ON QUASILINEAR VISCOELASTIC CONSTITUTIVE EQUATIONS

William W. Feng

Livermore Software Technology Corp. 7374 Las Positas Road Livermore, CA 94550

April 16, 2004

Experimental relaxation data

Material constants for the stress-strain curve .

Since the relaxation is performed at a strain –0.355 and the measured stress is -13.1457; hence, all C's for LS-DYNA must be divided by 13.1457. Or:

C1 = 0.692E+01 C2 = 0.175E+02 C3 = -0.144E+03C4 = -0.129E+04 C5 = -0.342E+04 C6 = -0.319E+04

Semi-log plot of the experimental relaxation data

Selected experimental relaxation data used in the analysis

Comparison between constitutive equation and test data (35.5% strain)

Comparison between constitutive equation and test data (35.5% strain)

All G's must be divided by 0.355 and 2*(1+nu) for LS-DYNA input.

Ι	G(I)	BETA(I)
0	6.515E+00	0.0000E+00
1	6.825E+01	0.1000E-04
2	<i>1.7192E+00</i>	0.1000E-03
3	32873E+00	0.1000E-02
4	5.4620E+00	0.1000E-01
5	4.5437E+01	0.1000E+00

Material constants for LS-DYNA

C1 = 0.692E + 01 C2 = 0.175E + 02 C3 = -0.144E + 03

x

C4 = -0.129E + 04 C5 = -0.342E + 04 C6 = -0.319E + 04

 $I \qquad G(I) \qquad BETA(I)$

- 0 6.515E+00 0.0000E+00
- *1* 6.825E+01 0.1000E-04
- *2 1.7192E+00 0.1000E-03*
- *3 32873E+00 0.1000E-02*
- *4 5.4620E+00 0.1000E-01*
- 5 4.5437E+01 0.1000E+00