Adhesives modeling with LS-DYNA: Recent developments and future work

Tobias Graf, André Haufe & Filipe Andrade

DYNAmore GmbH, Stuttgart

- Preliminary remarks
- Current modeling techniques in LS-DYNA
- Recent trends in LS-DYNA
- Summary

Current challenges in a full car crash simulation

→ due to a more often usage of high strength steels, the connections become more and more the weak points in crash

Adhesives modeling with LS-DYNA: Recent developments and future work

2

- Failure forces
 - main focus of connection modeling in crash lies on the correct prediction of the respective failure forces
 - one has to distinguish between two totally different connection categories:

Failure forces depend on the connected materials

- e. g., spot welding
- material parameters have to be identified for every individual material combination
- idea: Find relation to predict failure forces based on the material parameters of the sheet materials and geo. information
- \rightarrow a lot of experiments are necessary

Failure forces depend on the connection material

- e. g., adhesive bonding
- identify material parameters using a certain material combination
- idea: The material model can be applied to any other material combination
- \rightarrow fewer experiments are necessary

- Verification and validation process
 - **problem I:** Element size and explicit time integration
 - ideal procedure: A detailed model with physical material parameters can be used on every scale of interest

- \rightarrow verification is done on the smallest scale
- \rightarrow validation can be done on KS-II and component scale
- the spatial discretization of the connection has to be very fine compared to the element size usually used on the component and full car scale
- explicit time integration \rightarrow decreasing of time step or increasing of additional mass
- because of limited CPU-power, the highest scale for the usage of a detailed model is currently the scale of the KS-II specimen

- problem II: Discretization issue
 - flange materials are currently discretized with shell elements

• **consequence:** Material behavior is too flexible using physical material parameters

5

 requirement: The spatial discretization and the respective material model of the connection has to be chosen in such a way that the performance and the validity of the full car simulation is not negatively affected.

→ The only applicable procedure for connection modeling is the usage of so-called substitute models with artificial material parameters

- currently used robust element types and corresponding material models
 - hexahedron elements in combination with 3-d material models, e. g.,
 - *MAT_SPOTWELD (*MAT_100),
 - *MAT_SPOTWELD_DAIMLERCHRYSLER,
 - *MAT_ARUP_ADHESIVE (*MAT_169),
 - *MAT_FU_CHANG_FOAM (*MAT_083), …

- Different joining techniques and the corresponding material models
 - punctiform
 - spot welding, RIVTAC, ...
 - currently used robust material models:
 *MAT_SPOTWELD_{DAMAGE_FAILURE},
 *MAT_SPOTWELD_DAIMLERCHRYSLER +
 *DEFINE_CONNECTION_PROPERTIES, ...
 - line-shaped
 - MIG welding, MIG soldering, …
 - currently used robust material model:
 *MAT_ARUP_ADHESIVE, ...

- area-shaped
 - adhesive bonding: Structural adhesive, hood adhesive, PU windshield, …
 - currently used robust material models:
 *MAT_ARUP_ADHESIVE,
 *MAT_FU_CHANG_FOAM, ...

Mechanical behavior of the different bonding materials

- *MAT_FU_CHANG_FOAM (*MAT_083)
 - used for modeling hood adhesive and PU windshield
 - viscoelastic material model
 - input of engineering stress versus engineering strain curves
 - incorporation of rate effects via table definition
 - by default linear in tension, but load curves can be defined in tension as well (TFLAG=1)

example: Hood adhesive – quasi static and dynamic loading

Material model is suitable to describe loading and unloading of hood adhesive under quasi static and dynamic conditions.

- *MAT_ARUP_ADHESIVE (*MAT_169)
 - used for modeling of structural adhesive
 - material behavior can be defined individually for the normal and shear direction

 -> correct definition of the thickness direction is extremely important
 - elastoplastic material model with the following yield surface:

$$\left(\frac{\sigma(\dot{\varepsilon})}{\sigma_{\max}(\dot{\varepsilon})}\right)^{PWRT} + \left(\frac{\tau(\dot{\varepsilon})}{\tau_{\max}(\dot{\varepsilon}) - SHL_SL \cdot \sigma(\dot{\varepsilon})}\right)^{PWRS} - 1.0 = 0$$

material is characterized via maximum stresses (yield stresses) and energies

possibility to account for strain rate effects:
 → strengths and fracture energies are scaled linearly in the log-scale of the plastic strain rate

additionally output can be activated via OUTFAIL

1808 t 9.9979E-01 dt 5.53E-04 write d3plot file 04/11/14 13:56:15
mat_arup element 13 (IP= 1) had damage initiated at time 1.0468E+00
axial term of failure function ... 0.00000
shear term of failure function ... 1.00044
resultant axial force 2.9562E-04
resultant shear force 2.8676E+00

 thickness direction can be defined via smallest element side (default)

future work: Thickness direction is calculated based on tied contact information

- bond thickness can be defined individually (BTHK)
 - \rightarrow material behavior independent of element height
 - \rightarrow reduce errors due to an incorrect spatial discretization in the full car crash model
 - → negative value: BTHK is bond thickness but critical time step is not affected (can affect stability!!!)

- Element types and corresponding material models
 - volume elements and 3-d material models, e.g., *MAT_SPOTWELD (*MAT_100),
 *MAT_ARUP_ADHESIVE (*MAT_169)
 - material law: Stress vs. strain
 → critical time step depends on thickness
 - disadvantage: If element height tends to zero, e.g., switching from a shell disc. of the flanges to a discretization with solids, the critical time step tends to zero as well
 - → impossible to use standard element formulations and corresponding material models
 - cohesive elements and corresponding material models,
 - e. g., *MAT_COHESIVE_...
 - material law: Stress vs. displacement
 → critical time step is independent of thickness
 - advantage: Elements with zero height can be used without running into troubles regarding the critical time step

- Cohesive elements and material modeling
 - material behavior can be defined individually for the normal and shear direction
 \rightarrow correct definition of the thickness direction is extremely important
 - cohesive material laws are displacement driven:
 - \rightarrow local relative displacements at integration points
 - \rightarrow local (interface) stresses

$$\begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} E_T & 0 & 0 \\ 0 & E_T & 0 \\ 0 & 0 & E_N \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix} \begin{bmatrix} N/mm^2 \end{bmatrix} = \begin{bmatrix} N/mm^3 \end{bmatrix} \cdot [mm]$$

Interface stiffness is not the same as *classical* stiffness

- density can be specified per unit volume or per unit area
 → handling of elements with an initial volume of zero
- LS-DYNA provides "special" volume elements: Account for orientation (element numbering), special treatment of thickness (critical time step)

- Cohesive elements
 - attached via coincident nodes or tied contact
 - in plane integration: 2x2 Gauss
 - element numbering defines thickness direction.
 Future work: Thickness direction calculated based on tied contact information

- *MAT_COHESIVE_MIXED_MODE (*MAT_138)
 - purely elastic cohesive zone model with damage (no plasticity!!!)
 - bi-linear traction-separation law with a quadratic mixed-mode delamination criterion and damage formulation (as well available in tiebreak contact OPTION=9/11)
 - elastic stiffness, maximum stress and total energy can be specified in tension as well as shear
 - number of integration points required for the element to be deleted can be specified (INTFAIL)
 - total mixed-mode relative displacement

$$\delta_I = \delta_3$$
; $\delta_{II} = \sqrt{\delta_1^2 + \delta_2^2}$; $\delta_m = \sqrt{\delta_I^2 + \delta_{II}^2}$

example: Fracture mode I – opening, mesh dependency

If the discretization is too coarse, the crack process zone is not resolved sufficiently.

Adhesives modeling with LS-DYNA: Recent developments and future work

18

- example: Fracture mode I opening, mesh dependency
 - idea: Maximum stress is element size dependent: $T = T(l_e)$
 - fracture energy is kept constant
 - scaling / fitting is done by trial end error
 - load curve (stress vs. element size) can be referenced in material definition

19

- *MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE (*MAT_240)
 - elastic-ideally plastic cohesive zone model with damage
 - rate-dependent
 - tri-linear traction-separation law
 - alternative for *MAT_ARUP_ADHESIVE
 - quadratic yield and damage criterion in mixed-mode loading
 - number of integration points required for the element to be deleted can be specified (INTFAIL)
 - maximum stress, total energy and a further factor describing the traction-separation law can be specified in tension as well as shear

- 3-d models in conjunction with cohesive elements *MAT_ADD_COHESIVE
 - using this keyword, it is possible to combine currently the following material models with cohesive elements (ELFORM=19, 20):
 *MAT_{1, 3, 4, 6, 15, 24, 41-50, 81, 82, 89, 96, 98, 103-107, 115, 120,

123, 124, 141, 168, 173, 187, 188, 193, 224, 225, 252 and 255} assumption: No lateral expansion and no in-plane shearing

$$\begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix} \rightarrow \begin{bmatrix} \dot{\varepsilon}_{xx} \\ \dot{\varepsilon}_{yy} \\ \dot{\varepsilon}_{zz} \\ \dot{\varepsilon}_{xy} \\ \dot{\varepsilon}_{zx} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\delta}_3/(t+\delta_3) \\ 0 \\ \dot{\delta}_2/(t+\delta_3) \\ \dot{\delta}_1/(t+\delta_3) \end{bmatrix} \qquad \qquad \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{zx} \end{bmatrix} \rightarrow \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} \sigma_{zx} \\ \sigma_{yz} \\ \sigma_{zz} \end{bmatrix}$$

keyword definition

*MAT	_ADD_COHE	CSIVE		
; ;	PID	ROFLG	INTFAIL	THICK
\$	I	F	F	F
1				

- density can be specified per unit volume or per unit area
 - \rightarrow handling of elements with an initial volume of zero
- number of integration points required for the element to be deleted can be specified

- Interesting combination: *MAT_ADD_COHESIVE and *MAT_SAMP-1 (*MAT_187)
 - plasticity can be defined individually for tension, shear and compression

strain rate dependent failure with fading can be defined

22

Summary

- Preliminary remarks
 - joining techniques can be classified in three categories: punctiform, line-shaped and area-shaped joining techniques
 - substitute models with artificial material parameters are currently the only practicable way to model connection materials in full car crash simulations
- Current modeling techniques in LS-DYNA
 - PU windshield, hood adhesives: *MAT_FU_CHANG_FOAM (*MAT_083)
 - structural adhesives: *MAT_ARUP_ADHESIVE (*MAT_169)
- Recent trends in LS-DYNA
 - cohesive element formulations and corresponding material models:
 - *MAT_COHESIVE_MIXED_MODE (*MAT_138)
 - *MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE (*MAT_240)
 - coupling of 3-d continuum mechanical material models with cohesive element formulation: *MAT_ADD_COHESIVE

