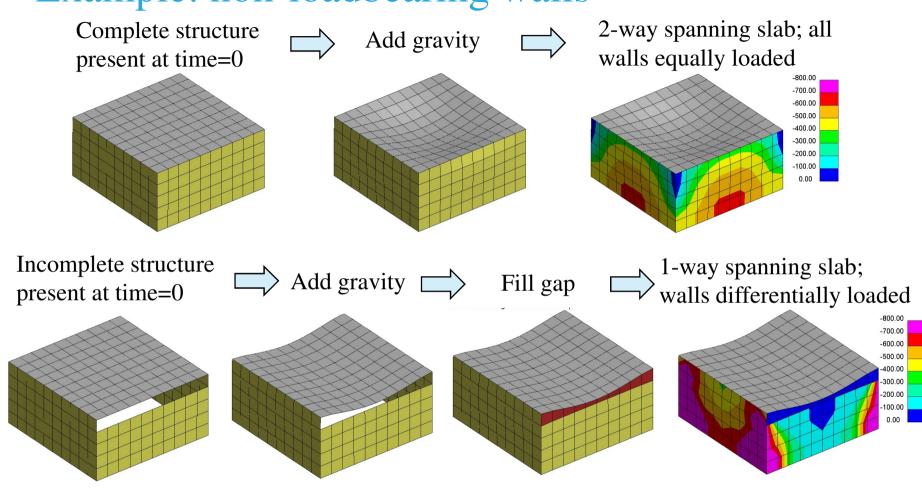
LS-DYNA features: Staged Construction *CONTROL_STAGED_CONSTRUCTION etc

This presentation is a basic introduction to Staged Construction in LS-DYNA. See also the Remarks for *CONTROL_STAGED_CONSTRUCTION in the Keyword Manual.

Staged construction: what is it?

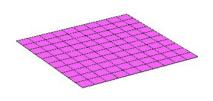
• Break the analysis into periods of time that can be referenced in loading definitions and rerun separately

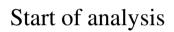
- Introduce parts sequentially during the analysis, including selfweight, e.g. new construction
- Remove parts at particular times during the analysis, e.g. excavating soil, removing temporary props
- With the explicit analysis method, we use time scaling to reduce the analysis time to the order of 10-100 seconds, i.e. there is a scaling factor between real-life time and analysis time.
- With the short analysis time comes a risk of introducing unrealistic dynamic effects. These are reduced by:
 - Applying and removing loads gradually (ramp, not step)
 - Applying damping (e.g. *DAMPING_GLOBAL)

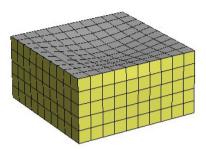


Staged construction analysis: why?

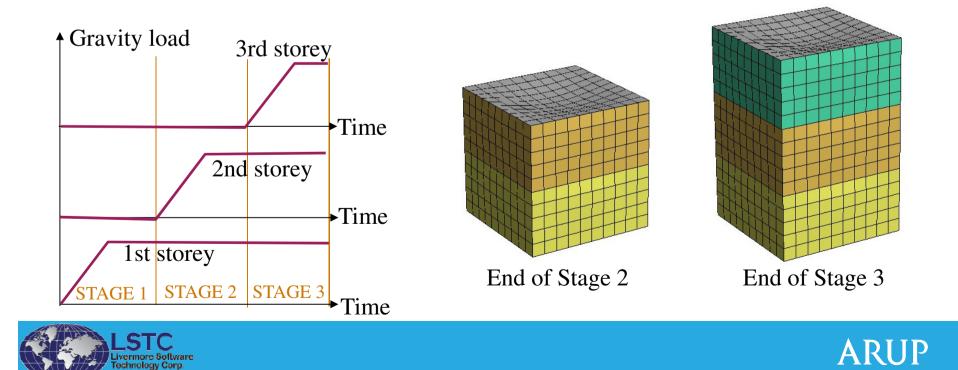
- Set up correct initial condition for main analysis
 - E.g. prepare model for a seismic analysis
 - In-situ stresses/deformation may be dependent on construction sequence
 - Set up correct stresses in load-bearing versus non-loadbearing walls
 - Retro-fit materials should not be stressed by the weight of the structure
- Analyse conditions during construction
 - Examine risk of failures when structure is incomplete
 - Soil heave/settlement in response to excavation and new construction


Example: non-loadbearing walls





Example

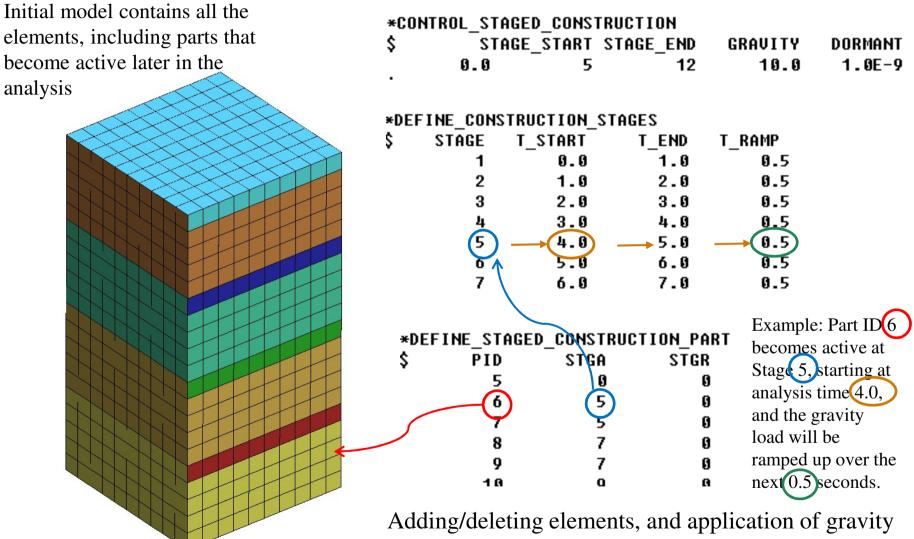

- Parts added sequentially
- As each part is added, its self-weight is automatically ramped up from zero to its full value

End of Stage 1

Staged Construction Keywords

Main keywords:

- *CONTROL_STAGED_CONSTRUCTION
 - Which stages should be run; gravity acceleration to be applied
- *DEFINE_CONSTRUCTION_STAGES
 - Define the start and end times of each stage
- *DEFINE_STAGED_CONSTRUCTION_PART (_SET)
 - Define the stages at which parts become active or are removed


Subsidary keywords (not usually defined in the keyword file, but LS-DYNA creates them automatically in response to the above):

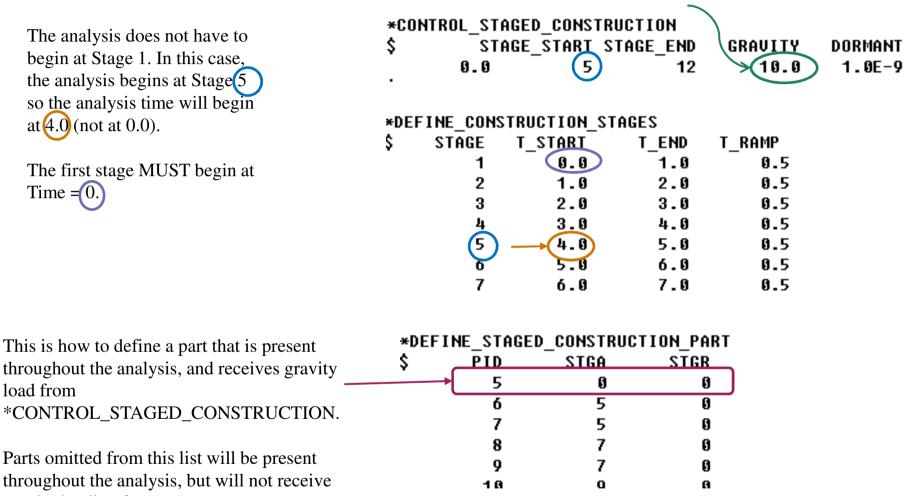
- *LOAD_STIFFEN_PART
- *LOAD_REMOVE_PART
- *LOAD_GRAVITY_PART

Example: keywords

loading, is managed automatically by LS-DYNA

ARUP

Notes


The analysis does not have to begin at Stage 1. In this case, the analysis begins at Stage 5 so the analysis time will begin at 4.0 (not at 0.0).

The first stage MUST begin at Time = 0.

This is how to define a part that is present

Parts omitted from this list will be present

Acceleration due to gravity is defined here. Gravity will be applied to all parts defined under *DEFINE_STAGED_CONSTRUCTION_PART. Do NOT use *LOAD BODY in addition to staged construction.

*CONTROL_STAGED_CONSTRUCTION.

ARUP

gravity loading from

load from

Active, Dormant, and Removed Parts

- "Active" is the normal condition for elements in an LS-DYNA analysis.
- "Dormant" is a state specific to Staged Construction and occurs before the analysis reaches the stage where the part becomes active (STGA on *DEFINE_STAGED_CONSTRUCTION_PART).
 - The elements are present in the analysis and are processed by LS-DYNA in the normal way, but any stresses or forces generated are scaled by the factor given on *CONTROL_STAGED_CONSTRUCTION – 1.0e-6 by default.
 - In the d3plot file, dormant elements are flagged as "deleted" so that post-processors automatically blank them out.
 - When they become active, the stress and history variables are re-initialized.
- Parts are removed when the analysis reaches the stage STGR on
 *DEFINE_STAGED_CONSTRUCTION_PART. These elements are deleted from the analysis and are no longer processed by LS-DYNA.
 - To reduce any dynamic response, gravity load is automatically ramped down to zero before the elements are deleted

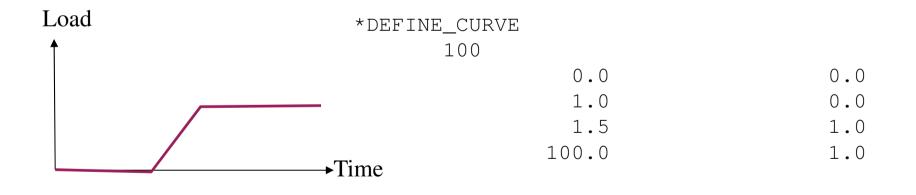
Different behaviour in LS-DYNA R11 versus R10

- When a Part becomes active, the behaviour is different in R11 onwards compared to R10 and previous.
- In R11 onwards, the stiffness and strength jump immediately to their full values.
- In R10 and previous, the stiffness and strength were ramped up from zero in the same way as the gravity loading.
 - Disadvantage: unrealistic deformations can occur while the part is still soft/weak.
- In all versions, the gravity load ramps up as described in other slides.
- In all versions, the stiffness and strength are ramped down before removal of the Part (due to STGR on *DEFINE_STAGED_CONSTRUCTION_PART)
- If desired, the R11 behaviour can be obtained in previous versions by the methods described on the next slide.

Overriding the default behaviour

The behaviour of *DEFINE_STAGED_CONSTRUCTION_PART described in previous slides can be overridden if desired:

- The variation of stiffness and strength versus time can be overridden using *LOAD_STIFFEN_PART with a loadcuvre
 - e.g. to make a Part reach its full stiffness and strength more quickly than the ramp time defined on *DEFINE_STAGED_CONSTRUCTION_PART.
- The variation of gravity load with time can be overridden using *LOAD_GRAVITY_PART with a loadcurve
 - e.g. to ramp up the gravity load slower than the ramp time defined on *DEFINE_STAGED_CONSTRUCTION_PART.
 - e.g. to apply less or more than the default amount of gravity loading.



Applying other types of loading

• Gravity load is applied automatically as described in previous slides

- Other loading (e.g. *LOAD_NODE, *LOAD_SEGMENT_SET etc) can be defined in the keyword file in the normal way.
 - It is recommended to use *DEFINE_CURVE to ramp up the loading, e.g.:

Initial stress: beginning of first Stage

• To minimise dynamic effects, it is recommended to set an initial stress state in equilibrium with the initial loading.

• For parts that experience loading that ramps up from zero, no initial stress is required because the initial loading is zero.

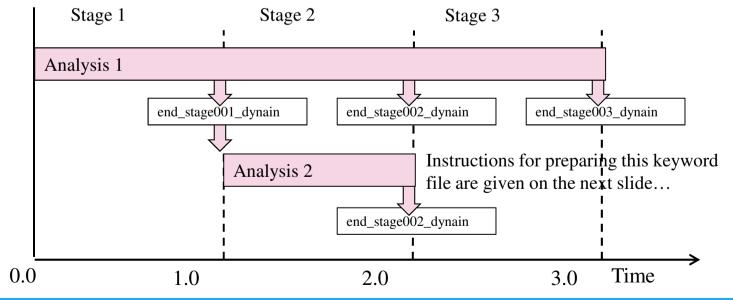
• For parts that are active and receiving full gravity loading at the start of the first stage (STGA=0 on *DEFINE_STAGED_CONSTRUCTION_PART), it is desirable to define initial stresses balancing the gravity load, for example using *INITIAL_STRESS_DEPTH. This method is recommended for soil.

Timestep control (explicit analysis method)

• Active elements have the usual influence on timestep and/or mass-scaling.

• Dormant elements are treated as having their usual mass, but reduced stiffness; hence the timestep calculated for these elements is much larger than if the same elements were active.

• If no elements are active (e.g. at the start of the analysis) then LS-DYNA may set a very large timestep. Avoid this possibility using LCTM on *CONTROL_TIMESTEP to define a maximum timestep size for the analysis.



Running or rerunning a subset of stages

• At the end of each stage (as defined on *DEFINE_CONSTRUCTION_STAGES), LS-DYNA writes a file named (for example) *end_stage001_dynain* for the end of stage 1.

• These dynain files contain the information needed to start a new analysis from the same state: deformed node coordinates, stress and history variables for every element, etc.

Running or rerunning a subset of stages

Keyword file for Analysis 2: Initial keyword file (Analysis 1): Copy *CONTROL STAGED CONSTRUCTION ***CONTROL STAGED CONSTRUCTION** 0,1,3 (run from stage 1 to stage 3) 0,2,2 (run from stage 2 to stage 2) *CONTROL_... *CONTROL ... *DATABASE ... *DATABASE ... *MAT ... *MAT ... Remove keywords *SECTION_... *SECTION_... that are present in the *PART ... *PART dynain file and any *NODE *NODE *INITIAL cards; add end_stage001_dynain *ELEMENT_... ***INCLUDE** *ELEMENT ... contains: reference to the *DEFINE ... *DEFINE ... dynain file *INITIAL ... *INITIAL ... *BOUNDARY SPC *BOUNDARY_SPC *BOUNDARY_SPC *NODE *LOAD ... *LOAD ... *ELEMENT ... ***INCLUDE** *INITIAL STRESS... (path)/end_stage001_dynain *INITIAL (other) ...

Limitations

• Staged Construction capabilities are available only for certain element types and formulations.

- This information applies to versions up to and including R10.
- *ELEMENT_SOLID: ELFORM=1,2,10,15
- *ELEMENT_SHELL: ELFORM=1-11,16,17
- *ELEMENT_BEAM: ELFORM=1,2,3,6,9,11,12
- Further ELFORMs, and support for *ELEMENT_TSHELL, will be added in future LS-DYNA releases.

