7.0, 14.0, 20.0, and
34.0 MPa are presented in Fig. 5. In Fig. 5(a), the solid lines
represent computed results, and dashed lines represent test data
(Crawford et al. 2011). The numerical results show reasonable
agreement with the test data across all levels of confinement. The
prepeak yielding and hardening (up to peak) and postpeak soften-
ing behaviors are all captured by the model. Transition from brittle
to ductile behaviors is observed as confinement pressure is in-
creased. Fig. 5(b) compares the solutions obtained with various
concrete constitutive models for the case in which the confinement
pressure is 14 MPa. The prediction from MAT072 matches test
data fairly well in capturing the peak strength and residual strength;
MAT159 and MAT272 underpredict the confinement effect,
whereas MAT084 seems to capture the peak response, but it softens
rapidly to its residual strength, which is much lower than the ex-
perimental observation.

In this situation, the associativity parameter ϖ for MAT072
has very limited influence on the confinement effects because con-
finement is applied as explicit pressure, and it remains the same
whether the concrete dilates or not. The axial strain plotted is the

Fig. 4. Problem 1: specimen for TXC tests

Fig. 5. Problem 1: stress-strain responses for TXC tests: (a) by
MAT072 with various confinements; (b) by various concrete models
with 14 MPa confinement
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difference between the total engineering axial strain and the engi-
neering axial strain induced by the confinement pressure. The stress
difference is the difference between the engineering axial stress σa

and the confinement pressure σr (Fig. 4).

Problem 2: Reinforced Concrete Columns Subjected to
Lateral Loads

A set of laboratory tests of full-scale RC columns were conducted
at the University of California at San Diego (UCSD) for investigat-
ing the influence of CFRP wrap on their lateral resistance. The test
setup and LS-DYNA model is depicted in Fig. 6. The RC column
has a square cross section of 355.6 × 355.6 mm and a clear height
of 3,276.6 mm. For the Gr.60 reinforcement, eight #8 (diameter =
25.4 mm) vertical rebars are used with #3 ties (diameter = 9.5 mm)

at 323.9-mm spacing. Two, six, zero, and four layers of CFRP were
applied to enhance the column’s response for Tests 2, 3, 4, and 10,
respectively. The Young’s modulus of the CFRP is 78.6 GPa, and
its ultimate strength is 896.6 MPa.

The concrete is modeled with approximately cubic solid ele-
ments (38 mm on a side). However, to properly capture the confine-
ment effect exerted by the CFRP wrap, the actual rounding of the
column’s corners is discretized with finer elements, as shown in
Fig. 6(b). The compressive strength of the concrete is 38.6 MPa.
In accordance with Eq. (67), b1 ¼ 1.28 for the core elements, b1 ¼
0.98 for the edge elements, and b1 ¼ 0.92 for the corner elements,
whereas in accordance with Eq. (68), b2 ¼ 2.02.

On the basis of the study described in the previous section
“Determination of KCC Model Parameters,” the dilatancy factor
ϖ ¼ 0.90 is used to compute responses for Tests 2, 3, and 10 be-
cause the CFRP wrap acts as a kinematic constraint, producing
a high-level confinement. For Test 4 (i.e., in which no CFRP is
present), ϖ ¼ 0.75 is used. The use of this value (i.e., as compared
to 0.90), as shown in Fig. 7(b), has no influence on the response
because little in the way of confinement constraint is afforded by
the steel reinforcement present. However, the value for ϖ and the
level of shear dilatancy associated with it does have a great influ-
ence on the results for the other tests, as shown in a recent K&C
paper (Crawford et al. 2013).

In the test, an approximately uniform pressure is applied on the
front face of the column to initiate the lateral responses. Before this
pressure is applied, an axial load of 445 kN is applied (i.e., to sim-
ulate the actual gravity load as if the column were embedded in a
building) to the top of the column, which is constrained afterward
to not move. Displacements at the reaction wall and the ground
are fixed.

The load-deflection responses measured and computed for these
tests are presented in Fig. 7. As shown Fig. 7(b), the numerical
results obtained with MAT072 reasonably capture well the CFRP
failure observed in the tests and the strength and ductility enhance-
ments afforded by the CFRP related to the shear dilatancy exhibited
by the concrete. If the associativity factor were chosen as ϖ ¼
0.50, then no CFRP failure would have occurred in the numerical
analyses and the post peak response would show considerably less
resistance, if any.

The key mechanism of the phenomena exhibited by wrapped
columns of this size is that the dilation imparted to the concrete
produces tension in CFRP wraps, which in turn applies confine-
ment to the concrete. To capture this phenomenon, the shear dila-
tion of the concrete must be captured appropriately, which is why
the associativity parameter must be set to an appropriate value, in
this instanceϖ ¼ 0.90 for CFRP-wrapped columns (so that enough
dilation is generated).

The influence of CFRP (Tests 2, 3, and 10) compared with no
CFRP is profound, as shown in Fig. 7(a). As demonstrated in this
figure, the more layers of CFRP wrap used, the higher the ductility
achieved. These tests also indicate the amount of CFRP needed to
prevent the column’s failure in tension [e.g., the sudden release
of the axial force in Fig. 7(a) caused by CFRP failure]. To capture
this failure represents a key test of a concrete constitutive model
with regard to its effectiveness in capturing the influence of
CFRP on RC column response. Also important in these tests is
the marked enhancement in the axial resistance provided by the
column, as illustrated by the axial response depicted in Fig. 7(a).
This occurs because of the fixity used at its supports. Although
both of these phenomena are captured fairly well by the KCC
model [Fig. 7(b)], this is not true for many other concrete models
(Crawford et al. 2013), which makes their application to such
problems suspect.

(a)

(b)

Fig. 6. Problem 2: discretization of RC column tests: (a) isometric
view; (b) cross section

© ASCE 04015051-13 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
C

L
A

 D
ig

ita
l C

ol
l S

vc
s 

on
 0

8/
31

/1
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Although the force-deflection responses could be better, the
extensive studies conducted by K&C for this problem (Crawford
et al. 2011) indicate that responses are quite sensitive to the discre-
tization at the column’s corners, which makes it somewhat imprac-
tical to improve on these results because a lot of elements are
already present. However, because the most important phenomena
exhibited in these tests are captured (i.e., the enhancement on both
strength and ductility induced by CFRP wraps and the failure of
the CFRP), these analyses were deemed to successfully capture the
key responses of these columns.

Fig. 7(c) shows the comparison of the numerical solutions with
various concrete constitutive models for Test 10 (column wrapped
with four-layer CFRP). Only MAT072 predicts the failure of CFRP,
which was also observed in the test. This immediately tells that
the other models cannot be used in a design calculation, because
they would not be able to predict how many CFRP wraps are
needed. In the predicted responses, MAT084 captures the peak

force correctly but cannot predict the CFRP failure and the increase
of ductility caused by CFRP wraps (axial force drops quickly).
MAT159 predicts a much higher load capacity in both shear and
axial directions and cannot simulate the failure of CFRP either,
whereas MAT272 seems to capture the peak force correctly, but
it softens very rapidly, i.e., no gain on ductility at all although
the column is wrapped with four-layer CFRP.

Problem 3: RC Slab Subjected to Blast Loadings

As shown in Fig. 8, a reinforced concrete slab is used to exam-
ine the capability of the KCC model in capturing structural re-
sponses for a blast loading. The slab has a thickness of 102 mm,
width of 857 mm, and height of 1,626 mm (clear = 1,321 mm).
The slab is reinforced by #3 rebars. The unconfined compressive
strength of the concrete is 34.5 MPa, and the reinforcement is
Gr.60 steel.

Fig. 7. Problem 2: vertical and lateral resistances for RC columns: (a) test results; (b) numerical results by MAT072; (c) Test 10 results from various
concrete models
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The concrete in the slab is discretized by approximately
25.4 mm cubic solid elements, and the reinforcement is modeled
by beam elements sharing nodes with the concrete. The two ends of
the slab are held in place [Fig. 8(a)] by a support system composed

of steel structural tubes placed against the front face and a support
frame against the back face of the slab near its edges. Contact
interfaces are defined between the slab and the structural tubes
and support frames, and the coefficient of friction (COF) is 0.4.
The recorded pressure history as shown in Fig. 9 is applied uni-
formly over the front face of the slab for the blast loading.

The results for two sets of damage evolution parameters are
shown. One set represents the default set, i.e., b1 ¼ 1.60, b2 ¼
1.35, and ϖ ¼ 0.50. The other set, designated as the “adjusted
fit,” is a set of parameters that was determined in accordance with
the discussions in the section of “Determination of KCC Model
Parameters” (i.e., b1 ¼ 1.12, b2 ¼ 1.96, and ϖ ¼ 0.75). The Gr.60
reinforcement is modeled by using a von-Mises piecewise linear
plasticity model.

Fig. 10 compares the numerical results obtained by using
LS-DYNA and the experimental data (http://sce.umkc.edu/blast
-prediction-contest/home.html). In Fig. 10(a), the legend “With
Rate” stands for the calculation using the default set parameters
with strain rate enhancement, whereas “Without Rate” indicates
that the strain rate enhancement is not activated although the same
parameters are used. The results designated as “Adjusted” are those
computed by using the adjusted fit as previously mentioned. The
same strain rate effects, as used for the “With Rate” results, are
used. As shown, the better characterization used for the softening
(i.e., the adjusted values used for b1 and b2) improves the results.

As shown in Fig. 10(a), the strain rate enhancement has a sig-
nificant impact on the computed responses for MAT072. On this
subject, when rate effects are included, the deflection matches the
test data very well; otherwise, a large discrepancy exists. This is
quite significant because although there may be considerable con-
troversy related to the nature and causes of rate effects, these results
are quite telling as to its actual existence.

The responses obtained with MAT072, M084, MAT159, and
MAT272 are compared in Fig. 10(b). Both MAT072 and MAT159
calculate the residual deflection correctly, but they both miss the
peak deflection; on the other hand, both MAT084 and MAT272
predict very stiff responses, and they both miss the peak and re-
sidual displacements.

The results for Problem 3 (in which high strain rates exist and
rate effects are included in the KCC model), when viewed in con-
junction with those for Problem 2 (in which rate effects are ignored
because of the quasi-static level) reinforces the notion that consid-
ering rate effects correctly is important. In other words, the KCC
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Fig. 8. Problem 3: test setup of RC slab test and analysis: (a) dimen-
sions; (b) boundary conditions
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Fig. 9. Problem 3: pressure history for RC slab test
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model demonstrates its effectiveness in calculating results when
either strain rate is low or rate effects are negligible and can be
ignored (Problem 2) or when strain rates are high and rate effects
must be included (Problem 3). The results computed for these two
problems by the KCC model aptly demonstrate the need to incor-
porate rate effects in a dynamic analysis.

Another observation is that the KCC model with either the de-
fault fit or the adjusted fit parameters computes roughly the same
response (i.e., the value of ϖ has little impact). This is reflective of
a problem in which the effects of confinement are not particularly
important. However, by varying the value of ϖ, the capability
afforded by a particular design with regard to its ability to gain
strength and ductility, as more damage is imparted to the concrete,
can be evaluated directly.

Problem 4: Scaled Aircraft Impact

In this section, a 1=7.5-scaled model test (Tsubota et al. 1999) per-
taining to an aircraft impacting an RC slab was analyzed by using
LS-DYNA to investigate the performance of the KCC model for
impact loads. The RC slab is 1,500 mm long and 1,500 mm wide
with a thickness of 60 mm. In the numerical modeling, the aircraft

is idealized as a mass of 25.25 kg with an initial velocity of
142 m=s; the impact is at the center of the slab normal to its face.
D3 rebars are used for the reinforcement, which are placed at
25 mm on the center each way on each face. More details about
the test are described in Tsubota (1999).

The LS-DYNA model developed for this analysis is shown in
Fig. 11. The concrete slab is modeled by using 12.5 × 12.5 ×
10-mm (through the slab’s thickness) brick elements. The concrete
has an unconfined compressive strength of 31.4 MPa, which is used
to scale the default fit for the strength surfaces and the EOS for the
KCC model. The default damage evolution parameters are used,
i.e., b1 ¼ 1.60, b2 ¼ 1.35, and ϖ ¼ 0.50.

Because the analysis is performed by using a FE formulation,
artificial erosion (LSTC 2014) needs to be introduced to mimic
failure of the concrete; a principal strain of 20% is used for this.
The rebars are modeled by beam elements sharing nodes with the
concrete. The aircraft is simplified as a cylinder with a diameter of
260 mm and a length of 1,350 mm with a blunt cone head, whereas
the total mass is maintained. Isotropic hardening elastoplasticity
model with failure is used for both the aircraft and the rebars.

The engine velocity histories are compared in Fig. 12. The pre-
dicted exit velocity (after perforation) agrees reasonably well with
the test data if MAT072 is used; the numerical prediction seems

Fig. 10. Problem 3: lateral deflection histories for RC slab test: (a) by
MAT072 with various conditions; (b) by various concrete models
(automatic input with rate enhancement)

(a)

(b)

Fig. 11. Problem 4: scaled aircraft impact test: (a) simplified model;
(b) distribution of D3 rebars
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acceptable if MAT159 is used; whereas the predictions with
MAT084 and MAT272 are very different from the test data. It is
observed that the calculated deceleration is different from the test,
but the engine velocity reaches its exit value at approximately the

same time. However, it is arguable that a different solution might
have been obtained if a different erosion criterion is introduced.
This is the consequence of introducing an artificial erosion cri-
terion. To avoid artificial erosion, the mesh-free approach is applied
in solving impact problems in the next two sections.

Problem 5: Perforation Responses on High Strength
Concrete

In the test carried out by Unosson and Nilsson (2006), a 6.3-kg
armor-piercing steel projectile was fired at a velocity of 621 m=s
at the center of the top face of a cylindrical specimen composed of a
high-strength concrete. The diameter of the cylinder is 1,400 mm,
and its height is 400 mm. The unconfined compressive strength
of the concrete is 153 MPa, and its density is 2,770 kg=m3. The
projectile has an ogival nose radius of 127 mm, a total length of
225 mm, and a diameter of 75 mm, as shown in Fig. 13.

This problem is analyzed by using KC-FEMFRE (Wu et al.
2014a), which offers an evolutionary coupling approach to analy-
sis. By using this feature, the discretization, which initially is ac-
complished by using a FEM formulation, can be updated in regions
with excessive mesh distortion to an RKPM formulation, which is a
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Fig. 12. Problem 4: velocity history in scaled aircraft test

(a)

(b)

Fig. 13. Problem 5: setup of cylinder perforation test: (a) geometry;
(b) discretization

Fig. 14. Problem 5: projectile velocity history in cylinder perforation
test: (a) velocity versus penetration depth; (b) velocity versus time
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mesh-free particle method that affords better accuracy and stability
for regions with extreme distortions. In this way, the use of such an
artificial concept as erosion to accommodate excessive distortion,
which is needed with LS-DYNA, is eliminated (i.e., mesh-free
methods in contrast to FE methods do not use erosion because
mesh distortion is not much of an issue).

As shown in Fig. 13(b), the analysis model is initially realized
by using a FEM formulation, which is discretized by 57,824 solid
elements and 61,932 nodes, among which 2,144 elements and
2,439 nodes are for the projectile. The size of the elements under
the impact region is approximately 13 mm.

The damage evolution parameters for the KCC model are b1 ¼
1.00, b2 ¼ 1.35, andϖ ¼ 0.50. The projectile is modeled as elastic
(Young’s modulus E ¼ 200 GPa and Poisson ratio ν ¼ 0.33).

The coefficient of friction between the projectile and the cylinder
is 0.35.

The projectile velocity as a function of the penetration depth is
shown in Fig. 14(a) along with the experimental data (Unosson and
Nilsson 2006) for the projectile’s residual velocity after perforation.
In Fig. 14(b), both the computed and measured velocity time his-
tories for the projectile are presented. Good correlation is observed
between the numerical prediction and the test data for both penetra-
tion depth and projectile deceleration. Nearly a constant decelera-
tion was obtained in the calculation for the projectile, which is a
common observation in projectile impact tests.

The damage evolution depicted by the flight of the RKPM par-
ticles is shown in Fig. 15, in which half of the model is cut away
for the sake of clarity. The legend shows the damage index ϑ, which

Fig. 15. Problem 5: damage evolution in cylinder perforation test

© ASCE 04015051-18 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
C

L
A

 D
ig

ita
l C

ol
l S

vc
s 

on
 0

8/
31

/1
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



is defined in Eq. (42); ϑ ¼ 1.98 indicates that only 2% of the con-
crete’s original strength remains, whereas ϑ ¼ 1.90 means 10% of
its strength remains. As shown in the figure, the damage starts to
accumulate at the top surface once the contact between the projec-
tile and the target is initiated. Then, as the impact shock (P-wave)
reaches the bottom surface and is reflected at 0.14 ms, significant
damage appears at the bottom of the cylinder. When the shear wave
(S-wave) reaches the edge of the cylinder at 0.3 ms, damage is ob-
served at the edge nodes. The projectile tip is seen to penetrate
through the cylinder at 1.1 ms, and finally the projectile completely
perforates the cylinder at 2.0 ms. The concrete is heavily damaged
along the path of the perforation.

One of the advantages provided by the nodally integrated mesh-
free method (as implemented in the KC-FEMFRE) is that it tracks
debris evolution naturally, which is completely unlike the artificial
erosion used by finite-element methods to allow the calculation to
continue when such large distortions are present. Also in marked
contrast to the mesh-free characterization, which preserves the
mass and momentum of the overall model, the erosion algorithm

deletes highly distorted elements (i.e., the debris) from the model,
as was the case in the aircraft impact problem discussed in the
fourth example.

Information characterizing the debris at the end of the perfora-
tion process is presented in Fig. 16 in terms of its mass and velocity
distribution. Pieces of debris are defined as either a particle or a
group of particles that have become disconnected from their neigh-
boring particles. More than 20 thousand pieces of debris existed at
the end of the perforation process. Some of the debris move as fast
as 27 km=s, which could cause serious damage if it hits personnel,
equipment, or conventional structural components, even though it
only weighs a few grams.

Fig. 16. Problem 5: debris distribution in cylinder perforation test:
(a) amount of debris (in terms of number of particles) versus velocity;
(b) mass of debris versus velocity

(a)

(b)

Fig. 17. Problem 6: setup of high-strength concrete penetration test:
(a) geometry; (b) discretization
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Problem 6: Penetration Tests for High Strength
Concrete

The same projectile as used in Problem 5 was fired at a velocity of
623 m=s at the center of the face of a cylindrical specimen twice as
tall as in Problem 5. This specimen is composed of the same high-
strength concrete as in Problem 5, with an unconfined compressive
strength of 153 MPa and density of 2,770 kg=m3. The diameter of
the cylinder is 1,400 mm, and its height is 800 mm. The parameters
used to characterize the materials are the same as the ones used in
Problem 5 except that b1 for the KCC model is 1.05 instead of 1.0
because large nodal distance is used.

This problem is analyzed by using KC-FEMFRE. As shown in
Fig. 17, the model is initially discretized by using a FEM formu-
lation with 36,256 solid elements and 38,044 nodes, among which
2,144 elements and 2,439 nodes are used for the projectile. To save
computational cost, a variably discretizing scheme is used, as
shown in Fig. 17(b), with considerably larger elements used away
from the region penetrated. The size of the elements under the
impact region is approximately 15 mm.

Penetration depth for the projectile as a function of time is
presented in Fig. 18(a) along with the measured penetration depth

(Unosson and Nilsson 2006). The projectile velocity as a function
of time is shown in Fig. 18(b). The numerical results for both
penetration depth and projectile deceleration match well with test
observations, again showing a relatively constant deceleration over
the whole of the penetration process.

The damage evolution depicted by the flight of the RKPM par-
ticles is shown in Fig. 19. Half of the model is cut away for clarity.
The legend shows the damage index ϑ, which is defined in Eq. (42).
It can be seen that concrete damage commences at 0.02 ms. As
the interaction between the projectile and the target transpires, the
impact wave reaches the bottom face and is reflected at 0.3 ms.
This produces damage at the bottom of the cylinder starting at ap-
proximately 1.0 ms, and spalling at the bottom face is observed.
Although more and more damage is accumulated near the bottom
face after 1.0 ms, the penetration peaks at approximately 1.2 ms.

As mentioned for Problem 5, the nodally integrated mesh-free
method provides a natural means to track debris evolution and
avoid the nonphysical and numerically questionable practices
needed by the FEM discretization related to erosion and excessive
mesh distortion. The debris information at the end of the penetra-
tion process is shown in Fig. 20; approximately 15 thousand pieces
of debris were generated. The maximum resultant velocity of the
debris is approximately 35 km=s.

Conclusions

To realistically simulate the actual responses of concrete structural
components under extreme conditions (e.g., as caused by blast
and impact loads) with a numerical analysis method, it is crucial
to have a comprehensive, proven, and effective physics-based
concrete constitutive law. The formulations, numerical implemen-
tation, parameter determination, and validation studies of such a
material law—the K&C concrete model—are presented in this
paper.

Modeling Studies

Modeling studies by K&C (Crawford 2013; Crawford et al. 2011,
2013) comparing the capability afforded by the different concrete
models provided by LS-DYNA are quite instructive in terms of
identifying the important behaviors omitted from some of these
concrete models and the consequent impact on the responses such
models produce when used to compute response for some sort
of extreme loading of a RC structural component. These sorts of
studies demonstrate the importance of evaluating firsthand the
capability afforded by a particular concrete constitutive model.

Most of the extensive literature developed by K&C and others
concerning the influence of parameter and model selection are
omitted from this paper because of its voluminous nature, but
can be found elsewhere (Crawford 2013; Crawford et al. 1997,
2011, 2012, 2013; Magallanes et al. 2010; Malvar and Crawford
1998; Malvar and Ross 1998; Malval et al. 1997; Wu et al. 2013,
2014b, c). Studies such as those conducted in the early 1990s
convinced K&C that it needed to develop its own concrete model
if it was to obtain results for blast effects loads that correlated well
with test data.

KCC Model

The significant efforts expended by K&C over the last 20 years in
formulating and calibrating concrete material models are justified
because of their substantial impact on the quality of the responses
computed, particularly as related to the effectiveness of the analysis
in capturing realistic behaviors when extensive distress is present.

Fig. 18. Problem 6: responses in cylinder penetration test: (a) penetra-
tion depth versus time; (b) velocity versus time
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Fig. 19. Problem 6: nodal damage evolution in cylinder penetration test
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The use of physics-based material models to simulate the perfor-
mance of concrete materials under blast and shock loads almost
always requires that careful consideration be given to evaluating
their ability to tackle the problem at hand and requires a keen
knowledge of the behaviors of concrete that might be crucial to
effectively predicting responses for such problems. The KCC
model is a direct result of this concern for having a comprehensive
and effective constitutive model to capture behaviors exhibited by
cementitious materials under extreme loads.

Although the KCC model was specifically tailored to compute
blast and penetration effects responses, it has proven itself appli-
cable to a wide range of problems pertaining to the responses of
concrete components, including capturing well the basic behaviors
of concrete, as demonstrated in several previous papers (Crawford
2013; Crawford et al. 2011, 2012, 2013; Wu et al. 2014b) and to a
limited extent in this paper (i.e., Problem 1). These basic material
behaviors include the significant differences in tensile and com-
pressive strengths, prepeak hardening (yielding), postpeak soften-
ing, transition from brittle to ductile behavior and higher strength
under confinements, and strain rate effects.

The KCC model simulates the hardening and softening behav-
iors of concrete by using a three-surface plasticity formulation that

uses a damage function to compute a failure surface on the basis
of the damage imparted to the concrete. The shape of these sur-
faces in the P-I plane, which is based on a Willam-Warnke for-
mulation, allows the model to capture the difference in response
between a triaxial extension and compression test. For instance,
the numerical results given in this paper (Problem 1) show that
the KCC model can simulate the brittle to ductile transition ob-
served experimentally in confined triaxial tests for concrete under
low to high confinement and the influence that confinement has
on concrete strength.

Model Validation

Extensive model validation studies are crucial when a concrete
model is intended for analyses concerning some form of extreme
loading; when the prediction of failure and residual capacities are
important; or when such phenomena as rate effects, confinement
effects, and shear dilatancy are present. To this end, running only
a few cases for a narrow class of components and load types is not
a sufficient test of a material model. Although only a few results
from validation studies are shown in this paper, these results do
cover a wide range of problems; many more results can be found
in Crawford (2013), Crawford et al. (1997, 2011, 2012, 2013)
Magallanes et al. (2010; unpublished data, 2014), Malvar and
Crawford (1998), Malvar and Ross (1998), Malvar et al. (1997)
and Wu et al. (2013, 2014c).

A unique feature of the KCC model is its ability to model shear
dilatancy. The KCC model defines the associativity level with a
user input parameter ϖ. This parameter provides the flexibility
needed in capturing crucial shear dilation effects related to enhanc-
ing the resistance afforded to RC columns wrapped with CFRP
(Problem 2). Capturing these shear dilatancy effects accurately is
particularly important in predicting the amount of CFRP wrap
needed to prevent the failure of a RC column when CFRP is used
to enhance its blast resistance. As shown in Problem 2, the KCC
model properly captures the confinement effects exerted by CFRP
wrap, which is the tensile force transferred to the CFRP as a result
of the shear dilation behavior exhibited by the concrete.

The strain rate enhancement is important for concrete under
high strain rate loadings such as blast and impact loads, as dem-
onstrated by the results obtained for Problem 3. The KCC model
defines this effect through a user input dynamic increase factor
curve. The numerical results from the various analysis problems
shown in this paper confirmed the importance of these effects and
showed that the KCC model properly simulates these effects when
it is activated.

The results from the validation studies for three different sorts
of penetration problems are depicted in Problems 4–6. Whereas
Problem 4 was solved with LS-DYNA (as were Problems 1–3),
Problems 5 and 6, which involve much more severe distortions
and material damage, were simulated with the KC-FEMFRE code
(Wu et al. 2014a) to take advantage of the robustness afforded by its
evolutionary coupling of FE and RK formulations. This coupled
approach avoids using such nonphysical processes as erosion and
hourglass control that often plague the performance of FE formu-
lations. Good correlations with test data were obtained for all these
problems, demonstrating the effectiveness of the KCC model in
addressing penetration and perforation problems.

In summary, the robust and effective capability afforded by
the KCC model was demonstrated by its ability to produce results
that capture test data well, even for such complex phenomena
as those pertaining to computing CFRP wrap failure (Problem 2)
and projectile penetration (Problem 6). Compared with MAT084,

Fig. 20. Problem 6: debris distribution in cylinder penetration test:
(a) distribution of velocity versus amount of debris; (b) distribution
of mass versus velocity of debris
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MAT159, and MAT272, MAT072 predicts the most consistent re-
sponses compared with test observations.

Appendix. Derivation of Increment of the
Consistency Parameter Δμ [Eq. (32)]

To derive Eq. (32), the plastic strain increment is first defined as

Δεpij ¼
∂φ
∂σij

Δμ ¼
�

3σ 0
ij

2
ffiffiffiffiffiffiffi
3J2

p þϖΓ;pδij
3

�
Δμ ≜ ðσ 0

ij þ ζδijÞdμ

ð69Þ

where ζ ¼ 2ϖΓ;p
ffiffiffiffiffiffiffi
3J2

p
=9; and dμ ¼ 3

2
Δμ=

ffiffiffiffiffiffiffi
3J2

p
.

The total strain increment can be decomposed by

dε ¼ dεp þ dεe ¼ ðσ 0 þ ζIÞdμþ C−1∶dσ ð70Þ

where C = elasticity tensor. By algebra, Eq. (70) can be converted
into

∇σϒ∶C∶dε ¼ ∇σϒ∶C∶ðσ 0 þ ζIÞdμþ ∇σϒ∶dσ ð71Þ

It follows from the definition of yield function [Eq. (2)] and
ϒ ¼ 0 after yield that

∇σϒ∶dσ ¼ −ϒ;λdλ ð72Þ

It can be shown that ∇σϒ∶σ 0 ¼ ffiffiffiffiffiffiffi
3J2

p
and ∇σϒ∶I ¼ Γ;p by

noticing the identities of C∶σ 0 ¼ 2 Gσ 0 and C∶I ¼ 3KI. In addi-
tion, by definition, C∶dε ¼ dσ� is the trial elastic stress increment.
Therefore, Eq. (71) can be rewritten as

∇σϒ∶dσ� ¼ ð2 G
ffiffiffiffiffiffiffi
3J2

p
þ 3ζKΓ;pÞdμ −ϒ;λdλ ð73Þ

From Eq. (16), the increment of λ is related to the plastic strain
increment by

dλ ¼ hðp�Þdε̄p ¼ hðp�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dεpijdε

p
ij

r

¼ hðp�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
ϖΓ�

;p

3

�
2

s
Δμ ð74Þ

Note that ϒ;λ ¼ −Γ;λ [from Eq. (2)]; Eq. (73) becomes

∇σϒ∶dσ� ¼
 
3 GþϖKðΓ�

;pÞ2þΓ�
;λhðp�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
ϖΓ�

;p

3

�
2

s !
Δμ

ð75Þ

Note that ϒðσnÞ ¼ 0, and then ϒðσ�Þ ¼ ϒðσn þ dσ�Þ ¼
∇σϒ∶dσ�. On the other hand, by definition, ϒðσ�Þ ¼ ffiffiffiffiffiffiffi

3J�2
p − Γ�.

Therefore,

Δμ ¼
ffiffiffiffiffiffiffi
3J�2

p − Γ�

3 GþϖKðΓ�
;pÞ2 þ Γ�

;λhðp�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
ϖΓ�

;p

3

�
2

r ð76Þ

The quantities with a superscript * are evaluated at the trial
stress, i.e., the quantities with a superscript of “trial” in Eq. (32).
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