
Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 1

Introduction to
MPP version of LS-DYNA®

Part I

Livermore Software Technology Corporation

Jason Wang
08/09/2012

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 2

Disclaimer

The material presented in this text is intended for
illustrative and educational purposes only. It is not
intended to be exhaustive or to apply to any particular
engineering design or problem. Livermore Software
Technology Corporation assumes no liability or
responsibility whatsoever to any person or company for
any direct or indirect damages resulting from the use of
any information contained herein.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 3

Contents

� Introduction LS-DYNA SMP and MPP

� Scalabillity of MPP-DYNA

� Special Decomposition

� Restart and Pre-decomposition

� General Guidelines and Debugging

� Recent Development

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 4

Introduction LS-DYNA
SMP and MPP

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 5

� Development History

� What drives the MPP development?

� Implementation of SMP and MPP

� Implementation in Production

� Numerical Variation

� Performance Comparison between SMP
and MPP

Introduction

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 6

� Public domain DYNA3D, Dr. John O. Hallquist/Lawrence
Livermore National Laboratory, 1976

� Weapon simulations

� LSTC and LS-DYNA3D® founded by Dr. J. O. Hallquist in 1988

� Recognized market for commercial applications

� In the 1990’s …

� LS-DYNA2D and LS-DYNA3D® combined (LS-DYNA)

� Implicit capability (LS-NIKE3D) introduced to LS-DYNA®

� Thermal capability (TOPAZ) introduced to LS-DYNA®

� Introduced MPP capability

� Eulerian/ALE element formulations and Euler/Lagrange coupling
introduced

� LS-POST, LS-OPT® introduced

Development History

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 7

� Since 2000…

� Expanded MPP capability

� Meshless methods introduced (SPH, DEM, EFG, etc.)

� Integrated Multiphysics Solvers (CFD, EM, etc.)

� LS-POST expanded to include preprocessing (LS-PrePost®)

� Worldwide distribution: US, UK, Nordic countries, France, Germany,
Italy, Netherlands, Japan, Korea, China, Taiwan, India, Brazil; also
through ANSYS and MSC.

� 60+ full-time employees + numerous consultants

� Products:

� LS-DYNA®

� LS-PrePost®

� LS-OPT®

� FE Models: Dummies, barriers, head forms
� USA (Underwater Shock Analysis)

Development History

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 8

� Automotive

� Crash and safety
� Durability
� NVH

� Aerospace

� Bird strike

� Containment

� Crash
� Manufacturing

� Stamping

� Forging

� Structural
� Earthquake safety

� Concrete structures

� Electronics
� Drop analysis
� Package design

� Thermal

� Defense
� Weapon design

� Blast response
� Penetration
� Underwater shock analysis

� Also, applications in biomedical,
sports, consumer products, etc.

Development History
More Applications Fields

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 9

� Combine the multi-physics capabilities

� Explicit/Implicit solver
� ALE, SPH, EFG
� Heat Transfer

� Airbag particle method

� Discrete Element Method
� Acoustics (USA)
� Interfaces for users, i.e., elements, materials, loads

� Electromagnetic (version 981)

� Incompressible fluids (version 981)
� CESE compressible fluid solver (version 981)

� into one scalable code for solving highly nonlinear transient problems to
enable the solution of coupled multi-physics and multi-stage problems.
� MPP

Development History
Different Physics

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 10

� SMP (Shared Memory Parallel)
� Start and base from serial code

� Using OpenMP directives to split the tasks

� Only run on SMP (single image) computers

� Scalable up to ~8 CPUs (Depends on model – see next slide)

Development History

SMP

SMP can run multiple CPU’s but
they are placed in the same computer

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 11

Development History

MPP is a special version of LS-DYNA®, that is developed to run on a

number of computers connected in a network. For large models this
it is necessary to have large computer resources to finish a
simulation in an acceptable time.

MPP

� MPP (Message Passing Parallel)

� Using the domain decomposition method

� Using MPI for communications between sub-domains

� Work on both SMP machines and clusters

� Scalable >> 8 CPUS

� Dramatically reduced elapsed time and the simulation cost

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 12

� MPP-DYNA was initiated in 1993 (version 930)

� Nearly fully supported contact algorithms (1996)

� P-file, composition and analyze in one run (1996)

� CONSTRAINED_options (1996)

� Limited ALE capabilities (1998)

� SPH (2002)

� EFG (971)

� Thermal (971)

� Constantly development, recently some feature first
in MPP, before they appears in MPP!

Development History

Many of the features were implemented as customers
required it. This means that features were not
implemented in option blocks.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 13

Implementation of SMP Parallelism

Main Loop

$ $ $ $

Main Memory

NUMA, SMP, etc.

Memory Bus

SMP Box
Process Elements

Contact

Constraints

Update Nodes

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 14

Implementation of MPP Parallelism

Main Loop

$ $ $ $

MPP

LAN

Process Elements

Contact

Constraints

Update Nodes

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 15

Implementation of SMP and MPP

� SMP

� Long history of production use

� Stability

� Rich features and many advanced new features

� Easier for most of developers

� MPP

� New algorithms

� Parallelism requires new algorithms

� Some features unsupported

� Better speedup

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 16

Implementation of SMP and MPP

� *AIRBAG_

� *ALE_

� *BOUNDARY_

� *COMPONENT_

� *CONTACT (major – see “Contact” Section)

� *CONSTRAINED_

� *DAMPING_

� *DATABASE_

� ………

But *ELEMENT_ and *MAT_ are the same !!

Some of the Different Routines

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 17

What Drives the MPP Development?

Software

Hardware Users

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 18

What Drives the MPP Development?

� MPP development is mainly driven by the automotive
and the aerospace industry

� Crash test – impact of vehicle

� Airbag deployment – control volume, ALE, and CPM

� Manufacturing of parts – primarily Sheet Metal Forming

� Hydroplaning – ALE

� Bird impact – ALE / SPH

� Military applications

� Explosions – ALE, SPH, DES

� Penetration problems – Fine mesh

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 19

Automotive – Better Prediction

� Smaller element size

� More expensive element formulation

� Non-local failure

� Complicated spotweld capabilities (cluster of solids)

� More sophisticated material models

� Fine mesh barriers and dummies

� Crash models with stamped parts

Longer simulation time

What Drives the MPP Development?

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 20

Automotive & Military – More sophisticated problem

� Multi-physics: ALE + FSI - airbag, fuel tank

� Multi-physics: EM + metal forming

� Bio-dummies

� Explicit/Implicit analysis

Much longer simulation time

What Drives the MPP Development?

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 21

� Produce more durable end products

� Save raw material in production line
� few grams per product but save millions dollars in
production

� Product cycle reduced from 1 year to 3
months

� Turn around time in few hours

What Drives the MPP Development?
Mass Production - Cost reduction

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 22

File Server

………

Network Connection

DYNA
Computing
Node

Local I/O

DYNA
Computing
Node

Local I/O

I/O

Optional
Fast MPI
Connection

Local files

Global files

Local files

What Drives the MPP Development?
Computing environment

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 23

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1990 1995 2000 2005 2010

M
o
d
e
l
s
iz
e
 (
x
1
0
0
0
)

Turn around time
<16 hours

BT shell

Fully integrated shell
More sophisticated
mat model

HW: Vector Vector+SMP SMP+Clusters Clusters Multicores

SW: Serial Serial+SMP SMP/MPI MPI+SMP

Small elements
Solid spotweld cluster
Multi-Physics

Taurus

Neon
3 cars
car2car

Neon 1M

10M

What Drives the MPP Development?
Computing and computer technology

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 24

Implementation in Production

� Repeatability: Same decomposition = same answer

� Consistency between SMP and MPP

� Serial/SMP input = MPP input for zero conversion effort

� Decomposition+Solution in single run

� Single source for MPP and SMP for easier tracking bugs

� Supports all features/options in production models

Basic customer requirements

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 25

Implementation in Production
� MPP project starts from 1993

� Chrysler 1998
� Phase I (Q3/98) – 30 6-month old models

� Check for missing features

� SMP/MPP performance, results comparison

� Open 2 12-processor queue

� Phase II (Q1/99) – 20 production models
� SMP/MPP performance, results comparison

� Open 8 12-processor queues

� Phase III (Q2/99) - 5 models for QA
� SMP/MPP performance, results comparison

� Madymo coupling

� Open 16 12-processor queues + Open several

24-processor queues for high priority jobs

Fully production in 1999 and most jobs finished overnight

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 26

Implementation in Production

� Volvo (Q2/99)
� Metal forming 1,000,000 model – 13.5 hours

� DiamlerChrysler early 2000

� GM, Ford in production 2001

� Many suppliers start to install clusters

� Japan S and H companies

� Japan T company 2002

� P & G 2004

� Ohio H Company 2005…….

� …..

� ……

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 27

Implementation in Production

� ~ 64 CPUs SMP/Vector DYNA Nodes at 1996

800 CPUs clusters and growing

� >$100/minute at 1996 less $1/minute

� 3 days/job (100K elements) overnight turn around
time (1 million elements+more)

� 2009: 3 million elements – overnight!

Impact of Computing Environment

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 28

Numerical Variations
Example: Taurus to Rigid Pole

Frontal impact:
No. of materials: ~130

No. of shell elements: ~28,000

Simulation time: 0.10 second

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 29

Numerical Variations
Multiple processors(MPP)/1,2,4,8 CPUs

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 30

Numerical Variations
Single Processor(SMP)/Different Platforms

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 31

Numerical Variations

� Round off error – DP may give less error
� DP may not help, finer mesh may help

� For OpenMP use consistency option ncpu=-integer

� Changing number of processors 5% (MPP), however for a good
stable model the difference is small (2009)

� Differences in MPP and SMP contact

� Look for errors in the model – different platforms handles

the division by zero differently

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 32

Performance Comparison
Example: Neon Refined Model

� Frontal crash with initial speed at 31.5 miles/hour

� Model size

� Number of nodal points: 532077

� Number of shell elements: 535K

� Simulation length: 30 ms

� Model created by National Crash Analysis Center (NCAC) at
George Washington University

� One of the few publicly available models for vehicle crash
analysis

� Based on 1996 Plymouth Neon

� Modified by LSTC (refined the mesh)

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 33

Performance Comparison
1996 Plymouth Neon

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 34

Performance Comparison

After Crash

Before Crash

Simulation Results

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 35

Performance Comparison
LS-DYNA SMP and MPP

0

5000

10000

15000

20000

25000

30000

35000

1-CPU 2-CPU 4-CPU 8-CPU 16-

CPU

32-

CPU

Elapsed

Time

(sec)

SMP MPP

1.3 GHz IBM p690
Refined Neon-535k elements

SMP, MPP breakeven point: 2-4 processors

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 36

Performance Comparison

0

10000

20000

30000

40000

50000

60000

Elapsed

Time

(Seconds)

1 2 4 8 16 32

Number of CPUs

SMP

MPP

875MHz HP Superdome 3200

Refined Neon-535K Elements

LS-DYNA SMP and MPP

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 37

MPP-DYNA Scalability

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 38

MPP-DYNA Scalability

� Introduction

� Effects of Interconnects

� Distribution of the CPU time

� Effect of Decomposition

� Summary

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 39

Introduction

� Scalability: ”the ability of a problem to be solved n times faster
using n processors” [Wainscott et al, 98]

� The % scalability: Can be calculated as [Galbraith et al, 2002]:

(Elapsed time for 1 CPU / elapsed time for N CPU’s) x 100/N

� Speed Up: Elapsed time for 1 CPU / Elapsed time for N CPU’s

0

8

16

24

32

40

48

56

64

1 8 16 24 32 40 48 56 64

CPU

S
p
ee

d
 U

p

Ideal Scaling (linear scaling)

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 40

Introduction
Main factors that influence scalability/performance:

� Decomposition of the model, due to load balance

(See “Decomposition” section)

� Single node computational performance

� Communication characteristics of the interconnection
� Network: Ethernet, IB, etc

� File system: NFS, local disks, etc

� Message Passing details

� Memory/Cache System

� Model size and problem type

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 41

Introdution

~493,000 elements , 370,815 cycles
LS-DYNA/MPP 960, 6/2001

CPU# Time Speedup

1 ~21 days 1.00
4 127.03hrs 4.00
8 64.18hrs 7.92
16 32.26hrs 15.75
32 19.52hrs 26.03
64 11.05hrs 45.98
96 8.80hrs 57.74

Developement of faster mashines

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 42

Introduction

NcpuNcpuNcpuNcpu O3K/400O3K/400O3K/400O3K/400 SpeedupSpeedupSpeedupSpeedup

1111 206 h206 h206 h206 h 1.01.01.01.0

4444 52.7 h52.7 h52.7 h52.7 h 3.93.93.93.9

8888 24.7 h24.7 h24.7 h24.7 h 8888....3333

16161616 12.5 h12.5 h12.5 h12.5 h 16161616....48484848

 32 32 32 32 6.3 h6.3 h6.3 h6.3 h 33332222....7777

64646464 3.4 h3.4 h3.4 h3.4 h 66660000....6666

Simulation time down from 206 hours to 3.4 hours

DaimlerChrysler Model w168, 429,970 elements, 100 ms
simulation time. MPI Version on SGI Origin3000

0

8

16

24

32

40

48

56

64

1 8 16 24 32 40 48 56 64

Ideal O3K/400

Why MPP-DYNA ?

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 43

Introduction
� The scalability depends on the numbers of CPU’s. There
is not an ideal scaling for a large numbers of CPU’s.

� However, the new Hybrid version shows very promising
results. Results are shown in the “Resent Development”
Section.

1

6

11

16

21

26

31

16 116 216 316 416
CPU

P
er

fo
rm

a
n

ce

ideal

Total

element

contact

rigidbody

[Makino, 2008]

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 44

Effects of Interconnects

� Communication is split up into:

T_elapsed = T_computation + T_communication + T_IO

� For a cluster the communication time is basically the time required
for messages passing through the interconnection [Lin et al, 2000]

� Different types of interconnects

� 100 BASET (TCP/IP) (2009: less used)

� Gegi (TCP/IP) (2009: less used)

� InfiniBand (OFED drivers) (Good and popular)

Implicit
Explicit/Implicit

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 45

3 cars Benchmark Test

Effects of Interconnects

� Effect for the Benchmark test called 3 car Model. More
on the model in the “Benchmark Test” Section.

794776 Elements and 1046 parts.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 46

0

50000

100000

150000

200000

250000

2 4 8 16 32 48 64

Opteron + infiniband (2 GHz)

IA64 + Gige (1.5GHz)

Opteron + 100 BaseT

IA32 + 100 BaseT (2.8GHz)

3 cars Benchmark Test

Effects of Interconnects

Elapsed time

Number of CPU’s

Better interconnect gives
shorter run time

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 47

0

10

20

30

40

50

60

2 4 8 16 32 48 64

Opteron + infiniband (2 GHz)

IA64 + Gige (1.5GHz)

Opteron + 100 BaseT

IA32 + 100 BaseT (2.8GHz)

3 cars Benchmark Test

Effects of Interconnects

Number of CPU’s

Speed up

Better interconnect gives
better parallel efficiency

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 48

Distribution of CPU time

In order to investigate the scaling of different phases of the MPP
run [Zhu, 2005] made runs with the Neon (and the 3 car)
benchmark test. She looked at 3 different phases of the run:

� Initialization: The time spend on reading the deck, allocate
memory, domain composition does not scale since this is done
serial on 1 CPU. However, the time is relative small.

� Element Processing: The phase for element processing i.e.,
calculation of motion, forces, stresses etc. is scaleable and is one
of the phases where most time is used.

� Contact and Rigid Bodies: The time spend in contact can also be
significant depending of the problem. Both the contact and the
rigid body routines are scaleable.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 49

� The figure shows that the time spend in initialization and contact &
rigid body routines are increased relatively to the time spend for
element processing. These routines shows limited scaling for the
specific model.

Distribution of CPU time

[Zhu, 2005] Initialization time becomes
more important

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 50

Distribution of CPU time

[Zhu, 2005]

Contact load balancing
becomes important

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 51

1

6

11

16

21

26

31

16 116 216 316 416
CPU

P
er

fo
rm

a
n

ce
ideal

Total

element

contact

rigidbody

Distribution of CPU time

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 52

Effects of Decompositon
� Effect for the Benchmark test called Neon Model. The
model consists of 267K elements, 30 millisecond frontal
impact simulation. More on the model in the “Benchmark
Test” Section.

535068 Elements and 322 parts.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 53

Effects of Decomposition

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Numbers of CPU's

S
p

e
e

d
-u

p

Default User defined Ideal

� The data plotted are based on the work published in [Chu et.
al, 2000]. SGI machine running 30msec simulation.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 54

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Number of CPU's

S
p

e
e

d
-u

p

Default User defined Ideal

� The data plotted are based on the work published in [Roh,
2000]. Sun Machine running 10msec simulation.

Effects of Decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 55

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Numbers of CPU's

S
p

e
e

d
-u

p

Default_sgi

User defined_sgi

Ideal

Default_sun

User defined_sun

Effects of Decomposition

� Be careful with performance conclusions between platforms !
Different termination time, memory, interconnections, version of
the code etc.

New BMT rules
Fixed decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 56

Summary

� During the years LSTC has tested many different set-up for MPP.
As shown there are many potential parameters that influence the
scaling of the MPP code. Some of the most important ones are:

� Decomposition (user controlled)

� Memory/Cache System

� Interconnections

� MPI (2009: more or less same performance)

� Compiler

Setup benchmark rule !!!!

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 57

Special Decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 58

Special Decomposition
� Introduction

� Load Balancing

� General Options for MPP

� Case Study
� Crash

� Metal Forming

� ALE

� General Guidelines

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 59

Introduction

� Decomposition splits up the model in domains, which are done by the
primary processor. Ideally the computational cost for each domain should
be the same. Then there is an equal load balance.

� There are many factors affect the parallel performance

• Boundaries of the generated domains.
• Contact definitions
• Special features used in the modeling

� The default decomposition used in the code is RCB (Recursive Coordinate
Bisection)

• RCB divides the model in half, each time slicing the current piece of the
model perpendicular to one of the three axes

• The axis along which the current piece of the model is longest is chosen

• The method tends to generate cube shaped domains aligned along the
coordinate axes

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 60

Introduction
� The user decomposition can only control through the p-file in the early releases.

It can be included in the keyword commands (*CONTROL_MPP_option) from
970. If the same option is appeared in both input, the option in the pfile has the
higher priority. There are four sections: Directory, Decomposition, Contact and
General. Each section has relevant commands, see Appendix O.

� One processor is doing the decomposition, which can require a large amount of
memory, more than necessary in the simulation.

• Therefore, there are two memory options on the command line when
executing LS-DYNA® MPP:

mpirun –np 64 mpp971 i=test.k memory=80m memory2=20m p=pfile

memory is for processor 0 for decomposition and simulation. memory2 is for
the simulation for the rest of processors

• Performing multiple steps run
1. Get keyword translated to structure input
2. Use structure input to get pre-decomposition file

3. Restart job with pre-decomposition file

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 61

Load Balancing

� Decomposition method

� Recursive Coordinates Bisection (default)

� Distrorted subdomain

� Contact or coupling definitions (major)

� Different element formulation (minor)

� Force summation over shared nodes (minor)

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 62

Main Loop

$ $ $ $

MPP

LAN

Process Elements

Contact

Constraints

Update Nodes

Load Balancing

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 63

I elements

A CPU cost

K elements

C CPU cost

L elements

D CPU cost

J elements

B CPU cost

Load Balancing
(a) Element Cost

Per Domain:
Number of elements I ~ J ~ K ~ L…
CPU Cost A != B != C != D…
Number of elements I != J != K != L…..
CPU Cost A ~ B ~ C ~ D….

The Domains are based
on element cost not
number of elements

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 64

Load Balancing
(b) Contact Cost

Crashed Region

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 65

host1

29593 jason 15 0 190M 190M 6164 R 79.2 4.8 1476m mpp970

29586 jason 9 0 404M 404M 6960 S 6.7 10.3 125:38 mpp970

host2

7599 jason 18 0 178M 178M 6104 S 10.2 4.5 178:25 mpp970

7590 jason 10 0 170M 170M 5828 S 3.6 4.3 84:47 mpp970

host3

20275 jason 18 0 186M 185M 6072 R 54.8 4.7 1019m mpp970

20284 jason 9 0 166M 166M 5936 S 1.5 4.2 44:04 mpp970

host4

20849 jason 13 0 169M 169M 5884 S 16.8 4.3 56:09 mpp970

20858 jason 12 0 167M 167M 5824 S 12.8 4.2 102:27 mpp970

Load Balancing
information during execution

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 66

mes0000

Element processing ... 3.4474E+02 57.61 6.7254E+02 47.54

Contact algorithm 1.4906E+02 24.91 4.2288E+02 29.89

Interface ID 1 1.4536E+02 24.29 4.1547E+02 29.37

mes0001

Element processing ... 2.9436E+02 52.75 6.5738E+02 46.46

Contact algorithm 2.2382E+02 40.11 4.5323E+02 32.03

Interface ID 1 2.1671E+02 38.84 4.2008E+02 29.69

Interface ID 20 2.2295E+00 0.40 1.0072E+01 0.71

Interface ID 21 1.4300E+00 0.26 1.0603E+01 0.75

mes0002

Element processing ... 2.7035E+02 50.00 6.7720E+02 47.86

Contact algorithm 2.3439E+02 43.35 4.5477E+02 32.14

Interface ID 1 2.1606E+02 39.96 4.1339E+02 29.21

Interface ID 20 7.2402E+00 1.34 2.2589E+01 1.60

Interface ID 21 6.2605E+00 1.16 1.0594E+01 0.75

Load Balancing
information after execution

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 67

P-file

directory { global tempdir local /torch2/nmeng/tempdir }

decomposition { C2R 0 0 0 0 0 1 1 0 0 sy 1000 show }

contact { bucket 100 }

general { nodump }

� The p-file is case insensitive and have a free format input.

� Words and brackets must have either a space, tab or a newline character

on each side.

� Consists of four sections: directory, decomposition, contact and general

General Options for MPP

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 68

The directory option holds directory specific options

� global path

Path to a directory accessible to all processors. This directory will be created if

necessary. Default = current working directory

� local path

Path to a processor specific local directory for scratch/local files. This directory
will be created if necessary. This is of primary use on systems where each

processor has a local disk attached to it. Default = global path

� rep path

� transfer_files

Move output files back from local disk to starting directory or move restart files
from starting directory to target local disk

General Options for MPP
directory

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 69

� rx ry rz sx sy sz c2r s2r 3vec mat
See the section Decompositions for details about these
decomposition options.

� rcblog filename
This option is ignored unless the decomposition method is
RCB. If the indicated file does not exist, then a record is
stored of the steps taken during decomposition. If the file
exists, then this record is read and applied to the current
model during decomposition. This results in a decomposition
as similar as possible between the two runs. For example,
suppose a simulation is run twice, but the second time with a
slightly different mesh. Because of the different meshes the
problems will be distributed differently between the
processors, resulting in slightly different answers due to
roundoff errors. If an rcblog is used, then the resulting
decompositions would be as similar as possible.

General Options for MPP
decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 70

� slist n1,n2,n3,...
This option changes the behavior of the decomposition in the following
way. n1,n2,n3 must be a list of sliding interfaces occurring in the
model (numbered according to the order in which they appear, starting
with 1) delimited by commas and containing no spaces (eg "1,2,3" but
not "1, 2, 3"). Then all elements belonging to the first interface listed
will be distributed across all the processors. Next, elements belonging
to the second listed interface will be distributed among all processors,
and so on, until the remaining elements in the problem are distributed
among the processors. Up to 5 interfaces can be listed. It is generally
recommended that at most 1 or 2 interfaces be listed, and then only if
they contribute substantially to the total computational cost. Use of
this option can increase speed due to improved load balance.

� sidist n1,n2,n3,...
This is the opposite of the silist option: the indicated sliding interfaces
are each forced to lie wholly on a single processor (perhaps a different
one for each interface). This can improve speed for very small
interfaces by reducing sychronization between the processors.

General Options for MPP
decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 71

General Options for MPP
general

The general option holds general options.

� nodump

If this keyword appears, all restart dump file writing will be
suppressed

� nofull

If this keyword appears, writing of d3full (full deck restart) files will
be suppressed.

� nobeamout

� binoutonly

� Lstc_reduce

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 72

General Options for MPP
contact

The general option holds general options.

� groupable integer

If this keyword appears, LS-DYNA/MPP will try to group type 3,5,10
contacts into one big communicator to save communication latency.
Soft=2 contacts are not considered in this process.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 73

To View the Decomposition (a)

mpirun –np 64 mpp_executable i=input p=pfile

general
decomp { show }
contact
directory

show : output the decomposition and stop

Or in the input deck:

*CONTROL_MPP_DECOMPOSITION_SHOW

General Options for MPP

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 74

To View the Decomposition (b)

General Options for MPP

mpirun –np 64 mpp_executable i=input p=pfile

decomp { outdecomp }

outdecomp : output the decomposition file and job
keep running

This output file can be read back by lsprepost

lsprepost > view > MPP > load

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 75

General Options for MPP

There are many more options and correspondent *CONTROL_MPP
keyword.

Please check the User’s Manual Appendix O

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 76

Case study

� Bumper Impact

� Side Impact

� ODB

� Metal Forming

� ALE Airbag Simulation

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 77

Case Study for Crash: Bumper

Default RCB sy 5.0

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 78

Performance Improvement via Changing Partition

0

10000

20000

30000

40000

50000

60000

4 6

Default

User

No. of PEs

W
al

l
C

lo
ck

 T
im

e
(S

ec
)

Case Study for Crash: Bumper

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 79

13 contacts and 10,11,12,13 are around barrier and car

Case Study for Crash: Side Impact

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 80

Default

Case Study for Crash: Side Impact

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 81

Method 1

Decomp { sx 1000 numproc 16 show }

Case Study for Crash: Side Impact

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 82

Decomp {sx 1000 silist 10,11,12,13 numproc 16 show }

Method 2

Case Study for Crash: Side Impact

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 83

Timing Comparison first 5000 cycles, 8 CPU’s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Default SX SX+SILIST

Decomposition

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

Case Study for Crash: Side Impact

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 84

One single surface contact

Case Study for Crash: ODB

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 85

Default
Case Study for Crash: ODB

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 86

Method 1

Decomp { sy 1000 numproc 16 show }

Case Study for Crash: ODB

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 87

Method 2

Decomp { C2R 177 –1134 1143 0 0 1 1 0 0 sy 10000 numproc 16 show }

Case Study for Crash: ODB

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 88

Timing Comparison first 5000 cycles, 8 CPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Default SY C2R

Decomposition

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Case Study for Crash: ODB

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 89

Case Study for Metal Forming: CDD

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 90

Default RCB sz 0.sz 0.Default RCB

Case Study for Metal Forming: CDD

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 91

0

100

200

300

400

500

600

700
W

a
ll
 C

lo
c

k
 T

im
e

(S
e

c
)

4 8

No. of PEs

Default

User

Case Study for Metal Forming: CDD

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 92

Case Study for ALE

Default

ALE mesh covers airbag

Deploy Direction

Only 4 CPU’s takes load in the beginning

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 93

Case Study for ALE

User C2R

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 94

ALE Airbag Timing Comparison
first 5000 cycles, 8 CPU

0

0.5

1

1.5

Default C2R

Decomposition

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 95

General Guidelines

� Use local file system “dir { local path }” if possible
This allows MPP job to have scalable IO bandwidth

� Store end results via “dir { rep path }” to the share file system
The files are moved through MPI calls which has higher bandwidth

than NFS file system

� Distribute expansive features or elements to all processors
i.e. CPM airbag, ALE elements, SPH elements, etc

(*CONTROL_MPP_DECOMPOSITION_BAGREF)
(*CONTROL_MPP_DECOMPOSITION_DISTRIBUTE_ALE_ELE, etc)

� For number of processors < 16, try to partition model along the
direction of initial velocity (use e.g. automatic decomposition
(*CONTROL_MPP_DECOMPOSITION_AUTO)

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 96

General Guidelines

� Merge small contact definitions into big one

� Distribute large contact area evenly among processors via pfile

decomp { SILIST 1,2,3 }

Or in input deck

*CONTROL_MPP_DECOMPOSITION_CONTACT_DISTRIBUTE

� In forming simulation make the decomposition in the direction of
the punch travel

� Please see more pfile options in Appendix O of the user manual The
optimal decomposition is model and CPU depended.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 97

Restart and Pre-decomposition

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 98

Restart

� Restart is in MPP-DYNA is different from LS-DYNA, The files are called
d3dump##.xxxx or d3fulll##, where ## is a number.

Simple restart: mpirun –np 5 mpp970 r=d3dump09

MPP-DYNA finds the child files

Small restart: mpirun –np 5 mpp970 i=small.k r=d3dump09

The small restart may have problems. If it does, please report it to
LSTC and we will fix it.

Full restart: mpirun –np 5 mpp970 i=full.k n=d3full09

Remember *stress_initialization in the inputdeck

Can change ncpu in full restart

The full restart can have problems

� Since the Small and Full restart can give problems – check carefully the
results

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 99

Restart

� Can do stamping in MPP and implicit springback in SMP. Important since
implicit is under development in MPP-DYNA 971

� Since the Small and Full restart can give problems – check carefully the

results

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 100

Pre-decomposition

� Mesh is getting finer and memory requirement increases. Since the
decomposition is done on the primary processor, it needs great amount of
memory.

� Due to the economy reason, the memory on cluster is limited – 2GB/core.

� It is easier to decompose model in a separated machine with lots of
memory.

Run 1: Keyword to structure

mpirun –np 1 path_to_mpp/mpp971 i=input.k outdeck=t memory=800m

This will convert the keyword input “input.k” to structure file “dyna.str” and
stop the execution

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 101

Pre-decomposition
Run 2: Create pre-decompose file

pfile:
decomp { numproc 16 file input_de }

mpirun –np 1 path_to_mpp/mpp971 i=dyna.str p=pfile memory=800m

This will create pre-decomp database for 16 domains and write necessary
information into “input_de.lsda” file. Please note, the job could be restart
on a cluster with a node number divided in whole.

Run 3: Restart MPP job on clusters

Move pfile and input_de.lsda to the working directory of target clusters

mpirun –np 8 path_to_mpp/mpp971 i=dyna.str p=pfile memory=100m

Job could start on clusters with much less memory requirement.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 102

Pre-decomposition
Huge Model > 50M Elements

Run 1: Keyword to structure

mpirun –np 1 mpp971_d i=input.k outdeck=t memory=10G

Run 2: Create pre-decompose file

mpirun –np 1 mpp971_d i=dyna.str p=pfile memory=10G 32ieee=yes

Run 3: Restart MPP job on clusters

Move pfile and input_de.lsda to the working directory of target clusters

mpirun –np 256 mpp971_s i=dyna.str p=pfile memory=500m 32ieee=yes

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 103

General Guidelines and
Debugging

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 104

General Guidelines

� If error termination or unstable behavior occur, check for
unsupported features. There is in general no error trap that
indicates that a feature not is in MPP.

� 12-32 processors is sometimes preferred for smaller models
but the optimal number of CPU’s strongly depends on the
model.

� Single processor performance of LS-DYNA/MPP ~= LS-
DYNA/SMP

� Will run efficiently with large contact definition – ease of
modeling

� MPP is beneficial for more than 10k elements/processor

� If contact problems occur
• Turn on IGNORE option
• Try to use SOFT=2 at Optional card A.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 105

� Same decomposition = same answer

� Changing number of processors < 5% variation in results
for well defined model. During the model development,
try to keep same number of cores for the analysis. (new
Hybrid could be tried to reduce the difference, see the
“Recent Development” section).

� Double precision may not help, finer mesh will help for the
numerical variations

� Use good engineering judgment to perform special
decomposition to reduce numerical variations

General Guidelines
consistency

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 106

LSTC_REDUCE

general { lstc_reduce }

Problem: Results changes while changing from dual core
to quad core system while using same number of MPP
processors

Solution: Fixed summation operation is performed in the
code

RCBLOG

decomposition { rcblog filename }

Problem: Decomposition changes during model
development

Solution: Preserve the cut line for subsequent runs to
reduce the decomposition noise

General Guidelines
consistency

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 107

General Guidelines
Load balancing

� Use local file system “dir { local path }” if possible
This allows MPP job to have scalable IO bandwidth

� Store end results via “dir { rep path }” to the share file system
The files are moved through MPI calls which has higher bandwidth

than NFS file system

� Distribute expansive features or elements to all processors
i.e. CPM airbag, ALE elements, SPH elements, etc

(*CONTROL_MPP_DECOMPOSITION_BAGREF)
(*CONTROL_MPP_DECOMPOSITION_DISTRIBUTE_ALE_ELE, etc)

� For number of processors < 16, try to partition model along the
direction of initial velocity (use e.g. automatic decomposition
(*CONTROL_MPP_DECOMPOSITION_AUTO)

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 108

General Guidelines
Load balancing

� Merge small contact definitions into big one

� Distribute large contact area evenly among processors via pfile

decomp { SILIST 1,2,3 }

Or in input deck

*CONTROL_MPP_DECOMPOSITION_CONTACT_DISTRIBUTE

� In forming simulation make the decomposition in the direction of
the punch travel

� Please see more pfile options in Appendix O of the user manual The
optimal decomposition is model and CPU depended.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 109

Debugging
� The error messages from MPP-DYNA can be different from LS-DYNA®

� To locate an error one often has to search each of the messag files
mes#### in order to find any information. These files are written for
each processor.

� The code will trap the segmentation violation (SEGV) and output the
rank number. One could rerun the job and attach the debugger to the
running thread and get the trace back map. This usually gives good
information for changing input.

gdb path_to_mpp_code/mpp971 PID

> continue

SEGV

> where

� As for LS-DYNA® a debugger can be used if a core file is written:

gdb path_to_mpp_code/mpp971 core

� Type where to get more info and quit for exit

� Can indicate which subroutine is the problem and hence ease
the model debugging.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 110

Debugging
Memory required to process keyword : 222197

MPP execution with 2 procs

Initial reading of file 04/09/2009 13:22:01

*** Error cross-section interface # 1

has a non-orthogonal tangential edge vector

with finite length edges.

input phase completed with 1 fatal errors

please check messag file

0 E r r o r t e r m i n a t i o n

MPI Application rank 0 exited before MPI_Finalize() with status 13

forrtl: error (78): process killed (SIGTERM)

Image PC Routine Line Source

libc.so.6 0083720E Unknown Unknown Unknown

libc.so.6 008372EC Unknown Unknown Unknown

libc.so.6 008370EB Unknown Unknown Unknown

mpp971 0A1A3CB1 Unknown Unknown Unknown

libc.so.6 008372B8 Unknown Unknown Unknown

libmpi.so.1 00A98568 Unknown Unknown Unknown

libmpi.so.1 00ADFAB7 Unknown Unknown Unknown

libmpi.so.1 00AF688B Unknown Unknown Unknown

mpp971 0A1B2CD6 Unknown Unknown Unknown

mpp971 09FD17F0 decomps_ 1763 decomps.f

mpp971 0A06E01E mppdecomp_ 4411 mppdecomp.f

mpp971 08183D49 overly_ 1998 overly.f

mpp971 0805036D lsinput_ 1704 lsinput.f

mpp971 0804E7AF Unknown Unknown Unknown

mpp971 0804DF29 Unknown Unknown Unknown

libc.so.6 00825BD1 Unknown Unknown Unknown

mpp971 0804DE61 Unknown Unknown Unknown

ibm325_jri [189]%

Problem

In MPP the error
can look serious!

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 111

Debugging

WRITE ERROR: iam=0 file=d3plot which=34 where=8192 wrote 0 of 65536

52562 t 1.7000E-03 dt 3.17E-08 write d3plot file

This means that there is no disk space on node 0 (the iam tells the
nodenumber). Notice that on some machines the "no space left on
device" message will not be showed, this is the case for Linux Cluster.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 112

Debugging

This error was from a MPP Linux run:

Performing Recursive Coordinate Bisection

p1_3586: (479.788216) xx_shmalloc: returning NULL; requested 1585896 bytes

p1_3586: (479.788313) p4_shmalloc returning NULL; request = 1585896 bytes

You can increase the amount of memory by setting the environment variable

P4_GLOBMEMSIZE (in bytes)

p1_3586: p4_error: alloc_p4_msg failed: 0

bm_list_3583: p4_error: net_recv read: probable EOF on socket: 1

p4 error is normal from MPICH, i.e. this is a MPI error, in this case is suggested
to set an environment variable

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 113

Debugging

*** Error Memory is set 1235165 words short

Current memory size 50000000

Increase the memory size by one of the following

where #### is the number of words requested:

1) On the command line set - memory=####

2) In the input file define memory with *KEYWORD

i.e., *KEYWORD #### or *KEYWORD memory=####

� The memory unit is in WORD. For single precision is 4 Bytes/word and
for double precision is 8 Bytes/word.

� LS-DYNA® explicit uses real memory to store all data. However, the
amount of static memory requested is controlled by “memory=“ option
and the amount of dynamic memory is adjusted automatically.

� Please use “top” command to check the available memory in the
system and you DO NOT want your job using swap space

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 114

Recent Development

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 115

Current Development

� Many new options are implemented in MPP-DYNA in recent
years. Both in versions of 970 and 971

� Pinball Contact (SOFT = 2) - 970

� ALE FSI applications - 970

� SPH method – 970

� Automatic decomposition - 970

� Implicit solvers - 971

� EFG – 971

� Thermal – 971

� Particle Method 971

� ………

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 116

Scalability on Large Number of CPUs

Model statistic (car2car model)
~2,500,000 nodes and elements
53 contacts
Fully integrated (type 16) shells

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 117

2 4 8 16 32 64 128 224 256 512 1024
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

Cray XT4(2x1)
AMD Opteron
2.6GHz

HP
CP3000+InfiniBand
(2x1) Xeon 3.0GHz

HP
CP3000+InfiniBand
(2x2) Xeon 3.0GHz

Number of CPU

E
la

p
s
e

d
 T

im
e

 (
S

e
c
o

n
d

s
)

Scalability on Large Number of CPUs

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 118

2 4 8 16 32 64 128 224 256 512 1024
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170
Cray XT4(2x1) AMD
Opteron 2.6GHz

HP
CP3000+InfiniBand
(2x1) Xeon 3.0GHz

HP
CP3000+InfiniBand
(2x2) Xeon 3.0GHz

S
p

e
e

d
u

p
Reference is 2 cores
So max speedup is 340

Scalability on Large Number of CPUs

Note: Not ideal scaling for large number of CPU’s

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 119

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

� It has been seen that scaling for a large number of processors,
typically larger than 128, not always is good.

� Sometimes the results can varies with number of CPU’s due to
the decomposition, especially if the model is unstable.

� A new approach is currently being tested, it runs SMP within
each CPU and MPP between the CPU’s.

� It is named Hybrid.

� If the number of SMP threads is increased it will give identical
results.

� To run Hybrid both SMP and MPP variables will have to be set.

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 120

n nodes clusters
k cores

m sockets

Pure MPP
n x m x k processors

24 cores
24 processors

Hybrid MPP
n x m processors

24 cores
6 processors

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

SMP

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 121

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

� There is a special syntax that is required for the Hybrid
approach.

� If e.g. the set-up is a system with 16 nodes, dual socket quad
core system (as previous slide) the variable is:

� Set OMP_NUM_THREAD=4 (max four cores in each SMP)

� The system is a 128 core system

� mpirun –np 32 mpp971_hybrid i=input ncpu=-1
� 32 MPP Processors (green circle) and 1 core in each which then is
a total of 32 cores.

� mpirun –np 32 mpp971_hybrid i=input ncpu=-2
� 32 Processors and 2 cores in each = 64 cores

� mpirun –np 32 mpp971_hybrid i=input ncpu=-4
� Total of 128 cores is used

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 122

128 256 512 1024 2008

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Pure MPI

MPI+4SMP

MPI+2SMP

Number of Cores

E
la

p
s
e
d
 T

im
e
(s

e
c
o
n
d
s
)

Performance Comparison on Windows Server 2008

Multi-core/Multi-socket clusters

Car2car Model

Explicit MPP/Hybrid Performance

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 123

Message Across Network

� Hybrid greatly reduce the amount of data through network
and provide better scaling to large number of processors

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

Car2car Model

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 124

� Consistent results is be obtained with fix decomposition
and changing number of SMP threads

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

Consistency

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 125

consistency tests and performance comparison of HYBRID and pure MPP code.

12p 12x-1 12x-2 12x-4

Case 1 108118 124035 81380 60215

Case 2 75028 85367 50467 33728

Case 3 68047 87924 55599 35773

Case 4 16610 22677 13073 8759

Case 5 36522 44622 28397 20215

Case 6 14253 18898 12169 8705

Case 7 9485 12753 7600 5800

Case 8 937 1260 773 569

Case 9 12640 16012 10486 6926

Multi-core/Multi-socket clusters

Scalability on Large Number of CPUs

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 126

Performance on Linux AMD64 systems

Multi-core/Multi-socket clusters

No. of cores
(node x socket x core)

WCT of Factor
Matrix

(seconds)

WCT for job to
complete
(seconds)

16 x 4 x 1 2055 14417

16 x 4 x 2 985 13290

16 x 4 x 4 582 29135

16 x 4 x 4omp (Hybrid) 960 9887

Implicit MPP/Hybrid Performance

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 127

1) Turn hyperthreading off

2) OMP_NUM_THREADS to SMP upper limit

3) General variables for MPI

� Platform (HP) MPI

-cpu_bind_mt=MASK_CPU:string

-e MPI_THREAD_AFFINITY=packed

� Intel MPI

-env I_MPI_PIN_DOMAIN=string

-env I_MPI_PIN_ORDER=compact

-env KMP_AFFINITY=compact

Get the best performance from
MPP Hybrid

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 128

HEX #CPU #0CPU #1

Get the best performance from
MPP Hybrid

• How to find out the string

• Find the core ordering

cat /proc/cpuinfo | grep –i “physical id”

Example: Dual 6 cores 0 0 0 0 0 0 1 1 1 1 1 1

• Pin application to cores sharing local resource

Example: 3 SMP/MPP on each node

1st MPP 0 0 0 0 0 0 0 0 0 1 1 1 7

2nd MPP 0 0 0 0 0 0 1 1 1 0 0 0 38

3rd MPP 0 0 0 1 1 1 0 0 0 0 0 0 1C0

4th MPP 1 1 1 0 0 0 0 0 0 0 0 0 E00

String = 7,38,1C0,E00

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 129

129

Neon 1 million elements

1056383 quad shells
130 beams
2852 solids

1 contact for the entire model
Termination time 0.080 secs
Timestep 3.618e-6 secs

Ascii and binary outputs

disabled.
Pre-decomposed with 1cpu

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 130

130

Neon 1 million elements

Copyright © 2005-2011 by LIVERMORE SOFTWARE TECHNOLOGY CORPORATION Contents p. 131

131

Neon 1 million elements

128x2x4

dt=7.85e-7

8% mass increase

Conventional mass scaling

6 minutes 18 seconds

128x2x4

dt=3.618e-6

894% mass increase

Selective mass scaling

Ongoing development to support more

features for selective mass scaling

5 minutes

