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SUMMARY

One approachto the numericalsolution of a wave equationon an unboundeddomain usesa bounded
domain surroundedby an absorbingboundaryor layer that absorbswaves propagatingoutward from

the boundeddomain. A perfectly matchedlayer (PML) is an unphysical absorbinglayer model for

linear wave equationsthat absorbs,almost perfectly outgoing waves of all non-tangentialangles-of-
incidenceand of all non-zerofrequenciesln a recentwork [ComputerMethodsin Applied Mechanics
and Engineering 2003; 1921337...1375}the authors presented,nter alia, time-harmonicgoverning
equationsof PMLs for anti-plane and for plane-strainmotion of (visco-)elasticmedia. This paper
presents(a) correspondingtime-domain, displacement-basedoverning equationsof these PMLs and
(b) displacement-basethite elementimplementationsof theseequations,suitablefor direct transient
analysis.The “nite elementimplementationof the anti-planePML is found to be symmetric,whereas
that of the plane-strainPML is not. Numerical results are presentedfor the anti-plane motion of a

semi-in“nite layer on a rigid base,and for the classicalsoil...structurenteraction problemsof a rigid

strip-footing on (i) a half-plane,(ii) a layer on a half-plane,and (iii) a layer on a rigid base.These
resultsdemonstratethe high accurag achievable by PML models even with small boundeddomains.
Copyright 2004 John Wiley & Sons,Ltd.
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1. INTRODUCTION

The solution of the elastodynamiavave equationover an unboundeddomain“nds applications
in soil...structurmteractionanalysis[1] andin the simulationof earthquak groundmotion [2].
The needfor realisticmodelsoften compelsa numericalsolutionusinga boundeddomain,along
with an arti“cial absorbingboundaryor layer that simulatesthe unboundeddomain beyond.
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1040 U. BASU AND A. K. CHOPRA

Of particular importance are absorbing boundariesthat allow transient analysis, facilitating
incorporationof non-linearity within the boundeddomain.

Classical approximateabsorbingboundaries[3...p although local and cheaply computed,
may require large boundeddomainsfor satistctory accurag, since typically they absorbinci-
dentwaves well only over a small rangeof angles-of-incidencefor satisfctory performance,
approximateabsorbinglayer models[7,8] require careful formulation and implementationto
eliminate spuriousre”ections from the interface to the layer The superpositionboundary[9]
is cumbersomeand expensve to implement, and in“nite elements[10,11] typically require
problem-dependenassumptionson the wave motion. Rigorous absorbingboundariesare typ-
ically formulatedin the frequeny domain [12...4]; correspondingtime-domainformulations
[15...7] may be computationallyexpensve andmay not be applicableto all problemsof interest.

The dif“culty in obtaining a suf‘ciently accurate,yet not-too-epensve model of the un-
boundeddomaindirectly in the time domainhasled to the use of traditional frequeng-domain
models towards time-domain analysis. One such method useshybrid frequeng...time-domain
analysis[1,18], iterating betweenthe frequeny and time domainsin order to accountfor
non-linearity in the boundeddomain; this computationallydemandingmethod requires care-
ful implementationto ensurestability. Another approachreplacesthe non-linear system by
an equialent linear system[19] whose stiffnessand damping values are compatiblewith the
effective strainamplitudesin the system.A third approach20...2] approximateghe frequeng-
domain DtN map of a systemby a rational function and usesthis approximationto obtain a
time-domainsystemthat is temporally local. Although this approachis conceptuallyattractve,
computationof an accuraterational-functionapproximationmay be expensve.

A perfectly matchedlayer (PML) is an absorbinglayer model for linear wave equationsthat
absorbs,almost perfectly propagatingwaves of all non-tangentialangles-of-incidenceand of
all non-zerofrequenciesFirst introducedin the context of electromagnetiavaves [23,24], the
conceptof a PML has been applied to other linear wave equations[25...7], including the
elastodynamicwave equation [28,29]. In a recent work [30], the authors have developed
the conceptof a PML in the contet of frequeng-domain elastodynamicsutilising insights
obtainedfrom PMLs in electromagneticsand illustrated it using the one-dimensionatod on
elasticfoundationand the anti-planemotion of a two-dimensionalcontinuum,governedby the
Helmholtz equation.Extendingthe PML conceptto the displacemenformulation of plane-strain
and three-dimensionainotion, they have also presenteda novel displacement-basedymmetric
“nite elementimplementationof sucha PML.

The objectve of this paperis to present(a) time-domain, displacement-basedquations
of the PMLs for anti-planeand for plane-strainmotion of a (visco-)elasticmedium, and (b)
displacement-basethite element (FE) implementationsof these equations.The frequeng-
domain PML equationsfrom Reference[30] are “rst transformedinto the time domainby a
specialchoiceof the co-ordinate-stretchinfunctions,and then thesetime-domainequationsare
implementednumerically by a straightforvard “nite elementapproach.Time-domainnumerical
results are presentedfor the anti-planemotion of a semi-in“nite layer on rigid baseand for
the classicalsoil...structurateractionproblemsof a rigid strip-footing on (i) a half-plane,(ii)
a layer on a half-plane, and (iii) a layer on a rigid base.Additionally, the adequag of the
specialchoice of the stretchingfunctions towards attenuatingevanescentvaves is investigated
throughnumericalresultsin the frequeng domain.This paperpresentonly a brief explanation
of the conceptof a PML; a detaileddevelopment,and the derivation of the frequeng-domain
equationsare presentedn Reference30].

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Tensorial and indicial notation will be used interchangeablyin this paper;the summation
conventionwill be assumedinlessan explicit summationis usedor it is mentionedotherwise.
An italic boldface symbol will representa vectotr e.g. X, an upright boldface symbol will
representa tensor or its matrix in a particular orthonormal basis, e.g. D, and a sans-serif
boldfacesymbolwill represent fourth-ordertensor e.g.C; the correspondindightfacesymbols
with Romansubscriptswill denotecomponentf the tensor matrix or vector An overbarover
a symbol, e.g. u, denotesa time-harmonic quantity; such distinguishing notation was not
employed in Reference/30] becausehe entire analysiswas in the frequeng domain.

2. ANTI-PLANE MOTION

2.1. Elastic medium

Considera two-dimensionalhomogeneoussotropic elastic continuum undegoing only anti-
plane displacementdn the absenceof body forces. For such motion, if the xs-direction is
taken to point out of the plane, only the 31- and 32-componentf the three-dimensional
stressand strain tensorsare non-zero.The displacementsi(x,t) are governedby the following
equations(i { 1, 2}):

i < i (1a)
i= (1b)
_u
i = 7| (1c)

where is the shearmodulusof the mediumand its massdensity; ; and ; representhe
3i-componentf the stressand strain tensors.
On an unboundeddomain, Equation(1) admits plane shearwave solutions[31] of the form

u(x,t) = exp[Siksx-plexp(i t) )

where ks = /cg is the wavenumber with wave speedcs = 7 , and p is a unit vector
denotingthe propagationdirection.

2.2. Perfectly matced layer

The discussionof PML presentedhere is a synopsisof the correspondingdevelopmentin
Reference[30]. The summationcorvention is abandonedn this section.

Considera wave of the form in Equation(2) propagatingin an unboundedelastic domain,
the x1.x2 plane,governedby Equation(1). The objectve of de“ning a perfectly matchedlayer
(PML) is to simulate suchwave propagationby using a correspondingoboundeddomain.

The governing equationsof a PML are most naturally de“ned in the frequeng domain,
throughfrequeng-dependentcomple-valued co-ordinatestretching.Assumingharmonictime-
dependenceof the displacementstressand strain, e.g. u(x,t) = u(x) exp(i t), with  the

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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frequeng of excitation, the governing equationsof the PML for anti-planemotion are

i i(])-(i)Tii:é U (32)
= (3b)
0= i(:l;(i) 7u| (3¢)

where ; are nowhere-zero,continuous,comple-valued co-ordinatestretchingfunctions.
If the stretchingfunctionsare chosenas

fi(xi)
ks

i(xi) = 1Si “4)
in termsof real-walued, continuousattenuationfunctionsf j, then Equation(3) admits solutions
of the form

Ux,t) = exp S Fi(xi)pi exp[Siksx-p] ©)

where
Fi(x) = Oifi()d (6)

Thus,if Fi(x;) > 0 andp; > 0, thenthe wave solution admittedin the PML mediumis of the
form of the elastic-mediumsolution [Equation (2)], but with an imposedspatial attenuation.
This attenuationis of the form exp[S Fi(xi)pi] in the x;-direction, and is independenbf the
frequeny if p; is.

Considerreplacingthe x1.x2 planeby pp pM, & shawvn in Figure 1, where pp is
a *boundede(truncated)domain, governedby Equation(1), and pym is a PML, governedby
Equation(3), with 1 of the form in Equation(4), satisfyingf 1(0) = 0,and 2 1. The medium
in pp beinga specialPML medium|[ i(x;) 1], the matchingof stretchingfunctionsat the

BD... pMm interfacemakesthe PML eperfectlymatched4o pp: wavestravelling outward from
the boundeddomain are absorbedinto the PML without ary re”ection from the pp... pm
interface. An outgoing wave enteringthe PML is attenuatedin the layer and then re”ected
back from the “x ed end towardsthe boundeddomain.If the incidentwave hasunit amplitude,
then the amplitude|R| of the re”ected wave asit exits the PML is given by

IR| = exp[S 2F1(Lp) cos ] @)

This re"ected-wave amplitudeis controlled by the choice of the attenuationfunction and the
depth of the layer, and can be made arbitrarily small for non-tangentiallyincident waves.
Becausesuch outgoingwaves in sucha systemwill be only minimally re”ected back towards
the interface, this bounded-domain-PMLsystemis an appropriatemodel for the unbounded
X1.X2 plane.

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Figure 1. A PML adjacentto a *boundeds(truncated)domain attenuatesand re”ects
back an outgoing plane wave.

2.3. Time-domainequationsfor the PML

Considertwo rectangularCartesianco-ordinatesystemsfor the plane as follows: (1) an {x;}

system, with respectto an orthonormalbasis{e}, and (2) an {x;} system,with respectto
anotherorthonormalbasis{e }, with the two basesrelatedby the rotation-of-basismatrix Q,

with componentRQjj := € R Equation(3) can be re-writtenin termsof the co-ordinatesx;

by replacingx; by x; throughout,representinga mediumwhereinwaves are attenuatedn the
e, ande, directions,ratherthanin the e; and e; directionsasin Equation(3). This resultant
equationcan be transformedto the basis{e} to obtain [30]

(=8 2 [ alxg) 21T (8a)
= (1+ 2iag ) (8b)
= (v (8c)

where
Ti= :l e :1 , = x )
2 2 L
X2

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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and
=Q Q", =Q QT (10)
with
2Xp) U a(xy)

= , = . (12)
1(Xq) : U 2(xy)

Equation(8) explicitly incorporates/oigt materialdampingthroughthe correspondencprinciple
in terms of a dampingratio and a non-dimensionalfrequeny ag = ksb, where b is a
characteristidength of the physicalproblem.This dampingmodelis chosenover the traditional
hystereticdamping model becausethe latter is non-causal[32]; implementationof a causal
hystereticmodel in a PML formulation is beyond the scopeof this paper
Becausemultiplication or division by the factori in the frequeny domain correspondgo
a derivative or an integral, respectiely, in the time domain, time-harmonicequationsare easily
transformedinto correspondingequationsfor transientmotion if the frequeng-dependencef
the former is only a simple dependencen this factor Therefore,the stretchingfunctions are
chosento be of the form
p
) = [+ 18018 1100 12)
S

where, the functions f ie sene to attenuateevanescentwaves whereasthe functions f ip sene

to attenuatepropagatingwaves. For ; asin Equation(12), the stretchtensors and can
be written as

S1

- ey iipp, = Fes iipp (13)
where
Fe= QF°Q', FP=QFPQ', F°=QF°Q', FP=QFPQT (14)
with
1+ f5(xp) : csf 5(x2) :
Fe = , Fp = (15&)
1+ f £(xy) e Pxy)
and
ce . 1+ f£(xq) : i Csf 1p(X1) : (15b)
1+ f 8(x,) ’ : csf 5(x,)

Equation (8c) is premultiplied by i Sl, Equations(12) and (13) are substitutedinto Equa-
tion (8), andthe inverseFourier transformis appliedto the resultantto obtain the time domain
equationsfor the PML.:

= fpu+ cfcu+ fgu (16a)

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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2b
= + o (16b)
FC+FP = wu (16c)
where
=F® +FP , with = Ot d (17)
and

fmi=[1+ f 2(x)I[1+ f5(Xy)]
foi= [1+ f 2xIF (%) + [ 1+ f S(xp)If {(xq) (18)
fie= fLxpf 2 (%)

The applicationof the inverse Fourier transformto obtain assumeshat ( = 0) = 0. The
presenceof the time-intggral of in the governing equations,although uncorventional from
the point-of-view of continuummechanicsjs not unnaturalin a time-domainimplementation
of a PML obtainedwithout “eld-splitting [33].

2.4, Finite elementimplementation

Equation (16) is implementedusing a standarddisplacement-basethite elementapproach
[34]. The weakform of Equation(16a)is derived by multiplying it with an arbitrary weighting
function w residing in an appropriateadmissiblespace,and then integrating over the entire
computationaldomain  using integration-by-partsand the divergencetheoremto obtain

fawld + Csf ewud + frwud + w-d = w -nd (29)

where = is the boundaryof  andn is the unit normalto . The weak form is “rst
spatially discretizedby interpolatingu and w element-wisein terms of nodal quantitiesusing
appropriatenodal shapefunctions. This leadsto the systemof equations

md + cd + kd + Pint = Pext (20)

wherem, ¢ and k are the mass,dampingand stiffnessmatrices,respectiely, d is a vector of
nodal displacementspiy; is a vector of internal force terms, and peyx is a vector of external
forces.Thesematricesandvectorsare assembledrom correspondinglement-lgel matricesand
vectors.In particular the element-lgel constituentmatricesof m, ¢ andk are,respectiely,

me = foNTNd , 8= cfNTNd , k&= fkNTN d (21a)

e e e

and the element-leel internal force term is

pé= BT d (21b)

e

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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whereN is a row vector of element-lgel nodal shapefunctions,and

Be 22)
= -

The functionsf® and ip are de“ned globally on the computationaldomain, not element-wise.
It is corveniently assumedhat -n = 0 on a free boundaryof the PML.

Equation(20) can be solved using a time-steppingalgorithm such as the Newmark method
[35,36], alongwith Newton...Raphsoiteration at each time step to enforce equilibrium. If
Equation(20) is solved, say at time stationtn+ 1, given the solution at t,, the Newton...Raphson
iteration at this time stepwill require(a) calculationof .1, for calculatingp®, ; [ p®(tn+1)],
and (b) a consistentlinearization[34, vol. 2] of ps,, at dn+1 [ d(tn+1)], whered® is a
vector of element-lgel nodal displacementsTherefore, Equation (16c¢) is discretizedusing a
backward Euler schemeon to obtain

e S1 e
n+1= F—t+ FP Bvn+1 + F—t n (23)

wherevp+1  d®(th+1), and t is the time-stepsize. A similar time-discretizationof Equa-
tion (16b) gives

2b . 2b
= 1+ — S 24
n+1 e t n+1 e t n ( )

Furthermore Equation(17b) is usedto approximate p+1 as
1= nt ne1 t (25)

Equation(25) is substitutedin Equation(17a)to obtain

Fe
n+1= 1 —t"'Fp ne1+ FP g (26)

This gives the internal force term
Pre1= BT ne1d (27)
Linearizationof Equation(27) gives
pe, .= eBTDBd Vins 1 (28)

where s the differential operator and

e e S1
2b FP L FP (29)
Cs t t t

D= t 1+

i.e. this linearizationgives a tangentmatrix

c¢:= B'DBd (30)

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Box I. Computing effective force and stiffnessfor anti-planePML element.

(1) Computesystemmatricesm®, c® and k® [Equation (21a)].
(2) Computeinternal force pﬁ+l [Equations (27)].

Use n+1 [Equation (23)], n+1 [Equation (24)] and n+1 [Equation (26)].
(3) Computetangentmatrix c® [Equation (30)] using D [Equation (29)].
(4) Computeeffective internal force pﬁ+1 and tangentstifiness k®:
Po 1= Mfans 1+ cvpp1+ k8dns 1+ pE, 4

ke= kke+ Cce+ce+ mme

whereansq1 dS(tps 1), and, for example,

for the Newmark method.

Note: The tangentstiffnessk® is independentf the solution, and thus hasto be computedonly
once. However, the internal force pﬁ+1 hasto be re-computedat eachtime-stepbecauseit is

dependenton the solution at pasttimes.

which may be incorporatedinto the effective tangent stiffness used in the time-stepping
algorithm.

A skeleton of the algorithm for computing the element-lgel effective internal force and
tangentstiffnessis given in Box I. The matrix c® is symmetric becauseD is symmetric by
the virtue of the coaxiality of the constituentmatrices.The other systemmatrices,m, ¢ and
k are clearly symmetric by Equation (21a). Moreover, becauseall these matricesare of the
sameform as the systemmatricesfor an elastic medium, the effective tangentstiffness (say
asfound in the Newmark scheme)of the entire computationaldomainwill be positive de“nite
if £,°andf ip are positive and if the boundaryrestraintsare adequate Furthermore,since all
the systemmatrices,m, ¢, ¢ and k that constitutethe tangentstiffnessare independenof d,
this is effectively a linear model.

2.5. Numerical results

Considera homogeneoussotropic semi-in“nite layer of depthd on a rigid base,as shavn in
Figure 2(a), whoseanti-planemotion is governedby Equation(1) with the following boundary
conditions:

u(x,t)=0 axp=0, x1>0, t
,=0 axo=d, x>0, t (31)
u(x,t) = ug(t)Na(xo/d) + ua(t)No(x2/d) atx; =0, x2 [ 0,d]
and a radiation condition for x; , Wwhereu; and uy are the displacementst nodes1 and
2, and N1 and N2 are shapefunctions de“ned as
Ni()=4 (1S ), No()= (2 S, [0,1] (32)

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Figure 2. (a) Homogeneoussotropic (visco-)elasticsemi-in“nite layer of depthd on
a “xed base;and (b) a PML model.
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Figure 3. Plot of typical: (a) input displacementvith ty = 20; and (b) amplitudeof its
Fourier transform,with ¢ = 2.

The wave motion in this systemis similar to Love wave motion: it is dispersie, and consists
of not only propagatingmodesbut also an in“nite number of evanescentmodes, with the
propagation(and decay)in the x;-direction [37, Appendix A.3].

The time-domainresponseof this systemmay be studiedthrough the reactionsat nodes1
and 2 due to arny combinationof nodal displacementai(t) and ux(t). Employed hereis a
time-limited cosinewave, bookendedby cosinehalf-cycles so that the initial displacementand
velocity as well as the “nal displacementand velocity are zero. This imposeddisplacement
is characterizedby two parametersthe durationty and the dominantforcing frequeny ; a
typical waveform and its Fourier transformare shavn in Figure 3, and a detailed description
of the waveform is given in Appendix A. The displacementg(t) is imposedon the two nodes
individually, i.e. two casesare considered:(1) ui(t) = up(t), uz(t) 0, and (2) ui(t) O,
uo(t) = up(t), andthe two nodal reactionsare computedfor eachof the two displacements.

This semi-in“nite layer is modelled using the bounded-domain-PMLmodel shavn in
Figure 2(b), composedof a boundeddomain pp and a PML py, with the attenuation
functions in Equation (12) chosenas f = flID = f, wheref is linear in the PML, and
f5= f2p = 0. A uniform “nite elementmeshof four-node bilinear isoparametricelementsis
usedto discretizethe entire boundeddomain. The meshis chosento have ny elementsper
Copyright

2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Figure4. Nodal reactionsof (visco-)elasticsemi-in“nite layer on “x ed base,dueto imposed

nodal displacementsL. = d/2, Lp=d, np= np=15,ng = 15,f1(x1) = 10x1S L /L p;

tg = 30, = 2.5 for all casesexceptfor P11 and Py, for elasticlayer, where = 2.75:
(a) elasticlayer, = 0; and (b) visco-elasticlayer, = 0.05.

unit d, n, elementsper unit L/d acrossthe width of gp, and np elementsper unit Lp/d
across py, With choicesfor ng, ny and np indicated along with the numerical results. For
comparison,the layer is also modelled using viscous dashpots[4], with consistentdashpots
placedat the edgex; = L + Lp, andthe entiredomain gp pmv taken to be (visco-)elastic.
Thus, the domain size and meshsize are comparableto thosein the PML model.

Figure 4(a) presentsthe nodal reactionscomputedfor an elastic medium using the PML
model and the dashpotmodel againstthe exact reactionscomputedusing corvolution of the
excitation and the exact impulse responsefunction in Reference[37], where Pj denotes
the reaction at node i due to a non-zerodisplacementat node j . Basedon a comparison
of the frequeng-domain response®f the PML and the viscousdashpotmodels,the values of

i were chosenas the excitation frequencieswhere the two responsesre signi“cantly differ-
ent. The results obtainedfrom the PML model are virtually indistinguishablefrom the exact
results, even though the domainis small enoughthat the viscous-dashpoboundarygenerates

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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spurious re”ections, manifestedin the higher responseamplitudes.Moreover, these accurate
resultsfrom the PML model are obtainedat a low computationalcost: the cost of the PML

model is obsered to be approximatelyl1.3 times that of the dashpotmodel, which itself is

extremely inexpensve. Figure 4(b) presentssimilar resultsfor a visco-elasticlayer, with results
from an extended-meshmodel usedas a benchmarkin the absenceof analytical solutions;this

extended-meshmodel is a viscous-dashpotnodel of depthd and length 10d from the edge
x1 = 0, with consistentdashpotsat x; = 10d and visco-elasticmaterialwithin the domain.The
resultsfrom the PML model are highly accurate;due to the material dampingin the medium,
the inaccuracieof the dashpotmodel are signi“cantly lesserthan in the elastic case.

2.6. Caveatemptor

The time-domainequationsfor the PML were obtainedby a special choice of the stretching

functions,Equation (12),that enabledtransformationof the frequeng domainPML equations

into the time domain.However, thesestretchingfunctionsdiffer from thoseusedfor frequeng-

domain analysisin Reference[30], where they were chosenas

fo0x;) 8 ifip(xi)
Ks Ks

where,e.g. k; = kJ/ 1+ 2igp for the Voigt damping model; thesestretchingfunctions pro-
ducedaccurateresultsin the frequeng domain, even for problemswith signi“cant evanescent
modesin their wave motion.

Becausehe real part of the comple-valuedstretchingfunction senesto attenuatesvanescent
waves, and becausefor an elastic medium the difference betweenthe time-domainand the
frequeng-domain stretchingfunctionsis only in the real part, it is valid to ask whetherthe
time-domain stretching functions are adequatefor evanescentwaves. Note that it is dif“cult
to employ the frequeng-domain stretching function [Equation (33)] towards a time-domain
model, even for an elastic medium, becausethe frequeng-dependencef the real part of the
stretchingfunction is not throughthe factori . Becausethe PML approachis fundamentally
a frequeng-domain approach,it is valid to test the adequag of the time-domainstretching
function [Equation (12)] by usingit to obtain frequeng-domain results.

The frequeng-domain responseof this layer on a half-plane can be characterizedoy the
amplitude of nodal forces due to unit-amplitude harmonic motion at either node. The force
amplitudeat nodei dueto a unit-amplitudedisplacementat node| with frequeny ag = ksd
is denotedby Sj (ag) andis decomposednto stiffnessand dampingcoefcients kj andcj as

Sj (a0) = Sj (0)[k;j (ao) + iaoCij (ap)] (no summation (34)

Analytical, closed-formexpressiondor S; (ag) is availablein AppendixA.3 of Referenceg37].

Figure 5 comparesresults for an elastic layer obtainedfrom PML models using the two
stretchingfunctions againstanalytical results[37]. The meshusedfor the PML modelsis the
sameas those used for time-domainanalysis;the results are obtained using the frequeng-
domain FE formulation presentedn Reference30]. It is seenthat the frequeng-domain-only
stretching function [Equation (33)] produceshighly accurateresults, denotedby *FD PMLe,
whereaghe time-domainstretchingfunction [Equation(12)] producesesults,denotedby sPMLs
that are inaccuratefor ag > 6. This suggestghat the time-domainstretchingfunction cannot
adequatelyattenuateevanescentwaves, which is supportedby Figure 6, shaving resultsfor a

(33)

i(x):= 1+

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Figure 5. Dynamic stiffness coefcients of elastic semi-in“nite layer on “x ed base computedusing

PML modelswith two different forms of the stretchingfunction: sPMLs from a stretchingfunction

that can be implementedin the time domain, and «FD PMLs from a stretchingfunction that is more

accuratebut is only suitable for the frequeng domain;L = d/2, Lp = d, np = np = 15, ng = 15,
f1(x1) = 10 x4 S L /L p; *Exacte resultsfrom Reference[37].

visco-elasticlayer obtainedusing a PML model with the time-domainstretchingfunction: the
material dampingattenuateghe evanesceninodes,and the resultsare now highly accurate.
Thus,for undampedsystemswith severely-constrictedjeometries, typically, waveguidessuch
asthe layer on a rigid base,the time domainresultsfrom a PML model may not be accurate
if the excitation is primarily in a frequeny band where evanescenimodesare not adequately
attenuatedSucha conclusionis echoedin electromagnetictiterature[38,39], wherealternatve
choicesof the stretchingfunction have beenconsideredfor attenuatingevanescentaves.

3. PLANE-STRAIN MOTION

3.1. Elastic medium

Considera homogeneougsotropic elasticmediumundegoing plane-strairmotionin the absence
of body forces. The displacementsi(x,t) of sucha medium are governedby the following
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Figure 6. Dynamic stiffness coefcients of visco-elasticsemi-in“nite layer on “x ed base computed

using a PML modelwith a stretchingfunction that can be implementedin the time domain;L = d/2,

Lp=d, np=np= 15 ng = 15, f1(x3) = 10x1 S L /Lp; = 0.05; *Exacte results using the
correspondencerinciple on resultsfrom Reference[37].

equations(i, j, k,1 {1,2}):

i
—= (35&)
i X
i = Cik K (35b)
k.|
1 vy yj
= — oy L 35¢
153 X " (35¢)

where Cjj i written in terms of the Kronecler delta jj is
Cik=(S2)j w+ Cikiji+ i jk) (36)

j and j arethe componentf and , the stressandin“nitesimal straintensors,Cj x are
the componentof C, the materialstiffnesstensor; is the bulk modulus, the shearmodulus,
and the massdensity of the medium. Equation (35) also describesplane-stressnotion if
is re-de“ned appropriately
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On an unboundeddomain, Equation (35) admits body-wave solutions[31] in the form of
(1) P waves:

u(x,t) = gexp[Sikpx-plexp(i t) (37a)

wherekp = /cp, withcp= ( + 4 /3)/ the P-wave speed,p is a unit vector denotingthe
propagationdirection,and g = + p the direction of particle motion, and (2) S waves:

u(x,t) = gexp[Siksx-plexp(i t) (37b)
whereks= /cs, with cs= T the S-wave speed,andq-p = 0.

3.2. Perfectly matded layer

The discussionpresentedhere is a synopsisof the correspondingdevelopmentin Reference
[30]. The summationcorventionis abandonedn this section.
A PML for plane-strainmotion is de“ned naturally in the frequeng domain as

1

i _a 2 =
-5 24 (38a)
i) |
i = Gk K (38b)
K.l
_ 1 1 G 10
R + — 38c
T2 T % e x 359

where ; are nowhere-zero,continuous,comple-valued co-ordinatestretching functions. Be-
causethe constitutive relation Equation (38b) is the sameas for the elastic medium, Equa-
tion (38) also describesa PMM for plane-stressmotion if is re-de“ned appropriately
Equation (38) assumesharmonictime-dependencef the displacementstressand strain, e.g.
u(x,t) = u(x)exp(i t), where s the frequeng of excitation.

If the stretchingfunctionsare chosenasin Equation(4), then Equation(38) admitssolutions
of the form

1) = ep 3= Fiop genlSikx-p] (398)
P i
with g =+ p, and
Ux)=ep S Fi(x)pi qexp[Siks-p] (39b)

with g-p = 0, and F; de“ned as in Equation (6). Thus, if Fi(xj) > 0 and p; > 0, then the
wave solutionsadmittedin the PML medium are P-type and S-type waves, but with a spatial
attenuationimposedupon them.

As in the caseof anti-planemotion, an appropriatelyde“ned PML may be placedadjacent
to a boundeddomain (Figure 1) in orderto simulatean unboundeddomain.A wave travelling
outward from the boundeddomainis absorbedinto the PML without ary re”ection from the
bounded-domain-PMlinterface. This wave is then attenuatedn the layer and re”ected back
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from the “x ed end towards the boundeddomain. For example, an incident P wave of unit
amplitude will be re”ected back from the “x ed end as a P wave and an S wave, and their
amplitudes,as they exit the PML, will be [30],

co + o) = Cs
Rpp| = ———=—— 2—F4(L
|Rppl cogd S 9 exp S % 1(L p) cos
(40)

sin2 - Cs
Rgp| = ———=——exp SF4(L — CO0S + cOoSs
|Rspl cog 8 O X0 1(Lp) S s

with s given by
. Cs .
sin s= —sin
Cp
Thesere”ected-vave amplitudesare controlled by the choice of the attenuationfunction and
the depth of the layer, and can be madearbitrarily small for non-tangentiallyincident waves.
Becauseoutgoing waves in such a systemwill be only minimally re”ected back towards the
interface, such a bounded-domain-PMlLsystemis an appropriatemodel for the corresponding
unbounded-domaisystem.

3.3. Time-domainequationsfor the PML

Equation(38) representsa PML whereinwaves are attenuatedn the x; and x» directions.As
in the caseof anti-planemotion, the equationsfor the plane-strainPML can be re-written to
represents mediumwhereinthe attenuationis in two arbitrary (orthogonal)directions[30]:

div(” )=S 2 [ 1(x) 2(xx)]U (41a)
T=(1+ 2iag )C (41b)
= %[(gradﬁ) + T(grada)] (41c)

where and areasin Equations(10) and (11). Equation(41) explicitly incorporatesvoigt
material damping through the correspondencerinciple in terms of a dampingratio anda
non-dimensionafrequeny ap = ksb, whereb is a characteristidength of the physical problem.
Choosingthe stretchingfunctionsto be of the form in Equation(12) allows_transformationof
Equation(41) into the time domain. Equation(41c) is premultipliedby i ~ °T and postmulti-
pliedby S, Equations(12) and(13) are substitutednto Equation(41), andthe inverseFourier
transformis appliedto the resultantto obtain the time domain equationsfor the PML:

div( F¢+ FP)= fli+ cfcu+ fgu (42a)
—c +2P (42b)
Cs

FeT Fe+ (FPT Fe+ F°T FP) + FPTEFP
= %[FET(gradu) + (gradu) "F®] + %[FpT(gradu) + (gradu)"FP] (42c)
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where F, FP, F® and FP are asin Equations(14) and (15), f, fc and f¢ are asin Equa-
tion (18), and

= d, E:= d (43)

Application of the inverse Fourier transformto obtain and E assumegshat ( = 0)= 0
and ( =0)=0.

3.4. Finite elementimplementation

Equation (42) is implementedusing a standarddisplacement-basethite elementapproach
[34]. The weak form of Equation(42a)is derived by taking its inner productwith an arbitrary
weighting function w residingin an appropriateadmissiblespace,and thenintegrating over the
entire computationaldomain  using integration-by-partsand the divergencetheoremto obtain

fmw-0d + cfew-ud + fxw-ud
+ €. d + P. d = w-(F+ FPnd (44)
where = is the boundaryof andn is the unit normalto . The symmetryof and

is usedto obtain the last two integrals on the left-hand side, with
®:= I[(gradw)F®+ F®T(gradw)™], P := I[(gradw)F® + FPT(gradw)'] (45)
The weak form is “rst spatially discretizedby interpolatingu andw element-wisein terms of
nodal quantitiesusing appropriatenodal shapefunctions. This leadsto a systemof equations

asin Equation(20), but with the mass,dampingand stiffnessmatricesgiven in termsof their
IJ th nodal submatricesas, respectiely,

mﬁ] = . me| NJd |, C|eJ = . CSfCN| NJd l, k|eJ = . ka| NJd | (46a)

where N, is the shapefunction for nodel and | is the identity matrix of size 2 x 2. The
element-lgel internal force term is given by

pé= BT d + BT d (46b)

e e
where B and BP are given in termsof their nodal submatricesas
N7 o - N|p1
Bf= - N5, ., Bl= . NP (47)
N% N N|p2 N|p1
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with
NE = FENij and Nf = FPNy | (48)
and
11
= 2 (49)
12

with  thetime-integgral of . Note that the above vectorrepresentatiof the tensor assumes
its symmetry which requiresa minor symmetryof C; becausdhe PML mediumis unphysical,
a physically-motvated axiom,the balanceof angular momentum,cannot be employed to
shav the symmetryof . The attenuationfunctions f ® and fiID are de“ned globally on the
computationadomain,not element-wiselt is corvenientlyassumedhat thereis no contrikution
to pext from a free boundaryof the PML.

Solution of the equationsof motion [Equation (20)] using a time-steppingalgorithm requires
calculating n+1 and ps1 at the1, to calculatepﬁ+l, and also a consistentlinearization of
Pr.q at dn+1. Towardsthis, the approximations

S
(tn+ 1) Ltn, E(tn+ 1) En + n+1 t (50)

are usedin Equation(42c) to obtain

1 1 .
n+1:—t BVn+1+Bdn+1+—tF nS F Ep (51)
where
11
212

and E is the time-integral of . The matricesB , B , F andF in Equation(51) are de“ned
in Appendix B.
The use of Equation(50a) in the constitutve equation[Equation (42b)] gives

2b ~ 2b
Dr|+1S

= 1+
n+1 cs t cs t

Dn (53)

where
+41/3 S21/3
D= S2/3 +41/3 . (54)
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Furthermore, n+1 IS approximatedas
nt1= nt ne1 t (55)
SubstitutingEquation (55) into Equation (46b) gives
Pei1= BT nead + BPT d (56)
e e
where
B:= B®*+ tBP (57)

Linearizationof Equation(56) gives, on using Equation(53) alongwith Equation (51),

PE,q= B'DB d  vne1+ B'DB d  dn+1 (58)
where
1 2b
D= = 1+ D (59)
t Cs t

i.e. this linearizationgives tangentmatrices
c¢c= B'DBd, k®:= B'DB d (60)
e e

which may be incorporatedinto the effective tangentstiffnessusedin the time-steppingalgo-
rithm. Unfortunately thesematricesare not symmetric. However, sinceall the systemmatrices
are independentof d, this is effectively a linear model. Note that the attenuationfunctions,
representingthe co-ordinate-stretchingaffect the various compatibility matrices, e.g. B¢, B
etc. but not the material moduli matrix D. Consequentlythis plane-strainFE formulation can
be appliedto plane-stresproblemsby re-de“ning  appropriately

The profusion of notation and equationsin this section cries out for a synopsisof the
algorithm for computingthe element-lgel effective internal force and tangentstiffness;this is
presentedn Box II.

3.5. Numerical results

Numerical results are presentedor the classicalsoil...structurenteraction problemsof a rigid
strip-footing on (i) a half-plane,(ii) a layer on a half-plane,and (iii) a layer on a rigid base.

Figure 7(a) shavs a cross-sectionof a rigid strip-footing of half-width b with its three
degrees-of-freedoniDOFs)identi“ed,v ertical (V), horizontal(H ), androcking (R),supported
by a homogeneoussotropic (visco-)elastichalf-plane with shearmodulus , massdensity ,
Poissom ratio , and Voigt dampingratio for the visco-elasticmedium. The time-domain
responsef this systemis studiedthroughthe reactionsalongthe threeDOFsdueto animposed
displacementalong ary of the three DOFs; the imposeddisplacemenis chosento be of the
form of Equation (A3) and the reactionalong DOF i dueto an imposeddisplacementalong
j is denotedby Pj , with i,j {V,H,R}.
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Box Il. Computingeffective force and stiffnessfor plane-strainPML element.

(1) Computesystemmatricesm€, c® and k® [Equation (46a)].
(2) Computeinternalforce pﬁ+1 [Equation(56)]. Use n+1 [Equation(51)] and p+1 [Equation(53)].

(3) Computetangentmatricesc® and k& [Equation (60)].
(4) Computeeffective internal force pﬁ .1 and tangentstifiness k&

e _ e e e e
Prs1= M an+1+ CVpe1 + KOne 1+ Py g
k= k(k®+ K%+ c(c®+ %)+ mm®

whereanr1  dS(ths 1), and, for example,

for the Newmark method.

Note: The tangentstifinessk® is independentof the solution, and thus has to be computedonly
once. However, the internal force pﬁ+l hasto be re-computedat eachtime-stepbecauseit is

dependenton the solution at pasttimes.

Figure 7. (a) Cross-sectiorof a rigid strip of half-width b on a homogeneoussotropic
(visco-)elastichalf-plane;and (b) a PML model.
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Figure 8. Reactionsof a rigid strip on (visco-)elastic half-plane due to imposed displacements;
L=3b/2,h=Db/2,Lp=Db, f1(Xx1) = 10x1 Sh /L p, fo(X2) = 10|x2]SL /L p; x = (X +]|X]|)/2;
=1, = 0.25;tg= 30 = 1.00 for vertical excitation, 0.75 for horizontal excitation and 1.25
for rocking excitation: (a) elastic half-plane, = 0; and (b) visco-elastichalf-plane, = 0.05.

This unbounded-domaisystemis modelled using the bounded-domain-PMLmodel shovn
in Figure 7(b), composedof a boundeddomain pp anda PML py, with the attenuation
functions in Equation (12) chosenas f ® = fiID = f;, with f; chosento be linear in the
PML. A “nite elementmeshof four-nodebilinear isoparametricelementsare usedto discretize
the entire boundeddomain. The mesh chosenis reasonablydenseand is gradedto capture
sharpvariationsin stressemear the footing. For comparison,the half-planeis also modelled
using a viscous-dashpoimmodel [3], wherein the entire domain pgp pMm IS taken to be
(visco-)elasticand consistentdashpotelementsreplacethe “x ed outer boundary;thus the mesh
used for the dashpotmodel is comparableto that usedfor the PML model. Becauseof the
dearthof analytical resultsin the time domain, the half-planeis modelled using an extended
mesh; the resultsfrom this meshwill sene as a benchmark.From the centerof the footing,
this meshextendsto a distanceof 35b downwards and laterally; the entire domainis taken to
be (visco-)elastic,and viscousdashpotsare placedon the outer boundary

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074



1060 U. BASU AND A. K. CHOPRA

1 T 1
Exact
PML ——
0.8+ 0.8+
>
> 06+ 0.6
S g
3] £
C 04t 0 0.4}
02+ 0.2 \
0 ' 0 ' '
0 0.5 1 1.5 0 0.5 1 1.5
1 T 1
0.8 | 0.8 |
I 06 To6t
I =
) £
0.2+ 0.2+t
0 : 0 : :
0 0.5 1 15 0 05 1 15
1 T 1
0.8 r 0.8 r
x 06} Eos6t
x iy
) —’—'_—%\ £
X 04} o 04+
02} 021 /
, , 0 . ,

0 0.5 1 15 0 0.5 1 15
£ £

Figure 9. Dynamic "exibility coefcients of rigid strip on elastic half-plane computed

usinga PML modelwith stretchingfunctionssuitablefor time-domainanalysis;L = 3b/2,

h=D0b/2, Lp=b, f1(X1) = 10x1Sh/Lp, fao(xz) = 10|xo/SL /Lp; =1, = 0.25;
eExacte resultsfrom Reference[4Q].

Figure 8(a) comparesthe reactionscomputedfor an elastic medium using the PML model
and the dashpotmodel with resultsfrom the extendedmesh. Note that the boundeddomain
for the PML and the dashpotmodelsis small, extending only upto b/2 on either side of the
footing and belowv it, and the PML width equal to b, the half-width of the footing. Based
on a comparisonof the frequeng-domain responsesof the PML and the viscous dashpot
models,the valuesof ; were chosenas the excitation frequencieswhere the two responses
are signi“cantly different. The resultsobtainedfrom the PML modelfollow the extendedmesh
resultsclosely even thoughthe domainis small enoughfor the dashpotgo re”ect waves back
to the footing, as manifestedin the higher responseamplitudes. The computationalcost of
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Figure 10. Dynamic "exibility coefcients of rigid strip on visco-elastichalf-plane computedusing a

PML model with stretchingfunctions suitablefor time-domainanalysis;L = 3b/2, h= b/2, Lp = b,

f1(x1) = 10x1Sh /L p, f2(x2) = 10|x2]SL /Lp; =1, = 0.25, = 0.05; *FD PMLs: a substitute
for an exact result, obtainedusing frequeng-domain stretchingfunctionsin PML model.

the PML model is obsened to be approximatelyl.6 times that of the dashpotmodel; this
costis not signi“cantly large becausethe dashpotmodel itself is computationallyinexpensve.
Thus, the highly accurateresultsfrom the PML model are obtainedat low computationalcost.
Signi“cantly, the cost of the extended-meshmodel is obsered to be approximatelyl7 times
that of the PML model. Figure 8(b) presentssimilar comparisondor a visco-elastichalf-plane.
The PML results are visually indistinguishablefrom the extended mesh results, even though
the computationaldomain is small: the dashpotsgeneratespuriousre”ections even when the
mediumis visco-elastic.
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Figure 11. (a) Cross-sectiorof the rigid strip of half-width b on a homogeneoussotropic (visco-)elastic
layer on half-plane;and (b) a PML model.

Figures 9 and 10 presentfrequeng-dependent’exibility coefcients Fj (ag) for the rigid
strip-footing on a half-planecomputedusing a PML model employing the time-domainstretch-
ing functions in Equation (12). The "exibility coefcients are de“ned as the displacement
amplitudesalong DOF i due to a unit-amplitude harmonic force along DOF j . Resultsfor
the elastic half-planeare comparedin Figure 9 againstavailable analyticalresults[40]. Owing
to the dearth of analytical solutionsfor the strip on a Voigt visco-elastichalf-plane,the re-
sults obtainedfrom the (possibly less accurate)time-domainstretchingfunctions are compared
in Figure 10 to resultsfrom a PML model employing the frequeng-domain-only stretching
functions [Equation (33)], denotedby <FD PMLe in the “gures. The rationale behind this ap-
proachis that the frequeng-domain stretchingfunctions produce highly accurateresults for
hystereticdamping[30] and, hence,can be expectedto also produceexcellentresultsfor Voigt
damping.The resultsdemonstratehat the time-domainstretchingfunctionsindeedproduceac-
curateresultsas expected,becauséhe wave motion in the half-planeconsistsprimarily of prop-
agatingmodes,which are adequatelyattenuatedeven by the time-domainstretchingfunctions.

Figure 11(a) shaws a cross-sectiorof the rigid strip supportedby a layer on a half-plane,and
Figure 11(b) shavs a correspondind®ML modelwith the attenuatiorfunctionsin Equation(12)
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Figure 12. Reactionsof a rigid strip on (visco-)elasticlayer on half-plane,due to imposeddisplace-
ments L= 3b/2 Lp- b, h= b/2, fl(xl) =10x,S(d+ h) /L p, f2(x2) = 10|x2|SL /L p; d= 2D,
=1, ,=4,, =04 t3=30 = 100 for vertical excitation, 0.75 for horizontal excitation
and 1.75 for rocking excitation: (a) elastic media, = 0; and (b) visco-elasticmedia, = 0.05.

chosenas f; €= f, P = f;, with f; chosento be linear in the PML. The elastic moduli for the

PMLs emplcyed for the layer and the half-plane are setto the moduli for the corresponding
elastic media. For comparison,a viscous-dashpomodel is also employed, where the entire

boundeddomainis taken to be (visco-)elasticand consistentdashpotsreplacethe “x ed outer

boundary An extended-meshmodel, with viscousdashpotsat the outer boundary is taken as a

benchmarkmodelfor the layer on a half-plane;this meshextendsto a distanceof 40b laterally

and downwards from the centerof the footing.

Figure 12 shaws the reactionsof the rigid strip on a layeron-half-planedue to imposed
displacementsThe PML results typically follow the results from the extended mesh, even
though the domainis small enoughfor the viscousdashpotsto generatespuriousre”ections.
The computationalcost of the PML model is not signi“cantly large: it is obsened to be
approximately 1.5 times that of the dashpotmodel. Signi“cantly, the extended-mestresults
shav some spuriousre’ections for vertical motion of the footing: the P-wave speedin the
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Figure 13. Dynamic "exibility coefcients of rigid strip on elastic layer on half-plane computed
using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, Lp = b,
h=D0/2,f1(x1) = 10x1S(d+ h) /L p, fo(x2) = 10|x2|SL /Lp;d=2b, | =1, =4, =04,
a = bl |/ ; sFD PMLe: a substitute for an exact result, obtained using frequeng-domain

stretchingfunctionsin PML model.

half-planeis high enoughthat the depth of the extendedmeshis not adequatefor the time
intenal in the analysis;the cost of the extended-meshmodel is obsered to be approximately
18 timesthat of the PML model. Figures13 and 14 demonstratéhat the time-domainstretching
functions provide frequeng-dependentexibility coefcients that closely matchthoseobtained
using the frequeng-domain-onlystretchingfunctions.

Figure 15(a) shawvs a cross-sectiorof the rigid strip supportedby a layer on a rigid base,and
Figure 15(b) shavs a corresponding®ML model where f ;© = fip = f; in Equation(12), with
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Figure 14. Dynamic "exibility coefcients of rigid strip on visco-elasticlayer on half-planecomputed

using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, Lp = b,
=1 =4

| ’ h |

h=b/2 fi(x1) = 10x3 S (d+ h)/Lp, faxz) = 10|x2| S L /Lp; d = 2b,
b/ ,/ ; *FD PMLe: a substitutefor an exact result, obtained using

= 04, = 005 g =
frequeng-domain stretchingfunctionsin PML model.

f1(x1) = 0 and f2(x2) linear in the PML. The correspondingviscous-dashpomodel includes
the entire boundeddomain as (visco-)elastic,with viscousdashpotsreplacingthe “x ed lateral
boundaries.The extended-meshmodel is also a viscous-dashpoimodel, but extendingto 40b
on either side from the centerof the footing. Figure 16 demonstrateshe high accurag of the
PML model, as well asthe small size of the computationaldomain throughthe inadequag of
the dashpotmodel. Theseresultsfrom the PML model are obtainedat a cost approximately

Int. J. Numer Meth. Engng 2004; 59:1039...1074
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Figure 15. (a) Cross-sectiorof the rigid strip of half-width b on a homogeneoussotropic (visco-)elastic
layer on rigid base;and (b) a PML model.

1.2 times that of the dashpotmodel, i.e. the computationalcostis not signi“cantly large. The
cost of the extended-meshmodel is obsered to be approximately3 times that of the PML
model; it is relatvely cheaperhere than in the previous two casesbecausethe extension of
the meshis only in the lateral directions,not downwards.

Figure 17 demonstrateshat for a rigid strip on an elasticlayer on rigid base,the frequeng-
dependent’exibility coefcients obtainedusing the time-domainstretchingfunctions do not
always closely follow those from the frequeng-domain-only stretchingfunctions; this is pre-
sumably due to the presenceof evanescentmodesin the system. However, this apparent
inadequag of the time-domainstretchingfunctionsis not re"ected in the time domainresults
in Figure 16(a). The time-domainstretchingfunctions provide accurateresultsfor a rigid strip
on a visco-elasticlayer, as demonstratedn Figure 18.

4. CONCLUSIONS

Building on recentformulations for correspondingtime-harmonicPMLs [30], this paperhas
presentedlisplacement-basetime-domainequationdor the PMLs for anti-planeandfor plane-
strain motion of a two-dimensional(visco-)elasticcontinuum. Theseequationsare obtainedby
selecting stretching functions in the PML that have a simple dependenceon the factori ,
which facilitates transformationof the time-harmonicequationsinto the time domain. In the
interestof obtaininga realistic model of the unboundeddomain, materialdampingis introduced
into the PML equationsin the form of a Voigt dampingmodelin the constitutve relation for
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Figure 16. Reactionsof a rigid strip on (visco-)elasticlayer on rigid base,due to imposeddisplace-

ments;L = 3b/2, Lp= b, f1(x1) = 0, fo(x2) = 20|x2]SL /Lp; d=2b, =1, = 04; tg= 30,

¢ = 2.75 for vertical excitation, 1.25 for horizontal excitation and 1.75 for rocking excitation:
(a) elasticlayer, = 0; and (b) visco-elasticlayer, = 0.05.

the PML; this modelis choseninsteadof the traditional hystereticdampingmodel becausehe
latter is non-causal.

ThesePML equationshave beenimplementednumerically by a straightforvard “nite ele-
ment approach.As is corventional, the eequilibriume equationsare discretizedin time by a
traditional integrator such as the Newmark method; the equilibrium equationsare solved at
eachtime-stationusing a Newton...Raphsadteration scheme Becausethe tangentstiffnessma-
trix employed in the Newton...Raphsaoschemeis independenif the solution, it is computed
only once at the start of the analysis.This property of the tangentmakes the PML model
effectively a linear model. The tangentstiffness of the anti-planePML is found to be sym-
metric. Furthermore,it is argued that if the attenuationfunctions are positve-valued, and if
the boundaryrestraintson the whole domain are adequate then the tangentstiffness of the
entire computationaldomain will be positive de“nite. Unfortunately the tangentstiffness of
the plane-strainPML turns out to be unsymmetric.The systemmatricesof both PML models
retain the sparsity structureassociatedvith correspondingmatricesfor an elastic medium.
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Figure 17. Dynamic "exibility coefcients of rigid strip on elastic layer on rigid base computed

using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, Lp = b,

fa(x1) = 0, fa(x2) = 20|x2|SL /Lp; d=2b, =1, = 04; FD PMLe: a substitutefor an exact
result, obtainedusing frequeng-domain stretchingfunctions in PML model.

These FE implementationsof the PMLs are employed to solve the canonical problem of
the anti-planemotion of a semi-in“nite layer on a rigid baseand the classicalsoil-structure
interaction problemsof a rigid strip-footing on (i) a half-plane, (ii) a layer on a half-plane,
and (iii) a layer on a rigid base.Highly accurateresults were obtainedfrom PML models
with small boundeddomainsat low computationalcosts. The boundeddomainsemployed for
theseproblemswere small enoughthat comparableviscous-dashpotodelstypically generated
spurious re”ections within the time-intenal of the analysis,even if the domain was visco-
elastic. The computationalcostsof the PML modelswere not signi“cantly large: basedon the
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Figure 18. Dynamic "exibility coefcients of rigid strip on visco-elasticlayer on rigid basecomputed

using a PML model with stretchingfunctions suitable for time-domainanalysis;L = 3b/2, Lp = b,

fa(x1) = 0, fa(x2) = 20|x2|SL /ILp; d=2b, =1, = 0.4, = 0.05;FD PMLe: a substitutefor
an exact result, obtainedusing frequeng-domain stretchingfunctionsin PML model.

relative expenseof the PML and the viscousdashpotmodels,and also on the relative number
of PML elementsand elastic elementsin a PML model, it was estimatedthat the cost of an
anti-planePML elementis approximatelyl.5 times the correspondingelastic element,and that
of a plane-strainPML elementis approximatelyl.75 times the correspondingelastic element.

Frequeng-domain results suggestthat the time-domain results may not be accuratefor
an elastic systemif the excitation is primarily in a frequeng-band where evanescentmodes
are not adequatelyattenuatedIf the excitation is broadbandhowever, and evanescenimodes
are not suf'ciently attenuatedonly in a narrav frequeng-band, then the time-domainresults
can be expectedto be accurate.Moreover, the resultsare accuratefor a visco-elasticsystem
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becausethe evanescentmodesare attenuatedby damping. Issuesabout inaccuraciesdue to

evanescentmodesare of concernprimarily in waveguide systems,such asthe layer on a rigid

base,becauseof their severely-constrictedjeometriespvanescentmodesare of lessconcernin

half-planeor full-plane problems.Note that this issuearisesin the time-domainmodel of the
PML becausehe specialchoice of stretchingfunctionsis not always adequatefor attenuating
evanescenmodes.An alternatechoice of the stretchingfunction for a frequeng-domain PML

model producesaccurateresultseven for waveguide systemswith signi“cant evanescentmodes
[30]; however, it is dif“cult to emplgy sucha frequeng-domain stretchingfunction in a direct
time-domainanalysis.

This paper presentedtime-domain PML models for isotropic, homogeneousr discretely-
inhomogeneousnediaonly. However, the constitutve relation for the PML is the sameas that
for the elastic medium. This suggestghat the PML formulationspresentedn this papermay
be extendedto anisotropic, continuously-inhomogeneouslastic media with at most minimal
modi“cations, mirroring similar developmentsin electromagnetic$41].

Romansymbols

NOMENCLATURE

ap non-dimensionafrequengy
a nodal accelerations
b half-width of footing

B, B, B, B, B

compatibility matrices

Cp, Cs compressionabnd shearwave velocities

Cj dampingcoefcient of nodal dynamic stiffnessof layer on rigid base
c% ct ¢ cC element-lgel and global dampingmatrices

C, Cjk material stiffnesstensor

d depthof layer

d nodal displacements

D material moduli matrix

{a} standardorthonormalbasis

E, E time integral of ,

fm, feo, fi see Equation(18)

fefP attenuationfunctions

F€ FP, F& FP attenuationtensors;Equation(14)

Fi "exibility coefcient of rigid strip-footing, with i,j {V,H,R}

H (in subscript)horizontal DOF of rigid strip-footing

i= S1 unit imaginary number

Im imaginary part of a complex number

I identity matrix

Ks: Ks, Kp wavenumbersfor S and P waves

Kij stiffnesscoefcient of nodal dynamic stiffnessof layer on rigid base
ke k& k element-lgel and global stiffnessmatrices

Lp depth of PML

meé, m element-lgel and global massmatrices

Ne numberof full cyclesin imposeddisplacement

Copyright 2004 John Wiley & Sons, Ltd. Int. J. Numer Meth. Engng 2004; 59:1039...1074



TRANSIENT ELASTODYNAMICS OF UNBOUNDED DOMAINS 1071

n unit normal to a surface

N, N nodal shapefunctions

P. Pi direction of wave propagation
p€ element-lgel internal force term

q direction of particle motion

Q. Qj rotation-of-basismatrix

R (in subscript)rocking DOF of rigid strip-footing
IR, |Rppl; |Rspl amplitude(s)of wave(s) re”ected from the PML
Re real part of a complex number

S componentof dynamic stiffnessmatrix of layer on rigid base
ty duration of imposeddisplacement

T dominantforcing period of imposeddisplacement
u, u displacement(s)

% nodal velocities

\% (in subscript)vertical DOF of rigid strip-footing
w, W arbitrary weighting function in weak form

X, Xj, X co-ordinate(s)

Greek symbols

i Kronecler delta
differential operator
t time-stepsize
v i strain quantities
dampingratio for visco-elasticmedium
angle of incidenceof outgoingwave on PML
bulk modulus
i complex co-ordinatestretchingfunction
, stretchtensors
shearmodulus
Poissonratio
massdensity
N stressquantities
, time-integral of
excitation frequeny
f dominantforcing frequeng of imposeddisplacement
entire boundeddomain usedfor computation
elementdomain
BD boundeddomain
PM perfectly matchedlayer

APPENDIX A
Describedhereis the waveform employed as the imposeddisplacementn the numericalexam-
plesin this paper The waveform is in the form of a time-limited cosinewave, bookendedby

cosinehalf-cycles so that the initial displacementind velocity aswell asthe “nal displacement
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and velocity are zero. It is characterizedy two parametersthe durationty and the dominant
forcing frequeny ; the dominantforcing period is then

2
Tf:—
f

and the numberof full cycles, ng, in the excitation is calculatedas

g « 1

= Y3 Al
Nc > 2 (A1)

wherethe % accountsfor the cosinehalf-cycle usedto end the excitation. For consisteng, the
forcing period is adjustedto

tq

T = —— A2
f ne+ 1/2 (A2)
The excitation is then de“ned as
1 t
ty==- 1S 2 — t [0,T¢/2
Uo(®)= 5 18 cos 2 - [0.T/2)
tS T/ 2
= cos 2 i t [ Ti/2,ncTy)
Tt (A3)
1 . t S neT; -
== 1Scos 2 %f S1 t [ncTy,tg]
f
=0 t (tg, )

A typical waveform and its Fourier transformare shovn in Figure 3. The Fourier transform
shavs a dominantfrequeng, as expected;the bandwidthof the peak at this frequeng varies
inversely with tg, but is largely independenpf ;.

APPENDIX B

The matricesB , B, F andF usedin Equation(51) in Section3.4 are de“ned as follows.
De“ne

.. F® st , :
Fi= —+F | F:=FF, F =FF (B1)

Then B is de“ned in termsof nodal submatricesas
F1aNiq FoaN 1

W
i

F1oN| FoN (B2)
FuNjo+ FioNpp o FogNpo + FooNpg
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where
N, := Fijf NI j (B3)

The matrix B is de“ned similarly, with F replacingF throughout.Furthermore,
F1aFos

— 2 2
F = P Fao F1oF2 (B4)

2F11F12 2F21F22 I:11F22+ I:12|:21

and F is de“ned similarly, with F replacingF throughout.
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ERRATUM

Erratumto «Perfectlymatchedayersfor transiemelastodynamics

of unboundediomain
(Int. 3. Numer Meth. Engng2004; 59 1039...1074)

UshnishBasuandAnil K. Chopra'*

Departmenof Civil and EnvironmentaEngineering University of California, Berkeley, CA9472Q U.S.A.

The PML equationgpresentedn the paperarevalid only for b = 1, whereb is a characteristic
lengthof the physicalproblem.For properdimensionalisatiof the PML equationsandtheir FE
implementationsiEquation(12) shouldbe correctedo

i(x) = [1+ f&x)]S If'pﬂ (12)
[ i K 2

with ag = ksb replacingks in the original equation.This characteristidength b carriesover to
Equations(15), (16a)and (42a)in an obvious way. Correctedversionsof theseequationsare as
follows:

e 1H1E0Q) : o f 3 (xz)cslb 53
| 1+ 20x)) ' : f (xy)cs/b
DS . 1o (15b)
' 1+ fE5x,) ' : f P(x,)cs/b
= fpi+ %f cu+ bszu (16a)
div( Fe+ FP)= fui+ feu+ —fyu (42a)
= m b c b2 k
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ERRATUM 157

The lasttwo equationsaffect Equations(19), (21a),(44) and (46a),which shouldbe correctedas
follows:

fowid + C—bsfcwud + Sfwd + wed = wond  (19)
me=  fuNTNd , c®= %fCNTNd, ko= NN d (21a)
fow-Gd +  Dfow-ud +  —few-ud
b b2
+ ¢ d+ P:d = w-(F+ F’)nd (44)
C

mi = fmNiNgd 1, oy = BstN.NJd I, k& = e?koNJd |

(46a)

Theauthorsapologisefor any confusionthis may have causedThe numericalresultspresentedn
the paperareunafectedbecausehey werecomputedor b = 1.
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