ON QUASILINEAR VISCOELASTIC CONSTITUTIVE EQUATIONS

William W. Feng

Livermore Software Technology Corp.
7374 Las Positas Road
Livermore, CA 94550

April 16, 2004

Experimental relaxation data

Experimental relaxation data

Stress-strain curve

Material constants for the stress-strain curve

$$
\begin{array}{lll}
C 1=0.91 E+02 & C 2=0.23 E+03 & C 3=-0.19 E+04 \\
C 4=-0.17 E+05 & C 5=-0.45 E+05 & C 6=-0.42 E+05
\end{array}
$$

Since the relaxation is performed at a strain -0.355 and the measured stress is -13.1457; hence, all C's for LS-DYNA must be divided by 13.1457. Or:

$$
\begin{array}{lll}
\mathrm{C} 1=0.692 \mathrm{E}+01 & \mathrm{C} 2=0.175 \mathrm{E}+02 & \mathrm{C} 3=-0.144 \mathrm{E}+03 \\
\mathrm{C} 4=-0.129 \mathrm{E}+04 & \mathrm{C} 5=-0.342 \mathrm{E}+04 & \mathrm{C} 6=-0.319 \mathrm{E}+04
\end{array}
$$

Semi-log plot of the experimental relaxation data

Selected experimental relaxation data used in the analysis

Comparison between constitutive equation and test data (35.5\% strain)

Comparison between constitutive equation and test data (35.5\% strain)

All G's must be divided by 0.355 and 2*(1+nu) for LS-DYNA input.

I	$G(I)$	$B E T A(I)$
0	$6.515 E+00$	$0.0000 E+00$
1	$6.825 E+01$	$0.1000 E-04$
2	$1.7192 E+00$	$0.1000 E-03$
3	$32873 E+00$	$0.1000 E-02$
4	$5.4620 E+00$	$0.1000 E-01$
5	$4.5437 E+01$	$0.1000 E+00$

Material constants for LS-DYNA

$$
\begin{array}{ccc}
C 1=0.692 E+01 & C 2=0.175 E+02 & C 3=-0.144 E+03 \\
C 4=-0.129 E+04 & C 5=-0.342 E+04 & C 6=-0.319 E+04 \\
I & G(I) & B E T A(I) \\
0 & 6.515 E+00 & 0.0000 E+00 \\
1 & 6.825 E+01 & 0.1000 E-04 \\
2 & 1.7192 E+00 & 0.1000 E-03 \\
3 & 32873 E+00 & 0.1000 E-02 \\
4 & 5.4620 E+00 & 0.1000 E-01 \\
5 & 4.5437 E+01 & 0.1000 E+00
\end{array}
$$

