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Perfectly matched layers for transient elastodynamics
of unbounded domains
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SUMMARY

One approach to the numerical solution of a wave equation on an unbounded domain uses a bounded
domain surrounded by an absorbing boundary or layer that absorbs waves propagating outward from
the bounded domain. A perfectly matched layer (PML) is an unphysical absorbing layer model for
linear wave equations that absorbs, almost perfectly, outgoing waves of all non-tangential angles-of-
incidence and of all non-zero frequencies. In a recent work [Computer Methods in Applied Mechanics
and Engineering 2003; 192:1337–1375], the authors presented, inter alia, time-harmonic governing
equations of PMLs for anti-plane and for plane-strain motion of (visco-)elastic media. This paper
presents (a) corresponding time-domain, displacement-based governing equations of these PMLs and
(b) displacement-based finite element implementations of these equations, suitable for direct transient
analysis. The finite element implementation of the anti-plane PML is found to be symmetric, whereas
that of the plane-strain PML is not. Numerical results are presented for the anti-plane motion of a
semi-infinite layer on a rigid base, and for the classical soil–structure interaction problems of a rigid
strip-footing on (i) a half-plane, (ii) a layer on a half-plane, and (iii) a layer on a rigid base. These
results demonstrate the high accuracy achievable by PML models even with small bounded domains.
Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of the elastodynamic wave equation over an unbounded domain finds applications

in soil–structure interaction analysis [1] and in the simulation of earthquake ground motion [2].
The need for realistic models often compels a numerical solution using a bounded domain, along

with an artificial absorbing boundary or layer that simulates the unbounded domain beyond.
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Of particular importance are absorbing boundaries that allow transient analysis, facilitating

incorporation of non-linearity within the bounded domain.

Classical approximate absorbing boundaries [3–6], although local and cheaply computed,

may require large bounded domains for satisfactory accuracy, since typically they absorb inci-

dent waves well only over a small range of angles-of-incidence. For satisfactory performance,

approximate absorbing layer models [7, 8] require careful formulation and implementation to

eliminate spurious reflections from the interface to the layer. The superposition boundary [9]
is cumbersome and expensive to implement, and infinite elements [10, 11] typically require

problem-dependent assumptions on the wave motion. Rigorous absorbing boundaries are typ-

ically formulated in the frequency domain [12–14]; corresponding time-domain formulations

[15–17] may be computationally expensive and may not be applicable to all problems of interest.

The difficulty in obtaining a sufficiently accurate, yet not-too-expensive model of the un-

bounded domain directly in the time domain has led to the use of traditional frequency-domain

models towards time-domain analysis. One such method uses hybrid frequency–time-domain

analysis [1, 18], iterating between the frequency and time domains in order to account for

non-linearity in the bounded domain; this computationally demanding method requires care-

ful implementation to ensure stability. Another approach replaces the non-linear system by

an equivalent linear system [19] whose stiffness and damping values are compatible with the

effective strain amplitudes in the system. A third approach [20–22] approximates the frequency-

domain DtN map of a system by a rational function and uses this approximation to obtain a

time-domain system that is temporally local. Although this approach is conceptually attractive,

computation of an accurate rational-function approximation may be expensive.

A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that

absorbs, almost perfectly, propagating waves of all non-tangential angles-of-incidence and of

all non-zero frequencies. First introduced in the context of electromagnetic waves [23, 24], the

concept of a PML has been applied to other linear wave equations [25–27], including the

elastodynamic wave equation [28, 29]. In a recent work [30], the authors have developed

the concept of a PML in the context of frequency-domain elastodynamics, utilising insights

obtained from PMLs in electromagnetics, and illustrated it using the one-dimensional rod on

elastic foundation and the anti-plane motion of a two-dimensional continuum, governed by the

Helmholtz equation. Extending the PML concept to the displacement formulation of plane-strain

and three-dimensional motion, they have also presented a novel displacement-based, symmetric

finite element implementation of such a PML.

The objective of this paper is to present (a) time-domain, displacement-based, equations

of the PMLs for anti-plane and for plane-strain motion of a (visco-)elastic medium, and (b)

displacement-based finite element (FE) implementations of these equations. The frequency-

domain PML equations from Reference [30] are first transformed into the time domain by a

special choice of the co-ordinate-stretching functions, and then these time-domain equations are

implemented numerically by a straightforward finite element approach. Time-domain numerical

results are presented for the anti-plane motion of a semi-infinite layer on rigid base and for

the classical soil–structure interaction problems of a rigid strip-footing on (i) a half-plane, (ii)

a layer on a half-plane, and (iii) a layer on a rigid base. Additionally, the adequacy of the

special choice of the stretching functions towards attenuating evanescent waves is investigated

through numerical results in the frequency domain. This paper presents only a brief explanation

of the concept of a PML; a detailed development, and the derivation of the frequency-domain

equations are presented in Reference [30].
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Tensorial and indicial notation will be used interchangeably in this paper; the summation

convention will be assumed unless an explicit summation is used or it is mentioned otherwise.

An italic boldface symbol will represent a vector, e.g. x, an upright boldface symbol will

represent a tensor or its matrix in a particular orthonormal basis, e.g. D, and a sans-serif

boldface symbol will represent a fourth-order tensor, e.g. C; the corresponding lightface symbols

with Roman subscripts will denote components of the tensor, matrix or vector. An overbar over

a symbol, e.g. ū, denotes a time-harmonic quantity; such distinguishing notation was not

employed in Reference [30] because the entire analysis was in the frequency domain.

2. ANTI-PLANE MOTION

2.1. Elastic medium

Consider a two-dimensional homogeneous isotropic elastic continuum undergoing only anti-

plane displacements in the absence of body forces. For such motion, if the x3-direction is

taken to point out of the plane, only the 31- and 32-components of the three-dimensional

stress and strain tensors are non-zero. The displacements u(x, t) are governed by the following

equations (i ∈ {1, 2}):

∑

i

��i

�xi

= �ü (1a)

�i = �εi (1b)

εi = �u

�xi

(1c)

where � is the shear modulus of the medium and � its mass density; �i and εi represent the

3i-components of the stress and strain tensors.

On an unbounded domain, Equation (1) admits plane shear wave solutions [31] of the form

u(x, t) = exp[−iksx·p] exp(i�t) (2)

where ks = �/cs is the wavenumber, with wave speed cs = √
�/�, and p is a unit vector

denoting the propagation direction.

2.2. Perfectly matched layer

The discussion of PML presented here is a synopsis of the corresponding development in

Reference [30]. The summation convention is abandoned in this section.

Consider a wave of the form in Equation (2) propagating in an unbounded elastic domain,

the x1–x2 plane, governed by Equation (1). The objective of defining a perfectly matched layer

(PML) is to simulate such wave propagation by using a corresponding bounded domain.

The governing equations of a PML are most naturally defined in the frequency domain,

through frequency-dependent, complex-valued co-ordinate stretching. Assuming harmonic time-

dependence of the displacement, stress and strain, e.g. u(x, t) = ū(x) exp(i�t), with � the
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frequency of excitation, the governing equations of the PML for anti-plane motion are

∑

i

1

�i(xi)

��̄i

�xi

= −�2�ū (3a)

�̄i = �ε̄i (3b)

ε̄i = 1

�i(xi)

�ū

�xi

(3c)

where �i are nowhere-zero, continuous, complex-valued co-ordinate stretching functions.

If the stretching functions are chosen as

�i(xi) := 1 − i
fi(xi)

ks
(4)

in terms of real-valued, continuous attenuation functions fi , then Equation (3) admits solutions

of the form

ū(x, t) = exp

[

−
∑

i

Fi(xi)pi

]

exp[−iksx·p] (5)

where

Fi(xi) :=
∫ xi

0

fi(�) d� (6)

Thus, if Fi(xi) > 0 and pi > 0, then the wave solution admitted in the PML medium is of the

form of the elastic-medium solution [Equation (2)], but with an imposed spatial attenuation.

This attenuation is of the form exp[−Fi(xi)pi] in the xi-direction, and is independent of the

frequency if pi is.

Consider replacing the x1–x2 plane by �BD ∪ �PM, as shown in Figure 1, where �BD is

a ‘bounded’ (truncated) domain, governed by Equation (1), and �PM is a PML, governed by

Equation (3), with �1 of the form in Equation (4), satisfying f1(0) = 0, and �2 ≡ 1. The medium

in �BD being a special PML medium [�i(xi) ≡ 1], the matching of stretching functions at the

�BD–�PM interface makes the PML ‘perfectly matched’ to �BD: waves travelling outward from

the bounded domain are absorbed into the PML without any reflection from the �BD–�PM

interface. An outgoing wave entering the PML is attenuated in the layer and then reflected

back from the fixed end towards the bounded domain. If the incident wave has unit amplitude,

then the amplitude |R| of the reflected wave as it exits the PML is given by

|R| = exp[−2F1(LP) cos �] (7)

This reflected-wave amplitude is controlled by the choice of the attenuation function and the

depth of the layer, and can be made arbitrarily small for non-tangentially incident waves.

Because such outgoing waves in such a system will be only minimally reflected back towards

the interface, this bounded-domain-PML system is an appropriate model for the unbounded

x1–x2 plane.
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Figure 1. A PML adjacent to a ‘bounded’ (truncated) domain attenuates and reflects
back an outgoing plane wave.

2.3. Time-domain equations for the PML

Consider two rectangular Cartesian co-ordinate systems for the plane as follows: (1) an {xi}
system, with respect to an orthonormal basis {ei}, and (2) an {x′

i} system, with respect to

another orthonormal basis {e′
i}, with the two bases related by the rotation-of-basis matrix Q,

with components Qij := ei · e′
j . Equation (3) can be re-written in terms of the co-ordinates x′

i

by replacing xi by x′
i throughout, representing a medium wherein waves are attenuated in the

e′
1 and e′

2 directions, rather than in the e1 and e2 directions as in Equation (3). This resultant

equation can be transformed to the basis {ei} to obtain [30]

∇ · (�̃�̄) = −�2�[�1(x
′
1)�2(x

′
2)]ū (8a)

�̄ = �(1 + 2ia0�)�̄ (8b)

�̄ = �(∇ū) (8c)

where

�̄ :=
{

�̄1

�̄2

}

, �̄ :=
{

ε̄1

ε̄2

}

, ∇ :=



















�

�x1

�

�x2



















(9)
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and

�̃ = Q�̃
′QT, � = Q�

′QT (10)

with

�̃
′ :=

[

�2(x
′
2) ·

· �1(x
′
1)

]

, �
′ :=

[

1/�1(x
′
1) ·

· 1/�2(x
′
2)

]

(11)

Equation (8) explicitly incorporates Voigt material damping through the correspondence principle

in terms of a damping ratio � and a non-dimensional frequency a0 = ksb, where b is a

characteristic length of the physical problem. This damping model is chosen over the traditional

hysteretic damping model because the latter is non-causal [32]; implementation of a causal

hysteretic model in a PML formulation is beyond the scope of this paper.

Because multiplication or division by the factor i� in the frequency domain corresponds to

a derivative or an integral, respectively, in the time domain, time-harmonic equations are easily

transformed into corresponding equations for transient motion if the frequency-dependence of

the former is only a simple dependence on this factor. Therefore, the stretching functions are

chosen to be of the form

�i(x
′
i) := [1 + f e

i (x′
i)] − i

f
p
i (x′

i)

ks
(12)

where, the functions f e
i serve to attenuate evanescent waves whereas the functions f

p
i serve

to attenuate propagating waves. For �i as in Equation (12), the stretch tensors �̃ and � can

be written as

�̃ = F̃e + 1

i�
F̃p, � =

[

Fe + 1

i�
Fp

]−1

(13)

where

F̃e = QF̃e′QT, F̃p = QF̃p′QT, Fe = QFe′QT, Fp = QFp′QT (14)

with

F̃e′ :=
[

1 + f e
2 (x′

2) ·

· 1 + f e
1 (x′

1)

]

, F̃p′ :=
[

csf
p

2 (x′
2) ·

· csf
p

1 (x′
1)

]

(15a)

and

Fe′ :=
[

1 + f e
1 (x′

1) ·

· 1 + f e
2 (x′

2)

]

, Fp′ :=
[

csf
p

1 (x′
1) ·

· csf
p

2 (x′
2)

]

(15b)

Equation (8c) is premultiplied by i��
−1, Equations (12) and (13) are substituted into Equa-

tion (8), and the inverse Fourier transform is applied to the resultant to obtain the time domain

equations for the PML:

∇ · �̃ = �fmü + �csfcu̇ + �fku (16a)
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� = �

(

� + 2�b

cs
�̇

)

(16b)

Fe
�̇ + Fp

� = ∇u̇ (16c)

where

�̃ := F̃e
� + F̃p

�, with � :=
∫ t

0

� d	 (17)

and

fm := [1 + f e
1 (x′

1)][1 + f e
2 (x′

2)]

fc := [1 + f e
1 (x′

1)]f
p

2 (x′
2) + [1 + f e

2 (x′
2)]f

p

1 (x′
1)

fk := f
p

1 (x′
1)f

p

2 (x′
2)

(18)

The application of the inverse Fourier transform to obtain � assumes that �̄(� = 0) = 0. The

presence of the time-integral of � in the governing equations, although unconventional from

the point-of-view of continuum mechanics, is not unnatural in a time-domain implementation

of a PML obtained without field-splitting [33].

2.4. Finite element implementation

Equation (16) is implemented using a standard displacement-based finite element approach

[34]. The weak form of Equation (16a) is derived by multiplying it with an arbitrary weighting

function w residing in an appropriate admissible space, and then integrating over the entire

computational domain � using integration-by-parts and the divergence theorem to obtain
∫

�

�fmwü d� +
∫

�

�csfcwu̇ d� +
∫

�

�fkwu d� +
∫

�

∇w · �̃ d� =
∫

�

w �̃ · n d� (19)

where � := �� is the boundary of � and n is the unit normal to �. The weak form is first

spatially discretized by interpolating u and w element-wise in terms of nodal quantities using

appropriate nodal shape functions. This leads to the system of equations

md̈ + cḋ + kd + pint = pext (20)

where m, c and k are the mass, damping and stiffness matrices, respectively, d is a vector of

nodal displacements, pint is a vector of internal force terms, and pext is a vector of external

forces. These matrices and vectors are assembled from corresponding element-level matrices and

vectors. In particular, the element-level constituent matrices of m, c and k are, respectively,

me =
∫

�
e
�fmNTN d�, ce =

∫

�
e
�csfcN

TN d�, ke =
∫

�
e
�fkN

TN d� (21a)

and the element-level internal force term is

pe =
∫

�
e
BT

�̃ d� (21b)
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where N is a row vector of element-level nodal shape functions, and

B =
[

N,1

N,2

]

(22)

The functions f e
i and f

p
i are defined globally on the computational domain, not element-wise.

It is conveniently assumed that �̃ · n = 0 on a free boundary of the PML.

Equation (20) can be solved using a time-stepping algorithm such as the Newmark method

[35, 36], alongwith Newton–Raphson iteration at each time step to enforce equilibrium. If

Equation (20) is solved, say, at time station tn+1, given the solution at tn, the Newton–Raphson

iteration at this time step will require (a) calculation of �̃n+1, for calculating pe
n+1 [≈ pe(tn+1)],

and (b) a consistent linearization [34, vol. 2] of pe
n+1 at dn+1 [≈ de(tn+1)], where de is a

vector of element-level nodal displacements. Therefore, Equation (16c) is discretized using a

backward Euler scheme on � to obtain

�n+1 =
[

Fe

�t
+ Fp

]−1 [

Bvn+1 + Fe

�t
�n

]

(23)

where vn+1 ≈ ḋe(tn+1), and �t is the time-step size. A similar time-discretization of Equa-

tion (16b) gives

�n+1 = �

(

1 + 2�b

cs�t

)

�n+1 − �
2�b

cs�t
�n (24)

Furthermore, Equation (17b) is used to approximate �n+1 as

�n+1 = �n + �n+1�t (25)

Equation (25) is substituted in Equation (17a) to obtain

�̃n+1 = �t

[

F̃e

�t
+ F̃p

]

�n+1 + F̃p
�n (26)

This gives the internal force term

pe
n+1 =

∫

�
e
BT

�̃n+1 d� (27)

Linearization of Equation (27) gives

�pe
n+1 =

[∫

�
e
BTDB d�

]

�vn+1 (28)

where � is the differential operator, and

D = ��t

(

1 + 2�b

cs�t

)

[

F̃e

�t
+ F̃p

]

[

Fe

�t
+ Fp

]−1

(29)

i.e. this linearization gives a tangent matrix

če :=
∫

�
e
BTDB d� (30)
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Box I. Computing effective force and stiffness for anti-plane PML element.

(1) Compute system matrices me, ce and ke [Equation (21a)].
(2) Compute internal force pe

n+1
[Equations (27)].

Use �n+1 [Equation (23)], �n+1 [Equation (24)] and �̃n+1 [Equation (26)].
(3) Compute tangent matrix če [Equation (30)] using D [Equation (29)].

(4) Compute effective internal force p̃e
n+1

and tangent stiffness k̃e:

p̃e
n+1 = mean+1 + cevn+1 + kedn+1 + pe

n+1

k̃e = 
kk
e + 
c

(

ce + če
)

+ 
mme

where an+1 ≈ d̈e(tn+1), and, for example,


k = 1, 
c = �

��t
, 
m = 1

��t2

for the Newmark method.

Note: The tangent stiffness k̃e is independent of the solution, and thus has to be computed only
once. However, the internal force pe

n+1
has to be re-computed at each time-step because it is

dependent on the solution at past times.

which may be incorporated into the effective tangent stiffness used in the time-stepping

algorithm.

A skeleton of the algorithm for computing the element-level effective internal force and

tangent stiffness is given in Box I. The matrix če is symmetric because D is symmetric by

the virtue of the coaxiality of the constituent matrices. The other system matrices, m, c and

k are clearly symmetric by Equation (21a). Moreover, because all these matrices are of the

same form as the system matrices for an elastic medium, the effective tangent stiffness (say,

as found in the Newmark scheme) of the entire computational domain will be positive definite

if f e
i and f

p
i are positive and if the boundary restraints are adequate. Furthermore, since all

the system matrices, m, c, č and k that constitute the tangent stiffness are independent of d,

this is effectively a linear model.

2.5. Numerical results

Consider a homogeneous isotropic semi-infinite layer of depth d on a rigid base, as shown in

Figure 2(a), whose anti-plane motion is governed by Equation (1) with the following boundary

conditions:

u(x, t) = 0 at x2 = 0, ∀x1 > 0, ∀t

�2 = 0 at x2 = d, ∀x1 > 0, ∀t

u(x, t) = u1(t)N1(x2/d) + u2(t)N2(x2/d) at x1 = 0, ∀x2 ∈ [0, d]
(31)

and a radiation condition for x1 → ∞, where u1 and u2 are the displacements at nodes 1 and

2, and N1 and N2 are shape functions defined as

N1(�) = 4�(1 − �), N2(�) = �(2� − 1), � ∈ [0, 1] (32)
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Figure 2. (a) Homogeneous isotropic (visco-)elastic semi-infinite layer of depth d on
a fixed base; and (b) a PML model.
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Figure 3. Plot of typical: (a) input displacement with td = 20; and (b) amplitude of its
Fourier transform, with �f = 2.

The wave motion in this system is similar to Love wave motion: it is dispersive, and consists

of not only propagating modes but also an infinite number of evanescent modes, with the

propagation (and decay) in the x1-direction [37, Appendix A.3].
The time-domain response of this system may be studied through the reactions at nodes 1

and 2 due to any combination of nodal displacements u1(t) and u2(t). Employed here is a

time-limited cosine wave, bookended by cosine half-cycles so that the initial displacement and

velocity as well as the final displacement and velocity are zero. This imposed displacement

is characterized by two parameters: the duration td and the dominant forcing frequency �f ; a

typical waveform and its Fourier transform are shown in Figure 3, and a detailed description

of the waveform is given in Appendix A. The displacement u0(t) is imposed on the two nodes

individually, i.e. two cases are considered: (1) u1(t) = u0(t), u2(t) ≡ 0, and (2) u1(t) ≡ 0,

u2(t) = u0(t), and the two nodal reactions are computed for each of the two displacements.

This semi-infinite layer is modelled using the bounded-domain-PML model shown in

Figure 2(b), composed of a bounded domain �BD and a PML �PM, with the attenuation

functions in Equation (12) chosen as f e
1 = f

p

1 = f , where f is linear in the PML, and

f e
2 = f

p

2 = 0. A uniform finite element mesh of four-node bilinear isoparametric elements is

used to discretize the entire bounded domain. The mesh is chosen to have nd elements per
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Figure 4. Nodal reactions of (visco-)elastic semi-infinite layer on fixed base, due to imposed
nodal displacements; L = d/2, LP = d, nb = np = 15, nd = 15, f1(x1) = 10〈x1 − L〉/LP;
td = 30, �f = 2.5 for all cases except for P11 and P22 for elastic layer, where �f = 2.75:

(a) elastic layer, � = 0; and (b) visco-elastic layer, � = 0.05.

unit d, nb elements per unit L/d across the width of �BD, and np elements per unit LP/d

across �PM, with choices for nd, nb and np indicated along with the numerical results. For

comparison, the layer is also modelled using viscous dashpots [4], with consistent dashpots

placed at the edge x1 = L + LP, and the entire domain �BD ∪ �PM taken to be (visco-)elastic.

Thus, the domain size and mesh size are comparable to those in the PML model.

Figure 4(a) presents the nodal reactions computed for an elastic medium using the PML

model and the dashpot model against the exact reactions computed using convolution of the

excitation and the exact impulse response function in Reference [37], where Pij denotes

the reaction at node i due to a non-zero displacement at node j . Based on a comparison

of the frequency-domain responses of the PML and the viscous dashpot models, the values of

�f were chosen as the excitation frequencies where the two responses are significantly differ-

ent. The results obtained from the PML model are virtually indistinguishable from the exact

results, even though the domain is small enough that the viscous-dashpot boundary generates
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spurious reflections, manifested in the higher response amplitudes. Moreover, these accurate

results from the PML model are obtained at a low computational cost: the cost of the PML

model is observed to be approximately 1.3 times that of the dashpot model, which itself is

extremely inexpensive. Figure 4(b) presents similar results for a visco-elastic layer, with results

from an extended-mesh model used as a benchmark in the absence of analytical solutions; this

extended-mesh model is a viscous-dashpot model of depth d and length 10d from the edge

x1 = 0, with consistent dashpots at x1 = 10d and visco-elastic material within the domain. The

results from the PML model are highly accurate; due to the material damping in the medium,

the inaccuracies of the dashpot model are significantly lesser than in the elastic case.

2.6. Caveat emptor

The time-domain equations for the PML were obtained by a special choice of the stretching

functions—Equation (12)—that enabled transformation of the frequency domain PML equations

into the time domain. However, these stretching functions differ from those used for frequency-

domain analysis in Reference [30], where they were chosen as

�i(x
′
i) :=

[

1 +
f e

i (x′
i)

k∗
s

]

− i
f

p
i (x′

i)

k∗
s

(33)

where, e.g. k∗
s = ks/

√
1 + 2ia0� for the Voigt damping model; these stretching functions pro-

duced accurate results in the frequency domain, even for problems with significant evanescent

modes in their wave motion.

Because the real part of the complex-valued stretching function serves to attenuate evanescent

waves, and because, for an elastic medium the difference between the time-domain and the

frequency-domain stretching functions is only in the real part, it is valid to ask whether the

time-domain stretching functions are adequate for evanescent waves. Note that it is difficult

to employ the frequency-domain stretching function [Equation (33)] towards a time-domain

model, even for an elastic medium, because the frequency-dependence of the real part of the

stretching function is not through the factor i�. Because the PML approach is fundamentally

a frequency-domain approach, it is valid to test the adequacy of the time-domain stretching

function [Equation (12)] by using it to obtain frequency-domain results.

The frequency-domain response of this layer on a half-plane can be characterized by the

amplitude of nodal forces due to unit-amplitude harmonic motion at either node. The force

amplitude at node i due to a unit-amplitude displacement at node j with frequency a0 = ksd

is denoted by Sij (a0) and is decomposed into stiffness and damping coefficients kij and cij as

Sij (a0) = Sij (0)[kij (a0) + ia0cij (a0)] (no summation) (34)

Analytical, closed-form expressions for Sij (a0) is available in Appendix A.3 of Reference [37].
Figure 5 compares results for an elastic layer obtained from PML models using the two

stretching functions against analytical results [37]. The mesh used for the PML models is the

same as those used for time-domain analysis; the results are obtained using the frequency-

domain FE formulation presented in Reference [30]. It is seen that the frequency-domain-only

stretching function [Equation (33)] produces highly accurate results, denoted by ‘FD PML’,

whereas the time-domain stretching function [Equation (12)] produces results, denoted by ‘PML’

that are inaccurate for a0 > 6. This suggests that the time-domain stretching function cannot

adequately attenuate evanescent waves, which is supported by Figure 6, showing results for a
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Figure 5. Dynamic stiffness coefficients of elastic semi-infinite layer on fixed base computed using
PML models with two different forms of the stretching function: ‘PML’ from a stretching function
that can be implemented in the time domain, and ‘FD PML’ from a stretching function that is more
accurate but is only suitable for the frequency domain; L = d/2, LP = d, nb = np = 15, nd = 15,

f1(x1) = 10〈x1 − L〉/LP; ‘Exact’ results from Reference [37].

visco-elastic layer obtained using a PML model with the time-domain stretching function: the

material damping attenuates the evanescent modes, and the results are now highly accurate.

Thus, for undamped systems with severely-constricted geometries—typically, waveguides such

as the layer on a rigid base—the time domain results from a PML model may not be accurate

if the excitation is primarily in a frequency band where evanescent modes are not adequately

attenuated. Such a conclusion is echoed in electromagnetics literature [38, 39], where alternative

choices of the stretching function have been considered for attenuating evanescent waves.

3. PLANE-STRAIN MOTION

3.1. Elastic medium

Consider a homogeneous isotropic elastic medium undergoing plane-strain motion in the absence

of body forces. The displacements u(x, t) of such a medium are governed by the following
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Figure 6. Dynamic stiffness coefficients of visco-elastic semi-infinite layer on fixed base computed
using a PML model with a stretching function that can be implemented in the time domain; L = d/2,
LP = d, nb = np = 15, nd = 15, f1(x1) = 10〈x1 − L〉/LP; � = 0.05; ‘Exact’ results using the

correspondence principle on results from Reference [37].

equations (i, j, k, l ∈ {1, 2}):

∑

j

��ij

�xj

= �üi (35a)

�ij =
∑

k,l

Cijkl εkl (35b)

εij = 1

2

[

�ui

�xj

+ �uj

�xi

]

(35c)

where Cijkl written in terms of the Kronecker delta 
ij is

Cijkl = (� − 2
3
�)
ij
kl + �(
ik
j l + 
il
jk) (36)

�ij and εij are the components of � and �, the stress and infinitesimal strain tensors, Cijkl are

the components of C, the material stiffness tensor; � is the bulk modulus, � the shear modulus,

and � the mass density of the medium. Equation (35) also describes plane-stress motion if �

is re-defined appropriately.
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On an unbounded domain, Equation (35) admits body-wave solutions [31] in the form of

(1) P waves:

u(x, t) = q exp[−ikpx·p] exp(i�t) (37a)

where kp = �/cp, with cp =
√

(� + 4�/3)/� the P-wave speed, p is a unit vector denoting the

propagation direction, and q = ±p the direction of particle motion, and (2) S waves:

u(x, t) = q exp[−iksx·p] exp(i�t) (37b)

where ks = �/cs, with cs = √
�/� the S-wave speed, and q·p = 0.

3.2. Perfectly matched layer

The discussion presented here is a synopsis of the corresponding development in Reference

[30]. The summation convention is abandoned in this section.

A PML for plane-strain motion is defined naturally in the frequency domain as

∑

j

1

�j (xj )

��̄ij

�xj

= −�2�ūi (38a)

�̄ij =
∑

k,l

Cijkl ε̄kl (38b)

ε̄ij = 1

2

[

1

�j (xj )

�ūi

�xj

+ 1

�i(xi)

�ūj

�xi

]

(38c)

where �i are nowhere-zero, continuous, complex-valued co-ordinate stretching functions. Be-

cause the constitutive relation Equation (38b) is the same as for the elastic medium, Equa-

tion (38) also describes a PMM for plane-stress motion if � is re-defined appropriately.

Equation (38) assumes harmonic time-dependence of the displacement, stress and strain, e.g.

u(x, t) = ū(x) exp(i�t), where � is the frequency of excitation.

If the stretching functions are chosen as in Equation (4), then Equation (38) admits solutions

of the form

ū(x) = exp

[

− cs

cp

∑

i

Fi(xi)pi

]

q exp[−ikpx·p] (39a)

with q = ±p, and

ū(x) = exp

[

−
∑

i

Fi(xi)pi

]

q exp[−iksx·p] (39b)

with q·p = 0, and Fi defined as in Equation (6). Thus, if Fi(xi) > 0 and pi > 0, then the

wave solutions admitted in the PML medium are P-type and S-type waves, but with a spatial

attenuation imposed upon them.

As in the case of anti-plane motion, an appropriately defined PML may be placed adjacent

to a bounded domain (Figure 1) in order to simulate an unbounded domain. A wave travelling

outward from the bounded domain is absorbed into the PML without any reflection from the

bounded-domain-PML interface. This wave is then attenuated in the layer and reflected back
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from the fixed end towards the bounded domain. For example, an incident P wave of unit

amplitude will be reflected back from the fixed end as a P wave and an S wave, and their

amplitudes, as they exit the PML, will be [30],

|Rpp| = cos(� + �s)

cos(� − �s)
exp

[

−2
cs

cp
F1(LP) cos �

]

|Rsp| = sin 2�

cos(� − �s)
exp

[

−F1(LP)

(

cs

cp
cos � + cos �s

)]

(40)

with �s given by

sin �s = cs

cp
sin �

These reflected-wave amplitudes are controlled by the choice of the attenuation function and

the depth of the layer, and can be made arbitrarily small for non-tangentially incident waves.

Because outgoing waves in such a system will be only minimally reflected back towards the

interface, such a bounded-domain-PML system is an appropriate model for the corresponding

unbounded-domain system.

3.3. Time-domain equations for the PML

Equation (38) represents a PML wherein waves are attenuated in the x1 and x2 directions. As

in the case of anti-plane motion, the equations for the plane-strain PML can be re-written to

represent a medium wherein the attenuation is in two arbitrary (orthogonal) directions [30]:

div(�̄�̃) = −�2�[�1(x
′
1)�2(x

′
2)]ū (41a)

�̄ = (1 + 2ia0�)C�̄ (41b)

�̄ = 1
2
[(grad ū)� + �

T(grad ū)T] (41c)

where �̃ and � are as in Equations (10) and (11). Equation (41) explicitly incorporates Voigt

material damping through the correspondence principle in terms of a damping ratio � and a

non-dimensional frequency a0 = ksb, where b is a characteristic length of the physical problem.

Choosing the stretching functions to be of the form in Equation (12) allows transformation of

Equation (41) into the time domain. Equation (41c) is premultiplied by i��
−T and postmulti-

plied by �
−1, Equations (12) and (13) are substituted into Equation (41), and the inverse Fourier

transform is applied to the resultant to obtain the time domain equations for the PML:

div(�F̃e + �F̃p) = �fmü + �csfcu̇ + �fku (42a)

� = C

(

� + 2�b

cs
�̇

)

(42b)

FeT
�̇Fe + (FpT

�Fe + FeT
�Fp) + FpT

EFp

= 1
2
[FeT

(grad u̇) + (grad u̇)TFe] + 1
2
[FpT

(grad u) + (grad u)TFp] (42c)
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where F̃e, F̃p, Fe and Fp are as in Equations (14) and (15), fm, fc and fk are as in Equa-

tion (18), and

� :=
∫ t

0

� d	, E :=
∫ t

0

� d	 (43)

Application of the inverse Fourier transform to obtain � and E assumes that �̄(� = 0) = 0

and �̄(� = 0) = 0.

3.4. Finite element implementation

Equation (42) is implemented using a standard displacement-based finite element approach

[34]. The weak form of Equation (42a) is derived by taking its inner product with an arbitrary

weighting function w residing in an appropriate admissible space, and then integrating over the

entire computational domain � using integration-by-parts and the divergence theorem to obtain

∫

�

�fmw · ü d� +
∫

�

�csfcw · u̇ d� +
∫

�

�fkw · u d�

+
∫

�

�̃
e : � d� +

∫

�

�̃
p : � d� =

∫

�

w · (�F̃e + �F̃p)n d� (44)

where � := �� is the boundary of � and n is the unit normal to �. The symmetry of � and

� is used to obtain the last two integrals on the left-hand side, with

�̃
e := 1

2
[(grad w)F̃e + F̃eT(grad w)T], �̃

p := 1
2
[(grad w)F̃p + F̃pT(grad w)T] (45)

The weak form is first spatially discretized by interpolating u and w element-wise in terms of

nodal quantities using appropriate nodal shape functions. This leads to a system of equations

as in Equation (20), but with the mass, damping and stiffness matrices given in terms of their

IJ th nodal submatrices as, respectively,

me
IJ =

∫

�
e
�fmNINJ d� I, ce

IJ =
∫

�
e
�csfcNINJ d�I, ke

IJ =
∫

�
e
�fkNINJ d�I (46a)

where NI is the shape function for node I and I is the identity matrix of size 2 × 2. The

element-level internal force term is given by

pe =
∫

�
e
B̃eT

�̂ d� +
∫

�
e
B̃pT

�̂ d� (46b)

where B̃e and B̃p are given in terms of their nodal submatrices as

B̃e
I :=











Ñe
I1 ·

· Ñe
I2

Ñe
I2 Ñe

I1











, B̃
p
I :=











Ñ
p

I1 ·

· Ñ
p

I2

Ñ
p

I2 Ñ
p

I1











(47)
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with

Ñe
I i := F̃ e

ijNI,j and Ñ
p
I i := F̃

p
ijNI,j (48)

and

�̂ :=











�11

�22

�12











(49)

with �̂ the time-integral of �̂. Note that the above vector representation of the tensor � assumes

its symmetry, which requires a minor symmetry of C; because the PML medium is unphysical,

a physically-motivated axiom—the balance of angular momentum—cannot be employed to

show the symmetry of �. The attenuation functions f e
i and f

p
i are defined globally on the

computational domain, not element-wise. It is conveniently assumed that there is no contribution

to pext from a free boundary of the PML.

Solution of the equations of motion [Equation (20)] using a time-stepping algorithm requires

calculating �n+1 and �n+1 at tn+1, to calculate pe
n+1, and also a consistent linearization of

pe
n+1 at dn+1. Towards this, the approximations

�̇(tn+1) ≈ �n+1 − �n

�t
, E(tn+1) ≈ En + �n+1�t (50)

are used in Equation (42c) to obtain

�̂n+1 = 1

�t

[

Bεvn+1 + B�dn+1 + 1

�t
F̂ε

�̂n − F̂�Ên

]

(51)

where

�̂ :=











ε11

ε22

2ε12











(52)

and Ê is the time-integral of �̂. The matrices Bε, B�, F̂ε and F̂� in Equation (51) are defined

in Appendix B.

The use of Equation (50a) in the constitutive equation [Equation (42b)] gives

�̂n+1 =
(

1 + 2�b

cs�t

)

D�̂n+1 − 2�b

cs�t
D�̂n (53)

where

D :=







� + 4�/3 � − 2�/3 ·
� − 2�/3 � + 4�/3 ·

· · �






(54)
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Furthermore, �̂n+1 is approximated as

�̂n+1 = �̂n + �̂n+1�t (55)

Substituting Equation (55) into Equation (46b) gives

pe
n+1 =

∫

�
e
B̃T

�̂n+1 d� +
∫

�
e
B̃pT

�̂n d� (56)

where

B̃ := B̃e + �tB̃p (57)

Linearization of Equation (56) gives, on using Equation (53) alongwith Equation (51),

�pe
n+1 =

[∫

�
e
B̃TD̃Bε d�

]

�vn+1 +
[∫

�
e
B̃TD̃B� d�

]

�dn+1 (58)

where

D̃ = 1

�t

(

1 + 2�b

cs�t

)

D (59)

i.e. this linearization gives tangent matrices

če :=
∫

�
e
B̃TD̃Bε d�, ǩe :=

∫

�
e
B̃TD̃B� d� (60)

which may be incorporated into the effective tangent stiffness used in the time-stepping algo-

rithm. Unfortunately, these matrices are not symmetric. However, since all the system matrices

are independent of d, this is effectively a linear model. Note that the attenuation functions,

representing the co-ordinate-stretching, affect the various compatibility matrices, e.g. B̃e, B̃ε

etc. but not the material moduli matrix D. Consequently, this plane-strain FE formulation can

be applied to plane-stress problems by re-defining � appropriately.

The profusion of notation and equations in this section cries out for a synopsis of the

algorithm for computing the element-level effective internal force and tangent stiffness; this is

presented in Box II.

3.5. Numerical results

Numerical results are presented for the classical soil–structure interaction problems of a rigid

strip-footing on (i) a half-plane, (ii) a layer on a half-plane, and (iii) a layer on a rigid base.

Figure 7(a) shows a cross-section of a rigid strip-footing of half-width b with its three

degrees-of-freedom (DOFs) identified—vertical (V ), horizontal (H ), and rocking (R)—supported

by a homogeneous isotropic (visco-)elastic half-plane with shear modulus �, mass density �,

Poisson’s ratio �, and Voigt damping ratio � for the visco-elastic medium. The time-domain

response of this system is studied through the reactions along the three DOFs due to an imposed

displacement along any of the three DOFs; the imposed displacement is chosen to be of the

form of Equation (A3) and the reaction along DOF i due to an imposed displacement along

j is denoted by Pij , with i, j ∈ {V, H, R}.
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Box II. Computing effective force and stiffness for plane-strain PML element.

(1) Compute system matrices me, ce and ke [Equation (46a)].
(2) Compute internal force pe

n+1
[Equation (56)]. Use �̂n+1 [Equation (51)] and �̂n+1 [Equation (53)].

(3) Compute tangent matrices če and ǩe [Equation (60)].

(4) Compute effective internal force p̃e
n+1

and tangent stiffness k̃e:

p̃e
n+1 = mean+1 + cevn+1 + kedn+1 + pe

n+1

k̃e = 
k(ke + ǩe) + 
c(c
e + če) + 
mme

where an+1 ≈ d̈e(tn+1), and, for example,


k = 1, 
c = �

��t
, 
m = 1

��t2

for the Newmark method.

Note: The tangent stiffness k̃e is independent of the solution, and thus has to be computed only
once. However, the internal force pe

n+1
has to be re-computed at each time-step because it is

dependent on the solution at past times.

Figure 7. (a) Cross-section of a rigid strip of half-width b on a homogeneous isotropic
(visco-)elastic half-plane; and (b) a PML model.
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Figure 8. Reactions of a rigid strip on (visco-)elastic half-plane due to imposed displacements;
L = 3b/2, h = b/2, LP = b, f1(x1) = 10〈x1 − h〉/LP, f2(x2) = 10〈|x2| − L〉/LP; 〈x〉 := (x + |x|)/2;
� = 1, � = 0.25; td = 30, �f = 1.00 for vertical excitation, 0.75 for horizontal excitation and 1.25

for rocking excitation: (a) elastic half-plane, � = 0; and (b) visco-elastic half-plane, � = 0.05.

This unbounded-domain system is modelled using the bounded-domain-PML model shown

in Figure 7(b), composed of a bounded domain �BD and a PML �PM, with the attenuation

functions in Equation (12) chosen as f e
i = f

p
i = fi , with fi chosen to be linear in the

PML. A finite element mesh of four-node bilinear isoparametric elements are used to discretize

the entire bounded domain. The mesh chosen is reasonably dense and is graded to capture

sharp variations in stresses near the footing. For comparison, the half-plane is also modelled

using a viscous-dashpot model [3], wherein the entire domain �BD ∪ �PM is taken to be

(visco-)elastic and consistent dashpot elements replace the fixed outer boundary; thus the mesh

used for the dashpot model is comparable to that used for the PML model. Because of the

dearth of analytical results in the time domain, the half-plane is modelled using an extended

mesh; the results from this mesh will serve as a benchmark. From the center of the footing,

this mesh extends to a distance of 35b downwards and laterally; the entire domain is taken to

be (visco-)elastic, and viscous dashpots are placed on the outer boundary.
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Figure 9. Dynamic flexibility coefficients of rigid strip on elastic half-plane computed
using a PML model with stretching functions suitable for time-domain analysis; L = 3b/2,
h = b/2, LP = b, f1(x1) = 10〈x1 − h〉/LP, f2(x2) = 10〈|x2| − L〉/LP; � = 1, � = 0.25;

‘Exact’ results from Reference [40].

Figure 8(a) compares the reactions computed for an elastic medium using the PML model

and the dashpot model with results from the extended mesh. Note that the bounded domain

for the PML and the dashpot models is small, extending only upto b/2 on either side of the

footing and below it, and the PML width equal to b, the half-width of the footing. Based

on a comparison of the frequency-domain responses of the PML and the viscous dashpot

models, the values of �f were chosen as the excitation frequencies where the two responses

are significantly different. The results obtained from the PML model follow the extended mesh

results closely, even though the domain is small enough for the dashpots to reflect waves back

to the footing, as manifested in the higher response amplitudes. The computational cost of
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Figure 10. Dynamic flexibility coefficients of rigid strip on visco-elastic half-plane computed using a
PML model with stretching functions suitable for time-domain analysis; L = 3b/2, h = b/2, LP = b,
f1(x1) = 10〈x1 −h〉/LP, f2(x2) = 10〈|x2|−L〉/LP; � = 1, � = 0.25, � = 0.05; ‘FD PML’: a substitute

for an exact result, obtained using frequency-domain stretching functions in PML model.

the PML model is observed to be approximately 1.6 times that of the dashpot model; this

cost is not significantly large because the dashpot model itself is computationally inexpensive.

Thus, the highly accurate results from the PML model are obtained at low computational cost.

Significantly, the cost of the extended-mesh model is observed to be approximately 17 times

that of the PML model. Figure 8(b) presents similar comparisons for a visco-elastic half-plane.

The PML results are visually indistinguishable from the extended mesh results, even though

the computational domain is small: the dashpots generate spurious reflections even when the

medium is visco-elastic.
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Figure 11. (a) Cross-section of the rigid strip of half-width b on a homogeneous isotropic (visco-)elastic
layer on half-plane; and (b) a PML model.

Figures 9 and 10 present frequency-dependent flexibility coefficients Fij (a0) for the rigid

strip-footing on a half-plane computed using a PML model employing the time-domain stretch-

ing functions in Equation (12). The flexibility coefficients are defined as the displacement

amplitudes along DOF i due to a unit-amplitude harmonic force along DOF j . Results for

the elastic half-plane are compared in Figure 9 against available analytical results [40]. Owing

to the dearth of analytical solutions for the strip on a Voigt visco-elastic half-plane, the re-

sults obtained from the (possibly less accurate) time-domain stretching functions are compared

in Figure 10 to results from a PML model employing the frequency-domain-only stretching

functions [Equation (33)], denoted by ‘FD PML’ in the figures. The rationale behind this ap-

proach is that the frequency-domain stretching functions produce highly accurate results for

hysteretic damping [30] and, hence, can be expected to also produce excellent results for Voigt

damping. The results demonstrate that the time-domain stretching functions indeed produce ac-

curate results as expected, because the wave motion in the half-plane consists primarily of prop-

agating modes, which are adequately attenuated even by the time-domain stretching functions.

Figure 11(a) shows a cross-section of the rigid strip supported by a layer on a half-plane, and

Figure 11(b) shows a corresponding PML model with the attenuation functions in Equation (12)
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Figure 12. Reactions of a rigid strip on (visco-)elastic layer on half-plane, due to imposed displace-
ments; L = 3b/2, LP = b, h = b/2, f1(x1) = 10〈x1 − (d +h)〉/LP, f2(x2) = 10〈|x2|−L〉/LP; d = 2b,
�l = 1, �h = 4�l , � = 0.4; td = 30, �f = 1.00 for vertical excitation, 0.75 for horizontal excitation

and 1.75 for rocking excitation: (a) elastic media, � = 0; and (b) visco-elastic media, � = 0.05.

chosen as f e
i = f

p
i = fi , with fi chosen to be linear in the PML. The elastic moduli for the

PMLs employed for the layer and the half-plane are set to the moduli for the corresponding

elastic media. For comparison, a viscous-dashpot model is also employed, where the entire

bounded domain is taken to be (visco-)elastic and consistent dashpots replace the fixed outer

boundary. An extended-mesh model, with viscous dashpots at the outer boundary, is taken as a

benchmark model for the layer on a half-plane; this mesh extends to a distance of 40b laterally

and downwards from the center of the footing.

Figure 12 shows the reactions of the rigid strip on a layer-on-half-plane due to imposed

displacements. The PML results typically follow the results from the extended mesh, even

though the domain is small enough for the viscous dashpots to generate spurious reflections.

The computational cost of the PML model is not significantly large: it is observed to be

approximately 1.5 times that of the dashpot model. Significantly, the extended-mesh results

show some spurious reflections for vertical motion of the footing: the P-wave speed in the
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Figure 13. Dynamic flexibility coefficients of rigid strip on elastic layer on half-plane computed
using a PML model with stretching functions suitable for time-domain analysis; L = 3b/2, LP = b,
h = b/2, f1(x1) = 10〈x1 − (d +h)〉/LP, f2(x2) = 10〈|x2|−L〉/LP; d = 2b, �l = 1, �h = 4�l , � = 0.4,

a0 = �b/
√

�l/�; ‘FD PML’: a substitute for an exact result, obtained using frequency-domain
stretching functions in PML model.

half-plane is high enough that the depth of the extended mesh is not adequate for the time

interval in the analysis; the cost of the extended-mesh model is observed to be approximately

18 times that of the PML model. Figures 13 and 14 demonstrate that the time-domain stretching

functions provide frequency-dependent flexibility coefficients that closely match those obtained

using the frequency-domain-only stretching functions.

Figure 15(a) shows a cross-section of the rigid strip supported by a layer on a rigid base, and

Figure 15(b) shows a corresponding PML model where f e
i = f

p
i = fi in Equation (12), with
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Figure 14. Dynamic flexibility coefficients of rigid strip on visco-elastic layer on half-plane computed
using a PML model with stretching functions suitable for time-domain analysis; L = 3b/2, LP = b,
h = b/2, f1(x1) = 10〈x1 − (d + h)〉/LP, f2(x2) = 10〈|x2| − L〉/LP; d = 2b, �l = 1, �h = 4�l ,

� = 0.4, � = 0.05, a0 = �b/
√

�l/�; ‘FD PML’: a substitute for an exact result, obtained using
frequency-domain stretching functions in PML model.

f1(x1) = 0 and f2(x2) linear in the PML. The corresponding viscous-dashpot model includes

the entire bounded domain as (visco-)elastic, with viscous dashpots replacing the fixed lateral

boundaries. The extended-mesh model is also a viscous-dashpot model, but extending to 40b

on either side from the center of the footing. Figure 16 demonstrates the high accuracy of the

PML model, as well as the small size of the computational domain through the inadequacy of

the dashpot model. These results from the PML model are obtained at a cost approximately
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Figure 15. (a) Cross-section of the rigid strip of half-width b on a homogeneous isotropic (visco-)elastic
layer on rigid base; and (b) a PML model.

1.2 times that of the dashpot model, i.e. the computational cost is not significantly large. The

cost of the extended-mesh model is observed to be approximately 3 times that of the PML

model; it is relatively cheaper here than in the previous two cases because the extension of

the mesh is only in the lateral directions, not downwards.

Figure 17 demonstrates that for a rigid strip on an elastic layer on rigid base, the frequency-

dependent flexibility coefficients obtained using the time-domain stretching functions do not

always closely follow those from the frequency-domain-only stretching functions; this is pre-

sumably due to the presence of evanescent modes in the system. However, this apparent

inadequacy of the time-domain stretching functions is not reflected in the time domain results

in Figure 16(a). The time-domain stretching functions provide accurate results for a rigid strip

on a visco-elastic layer, as demonstrated in Figure 18.

4. CONCLUSIONS

Building on recent formulations for corresponding time-harmonic PMLs [30], this paper has

presented displacement-based, time-domain equations for the PMLs for anti-plane and for plane-

strain motion of a two-dimensional (visco-)elastic continuum. These equations are obtained by

selecting stretching functions in the PML that have a simple dependence on the factor i�,

which facilitates transformation of the time-harmonic equations into the time domain. In the

interest of obtaining a realistic model of the unbounded domain, material damping is introduced

into the PML equations in the form of a Voigt damping model in the constitutive relation for
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Figure 16. Reactions of a rigid strip on (visco-)elastic layer on rigid base, due to imposed displace-
ments; L = 3b/2, LP = b, f1(x1) = 0, f2(x2) = 20〈|x2| − L〉/LP; d = 2b, � = 1, � = 0.4; td = 30,
�f = 2.75 for vertical excitation, 1.25 for horizontal excitation and 1.75 for rocking excitation:

(a) elastic layer, � = 0; and (b) visco-elastic layer, � = 0.05.

the PML; this model is chosen instead of the traditional hysteretic damping model because the

latter is non-causal.

These PML equations have been implemented numerically by a straightforward finite ele-

ment approach. As is conventional, the ‘equilibrium’ equations are discretized in time by a

traditional integrator, such as the Newmark method; the equilibrium equations are solved at

each time-station using a Newton–Raphson iteration scheme. Because the tangent stiffness ma-

trix employed in the Newton–Raphson scheme is independent of the solution, it is computed

only once at the start of the analysis. This property of the tangent makes the PML model

effectively a linear model. The tangent stiffness of the anti-plane PML is found to be sym-

metric. Furthermore, it is argued that if the attenuation functions are positive-valued, and if

the boundary restraints on the whole domain are adequate, then the tangent stiffness of the

entire computational domain will be positive definite. Unfortunately, the tangent stiffness of

the plane-strain PML turns out to be unsymmetric. The system matrices of both PML models

retain the sparsity structure associated with corresponding matrices for an elastic medium.
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Figure 17. Dynamic flexibility coefficients of rigid strip on elastic layer on rigid base computed
using a PML model with stretching functions suitable for time-domain analysis; L = 3b/2, LP = b,
f1(x1) = 0, f2(x2) = 20〈|x2| − L〉/LP; d = 2b, � = 1, � = 0.4; ‘FD PML’: a substitute for an exact

result, obtained using frequency-domain stretching functions in PML model.

These FE implementations of the PMLs are employed to solve the canonical problem of

the anti-plane motion of a semi-infinite layer on a rigid base and the classical soil-structure

interaction problems of a rigid strip-footing on (i) a half-plane, (ii) a layer on a half-plane,

and (iii) a layer on a rigid base. Highly accurate results were obtained from PML models

with small bounded domains at low computational costs. The bounded domains employed for

these problems were small enough that comparable viscous-dashpot models typically generated

spurious reflections within the time-interval of the analysis, even if the domain was visco-

elastic. The computational costs of the PML models were not significantly large: based on the
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Figure 18. Dynamic flexibility coefficients of rigid strip on visco-elastic layer on rigid base computed
using a PML model with stretching functions suitable for time-domain analysis; L = 3b/2, LP = b,
f1(x1) = 0, f2(x2) = 20〈|x2| −L〉/LP; d = 2b, � = 1, � = 0.4, � = 0.05; ‘FD PML’: a substitute for

an exact result, obtained using frequency-domain stretching functions in PML model.

relative expense of the PML and the viscous dashpot models, and also on the relative number

of PML elements and elastic elements in a PML model, it was estimated that the cost of an

anti-plane PML element is approximately 1.5 times the corresponding elastic element, and that

of a plane-strain PML element is approximately 1.75 times the corresponding elastic element.

Frequency-domain results suggest that the time-domain results may not be accurate for

an elastic system if the excitation is primarily in a frequency-band where evanescent modes

are not adequately attenuated. If the excitation is broadband, however, and evanescent modes

are not sufficiently attenuated only in a narrow frequency-band, then the time-domain results

can be expected to be accurate. Moreover, the results are accurate for a visco-elastic system
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because the evanescent modes are attenuated by damping. Issues about inaccuracies due to

evanescent modes are of concern primarily in waveguide systems—such as the layer on a rigid

base—because of their severely-constricted geometries; evanescent modes are of less concern in

half-plane or full-plane problems. Note that this issue arises in the time-domain model of the

PML because the special choice of stretching functions is not always adequate for attenuating

evanescent modes. An alternate choice of the stretching function for a frequency-domain PML

model produces accurate results even for waveguide systems with significant evanescent modes

[30]; however, it is difficult to employ such a frequency-domain stretching function in a direct

time-domain analysis.

This paper presented time-domain PML models for isotropic, homogeneous or discretely-

inhomogeneous media only. However, the constitutive relation for the PML is the same as that

for the elastic medium. This suggests that the PML formulations presented in this paper may

be extended to anisotropic, continuously-inhomogeneous elastic media with at most minimal

modifications, mirroring similar developments in electromagnetics [41].

NOMENCLATURE

Roman symbols

a0 non-dimensional frequency

a nodal accelerations

b half-width of footing

B, B̃e, B̃p, Bε, B� compatibility matrices

cp, cs compressional and shear wave velocities

cij damping coefficient of nodal dynamic stiffness of layer on rigid base

ce, če, c, č element-level and global damping matrices

C, Cijkl material stiffness tensor

d depth of layer

d nodal displacements

D material moduli matrix

{ei} standard orthonormal basis

E, Ê time integral of �, �̂

fm, fc, fk see Equation (18)

f e
i , f

p
i attenuation functions

Fe, Fp, F̃e, F̃p attenuation tensors; Equation (14)

Fij flexibility coefficient of rigid strip-footing, with i, j ∈ {V, H, R}
H (in subscript) horizontal DOF of rigid strip-footing

i =
√

−1 unit imaginary number

Im imaginary part of a complex number

I identity matrix

ks, k∗
s , kp wavenumbers for S and P waves

kij stiffness coefficient of nodal dynamic stiffness of layer on rigid base

ke, ǩe, k element-level and global stiffness matrices

LP depth of PML

me, m element-level and global mass matrices

nc number of full cycles in imposed displacement
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n unit normal to a surface

N , NI nodal shape functions

p, pi direction of wave propagation

pe element-level internal force term

q direction of particle motion

Q, Qij rotation-of-basis matrix

R (in subscript) rocking DOF of rigid strip-footing

|R|, |Rpp|, |Rsp| amplitude(s) of wave(s) reflected from the PML

Re real part of a complex number

Sij component of dynamic stiffness matrix of layer on rigid base

td duration of imposed displacement

Tf dominant forcing period of imposed displacement

u, u displacement(s)

v nodal velocities

V (in subscript) vertical DOF of rigid strip-footing

w, w arbitrary weighting function in weak form

x, xi , x co-ordinate(s)

Greek symbols


ij Kronecker delta

� differential operator

�t time-step size

ε, εi , εij , �, �̂ strain quantities

� damping ratio for visco-elastic medium

� angle of incidence of outgoing wave on PML

� bulk modulus

�i complex co-ordinate stretching function

�̃, � stretch tensors

� shear modulus

� Poisson ratio

� mass density

�, �i , �ij , �, �̂, �̃ stress quantities

�, �̂ time-integral of �, �̂

� excitation frequency

�f dominant forcing frequency of imposed displacement

� entire bounded domain used for computation

�
e element domain

�BD bounded domain

�PM perfectly matched layer

APPENDIX A

Described here is the waveform employed as the imposed displacement in the numerical exam-

ples in this paper. The waveform is in the form of a time-limited cosine wave, bookended by

cosine half-cycles so that the initial displacement and velocity as well as the final displacement
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and velocity are zero. It is characterized by two parameters: the duration td and the dominant

forcing frequency �f ; the dominant forcing period is then

Tf = 2�

�f

and the number of full cycles, nc, in the excitation is calculated as

nc =
[

td

Tf

− 1

2

]

(A1)

where the 1
2

accounts for the cosine half-cycle used to end the excitation. For consistency, the

forcing period is adjusted to

Tf := td

nc + 1/2
(A2)

The excitation is then defined as

u0(t) = 1

2

[

1 − cos

(

2�
t

Tf

)]

t ∈ [0, Tf/2)

= cos

(

2�
t − Tf/2

Tf

)

t ∈ [Tf/2, ncTf)

= 1

2

[

1 − cos

(

2�
t − ncTf

Tf

)]

− 1 t ∈ [ncTf , td]

= 0 t ∈ (td, ∞)

(A3)

A typical waveform and its Fourier transform are shown in Figure 3. The Fourier transform

shows a dominant frequency, as expected; the bandwidth of the peak at this frequency varies

inversely with td, but is largely independent of �f .

APPENDIX B

The matrices Bε, B�, F̂ε and F̂� used in Equation (51) in Section 3.4 are defined as follows.

Define

F™ :=
[

Fe

�t
+ Fp

]−1

, Fε := FeF™, F� := FpF™ (B1)

Then Bε is defined in terms of nodal submatrices as

Bε

I :=











F ε

11N
™

I1 F ε

21N
™

I1

F ε

12N
™

I2 F ε

22N
™

I2

F ε

11N
™

I2 + F ε

12N
™

I1 F ε

21N
™

I2 + F ε

22N
™

I1











(B2)
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where

N ™

I i := F ™ijNI,j (B3)

The matrix B� is defined similarly, with F� replacing Fε throughout. Furthermore,

F̂ε :=













(

F ε

11

)2 (

F ε

21

)2
F ε

11F
ε

21

(

F ε

12

)2 (

F ε

22

)2
F ε

12F
ε

22

2F ε

11F
ε

12 2F ε

21F
ε

22 F ε

11F
ε

22 + F ε

12F
ε

21













(B4)

and F̂� is defined similarly, with F� replacing Fε throughout.
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ERRATUM

Erratum to ‘Perfectly matched layers for transient elastodynamics
of unbounded domains’

(Int. J. Numer. Meth. Engng 2004; 59:1039–1074)

Ushnish Basu and Anil K. Chopra∗ , †

Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, U.S.A.

The PML equations presented in the paper are valid only for b = 1, where b is a characteristic

length of the physical problem. For proper dimensionalisation of the PML equations and their FE

implementations, Equation (12) should be corrected to

�i(x
′
i) := [1 + f e

i (x′
i)] − i

f
p
i (x′

i)

a0
(12)

with a0 = ksb replacing ks in the original equation. This characteristic length b carries over to

Equations (15), (16a) and (42a) in an obvious way. Corrected versions of these equations are as

follows:

F̃
e′ :=

[

1 + f e
2 (x′

2) ·

· 1 + f e
1 (x′

1)

]

, F̃
p′ :=

[

f
p
2 (x′

2)cs/b ·

· f
p
1 (x′

1)cs/b

]

(15a)

F
e′

:=

[

1 + f e
1 (x′

1) ·

· 1 + f e
2 (x′

2)

]

, F
p′

:=

[

f
p
1 (x′

1)cs/b ·

· f
p
2 (x′

2)cs/b

]

(15b)

∇ · �̃ = �fmü + �
cs

b
fcu̇ +

�

b2
fku (16a)

div(�F̃
e + �F̃

p) = �fmü + �
cs

b
fcu̇ +

�

b2
fku (42a)
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The last two equations affect Equations (19), (21a), (44) and (46a), which should be corrected as

follows:
∫

�

�fmwü d� +

∫

�

�
cs

b
fcwu̇ d� +

∫

�

�

b2
fkwu d� +

∫

�

∇w · �̃ d� =

∫

�

w �̃ · n d� (19)

m
e =

∫

�
e
�fmN

T
N d�, c

e =

∫

�
e
�

cs

b
fcN

T
N d�, k

e =

∫

�
e

�

b2
fkN

T
N d� (21a)

∫

�

�fmw · ü d� +

∫

�

�
cs

b
fcw · u̇ d� +

∫

�

�

b2
fkw · u d�

+

∫

�

�̃
e
: � d� +

∫

�

�̃
p
: � d� =

∫

�

w · (�F̃
e + �F̃

p)n d� (44)

m
e
IJ =

∫

�
e
�fmNINJ d� I, c

e
IJ =

∫

�
e
�

cs

b
fcNINJ d� I, k

e
IJ =

∫

�
e

�

b2
fkNINJ d� I

(46a)

The authors apologise for any confusion this may have caused. The numerical results presented in

the paper are unaffected because they were computed for b = 1.
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