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A brief, self-contained theoretical background of ∗MAT ANISOTROPIC HYPERELASTIC,
a class of (an)isotropic, (nearly-in)compressible hyperelastic material models primarily
aimed at describing the mechanical behavior of biological soft tissues is introduced in
the present document. The constitutive laws introduced therein are implemented in
a modular fashion. Each module may comprise of different models. Consequently, the
analyst may easily change models in a module and include additional modules to account
for more complex material behavior within the same keyword. A couple of things are
worth noting at this point. Firstly, extending an existing module with a new model
or even including a new module does not require the developer to add a new material
keyword. Secondly, some of the material models may also be used to model a wider class
of materials including e.g., fiber-reinforced elastomers or stretchable fabrics.

The remaining part of this document is organized as follows. Relevant concepts of
continuum mechanics is summarized in section 1. Hyperelastic (passive) models are
outlined in section 2. Electromechanical or active models are discussed in section 3.

1 Fundamentals of nonlinear elasticity

1.1 Kinematics

Let us consider a continuum body B which is embedded in the three-dimesnional Eu-
clidean space at any given instant of time t. As the continuum body B moves in space
from one instant of a time to another, it occupies a continuous sequence of geometrical
regions also known as configurations. The geometric region occupied by the body B at
any fixed reference time t = tr is known as the reference configuration Cr. Similarly, a
region at time t = 0 is called the initial configuration and designated by C0. In what
follows, we assume that the inital and reference configurations coincide, i.e. C0 ≡ Cr, and
refer to an arbitrary configuration C = Ct at t > 0 as current configuration. Also, let the
symbols X and x denote a material point in the reference and current configurations,
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respctively.
The motion or time-dependent deformation is defined as

x = χ(X, t), (1)

where χ is the function describing the motion. The function is invertible at each time
instance and assumed to satisfies appropiate regularity conditions. The deformation
gradient is given by

F = Grad(x) (2)

and has components FiJ = ∂xi/∂XJ , where Grad is the reference gradient operator
and the indices i, J ∈ {1, 2, 3}. Local invertibility of the deformation requires that the
deformation gradient be non-singular, i.e.

J := det(F ) > 0. (3)

By virtue of the polar decomposition theorem, the deformation gradient can be written
as

F = RU = vR, (4)

where R is a proper orthogonal tensor representing a rotation, and U and v are right
and left stretch tensors, both symmetric and positive definite, respectively. The right
and left deformation tensors are introduced as

C = F TF ≡ U2, (5)

b = FF T ≡ v2. (6)

Furthermore, the following spectral representations are recalled

F =
3∑
i=1

λiφi ⊗Φi, (7)

R =
3∑
i=1

φi ⊗Φi, (8)

U =

3∑
i=1

λiΦi ⊗Φi, (9)

v =

3∑
i=1

λiφi ⊗ φi, (10)

C =

3∑
i=1

λ2
iΦi ⊗Φi, (11)

b =
3∑
i=1

λ2
iφi ⊗ φi, (12)
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where λi > 0, with i ∈ {1, 2, 3}, are the principal stretches, while Φi and φi designate
the eignevectors of U and v and are also known as the reference and current principal
axes, respectively.

Finally, the Green-Lagrange and Green-Almansi strain tensors are defined as

E =
1

2
(C − I) , (13)

e =
1

2

(
I − b−1

)
. (14)

1.2 Multiplicative decomposition

The multiplicative decomposition of the deformation gradient can be written as

F = (J1/3I)F̄ , (15)

where J1/3I is the dilatational, spherical, or volumetric part and F̄ is the unimodular,
distortional, or isochoric part of the deformation gradient. Consequently,

b̄ = J−2/3b, (16)

λ̄i = J−1/3λi. (17)

2 Hyperelasticity

In the theory of hyperelasticity, the existence of a Helmholtz free-energy or strain-energy
function (per unit reference volume) Ψ := Ψ(F ,X), with X denoting a reference mate-
rial point, is postulated in order to characterize the properties of an elastic material. The
dependence of Ψ on X indicates the spatial dependence on the material properties in an
inhomogeneous material. For notational brevity, this dependence is omitted henceforth.

The strain-energy function may be written as combination of different strain-energy
functions which is commonly referred to as additive decomposition. Noting that direc-
tional dependent behavior is introduced by a set of collagen fiber families, i.e. nf with
nf ≥ 1, ubiquitous in different soft tissues, the general form may be written as

Ψ(F ) = ΨI(F ) + ΨA(F ,Ai), (18)

where the subscripts I and A distinguish the isotropic and anisotropic parts, respectively.
The symbol Ai, with i ∈ [1, nf ], in equation (18) designates the unit mean reference
direction of the ith fiber family embedded in the isotopic ground matrix. A couple of
things are worth highlighting at this point. Firstly, the pure volumetric part of the
strain energy function is included in ΨI . Secondly, the term anisotropic is meant in
the general sense and ΨA also includes transversely isotropic and orthotropic models as
special cases.
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2.1 Invariants

Hyperelastic constitutive laws, cf. section 2, are often formulated in terms of invariants,
i.e. Isotropic models may be defined using the principal invariants of the deformation
tensors, i.e. ΨI (I1, I2, I3), given as

I1 :=tr(b) =
3∑
i=1

λ2
i , (19)

I2 :=
1

2

[
tr(b)2 + tr(b2)

]
=

1

2

3∑
i,j=1
i 6=j

λ2
iλ

2
j , (20)

I3 :=det(b) = J2 =

3∏
i=1

λ2
i , (21)

and noting that Ii(b) = Ii(C) with i = 1, 2, 3.
Considering transverse isotropy (nf = 1), ΨA := ΨA (I4, I5) with invariants

I4 (C,A) =A ·CA = a · a = λ2, (22)

I5 (C,A) =A ·C2A, (23)

where a is the current mean fiber direction vector, such that a = FA with ‖a‖ 6= 1 in
general, λ is the fiber stretch, and the symbol (·) denotes the generalized inner product
henceforth.

Coupling invariants associated with pairs of characteristic material directions may
be further invoked to enhance the material model. Consequently, the general form of
the strain-energy function may be written as ΨA := ΨA (I4i, I5i, Iij), where I4i and I5i

are defined for the ith fiber family in equations (22) and (23), and the newly introduced
coupling invariants are given as

Iij (C,Ai,Aj) = Ai ·CAj = ai · aj with i, j ∈ [1, n] and i 6= j. (24)

Notably, the coupling invariants are pseudo- or quasi-invariants in the sense that their
value depend on the sense of vectors ai. Also, soft-tissue models are typically charac-
terized by nf (dispersed) fiber families within a plane. In this case, n = nf + 1 and an
becomes the normal vector in equation (24), i.e. ak · an = δkn, with k = 1, . . . , nf .

The following relations can be established by virtue of the multiplicative decompo-
sition, see equation (15), i.e.

ĪI =J−2/3II with I = {1, 4i, ij}, (25)

ĪJ =J−4/3IJ with J = {2, 5i}. (26)
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2.2 Isotropic hyperelastcicty

Isotropic constitutive laws are defined in the ISO module which also includes the defini-
tion of a purely volumetric part of the strain energy function [8] defined as

ΨV (J) =


cv
β2

[
βln(J) +

1

Jβ
− 1

]
if β 6= 0

cv
2

(J − 1)2 if β = 0,

(27)

where cv is a material parameter and β is the volumetric response function coefficient.
Considering compressible models, cf. 2.2.1, the parameter cv represents the bulk modu-
lus, i.e. cv ← κ. In case of nearly-incompressible models, cf. 2.2.2, the parameter can
be thought of as a penalty factor enforcing the incompressibility constraint, i.e. J = 1,
in an approximate sense.

2.2.1 Compressible isotropic models

The compressible Ogden model (ITYPE=1) is formulated as

ΨI(λi) =
M∑
m=1

µm
αm

(λαm
1 + λαm

2 + λαm
3 − 3− αmlnJ) + ΨV (J), (28)

where µm and αm are material parameters.

Remarks:

(1) The compressible neo-Hookean model is obtained as a special case, i.e. M = 1 and
α1 = 2.

(2) In the limit of infinitesimal deformations, the model is consistent with the linear
theory of elasticity, i.e. Hooke’s law is recovered with Lamé coefficients λ ≡ cv and

µ ≡ 1

2

∑M
m=1 µmαm.

The compressible Holzapfel-Ogden model (ITYPE=3) is given as

ΨI(I1, J) =
k1

2k2

[
ek2(I1−3) − 1

]
− k1

2
lnJ + ΨV (J), (29)

where k1 and k2 are material parameters.

2.2.2 Nearly-incompressible isotropic models

The constrained or nearly-incompressible Ogden model (ITYPE=-1) is written as

ΨI(λ̄i, J) =

3∑
i=1

M∑
m=1

µm
αm

(
λ̄αm
i − 1

)
+ ΨV (J), (30)
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where µm and αm are material parameters.

Remarks:

(1) The nearly-incompressible neo-Hookean and the Mooney-Rivlin models are ob-
tained as a special cases, with M = 1, α1 = 2 and M = 2, α1 = 2, α2 = −2,
respectively.

(2) By setting β = −1 in equation (27), ∗MAT 295 yields an identical formulation with
∗MAT 077 O.

The nearly-incompressible Yeoh model (ITYPE=-2) can be written as

ΨI(Ī1, J) = c1

(
Ī1 − 3

)
+ c2

(
Ī1 − 3

)2
+ c3

(
Ī1 − 3

)3
+ ΨV (J), (31)

where ci, with i = 1, 2, 3, are material parameters satisfying the following conditions:
c1 > 0, c2 < 0, and c3 > 0.
The nearly-incompressible Holzapfel-Ogden model (ITYPE=-3) takes the following form

ΨI(Ī1, J) =
k1

2k2

[
ek2(Ī1−3) − 1

]
+ ΨV (J), (32)

where k1 and k2 are material parameters.

2.3 Ansotropic hyperelasticity

2.3.1 Generalized structure tensor

Anisotropy is introduced by collagen fibers embedded within the isotropic ground matrix
of soft tissues, e.g. arterial walls, skin, and skeletal muscle. Experimental studies of their
micro-structure suggest that the embedded fibers are highly dispersed or, in other words,
follow a spatially varying distribution. To this end, accounting for fiber dispersion in
the constitutive model is recommended if not imperative.

Generally, there are two methods to incorporate fiber dispersion in continuum con-
stitutive laws, namely the angular integration (AI) [17] and the generalized structure
tensor (GST) based approaches [5, 10]. It has recently been shown that the two meth-
ods yield virtually the same results [12]; however, in view of numerical implementation,
accuracy, and efficacy, the latter formulation is more attractive and as a consequence
also implemented in LS-DYNA.

The reference structure tensor allows us to account for a rotationally non-symmetric
fiber dispersion along an arbitrary mean reference fiber direction [10] and is formulated
as

H = AI +BA⊗A+ CN ⊗N , (33)

where the symbols A, B, and C = 1 − dA − B, with d = 2, 3 denoting the prob-
lem dimension, are parameters obtained from experimental data assuming a probability
density function that best describes the fiber dispersion. The symbols I, A, and N
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designate the second order identity tensor, a unit reference mean fiber direction, and the
corresponding unit reference normal, respectively. It is worth noting that equation (33)
includes several special cases of fiber dispersion which are summarized in Table 1.

Dispersion A B H

no 0 1 A⊗A
isotropic 1/3 0 1/3I

transversely isotropic A 1-3A AI + (1− 3A)A⊗A
planar isotropic 1/2 0 1/2I

planar A 1-2A AI + (1− 2A)A⊗A

Table 1: Special cases of the dispersion model

2.3.2 Anisotropic models

Anisotropic constitutive laws are defined in the ANISO module. Currently, one may in-
voke either a Holzapfel-Ogden model or the frame-invariant Fung formulation. While the
former model allows us to exploit the full potential of the generalized structure tensor,
the latter formulation relies on its simplified form.

Similarly to the convention invoked in the ISO module, the sign of the anisotropic
model type, i.e. ATYPE, is used to distinguish between nearly-incompressible and com-
pressible formulations. In what follows, the compressible models are shown noting that
their nearly-incompressible counterparts are easily obtained by virtue of the multiplica-
tive decomposition, see section 1.2.

The general form of the Holzapfel-Ogden model (ATYPE=±1) [11] may be written as

ΨA (F ,H i,H ij) =

nf∑
i=1

ΨFi (F ,H i) +

n∑
i,j=1
i<j

ΨCij (F ,H ij) , (34)

where ΨFi is the fiber model associated with the ith fiber family, ΨCij is the coupling
or interaction model between the ith and jth characteristic material directions with the
corresponding reference structure tensor defined as

H ij =
1

2
(Ai ⊗Aj +Aj ⊗Ai) . (35)

A distinct fiber model may be chosen for each embedded fiber family i ∈ [1, nf ]. The
available fiber models include the Holzapfel-Gasser-Ogden and the Freed-Doehring mod-
els. The phenomenological Holzapfel-Gasser-Ogden model (FTYPE=1) [9] for the ith fiber
family is given as

ΨFi (F ,H i) = χi
k1i

2k2i

[
ek2iE

2
i − 1

]
, (36)

where k1i is the fiber modulus, k2i is a dimensionless coefficient, and the Ei = tr (hi)−1
is Green-Lagrange strain-like quantity defined in terms of the spatial structure tensor
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hi = FHF T . The symbol χi in equation (36) designates the tension-compression switch,
i.e.

χi =

{
1 if λi > 1,

0 otherwise.
(37)

The structural Freed-Doehring model (FTYPE=2) [3] is more complex and therefore will
be omitted here. The reader is advised to consult the original publication for more de-
tails.

Optionally, one may consider to add the simplified Holzapfel-Ogden model (INTYPE=1)
[9, 2] where a single coupling invariant is introduced between the orthogonal character-
istic material directions identifying the fiber and sheet orientations, respectively, i.e.

ΨC12 (F ,H12) =
k1

2k2

[
ek2I

2
12 − 1

]
, (38)

where k1 and k2 is the fiber interaction modulus and a dimensionless coefficient, respec-
tively.

Remarks:

(1) The sign of ATYPE also influences the sign of FTYPE and INTYPE used in the
Holzapfel-Ogden models. Consequently, a negative ATYPE indicates a pure iso-
choric formulation such that ΨA (F ,H i,H ij)← ΨA

(
F̄ , H̄ i, H̄ ij

)
where by virtue

of the multiplicative decomposition, see equation (15),

H̄K = J−2/3HK with K = {i, ij}. (39)

(3) The type of isotropic and anisotropic models, i.e. ITYPE and ATYPE, may be con-
trolled separately which enables the use of hybrid formulations, e.g. Nolan et al.
[19].

(3) There has been a lot of confusion about the tension-compression switch of the fiber
model, see equation (37), in the literature [13]. Therefore it is worth noting that
the ith fiber model is only activated if λi > 1 and not λ̄i > 1, see equation (17),
for nearly-incompressible models.

(4) The model proposed by Freed et al. [4] is a special case of the general structure
tensor-based formulation presented in section 2.3. In there rotational symmetric
fiber dispersion is assumed and parameters Ai and Bi ∀i were determined using a
normal distribution.

3 Electromechanical models

Electromechanical models describe the contraction of myofibrils within a myofiber (mus-
cle cell) after a wave of electrical activation potential propagates through the myocardium
[16]. Contraction of the muscle, in its essence, is regulated by the concentration of cal-
cium ions (Ca2+) within the muscle cell.
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3.1 Active models

Active models are defined in the ACTIVE module. Active models describe the relationship
between the evolution of cytosolic calcium ion concentration and tension developed in
the tissue, i.e. the conversion of chemical to mechanical energy.

The active Kirchhoff stress tensor is given as

τ (A) =
∑
i∈A

τ [ā⊗ ā+ f (t̄⊗ t̄+ n̄⊗ n̄)] , (40)

where τ is the active fiber stress, ā is the unit current mean fiber direction, i.e. ā =
a/‖a‖, f ∈ [−1, 1] is a scaling factor, n̄ is the unit current normal, i.e. n̄ = n/‖n‖ with
n = FN , and t̄ = n̄× ā such that {ā, t̄, n̄} forms an orthonormal basis. The symbol A
denotes the index set of fiber families along which active stresses are developed. Active
stresses are currently limited to developed either along (and if f 6= 0 transverse to) all
(ACDIR = 0) or a predefined mean fiber family direction (ACDIR = i, with i ∈ [1, nf ]).
Furthermore, the stresses are assumed be additive, i.e.

τ := τ (P ) + τ (A), (41)

where τ (P ) designates the passive stresses which can be derived from the strain energy
functions discussed in section 2, see e.g. [8] or [20] for more details, and τ (A) represents
the active stresses as defined in equation (40).

The modified Hill equation governing chemical equilibrium is customarily used to
compute the active fiber stress, i.e.

τ = c

[
Ca2+

]n[
Ca2+

]n
+
[
Ca2+

50

]n τmax (42)

where τ is the active fiber stress, c is an internal variable,
[
Ca2+

]
designates the cytosolic

calcium concentration,
[
Ca2+

50

]
is the calcium concentration at τ = τmax/2 often referred

to as calcium sensitivity, n denotes the Hill coefficient, and τmax is the maximum iso-
metric tension achieved at the longest sarcomere length and maximum peak intracellular
calcium concentration

[
Ca2+

max

]
. Dependent on the choice of the internal variable c and

calcium concentration
[
Ca2+

50

]
, one may distinguish different active phenomenological

models.
The Guccione-Waldman-McCulloch model (ACTYPE=1) [7] accounts for the change in

the activation curve due to initial sarcomere length, i.e.

[
Ca2+

50

]
[λ (t)] =

[
Ca2+

max

][
eb(λL−l0) − 1

]1/2 , (43)

where b is a shape coefficient, λ desinates the fiber stretch, L is the reference or stress
free sarcomere length, and l0 > L is the sarcomere length at which no active tension
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develops. Notice the current sarcomere length, i.e. l(t) = λ(t)L, in the denominator of
equation (43). The internal variable is defines as

c [λ (t) , t] =
1− cos (ω)

2
(44)

with

ω =



π
t− t0
dtmax

if t0 ≤ t < t0 + dtmax

π
t− (t0 + dtmax) + dtr

dtr
if t0 + dtmax ≤ t < t0 + dtmax + dtr

0 if t < t0 and t0 + dtmax + dtr ≤ t,

(45)

where t0 is the time at which active stress development begins, while dtmax and dtr
designate the time duration to reach peak tension and relaxation, respectively. The
relaxation duration is assumed to take the following linear form

dtr [l (t)] = mrl + tr, (46)

where mr and tr denote the slope and time intercept of the relaxation duration-sarcomere
length relation.

According to the Hunter-Nash-Sands model (ACTYPE=3) [15], the calcium sensitivity[
Ca2+

50

]
is assumed to be constant, i.e. independent of the sarcomere length, in equation

(42) and the internal variable is defined as

c [L, λ (t)] = 1 + ηL (λ− 1) , (47)

where η is a material parameter. Combining equations (43) and (47) in equation (42)
yields the Guccione-Waldman-McCulloch/Hunter-Nash-Sands model (ACTYPE=2).

The Hunter-Nash-Sands/Hunter-McCulloch-ter Keurs model (ACTYPE=4) [15, 14],
the calcium sensitivity

[
Ca2+

50

]
is constant, the internal variable is defines as in equation

(47), and the the evolution of intracellular calcium ion concentration is closely approxi-
mated by [

Ca2+
]

(t) =
[
Ca2+

0

]
+
([

Ca2+
max

]
−
[
Ca2+

0

]) t− t0
tCa

e[1−(t−t0)/tCa], (48)

where t0 and tCa is the local activation time and a shape parameter, respectively. Note
that t0 ≤ t and therefore t− t0 = 0 if t < t0 from the numerical perspective.

Remarks:

(1) Considering implicit dynamics, the active part of the elasticity tensor is formu-
lated in a consistent fashion for all active models except the Guccione-Waldman-
McCulloch model (ACTYPE=1) where a modified formulation, assuming ∂τ/∂I4 = 0,
is invoked for increased computational performance.
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3.2 Electromechanical coupling

All active models listed in section 3.1 can be used to couple electrophysiology and
solid mechanics and ultimately to perform electrophysiology-fluid-structure interaction
(EFSI). The coupling between electrophysiology and solid mechanics or fluid-structure
interaction (FSI) is currently unidirectional in the sense that material conductivity is in-
dependent of the current metric tensor. The mechanical response or it’s onset is triggered
by either the calcium ion concentration (ACTYPE=1-3) or the associated transmembrane
potential (ACTYPE=4).
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