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Perfectlymatchedlayersfor transientelastodynamics
of unboundeddomains
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SUMMARY

One approachto the numericalsolution of a wave equationon an unboundeddomainusesa bounded
domain surroundedby an absorbingboundaryor layer that absorbswaves propagatingoutward from
the boundeddomain. A perfectly matchedlayer (PML) is an unphysicalabsorbinglayer model for
linear wave equationsthat absorbs,almost perfectly, outgoing waves of all non-tangentialangles-of-
incidenceand of all non-zerofrequencies.In a recentwork [ComputerMethodsin Applied Mechanics
and Engineering 2003; 192:1337…1375],the authors presented,inter alia, time-harmonicgoverning
equationsof PMLs for anti-plane and for plane-strainmotion of (visco-)elasticmedia. This paper
presents(a) correspondingtime-domain,displacement-basedgoverning equationsof thesePMLs and
(b) displacement-based“nite elementimplementationsof theseequations,suitable for direct transient
analysis.The “nite elementimplementationof the anti-planePML is found to be symmetric,whereas
that of the plane-strainPML is not. Numerical results are presentedfor the anti-planemotion of a
semi-in“nite layer on a rigid base,and for the classicalsoil…structureinteractionproblemsof a rigid
strip-footing on (i) a half-plane,(ii) a layer on a half-plane,and (iii) a layer on a rigid base.These
resultsdemonstratethe high accuracy achievable by PML modelseven with small boundeddomains.
Copyright � 2004 John Wiley & Sons,Ltd.
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1. INTRODUCTION

The solution of the elastodynamicwave equationover an unboundeddomain“nds applications
in soil…structureinteractionanalysis[1] and in the simulationof earthquake groundmotion [2].
The needfor realisticmodelsoften compelsa numericalsolutionusinga boundeddomain,along
with an arti“cial absorbingboundaryor layer that simulatesthe unboundeddomain beyond.
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1040 U. BASU AND A. K. CHOPRA

Of particular importanceare absorbingboundariesthat allow transient analysis, facilitating
incorporationof non-linearity within the boundeddomain.

Classical approximateabsorbingboundaries[3…6], although local and cheaply computed,
may require large boundeddomainsfor satisfactory accuracy, since typically they absorbinci-
dent waves well only over a small rangeof angles-of-incidence.For satisfactory performance,
approximateabsorbinglayer models [7,8] require careful formulation and implementationto
eliminate spuriousre”ections from the interface to the layer. The superpositionboundary[9]
is cumbersomeand expensive to implement, and in“nite elements[10,11] typically require
problem-dependentassumptionson the wave motion. Rigorousabsorbingboundariesare typ-
ically formulated in the frequency domain [12…14]; correspondingtime-domainformulations
[15…17] maybecomputationallyexpensive andmaynot beapplicableto all problemsof interest.

The dif“culty in obtaining a suf“ciently accurate,yet not-too-expensive model of the un-
boundeddomaindirectly in the time domainhasled to the useof traditional frequency-domain
models towards time-domainanalysis.One such method useshybrid frequency…time-domain
analysis [1,18], iterating betweenthe frequency and time domains in order to account for
non-linearity in the boundeddomain; this computationallydemandingmethod requirescare-
ful implementationto ensurestability. Another approachreplacesthe non-linear system by
an equivalent linear system[19] whosestiffnessand dampingvaluesare compatiblewith the
effective strainamplitudesin the system.A third approach[20…22] approximatesthe frequency-
domain DtN map of a systemby a rational function and usesthis approximationto obtain a
time-domainsystemthat is temporally local. Although this approachis conceptuallyattractive,
computationof an accuraterational-functionapproximationmay be expensive.

A perfectly matchedlayer (PML) is an absorbinglayer model for linear wave equationsthat
absorbs,almost perfectly, propagatingwaves of all non-tangentialangles-of-incidenceand of
all non-zerofrequencies.First introducedin the context of electromagneticwaves [23,24], the
concept of a PML has been applied to other linear wave equations[25…27], including the
elastodynamicwave equation [28,29]. In a recent work [30], the authors have developed
the conceptof a PML in the context of frequency-domain elastodynamics,utilising insights
obtainedfrom PMLs in electromagnetics,and illustrated it using the one-dimensionalrod on
elastic foundationand the anti-planemotion of a two-dimensionalcontinuum,governedby the
Helmholtzequation.Extendingthe PML conceptto the displacementformulationof plane-strain
and three-dimensionalmotion, they have also presenteda novel displacement-based,symmetric
“nite elementimplementationof such a PML.

The objective of this paper is to present(a) time-domain,displacement-based,equations
of the PMLs for anti-planeand for plane-strainmotion of a (visco-)elasticmedium, and (b)
displacement-based“nite element (FE) implementationsof these equations.The frequency-
domain PML equationsfrom Reference[30] are “rst transformedinto the time domain by a
specialchoiceof the co-ordinate-stretchingfunctions,and then thesetime-domainequationsare
implementednumericallyby a straightforward “nite elementapproach.Time-domainnumerical
results are presentedfor the anti-planemotion of a semi-in“nite layer on rigid baseand for
the classicalsoil…structureinteractionproblemsof a rigid strip-footing on (i) a half-plane,(ii)
a layer on a half-plane,and (iii) a layer on a rigid base.Additionally, the adequacy of the
specialchoice of the stretchingfunctions towards attenuatingevanescentwaves is investigated
throughnumericalresultsin the frequency domain.This paperpresentsonly a brief explanation
of the conceptof a PML; a detaileddevelopment,and the derivation of the frequency-domain
equationsare presentedin Reference[30].
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TRANSIENT ELASTODYNAMICS OF UNBOUNDED DOMAINS 1041

Tensorial and indicial notation will be used interchangeablyin this paper; the summation
convention will be assumedunlessan explicit summationis usedor it is mentionedotherwise.
An italic boldface symbol will representa vector, e.g. x, an upright boldface symbol will
representa tensor or its matrix in a particular orthonormal basis, e.g. D, and a sans-serif
boldfacesymbolwill representa fourth-ordertensor, e.g.C; the correspondinglightfacesymbols
with Romansubscriptswill denotecomponentsof the tensor, matrix or vector. An overbarover
a symbol, e.g. ū, denotesa time-harmonic quantity; such distinguishing notation was not
employed in Reference[30] becausethe entire analysiswas in the frequency domain.

2. ANTI-PLANE MOTION

2.1. Elastic medium

Consider a two-dimensionalhomogeneousisotropic elastic continuum undergoing only anti-
plane displacementsin the absenceof body forces. For such motion, if the x3-direction is
taken to point out of the plane, only the 31- and 32-componentsof the three-dimensional
stressand strain tensorsare non-zero.The displacementsu(x, t ) are governedby the following
equations(i � { 1, 2}):

�

i

� � i

� xi
= � ü (1a)

� i = � � i (1b)

� i =
� u
� xi

(1c)

where � is the shearmodulusof the medium and � its massdensity; � i and � i representthe
3i -componentsof the stressand strain tensors.

On an unboundeddomain,Equation(1) admitsplaneshearwave solutions[31] of the form

u(x, t ) = exp[Š iksx·p] exp(i� t) (2)

where ks = � /c s is the wavenumber, with wave speedcs =
�

� / � , and p is a unit vector
denotingthe propagationdirection.

2.2. Perfectly matched layer

The discussionof PML presentedhere is a synopsisof the correspondingdevelopment in
Reference[30]. The summationconvention is abandonedin this section.

Considera wave of the form in Equation(2) propagatingin an unboundedelastic domain,
the x1…x2 plane,governedby Equation(1). The objective of de“ning a perfectly matchedlayer
(PML) is to simulatesuch wave propagationby using a correspondingboundeddomain.

The governing equationsof a PML are most naturally de“ned in the frequency domain,
throughfrequency-dependent,complex-valuedco-ordinatestretching.Assumingharmonictime-
dependenceof the displacement,stressand strain, e.g. u(x, t ) = ū(x) exp(i� t), with � the
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1042 U. BASU AND A. K. CHOPRA

frequency of excitation, the governing equationsof the PML for anti-planemotion are

�

i

1
� i (xi )

� �̄ i

� xi
= Š � 2� ū (3a)

�̄ i = � �̄ i (3b)

�̄ i =
1

� i (xi )
� ū
� xi

(3c)

where � i are nowhere-zero,continuous,complex-valued co-ordinatestretchingfunctions.
If the stretchingfunctions are chosenas

� i (xi ) := 1 Š i
f i (xi )

ks
(4)

in termsof real-valued,continuousattenuationfunctionsf i , then Equation(3) admitssolutions
of the form

ū(x, t ) = exp
�
Š

�

i
Fi (xi )p i

�
exp[Š iksx·p] (5)

where

Fi (xi ) :=
� xi

0
f i (� ) d� (6)

Thus, if Fi (xi ) > 0 and p i > 0, then the wave solution admittedin the PML mediumis of the
form of the elastic-mediumsolution [Equation (2)], but with an imposedspatial attenuation.
This attenuationis of the form exp[Š Fi (xi )p i ] in the xi -direction, and is independentof the
frequency if p i is.

Considerreplacing the x1…x2 plane by � BD � � PM, as shown in Figure 1, where � BD is
a •bounded•(truncated)domain, governedby Equation(1), and � PM is a PML, governedby
Equation(3), with � 1 of the form in Equation(4), satisfyingf 1(0) = 0, and� 2 � 1. Themedium
in � BD being a specialPML medium[� i (xi ) � 1], the matchingof stretchingfunctionsat the
� BD…� PM interfacemakes the PML •perfectlymatched•to � BD: waves travelling outward from
the boundeddomain are absorbedinto the PML without any re”ection from the � BD…� PM
interface. An outgoing wave entering the PML is attenuatedin the layer and then re”ected
back from the “x ed end towardsthe boundeddomain.If the incident wave hasunit amplitude,
then the amplitude|R| of the re”ected wave as it exits the PML is given by

|R| = exp[Š 2F1(L P) cos� ] (7)

This re”ected-wave amplitude is controlled by the choice of the attenuationfunction and the
depth of the layer, and can be made arbitrarily small for non-tangentiallyincident waves.
Becausesuchoutgoingwaves in sucha systemwill be only minimally re”ected back towards
the interface, this bounded-domain-PMLsystem is an appropriatemodel for the unbounded
x1…x2 plane.
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TRANSIENT ELASTODYNAMICS OF UNBOUNDED DOMAINS 1043

Figure 1. A PML adjacentto a •bounded•(truncated)domainattenuatesand re”ects
back an outgoing plane wave.

2.3. Time-domainequationsfor the PML

Considertwo rectangularCartesianco-ordinatesystemsfor the plane as follows: (1) an {xi }
system,with respectto an orthonormal basis {ei }, and (2) an {x �

i } system,with respectto
anotherorthonormalbasis {e�

i }, with the two basesrelatedby the rotation-of-basismatrix Q,
with componentsQ ij := ei · e�

j . Equation(3) can be re-written in termsof the co-ordinatesx �
i

by replacingxi by x �
i throughout,representinga medium wherein waves are attenuatedin the

e�
1 and e�

2 directions,rather than in the e1 and e2 directionsas in Equation(3). This resultant
equationcan be transformedto the basis{ei } to obtain [30]

� · ( �� �̄ ) = Š � 2� [� 1(x �
1)� 2(x �

2)]ū (8a)

�̄ = � (1 + 2ia0� )�̄ (8b)

�̄ = � (� ū) (8c)

where

�̄ :=

�
�̄ 1

�̄ 2

�

, �̄ :=

�
�̄ 1

�̄ 2

�

, � :=

�
���	

���


�
� x1

�
� x2

�
����

���

(9)
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and

�� = Q �� �QT, � = Q� �QT (10)

with

�� � :=

�
� 2(x �

2) ·

· � 1(x �
1)

�

, � � :=

�
1/ � 1(x �

1) ·

· 1/ � 2(x �
2)

�

(11)

Equation(8) explicitly incorporatesVoigt materialdampingthroughthecorrespondenceprinciple
in terms of a damping ratio � and a non-dimensionalfrequency a0 = ksb, where b is a
characteristiclengthof the physicalproblem.This dampingmodel is chosenover the traditional
hystereticdamping model becausethe latter is non-causal[32]; implementationof a causal
hystereticmodel in a PML formulation is beyond the scopeof this paper.

Becausemultiplication or division by the factor i� in the frequency domain correspondsto
a derivative or an integral, respectively, in the time domain,time-harmonicequationsare easily
transformedinto correspondingequationsfor transientmotion if the frequency-dependenceof
the former is only a simple dependenceon this factor. Therefore,the stretchingfunctions are
chosento be of the form

� i (x �
i ) := [1 + f e

i (x �
i )] Š i

f p
i (x �

i )

ks
(12)

where, the functions f e
i serve to attenuateevanescentwaves whereasthe functions f p

i serve
to attenuatepropagatingwaves. For � i as in Equation (12), the stretch tensors �� and � can
be written as

�� = �Fe +
1
i�

�Fp, � =
�
Fe +

1
i�

Fp
� Š1

(13)

where

�Fe = Q �Fe�QT, �Fp = Q �Fp�QT, Fe = QFe�QT, Fp = QFp�QT (14)

with

�Fe� :=

�
1 + f e

2 (x �
2) ·

· 1 + f e
1 (x �

1)

�

, �Fp� :=

�
csf

p
2 (x �

2) ·

· csf
p
1 (x �

1)

�

(15a)

and

Fe� :=

�
1 + f e

1 (x �
1) ·

· 1 + f e
2 (x �

2)

�

, Fp� :=

�
csf

p
1 (x �

1) ·

· csf
p
2 (x �

2)

�

(15b)

Equation (8c) is premultiplied by i� � Š1, Equations(12) and (13) are substitutedinto Equa-
tion (8), and the inverseFourier transformis appliedto the resultantto obtain the time domain
equationsfor the PML:

� · �� = � f mü + � csf c �u + � f ku (16a)
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� = �
�

� +
2� b
cs

��
�

(16b)

Fe�� + Fp� = � �u (16c)

where

�� := �Fe� + �Fp� , with � :=
� t

0
� d	 (17)

and

f m := [1 + f e
1 (x �

1)][1 + f e
2 (x �

2)]

f c := [1 + f e
1 (x �

1)]f p
2 (x �

2) + [ 1 + f e
2 (x �

2)]f p
1 (x �

1)

f k := f p
1 (x �

1)f p
2 (x �

2)

(18)

The applicationof the inverseFourier transformto obtain � assumesthat �̄ (� = 0) = 0. The
presenceof the time-integral of � in the governing equations,although unconventional from
the point-of-view of continuummechanics,is not unnaturalin a time-domainimplementation
of a PML obtainedwithout “eld-splitting [33].

2.4. Finite elementimplementation

Equation (16) is implementedusing a standarddisplacement-based“nite element approach
[34]. The weak form of Equation(16a) is derived by multiplying it with an arbitrary weighting
function w residing in an appropriateadmissiblespace,and then integrating over the entire
computationaldomain � using integration-by-partsand the divergencetheoremto obtain

�

�
� f mwü d� +

�

�
� csf cw �u d� +

�

�
� f kwu d� +

�

�
� w · �� d� =

�

�
w �� · n d� (19)

where � := � � is the boundaryof � and n is the unit normal to � . The weak form is “rst
spatially discretizedby interpolatingu and w element-wisein terms of nodal quantitiesusing
appropriatenodal shapefunctions.This leadsto the systemof equations

md̈ + c �d + kd + p int = pext (20)

wherem, c and k are the mass,dampingand stiffnessmatrices,respectively, d is a vector of
nodal displacements,p int is a vector of internal force terms, and pext is a vector of external
forces.Thesematricesandvectorsareassembledfrom correspondingelement-level matricesand
vectors.In particular, the element-level constituentmatricesof m, c and k are, respectively,

me =
�

� e
� f mN TN d� , ce =

�

� e
� csf cN TN d� , ke =

�

� e
� f kN TN d� (21a)

and the element-level internal force term is

pe =
�

� e
BT �� d� (21b)
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where N is a row vector of element-level nodal shapefunctions,and

B =

�
N,1

N,2

�

(22)

The functions f e
i and f p

i are de“ned globally on the computationaldomain,not element-wise.
It is conveniently assumedthat �� · n = 0 on a free boundaryof the PML.

Equation(20) can be solved using a time-steppingalgorithm such as the Newmark method
[35,36], alongwith Newton…Raphsoniteration at each time step to enforce equilibrium. If
Equation(20) is solved, say, at time stationtn+ 1, given the solution at tn, the Newton…Raphson
iterationat this time stepwill require(a) calculationof �� n+ 1, for calculatingpe

n+ 1 [� pe(tn+ 1)],
and (b) a consistentlinearization [34, vol. 2] of pe

n+ 1 at dn+ 1 [� de(tn+ 1)], where de is a
vector of element-level nodal displacements.Therefore,Equation (16c) is discretizedusing a
backward Euler schemeon � to obtain

� n+ 1 =
�

Fe

� t
+ Fp

� Š1 �
Bvn+ 1 +

Fe

� t
� n

�
(23)

where vn+ 1 � �de(tn+ 1), and � t is the time-stepsize. A similar time-discretizationof Equa-
tion (16b) gives

� n+ 1 = �
�

1 +
2� b
cs� t

�
� n+ 1 Š �

2� b
cs� t

� n (24)

Furthermore,Equation(17b) is usedto approximate� n+ 1 as

� n+ 1 = � n + � n+ 1� t (25)

Equation(25) is substitutedin Equation(17a) to obtain

�� n+ 1 = � t

�
�Fe

� t
+ �Fp

�

� n+ 1 + �Fp� n (26)

This gives the internal force term

pe
n+ 1 =

�

� e
BT �� n+ 1 d� (27)

Linearizationof Equation(27) gives

� pe
n+ 1 =

� �

� e
BTDB d�

�
� vn+ 1 (28)

where � is the differential operator, and

D = � � t
�

1 +
2� b
cs� t

� �
�Fe

� t
+ �Fp

� �
Fe

� t
+ Fp

� Š1

(29)

i.e. this linearizationgives a tangentmatrix

�ce :=
�

� e
BTDB d� (30)
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Box I. Computingeffective force and stiffness for anti-planePML element.

(1) Computesystemmatricesme, ce and ke [Equation (21a)].
(2) Computeinternal force pe

n+ 1 [Equations(27)].
Use � n+ 1 [Equation (23)], � n+ 1 [Equation (24)] and �� n+ 1 [Equation (26)].

(3) Computetangentmatrix �ce [Equation (30)] using D [Equation (29)].
(4) Computeeffective internal force �pe

n+ 1 and tangentstiffness �ke:

�pe
n+ 1 = mean+ 1 + cevn+ 1 + kedn+ 1 + pe

n+ 1

�ke = 
 kke + 
 c
�
ce + �ce�

+ 
 mme

where an+ 1 � d̈e(tn+ 1), and, for example,


 k = 1, 
 c =
�

� � t
, 
 m =

1

� � t2

for the Newmark method.

Note: The tangentstiffness �ke is independentof the solution, and thus has to be computedonly
once. However, the internal force pe

n+ 1 has to be re-computedat each time-stepbecauseit is
dependenton the solution at past times.

which may be incorporated into the effective tangent stiffness used in the time-stepping
algorithm.

A skeleton of the algorithm for computing the element-level effective internal force and
tangentstiffness is given in Box I. The matrix �ce is symmetric becauseD is symmetric by
the virtue of the coaxiality of the constituentmatrices.The other systemmatrices,m, c and
k are clearly symmetric by Equation (21a). Moreover, becauseall thesematricesare of the
sameform as the systemmatricesfor an elastic medium, the effective tangentstiffness (say,
as found in the Newmark scheme)of the entire computationaldomainwill be positive de“nite
if f e

i and f p
i are positive and if the boundaryrestraintsare adequate.Furthermore,since all

the systemmatrices,m, c, �c and k that constitutethe tangentstiffnessare independentof d,
this is effectively a linear model.

2.5. Numerical results

Considera homogeneousisotropic semi-in“nite layer of depthd on a rigid base,as shown in
Figure 2(a), whoseanti-planemotion is governedby Equation(1) with the following boundary
conditions:

u(x, t ) = 0 at x2 = 0, � x1 > 0, � t

� 2 = 0 at x2 = d, � x1 > 0, � t

u(x, t ) = u1(t )N1(x2/d ) + u2(t )N2(x2/d ) at x1 = 0, � x2 � [ 0, d]

(31)

and a radiationcondition for x1 	 
 , whereu1 and u2 are the displacementsat nodes1 and
2, and N1 and N2 are shapefunctions de“ned as

N1(� ) = 4� (1 Š � ), N2(� ) = � (2� Š 1), � � [ 0, 1] (32)
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Figure 2. (a) Homogeneousisotropic (visco-)elasticsemi-in“nite layer of depthd on
a “ xed base;and (b) a PML model.
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Figure3. Plot of typical: (a) input displacementwith td = 20; and(b) amplitudeof its
Fourier transform,with � f = 2.

The wave motion in this systemis similar to Love wave motion: it is dispersive, and consists
of not only propagatingmodes but also an in“nite number of evanescentmodes,with the
propagation(and decay)in the x1-direction [37, Appendix A.3].

The time-domainresponseof this systemmay be studiedthrough the reactionsat nodes1
and 2 due to any combinationof nodal displacementsu1(t ) and u2(t ). Employed here is a
time-limited cosinewave, bookendedby cosinehalf-cycles so that the initial displacementand
velocity as well as the “nal displacementand velocity are zero. This imposeddisplacement
is characterizedby two parameters:the duration td and the dominantforcing frequency � f ; a
typical waveform and its Fourier transformare shown in Figure 3, and a detaileddescription
of the waveform is given in Appendix A. The displacementu0(t ) is imposedon the two nodes
individually, i.e. two casesare considered:(1) u1(t ) = u0(t ), u2(t ) � 0, and (2) u1(t ) � 0,
u2(t ) = u0(t ), and the two nodal reactionsare computedfor eachof the two displacements.

This semi-in“nite layer is modelled using the bounded-domain-PMLmodel shown in
Figure 2(b), composedof a boundeddomain � BD and a PML � PM, with the attenuation
functions in Equation (12) chosenas f e

1 = f p
1 = f , where f is linear in the PML, and

f e
2 = f p

2 = 0. A uniform “nite elementmeshof four-node bilinear isoparametricelementsis
used to discretizethe entire boundeddomain. The mesh is chosento have nd elementsper
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Figure4. Nodal reactionsof (visco-)elasticsemi-in“nite layer on “x ed base,dueto imposed
nodal displacements;L = d/2, L P = d, nb = np = 15, nd = 15, f 1(x1) = 10�x1 Š L � /L P;
td = 30, � f = 2.5 for all casesexcept for P11 and P22 for elastic layer, where � f = 2.75:

(a) elastic layer, � = 0; and (b) visco-elasticlayer, � = 0.05.

unit d, nb elementsper unit L/d acrossthe width of � BD, and np elementsper unit L P/d
across� PM, with choicesfor nd, nb and np indicated along with the numerical results.For
comparison,the layer is also modelled using viscous dashpots[4], with consistentdashpots
placedat the edgex1 = L + L P, and the entire domain � BD � � PM taken to be (visco-)elastic.
Thus, the domain size and meshsize are comparableto thosein the PML model.

Figure 4(a) presentsthe nodal reactionscomputedfor an elastic medium using the PML
model and the dashpotmodel againstthe exact reactionscomputedusing convolution of the
excitation and the exact impulse responsefunction in Reference[37], where Pij denotes
the reaction at node i due to a non-zero displacementat node j . Based on a comparison
of the frequency-domain responsesof the PML and the viscousdashpotmodels,the valuesof
� f were chosenas the excitation frequencieswhere the two responsesare signi“cantly differ-
ent. The resultsobtainedfrom the PML model are virtually indistinguishablefrom the exact
results,even though the domain is small enoughthat the viscous-dashpotboundarygenerates
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spurious re”ections, manifestedin the higher responseamplitudes.Moreover, theseaccurate
results from the PML model are obtainedat a low computationalcost: the cost of the PML
model is observed to be approximately1.3 times that of the dashpotmodel, which itself is
extremely inexpensive. Figure 4(b) presentssimilar resultsfor a visco-elasticlayer, with results
from an extended-meshmodel usedas a benchmarkin the absenceof analyticalsolutions;this
extended-meshmodel is a viscous-dashpotmodel of depth d and length 10d from the edge
x1 = 0, with consistentdashpotsat x1 = 10d and visco-elasticmaterialwithin the domain.The
resultsfrom the PML model are highly accurate;due to the materialdampingin the medium,
the inaccuraciesof the dashpotmodel are signi“cantly lesserthan in the elastic case.

2.6. Caveatemptor

The time-domainequationsfor the PML were obtainedby a specialchoice of the stretching
functions„Equation (12)„that enabledtransformationof the frequency domainPML equations
into the time domain.However, thesestretchingfunctionsdiffer from thoseusedfor frequency-
domain analysisin Reference[30], where they were chosenas

� i (x �
i ) :=

�
1 +

f e
i (x �

i )

k�
s

�
Š i

f p
i (x �

i )

k�
s

(33)

where,e.g. k�
s = ks/

�
1 + 2ia0� for the Voigt dampingmodel; thesestretchingfunctions pro-

ducedaccurateresultsin the frequency domain,even for problemswith signi“cant evanescent
modesin their wave motion.

Becausethe real part of the complex-valuedstretchingfunction servesto attenuateevanescent
waves, and because,for an elastic medium the differencebetweenthe time-domainand the
frequency-domain stretchingfunctions is only in the real part, it is valid to ask whether the
time-domainstretchingfunctions are adequatefor evanescentwaves. Note that it is dif“cult
to employ the frequency-domain stretching function [Equation (33)] towards a time-domain
model, even for an elastic medium, becausethe frequency-dependenceof the real part of the
stretchingfunction is not through the factor i� . Becausethe PML approachis fundamentally
a frequency-domain approach,it is valid to test the adequacy of the time-domainstretching
function [Equation (12)] by using it to obtain frequency-domain results.

The frequency-domain responseof this layer on a half-plane can be characterizedby the
amplitude of nodal forces due to unit-amplitudeharmonic motion at either node. The force
amplitudeat node i due to a unit-amplitudedisplacementat node j with frequency a0 = ksd
is denotedby Sij (a0) and is decomposedinto stiffnessand dampingcoef“cients kij and cij as

Sij (a0) = Sij (0)[kij (a0) + ia0cij (a0)] (no summation) (34)

Analytical, closed-formexpressionsfor Sij (a0) is available in Appendix A.3 of Reference[37].
Figure 5 comparesresults for an elastic layer obtainedfrom PML models using the two

stretchingfunctions againstanalytical results[37]. The meshusedfor the PML modelsis the
sameas those used for time-domainanalysis; the results are obtainedusing the frequency-
domainFE formulation presentedin Reference[30]. It is seenthat the frequency-domain-only
stretching function [Equation (33)] produceshighly accurateresults, denotedby •FD PML•,
whereasthe time-domainstretchingfunction [Equation(12)] producesresults,denotedby •PML•
that are inaccuratefor a0 > 6. This suggeststhat the time-domainstretchingfunction cannot
adequatelyattenuateevanescentwaves, which is supportedby Figure 6, showing resultsfor a
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Figure 5. Dynamic stiffness coef“cients of elastic semi-in“nite layer on “x ed basecomputedusing
PML models with two different forms of the stretchingfunction: •PML• from a stretchingfunction
that can be implementedin the time domain, and •FD PML• from a stretchingfunction that is more
accuratebut is only suitable for the frequency domain; L = d/2, L P = d, nb = np = 15, nd = 15,

f 1(x1) = 10�x1 Š L � /L P; •Exact• results from Reference[37].

visco-elasticlayer obtainedusing a PML model with the time-domainstretchingfunction: the
material dampingattenuatesthe evanescentmodes,and the resultsare now highly accurate.

Thus,for undampedsystemswith severely-constrictedgeometries„typically, waveguidessuch
as the layer on a rigid base„the time domainresultsfrom a PML model may not be accurate
if the excitation is primarily in a frequency band where evanescentmodesare not adequately
attenuated.Sucha conclusionis echoedin electromagneticsliterature[38,39], wherealternative
choicesof the stretchingfunction have beenconsideredfor attenuatingevanescentwaves.

3. PLANE-STRAIN MOTION

3.1. Elastic medium

Considera homogeneousisotropicelasticmediumundergoing plane-strainmotion in the absence
of body forces. The displacementsu(x, t ) of such a medium are governed by the following
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Figure 6. Dynamic stiffness coef“cients of visco-elasticsemi-in“nite layer on “x ed base computed
using a PML model with a stretchingfunction that can be implementedin the time domain;L = d/2,
L P = d, nb = np = 15, nd = 15, f 1(x1) = 10�x1 Š L � /L P; � = 0.05; •Exact• results using the

correspondenceprinciple on results from Reference[37].

equations(i, j , k, l � { 1, 2}):

�

j

� � ij

� xj
= � üi (35a)

� ij =
�

k,l
Cij kl � kl (35b)

� ij =
1
2

�
� ui

� xj
+

� uj

� xi

�
(35c)

where Cij kl written in terms of the Kronecker delta  ij is

Cij kl = (� Š 2
3 � ) ij  kl + � ( ik  j l +  il  j k ) (36)

� ij and � ij are the componentsof � and � , the stressand in“nitesimal strain tensors,Cij kl are
the componentsof C, the materialstiffnesstensor;� is the bulk modulus,� the shearmodulus,
and � the massdensity of the medium.Equation(35) also describesplane-stressmotion if �
is re-de“ned appropriately.
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On an unboundeddomain, Equation (35) admits body-wave solutions [31] in the form of
(1) P waves:

u(x, t ) = q exp[Š ikpx·p] exp(i� t) (37a)

wherekp = � /c p, with cp =
�

(� + 4� / 3)/ � the P-wave speed,p is a unit vector denotingthe
propagationdirection, and q = ± p the direction of particle motion, and (2) S waves:

u(x, t ) = q exp[Š iksx·p] exp(i� t) (37b)

where ks = � /c s, with cs =
�

� / � the S-wave speed,and q·p = 0.

3.2. Perfectly matched layer

The discussionpresentedhere is a synopsisof the correspondingdevelopment in Reference
[30]. The summationconvention is abandonedin this section.

A PML for plane-strainmotion is de“ned naturally in the frequency domain as

�

j

1
� j (xj )

� �̄ ij

� xj
= Š � 2� ūi (38a)

�̄ ij =
�

k,l
Cij kl �̄ kl (38b)

�̄ ij =
1
2

�
1

� j (xj )
� ūi

� xj
+

1
� i (xi )

� ūj

� xi

�
(38c)

where � i are nowhere-zero,continuous,complex-valued co-ordinatestretchingfunctions. Be-
causethe constitutive relation Equation (38b) is the sameas for the elastic medium, Equa-
tion (38) also describesa PMM for plane-stressmotion if � is re-de“ned appropriately.
Equation (38) assumesharmonic time-dependenceof the displacement,stressand strain, e.g.
u(x, t ) = ū(x) exp(i� t), where � is the frequency of excitation.

If the stretchingfunctionsarechosenas in Equation(4), thenEquation(38) admitssolutions
of the form

ū(x) = exp
�
Š

cs

cp

�

i
Fi (xi )p i

�
q exp[Š ikpx·p] (39a)

with q = ± p, and

ū(x) = exp
�
Š

�

i
Fi (xi )p i

�
q exp[Š iksx·p] (39b)

with q·p = 0, and Fi de“ned as in Equation (6). Thus, if Fi (xi ) > 0 and p i > 0, then the
wave solutionsadmittedin the PML medium are P-type and S-type waves, but with a spatial
attenuationimposedupon them.

As in the caseof anti-planemotion, an appropriatelyde“ned PML may be placedadjacent
to a boundeddomain(Figure 1) in order to simulatean unboundeddomain.A wave travelling
outward from the boundeddomain is absorbedinto the PML without any re”ection from the
bounded-domain-PMLinterface. This wave is then attenuatedin the layer and re”ected back
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from the “x ed end towards the boundeddomain. For example, an incident P wave of unit
amplitude will be re”ected back from the “x ed end as a P wave and an S wave, and their
amplitudes,as they exit the PML, will be [30],

|Rpp| =
cos(� + � s)
cos(� Š � s)

exp
�
Š2

cs

cp
F1(L P) cos�

�

|Rsp| =
sin2�

cos(� Š � s)
exp

�
ŠF1(L P)

�
cs

cp
cos� + cos� s

�� (40)

with � s given by

sin� s =
cs

cp
sin�

Thesere”ected-wave amplitudesare controlled by the choice of the attenuationfunction and
the depth of the layer, and can be madearbitrarily small for non-tangentiallyincident waves.
Becauseoutgoing waves in such a systemwill be only minimally re”ected back towards the
interface, such a bounded-domain-PMLsystemis an appropriatemodel for the corresponding
unbounded-domainsystem.

3.3. Time-domainequationsfor the PML

Equation(38) representsa PML whereinwaves are attenuatedin the x1 and x2 directions.As
in the caseof anti-planemotion, the equationsfor the plane-strainPML can be re-written to
representa mediumwhereinthe attenuationis in two arbitrary (orthogonal)directions[30]:

div(�̄ �� ) = Š � 2� [� 1(x �
1)� 2(x �

2)]ū (41a)

�̄ = (1 + 2ia0� )C�̄ (41b)

�̄ = 1
2[(gradū)� + � T(gradū)T] (41c)

where �� and � are as in Equations(10) and (11). Equation(41) explicitly incorporatesVoigt
material damping through the correspondenceprinciple in terms of a damping ratio � and a
non-dimensionalfrequency a0 = ksb, whereb is a characteristiclengthof the physicalproblem.

Choosingthe stretchingfunctionsto be of the form in Equation(12) allows transformationof
Equation(41) into the time domain.Equation(41c) is premultipliedby i� � ŠT and postmulti-
plied by � Š1, Equations(12) and(13) aresubstitutedinto Equation(41), andthe inverseFourier
transformis applied to the resultantto obtain the time domain equationsfor the PML:

div(� �Fe + � �Fp) = � f mü + � csf c �u + � f ku (42a)

� = C

�
� +

2� b
cs

��
�

(42b)

FeT �� Fe + (FpT� Fe + FeT� Fp) + FpTEFp

= 1
2[FeT(grad �u) + (grad �u)TFe] + 1

2[FpT(gradu) + (gradu)TFp] (42c)
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where �Fe, �Fp, Fe and Fp are as in Equations(14) and (15), f m, f c and f k are as in Equa-
tion (18), and

� :=
� t

0
� d	 , E :=

� t

0
� d	 (43)

Application of the inverse Fourier transform to obtain � and E assumesthat �̄ (� = 0) = 0
and �̄ (� = 0) = 0.

3.4. Finite elementimplementation

Equation (42) is implementedusing a standarddisplacement-based“nite element approach
[34]. The weak form of Equation(42a) is derived by taking its inner productwith an arbitrary
weighting function w residingin an appropriateadmissiblespace,and then integrating over the
entire computationaldomain� using integration-by-partsand the divergencetheoremto obtain

�

�
� f mw · ü d� +

�

�
� csf cw · �u d� +

�

�
� f kw · u d�

+
�

�
�� e : � d� +

�

�
�� p : � d� =

�

�
w · (� �Fe + � �Fp)n d� (44)

where � := � � is the boundaryof � and n is the unit normal to � . The symmetryof � and
� is usedto obtain the last two integrals on the left-hand side, with

�� e := 1
2[(gradw) �Fe + �FeT(gradw)T], �� p := 1

2[(gradw) �Fp + �FpT(gradw)T] (45)

The weak form is “rst spatially discretizedby interpolatingu and w element-wisein termsof
nodal quantitiesusing appropriatenodal shapefunctions.This leadsto a systemof equations
as in Equation(20), but with the mass,dampingand stiffnessmatricesgiven in termsof their
IJ th nodal submatricesas, respectively,

me
IJ =

�

� e
� f mNI NJ d� I , ce

IJ =
�

� e
� csf cNI NJ d� I , ke

IJ =
�

� e
� f kNI NJ d� I (46a)

where NI is the shapefunction for node I and I is the identity matrix of size 2 × 2. The
element-level internal force term is given by

pe =
�

� e
�BeT �� d� +

�

� e
�BpT �� d� (46b)

where �Be and �Bp are given in terms of their nodal submatricesas

�Be
I :=

�

�
�
�
�

�N e
I 1 ·

· �N e
I 2

�N e
I 2

�N e
I 1

�

�
�
�
�

, �Bp
I :=

�

�
�
�
�

�N p
I 1 ·

· �N p
I 2

�N p
I 2

�N p
I 1

�

�
�
�
�

(47)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1039…1074



1056 U. BASU AND A. K. CHOPRA

with

�N e
I i := �F e

ij NI, j and �N p
I i := �F p

ij NI, j (48)

and

�� :=

�
�	

�


� 11

� 22

� 12

�
��

�
(49)

with �� the time-integral of �� . Note that the above vector representationof the tensor� assumes
its symmetry, which requiresa minor symmetryof C; becausethe PML mediumis unphysical,
a physically-motivated axiom„the balance of angular momentum„cannot be employed to
show the symmetry of � . The attenuationfunctions f e

i and f p
i are de“ned globally on the

computationaldomain,not element-wise.It is convenientlyassumedthat thereis no contribution
to pext from a free boundaryof the PML.

Solution of the equationsof motion [Equation(20)] using a time-steppingalgorithm requires
calculating � n+ 1 and � n+ 1 at tn+ 1, to calculatepe

n+ 1, and also a consistentlinearization of
pe

n+ 1 at dn+ 1. Towards this, the approximations

�� (tn+ 1) �
� n+ 1 Š � n

� t
, E(tn+ 1) � En + � n+ 1� t (50)

are usedin Equation(42c) to obtain

�� n+ 1 =
1
� t

�
B� vn+ 1 + B� dn+ 1 +

1
� t

�F� �� n Š �F� �En

�
(51)

where

�� :=

�
�	

�


� 11

� 22

2� 12

�
��

�
(52)

and �E is the time-integral of �� . The matricesB� , B� , �F� and �F� in Equation(51) are de“ned
in Appendix B.

The use of Equation(50a) in the constitutive equation[Equation (42b)] gives

�� n+ 1 =
�

1 +
2� b
cs� t

�
D�� n+ 1 Š

2� b
cs� t

D�� n (53)

where

D :=

�

�
�

� + 4� / 3 � Š 2� / 3 ·

� Š 2� / 3 � + 4� / 3 ·

· · �

�

�
� (54)
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Furthermore,�� n+ 1 is approximatedas

�� n+ 1 = �� n + �� n+ 1� t (55)

SubstitutingEquation(55) into Equation(46b) gives

pe
n+ 1 =

�

� e
�BT �� n+ 1 d� +

�

� e
�BpT �� n d� (56)

where

�B := �Be + � t �Bp (57)

Linearizationof Equation(56) gives, on using Equation(53) alongwith Equation(51),

� pe
n+ 1 =

� �

� e
�BT �DB� d�

�
� vn+ 1 +

� �

� e
�BT �DB� d�

�
� dn+ 1 (58)

where

�D =
1
� t

�
1 +

2� b
cs� t

�
D (59)

i.e. this linearizationgives tangentmatrices

�ce :=
�

� e
�BT �DB� d� , �ke :=

�

� e
�BT �DB� d� (60)

which may be incorporatedinto the effective tangentstiffnessusedin the time-steppingalgo-
rithm. Unfortunately, thesematricesare not symmetric.However, sinceall the systemmatrices
are independentof d, this is effectively a linear model. Note that the attenuationfunctions,
representingthe co-ordinate-stretching,affect the various compatibility matrices,e.g. �Be, �B�

etc. but not the material moduli matrix D. Consequently, this plane-strainFE formulation can
be applied to plane-stressproblemsby re-de“ning � appropriately.

The profusion of notation and equationsin this section cries out for a synopsisof the
algorithm for computingthe element-level effective internal force and tangentstiffness;this is
presentedin Box II.

3.5. Numerical results

Numerical resultsare presentedfor the classicalsoil…structureinteractionproblemsof a rigid
strip-footing on (i) a half-plane,(ii) a layer on a half-plane,and (iii) a layer on a rigid base.

Figure 7(a) shows a cross-sectionof a rigid strip-footing of half-width b with its three
degrees-of-freedom(DOFs)identi“ed„v ertical (V), horizontal(H ), androcking (R)„supported
by a homogeneousisotropic (visco-)elastichalf-planewith shearmodulus � , massdensity � ,
Poisson•s ratio � , and Voigt damping ratio � for the visco-elasticmedium. The time-domain
responseof this systemis studiedthroughthe reactionsalongthe threeDOFsdueto an imposed
displacementalong any of the three DOFs; the imposeddisplacementis chosento be of the
form of Equation(A3) and the reactionalong DOF i due to an imposeddisplacementalong
j is denotedby Pij , with i, j � { V , H , R}.
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Box II. Computingeffective force and stiffness for plane-strainPML element.

(1) Computesystemmatricesme, ce and ke [Equation (46a)].
(2) Computeinternal force pe

n+ 1 [Equation(56)]. Use �� n+ 1 [Equation(51)] and �� n+ 1 [Equation(53)].

(3) Computetangentmatrices �ce and �ke [Equation (60)].
(4) Computeeffective internal force �pe

n+ 1 and tangentstiffness �ke:

�pe
n+ 1 = mean+ 1 + cevn+ 1 + kedn+ 1 + pe

n+ 1

�ke = 
 k(ke + �ke) + 
 c(ce + �ce) + 
 mme

where an+ 1 � d̈e(tn+ 1), and, for example,


 k = 1, 
 c =
�

� � t
, 
 m =

1

� � t2

for the Newmark method.

Note: The tangentstiffness �ke is independentof the solution, and thus has to be computedonly
once. However, the internal force pe

n+ 1 has to be re-computedat each time-stepbecauseit is
dependenton the solution at past times.

Figure 7. (a) Cross-sectionof a rigid strip of half-width b on a homogeneousisotropic
(visco-)elastichalf-plane;and (b) a PML model.
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Figure 8. Reactions of a rigid strip on (visco-)elastic half-plane due to imposed displacements;
L = 3b/2, h = b/2, L P = b, f 1(x1) = 10�x1 Š h� /L P, f 2(x2) = 10�| x2| Š L � /L P; � x� := (x + | x|)/ 2;
� = 1, � = 0.25; td = 30, � f = 1.00 for vertical excitation, 0.75 for horizontal excitation and 1.25

for rocking excitation: (a) elastic half-plane,� = 0; and (b) visco-elastichalf-plane,� = 0.05.

This unbounded-domainsystemis modelledusing the bounded-domain-PMLmodel shown
in Figure 7(b), composedof a boundeddomain � BD and a PML � PM, with the attenuation
functions in Equation (12) chosenas f e

i = f p
i = f i , with f i chosento be linear in the

PML. A “nite elementmeshof four-nodebilinear isoparametricelementsare usedto discretize
the entire boundeddomain. The mesh chosenis reasonablydenseand is gradedto capture
sharpvariations in stressesnear the footing. For comparison,the half-plane is also modelled
using a viscous-dashpotmodel [3], wherein the entire domain � BD � � PM is taken to be
(visco-)elasticand consistentdashpotelementsreplacethe “x ed outer boundary;thus the mesh
used for the dashpotmodel is comparableto that used for the PML model. Becauseof the
dearthof analytical results in the time domain, the half-plane is modelledusing an extended
mesh; the results from this meshwill serve as a benchmark.From the centerof the footing,
this meshextendsto a distanceof 35b downwardsand laterally; the entire domain is taken to
be (visco-)elastic,and viscousdashpotsare placedon the outer boundary.
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Figure 9. Dynamic ”exibility coef“cients of rigid strip on elastic half-plane computed
using a PML model with stretchingfunctionssuitablefor time-domainanalysis;L = 3b/2,
h = b/2, L P = b, f 1(x1) = 10�x1 Š h� /L P, f 2(x2) = 10�| x2| Š L � /L P; � = 1, � = 0.25;

•Exact• results from Reference[40].

Figure 8(a) comparesthe reactionscomputedfor an elastic medium using the PML model
and the dashpotmodel with results from the extendedmesh.Note that the boundeddomain
for the PML and the dashpotmodels is small, extending only upto b/2 on either side of the
footing and below it, and the PML width equal to b, the half-width of the footing. Based
on a comparisonof the frequency-domain responsesof the PML and the viscous dashpot
models, the valuesof � f were chosenas the excitation frequencieswhere the two responses
are signi“cantly different.The resultsobtainedfrom the PML model follow the extendedmesh
resultsclosely, even thoughthe domain is small enoughfor the dashpotsto re”ect waves back
to the footing, as manifestedin the higher responseamplitudes.The computationalcost of
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Figure 10. Dynamic ”exibility coef“cients of rigid strip on visco-elastichalf-planecomputedusing a
PML model with stretchingfunctions suitablefor time-domainanalysis;L = 3b/2, h = b/2, L P = b,
f 1(x1) = 10�x1 Š h� /L P, f 2(x2) = 10�| x2|Š L � /L P; � = 1, � = 0.25, � = 0.05; •FD PML•: a substitute

for an exact result, obtainedusing frequency-domain stretchingfunctions in PML model.

the PML model is observed to be approximately1.6 times that of the dashpotmodel; this
cost is not signi“cantly large becausethe dashpotmodel itself is computationallyinexpensive.
Thus, the highly accurateresultsfrom the PML model are obtainedat low computationalcost.
Signi“cantly, the cost of the extended-meshmodel is observed to be approximately17 times
that of the PML model.Figure 8(b) presentssimilar comparisonsfor a visco-elastichalf-plane.
The PML results are visually indistinguishablefrom the extendedmesh results,even though
the computationaldomain is small: the dashpotsgeneratespuriousre”ections even when the
medium is visco-elastic.
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Figure11. (a) Cross-sectionof the rigid strip of half-width b on a homogeneousisotropic (visco-)elastic
layer on half-plane;and (b) a PML model.

Figures 9 and 10 presentfrequency-dependent”exibility coef“cients Fij (a0) for the rigid
strip-footing on a half-planecomputedusing a PML model employing the time-domainstretch-
ing functions in Equation (12). The ”exibility coef“cients are de“ned as the displacement
amplitudesalong DOF i due to a unit-amplitudeharmonic force along DOF j . Results for
the elastichalf-planeare comparedin Figure 9 againstavailable analytical results[40]. Owing
to the dearth of analytical solutions for the strip on a Voigt visco-elastichalf-plane, the re-
sults obtainedfrom the (possibly lessaccurate)time-domainstretchingfunctionsare compared
in Figure 10 to results from a PML model employing the frequency-domain-only stretching
functions [Equation (33)], denotedby •FD PML• in the “gures. The rationalebehind this ap-
proach is that the frequency-domain stretching functions producehighly accurateresults for
hystereticdamping[30] and,hence,can be expectedto also produceexcellent resultsfor Voigt
damping.The resultsdemonstratethat the time-domainstretchingfunctionsindeedproduceac-
curateresultsasexpected,becausethe wave motion in the half-planeconsistsprimarily of prop-
agatingmodes,which are adequatelyattenuatedeven by the time-domainstretchingfunctions.

Figure11(a)shows a cross-sectionof the rigid strip supportedby a layer on a half-plane,and
Figure11(b) shows a correspondingPML modelwith the attenuationfunctionsin Equation(12)
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Figure 12. Reactionsof a rigid strip on (visco-)elasticlayer on half-plane,due to imposeddisplace-
ments;L = 3b/2, L P = b, h = b/2, f 1(x1) = 10�x1 Š (d + h)� /L P, f 2(x2) = 10�| x2|Š L � /L P; d = 2b,
� l = 1, � h = 4� l , � = 0.4; td = 30, � f = 1.00 for vertical excitation, 0.75 for horizontal excitation

and 1.75 for rocking excitation: (a) elastic media, � = 0; and (b) visco-elasticmedia, � = 0.05.

chosenas f e
i = f p

i = f i , with f i chosento be linear in the PML. The elastic moduli for the
PMLs employed for the layer and the half-planeare set to the moduli for the corresponding
elastic media. For comparison,a viscous-dashpotmodel is also employed, where the entire
boundeddomain is taken to be (visco-)elasticand consistentdashpotsreplacethe “x ed outer
boundary. An extended-meshmodel,with viscousdashpotsat the outer boundary, is taken as a
benchmarkmodel for the layer on a half-plane;this meshextendsto a distanceof 40b laterally
and downwards from the centerof the footing.

Figure 12 shows the reactionsof the rigid strip on a layer-on-half-planedue to imposed
displacements.The PML results typically follow the results from the extended mesh, even
though the domain is small enoughfor the viscousdashpotsto generatespuriousre”ections.
The computationalcost of the PML model is not signi“cantly large: it is observed to be
approximately1.5 times that of the dashpotmodel. Signi“cantly, the extended-meshresults
show some spuriousre”ections for vertical motion of the footing: the P-wave speedin the
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Figure 13. Dynamic ”exibility coef“cients of rigid strip on elastic layer on half-plane computed
using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, L P = b,
h = b/2, f 1(x1) = 10�x1 Š (d + h)� /L P, f 2(x2) = 10�| x2|Š L � /L P; d = 2b, � l = 1, � h = 4� l , � = 0.4,
a0 = � b/

�
� l / � ; •FD PML•: a substitute for an exact result, obtained using frequency-domain

stretchingfunctions in PML model.

half-plane is high enoughthat the depth of the extendedmesh is not adequatefor the time
interval in the analysis;the cost of the extended-meshmodel is observed to be approximately
18 timesthat of the PML model.Figures13 and14 demonstratethat the time-domainstretching
functionsprovide frequency-dependent”exibility coef“cients that closely match thoseobtained
using the frequency-domain-onlystretchingfunctions.

Figure15(a)shows a cross-sectionof the rigid strip supportedby a layer on a rigid base,and
Figure 15(b) shows a correspondingPML model where f e

i = f p
i = f i in Equation(12), with
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Figure 14. Dynamic ”exibility coef“cients of rigid strip on visco-elasticlayer on half-planecomputed
using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, L P = b,
h = b/2, f 1(x1) = 10�x1 Š (d + h)� /L P, f 2(x2) = 10�| x2| Š L � /L P; d = 2b, � l = 1, � h = 4� l ,
� = 0.4, � = 0.05, a0 = � b/

�
� l / � ; •FD PML•: a substitute for an exact result, obtained using

frequency-domain stretchingfunctions in PML model.

f 1(x1) = 0 and f 2(x2) linear in the PML. The correspondingviscous-dashpotmodel includes
the entire boundeddomain as (visco-)elastic,with viscousdashpotsreplacingthe “x ed lateral
boundaries.The extended-meshmodel is also a viscous-dashpotmodel, but extending to 40b
on either side from the centerof the footing. Figure 16 demonstratesthe high accuracy of the
PML model, as well as the small size of the computationaldomain throughthe inadequacy of
the dashpotmodel. Theseresults from the PML model are obtainedat a cost approximately
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Figure15. (a) Cross-sectionof the rigid strip of half-width b on a homogeneousisotropic (visco-)elastic
layer on rigid base;and (b) a PML model.

1.2 times that of the dashpotmodel, i.e. the computationalcost is not signi“cantly large. The
cost of the extended-meshmodel is observed to be approximately3 times that of the PML
model; it is relatively cheaperhere than in the previous two casesbecausethe extension of
the meshis only in the lateral directions,not downwards.

Figure 17 demonstratesthat for a rigid strip on an elasticlayer on rigid base,the frequency-
dependent”exibility coef“cients obtainedusing the time-domainstretching functions do not
always closely follow those from the frequency-domain-onlystretchingfunctions; this is pre-
sumably due to the presenceof evanescentmodes in the system. However, this apparent
inadequacy of the time-domainstretchingfunctions is not re”ected in the time domain results
in Figure 16(a). The time-domainstretchingfunctionsprovide accurateresultsfor a rigid strip
on a visco-elasticlayer, as demonstratedin Figure 18.

4. CONCLUSIONS

Building on recent formulations for correspondingtime-harmonicPMLs [30], this paper has
presenteddisplacement-based,time-domainequationsfor the PMLs for anti-planeandfor plane-
strain motion of a two-dimensional(visco-)elasticcontinuum.Theseequationsare obtainedby
selectingstretching functions in the PML that have a simple dependenceon the factor i� ,
which facilitates transformationof the time-harmonicequationsinto the time domain. In the
interestof obtaininga realisticmodelof the unboundeddomain,materialdampingis introduced
into the PML equationsin the form of a Voigt dampingmodel in the constitutive relation for
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Figure 16. Reactionsof a rigid strip on (visco-)elasticlayer on rigid base,due to imposeddisplace-
ments; L = 3b/2, L P = b, f 1(x1) = 0, f 2(x2) = 20�| x2| Š L � /L P; d = 2b, � = 1, � = 0.4; td = 30,
� f = 2.75 for vertical excitation, 1.25 for horizontal excitation and 1.75 for rocking excitation:

(a) elastic layer, � = 0; and (b) visco-elasticlayer, � = 0.05.

the PML; this model is choseninsteadof the traditional hystereticdampingmodel becausethe
latter is non-causal.

ThesePML equationshave been implementednumerically by a straightforward “nite ele-
ment approach.As is conventional, the •equilibrium• equationsare discretizedin time by a
traditional integrator, such as the Newmark method; the equilibrium equationsare solved at
eachtime-stationusing a Newton…Raphsoniteration scheme.Becausethe tangentstiffnessma-
trix employed in the Newton…Raphsonschemeis independentof the solution, it is computed
only once at the start of the analysis.This property of the tangentmakes the PML model
effectively a linear model. The tangentstiffness of the anti-planePML is found to be sym-
metric. Furthermore,it is argued that if the attenuationfunctions are positive-valued, and if
the boundaryrestraintson the whole domain are adequate,then the tangentstiffness of the
entire computationaldomain will be positive de“nite. Unfortunately, the tangentstiffness of
the plane-strainPML turns out to be unsymmetric.The systemmatricesof both PML models
retain the sparsitystructureassociatedwith correspondingmatricesfor an elastic medium.
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Figure 17. Dynamic ”exibility coef“cients of rigid strip on elastic layer on rigid base computed
using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, L P = b,
f 1(x1) = 0, f 2(x2) = 20�| x2| Š L � /L P; d = 2b, � = 1, � = 0.4; •FD PML•: a substitutefor an exact

result, obtainedusing frequency-domain stretchingfunctions in PML model.

TheseFE implementationsof the PMLs are employed to solve the canonicalproblem of
the anti-planemotion of a semi-in“nite layer on a rigid baseand the classicalsoil-structure
interaction problemsof a rigid strip-footing on (i) a half-plane, (ii) a layer on a half-plane,
and (iii) a layer on a rigid base.Highly accurateresults were obtained from PML models
with small boundeddomainsat low computationalcosts.The boundeddomainsemployed for
theseproblemswere small enoughthat comparableviscous-dashpotmodelstypically generated
spurious re”ections within the time-interval of the analysis,even if the domain was visco-
elastic.The computationalcostsof the PML modelswere not signi“cantly large: basedon the
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Figure 18. Dynamic ”exibility coef“cients of rigid strip on visco-elasticlayer on rigid basecomputed
using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, L P = b,
f 1(x1) = 0, f 2(x2) = 20�| x2| Š L � /L P; d = 2b, � = 1, � = 0.4, � = 0.05; •FD PML•: a substitutefor

an exact result, obtainedusing frequency-domain stretchingfunctions in PML model.

relative expenseof the PML and the viscousdashpotmodels,and also on the relative number
of PML elementsand elastic elementsin a PML model, it was estimatedthat the cost of an
anti-planePML elementis approximately1.5 times the correspondingelasticelement,and that
of a plane-strainPML elementis approximately1.75 times the correspondingelastic element.

Frequency-domain results suggestthat the time-domain results may not be accuratefor
an elastic systemif the excitation is primarily in a frequency-band where evanescentmodes
are not adequatelyattenuated.If the excitation is broadband,however, and evanescentmodes
are not suf“ciently attenuatedonly in a narrow frequency-band, then the time-domainresults
can be expectedto be accurate.Moreover, the resultsare accuratefor a visco-elasticsystem
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becausethe evanescentmodes are attenuatedby damping. Issuesabout inaccuraciesdue to
evanescentmodesare of concernprimarily in waveguide systems„such as the layer on a rigid
base„becauseof their severely-constrictedgeometries;evanescentmodesareof lessconcernin
half-planeor full-plane problems.Note that this issuearisesin the time-domainmodel of the
PML becausethe specialchoiceof stretchingfunctions is not always adequatefor attenuating
evanescentmodes.An alternatechoiceof the stretchingfunction for a frequency-domainPML
model producesaccurateresultseven for waveguide systemswith signi“cant evanescentmodes
[30]; however, it is dif“cult to employ sucha frequency-domainstretchingfunction in a direct
time-domainanalysis.

This paper presentedtime-domainPML models for isotropic, homogeneousor discretely-
inhomogeneousmediaonly. However, the constitutive relation for the PML is the sameas that
for the elastic medium.This suggeststhat the PML formulationspresentedin this papermay
be extendedto anisotropic,continuously-inhomogeneouselastic media with at most minimal
modi“cations, mirroring similar developmentsin electromagnetics[41].

NOMENCLATURE

Romansymbols

a0 non-dimensionalfrequency
a nodal accelerations
b half-width of footing
B, �Be, �Bp, B� , B� compatibility matrices
cp, cs compressionaland shearwave velocities
cij dampingcoef“cient of nodal dynamic stiffnessof layer on rigid base
ce, �ce, c, �c element-level and global dampingmatrices
C, Cij kl material stiffnesstensor
d depth of layer
d nodal displacements
D material moduli matrix
{ei } standardorthonormalbasis
E, �E time integral of � , ��
f m, f c, f k seeEquation(18)
f e

i , f p
i attenuationfunctions

Fe, Fp, �Fe, �Fp attenuationtensors;Equation(14)
Fij ”exibility coef“cient of rigid strip-footing, with i, j � { V , H , R}
H (in subscript)horizontal DOF of rigid strip-footing
i =

�
Š1 unit imaginary number

Im imaginary part of a complex number
I identity matrix
ks, k�

s , kp wavenumbersfor S and P waves
kij stiffnesscoef“cient of nodal dynamic stiffnessof layer on rigid base
ke, �ke, k element-level and global stiffnessmatrices
L P depth of PML
me, m element-level and global massmatrices
nc numberof full cycles in imposeddisplacement
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n unit normal to a surface
N , NI nodal shapefunctions
p, p i direction of wave propagation
pe element-level internal force term
q direction of particle motion
Q, Q ij rotation-of-basismatrix
R (in subscript)rocking DOF of rigid strip-footing
|R|, |Rpp|, |Rsp| amplitude(s)of wave(s) re”ected from the PML
Re real part of a complex number
Sij componentof dynamic stiffnessmatrix of layer on rigid base
td duration of imposeddisplacement
Tf dominantforcing period of imposeddisplacement
u, u displacement(s)
v nodal velocities
V (in subscript)vertical DOF of rigid strip-footing
w, w arbitrary weighting function in weak form
x, xi , x co-ordinate(s)

Greek symbols

 ij Kronecker delta
� differential operator
� t time-stepsize
� , � i , � ij , � , �� strain quantities
� dampingratio for visco-elasticmedium
� angle of incidenceof outgoing wave on PML
� bulk modulus
� i complex co-ordinatestretchingfunction
�� , � stretchtensors
� shearmodulus
� Poissonratio
� massdensity
� , � i , � ij , � , �� , �� stressquantities
� , �� time-integral of � , ��
� excitation frequency
� f dominantforcing frequency of imposeddisplacement
� entire boundeddomain usedfor computation
� e elementdomain
� BD boundeddomain
� PM perfectly matchedlayer

APPENDIX A

Describedhereis the waveform employed as the imposeddisplacementin the numericalexam-
ples in this paper. The waveform is in the form of a time-limited cosinewave, bookendedby
cosinehalf-cycles so that the initial displacementand velocity as well as the “nal displacement

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1039…1074



1072 U. BASU AND A. K. CHOPRA

and velocity are zero. It is characterizedby two parameters:the duration td and the dominant
forcing frequency � f ; the dominantforcing period is then

Tf =
2�
� f

and the numberof full cycles, nc, in the excitation is calculatedas

nc =
�

td
Tf

Š
1
2

�
(A1)

where the 1
2 accountsfor the cosinehalf-cycle usedto end the excitation. For consistency, the

forcing period is adjustedto

Tf :=
td

nc + 1/ 2
(A2)

The excitation is then de“ned as

u0(t ) =
1
2

�
1 Š cos

�
2�

t
Tf

��
t � [ 0, Tf / 2)

= cos
�

2�
t Š Tf / 2

Tf

�
t � [ Tf / 2, ncTf )

=
1
2

�
1 Š cos

�
2�

t Š ncTf

Tf

��
Š 1 t � [ ncTf , td]

= 0 t � (td, 
 )

(A3)

A typical waveform and its Fourier transformare shown in Figure 3. The Fourier transform
shows a dominant frequency, as expected;the bandwidthof the peak at this frequency varies
inversely with td, but is largely independentof � f .

APPENDIX B

The matricesB� , B� , �F� and �F� usedin Equation(51) in Section3.4 are de“ned as follows.
De“ne

F’ :=
�

Fe

� t
+ Fp

� Š1

, F� := FeF’ , F� := FpF’ (B1)

Then B� is de“ned in terms of nodal submatricesas

B�
I :=

�

�
�
�
�

F �
11N

’
I 1 F �

21N
’
I 1

F �
12N

’
I 2 F �

22N
’
I 2

F �
11N

’
I 2 + F �

12N
’
I 1 F �

21N
’
I 2 + F �

22N
’
I 1

�

�
�
�
�

(B2)
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where

N ’
I i := F ’

ij NI, j (B3)

The matrix B� is de“ned similarly, with F� replacingF� throughout.Furthermore,

�F� :=

�

�
�
�
�
�

�
F �

11
� 2 �

F �
21

� 2 F �
11F

�
21

�
F �

12
� 2 �

F �
22

� 2 F �
12F

�
22

2F �
11F

�
12 2F �

21F
�
22 F �

11F
�
22 + F �

12F
�
21

�

�
�
�
�
�

(B4)

and �F� is de“ned similarly, with F� replacingF� throughout.
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ERRATUM

Erratumto •Perfectlymatchedlayersfor transientelastodynamics
of unboundeddomains•

(Int. J.Numer. Meth.Engng2004;59:1039…1074)

UshnishBasuandAnil K. Chopra� , •

Departmentof Civil andEnvironmentalEngineering, Universityof California, Berkeley, CA94720, U.S.A.

The PML equationspresentedin the paperarevalid only for b = 1, whereb is a characteristic
lengthof thephysicalproblem.For properdimensionalisationof thePML equationsandtheir FE
implementations,Equation(12)shouldbecorrectedto

� i (x �
i ) := [1 + f e

i (x �
i )] Š i

f p
i (x �

i )

a0
(12)

with a0 = ksb replacingks in the original equation.This characteristiclength b carriesover to
Equations(15), (16a)and(42a) in an obvious way. Correctedversionsof theseequationsareas
follows:
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div(� �Fe + � �Fp) = � f mü + �
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ERRATUM 157

The last two equationsaffect Equations(19), (21a),(44) and(46a),which shouldbe correctedas
follows:
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Theauthorsapologisefor any confusionthis mayhave caused.Thenumericalresultspresentedin
thepaperareunaffectedbecausethey werecomputedfor b = 1.
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