

A Tutorial on How to Use Implicit LS-DYNA®

Roger Grimes LSTC 12th International LS-DYNA Users Conference June 2012

What is Different About Implicit?

- The Stiffness Matrix
 - Time is dominated by Numeric Factorization
 - Memory AND Disk Storage is dominated by storing the Factorization.

- Memory Management
- 1/0
- Debugging Tools
- Details are in the proceedings paper or on LSTC ftp site in outgoing/grimes/implicit_papers/

Memory Management

- This talk focuses on using the Hybrid Parallel version of LS-DYNA.
- Most points can be used for SMP and nonhybrid MPP parallel versions.
- Memory Management is key for using Implicit for large models
 - Understand your computational environment
 - Understand how Implicit is using memory

Computer Environment

- Distributed memory/massively parallel computing environments are made up of computational nodes.
 - No. of computational cores per node
 - Amount of RAM per node
 - Local or network I/O system for each node

Why Hybrid?

- Using MPI distributes processes across the computational cluster.
- We recommend using Hybrid version and a Round Robin assignment
 - to spread the processes around the cluster
 - keep the number of local processes to 1 or 2.
 - keeps the memory intact

Keeping Memory Intact

Memory Specification

• For Implicit you can use about 75% of RAM for the memory=xxxxM.

16 Gbytes		48 Gbytes	
P_{ℓ}	Memory	P_{ℓ}	Memory
1	1500M	1	4500M
2	800M	2	2200M
4	400M	4	1100M
8	200M	8	550M

• Do not use AUTOMEMORY or memory2= for Implicit.

RAM per Node

- RAM required (estimated)
 - Let N be the global number of nodes in the model
 - Let P be the number of MPP processes being used
 - Past experience shows Implicit needs about (440/P + 75) * N
- RAM per node is a limiting factor!!!!!
 - Let P_local be the number of MPP processes being used on a specific computational node
 - Amount of available memory is

(0.75 * RAM / 8) / P_local

Number of Processes

• Need P and P_local such that

(440/P + 75) * N < (0.75 * MEM / 8) / P_local

• Easiest to start with P_local = 1

– Keeps memory intact

• Then choose P appropriately

Where Hybrid Comes in

- Why did I just pay for all of those cores?
 - You want me to use just 1 MPI process per compute node!
 - What about all of those cores?
- Use NCPU=# of cores per compute node
 - Uses SMP parallelism on the compute node to recover some if not all of the available parallelism.

Understanding Implicit use of Memory

- Use LPRINT = 2
- Look for

Start of implicit storage allocation – locend = End of implicit storage allocation – locend = expanding memory to xxxx implicit matrix storage storage currently in use expanding memory to xxxx linear eqn. solver

- Implicit uses disk to store data to reduce requirements for RAM.
- This I/O is all scratch and can be intensive.
- Use local (to the computational node) I/O system. p=pfile should contain

dir { local /local/directory rmlocal transfer_files transfer_scr }

• Do not use network mounted I/O system for these files.

Model Debugging

- LPRINT = 3
 - Extra debug checking
 - Separable components check indicates small parts not connected to main model
- Eigenvalue computations
 - Finds rigid body modes that causes globally singularities in the stiffness matrix
 - Look for 'No. of modes to left'

Model Debugging #2

- If you have a large number of rigid body modes look for
 - Elements not connected to the model.
 - The separable component messages should point these out.
 - Look for shell elements coating solid element parts.
 - These elements probably have zero rotational stiffness because the elements are very very thin.
 - Such elements must be membrane elements.

- Nonlinear solution for implicit can output each iteration search direction to a d3plot like database
 - d3iter
 - D3itctl is 6th field on 2nd line of
 *CONTROL_IMPLICIT_SOLUTION

Implicit Loves Constraints

- Implicit loves constraint equations.
- Penalty based contact can cause problems
- Switch all use of

*CONTACT_TIED_xxxxxx_OFFSET

or

*CONTACT_TIED_xxxxxx_BEAM_OFFSET

to

*CONTACT_TIED_xxxxxx_CONSTRAINED_OFFSET

Details in the Paper

- See the paper in the proceedings for details
- Both paper and presentation will be on LSTC ftp site in outgoing/grimes/implicit_papers/

- Thanks for listening
- Questions?