LS-DYNA ${ }^{*}$ KEYWORD USER'S MANUAL

VOLUME II
Material Models

R15@d71677e2e (02/29/24)
LS-DYNA R15

Ansys

Websites

https:/ /lsdyna.ansys.com
https:/ /support.ansys.com

Disclaimer

Copyright © 1992-2024 ANSYS, Inc. ("ANSYS"). All Rights Reserved.
LS-DYNA ${ }^{\star}$, LS-OPT * and LS-PrePost ${ }^{\star}$ are registered trademarks of ANSYS. All other trademarks, product names and brand names belong to their respective owners.
ANSYS reserves the right to modify the material contained within this manual without prior notice.
The information and examples included herein are for illustrative purposes only and are not intended to be exhaustive or all-inclusive. ANSYS assumes no liability or responsibility whatsoever for any direct or indirect damages or inaccuracies of any type or nature that could be deemed to have resulted from the use of this manual.

Any reproduction, in whole or in part, of this manual is prohibited without the prior written approval of ANSYS. All requests to reproduce the contents hereof should be sent to Ansys legal.

AES Licensing Terms

Copyright © 2001, Dr Brian Gladman < brg@gladman.uk.net>, Worcester, UK. All rights reserved.
The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that:

1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products built using this software without specific written permission.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties in respect of any properties, including, but not limited to, correctness and fitness for purpose.

Issue Date: 21/01/2002
This file contains the code for implementing the key schedule for AES (Rijndael) for block and key sizes of 16,24 , and 32 bytes.

TABLE OF CONTENTS

TABLE OF CONTENTS 0-1
*EOS 1-1
*EOS_LINEAR_POLYNOMIAL 1-7
*EOS_JWL 1-9
*EOS_SACK_TUESDAY 1-14
*EOS_GRUNEISEN 1-15
*EOS_RATIO_OF_POLYNOMIALS 1-17
*EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK 1-21
*EOS_IGNITION_AND_GROWTH_OF_REACTION_IN_HE 1-23
*EOS_TABULATED_COMPACTION 1-27
*EOS_TABULATED 1-30
*EOS_PROPELLANT_DEFLAGRATION 1-32
*EOS_TENSOR_PORE_COLLAPSE 1-37
*EOS_IDEAL_GAS 1-40
*EOS_PHASE_CHANGE 1-43
*EOS_JWLB 1-45
*EOS_GASKET 1-48
*EOS_MIE_GRUNEISEN 1-51
*EOS_MURNAGHAN 1-53
*EOS_USER_DEFINED 1-54
*EOS_USER_LIBRARY 1-55
*MAT. 2-1
MATERIAL MODEL REFERENCE TABLES 2-10
Alphabetized Materials List 2-22
*MAT_ADD_AIRBAG_POROSITY_LEAKAGE 2-34
*MAT_ADD_CHEM_SHRINKAGE 2-42
*MAT_ADD_COHESIVE 2-44
*MAT_ADD_DAMAGE_DIEM 2-48
*MAT_ADD_DAMAGE_GISSMO 2-61
*MAT_ADD_EROSION 2-74
*MAT_ADD_FATIGUE 2-84
*MAT_ADD_GENERALIZED_DAMAGE 2-90
*MAT_ADD_INELASTICITY 2-102

TABLE OF CONTENTS

*MAT_ADD_PERMEABILITY 2-119
*MAT_ADD_PORE_AIR 2-121
*MAT_ADD_PROPERTY_DEPENDENCE 2-124
*MAT_ADD_PZELECTRIC 2-126
*MAT_ADD_SOC_EXPANSION 2-130
*MAT_ADD_THERMAL_EXPANSION 2-132
*MAT_NONLOCAL 2-134
*MAT_ELASTIC 2-138
*MAT_OPTIONTROPIC_ELASTIC 2-141
*MAT_PLASTIC_KINEMATIC 2-156
*MAT_ELASTIC_PLASTIC_THERMAL 2-159
*MAT_SOIL_AND_FOAM 2-162
*MAT_VISCOELASTIC 2-166
*MAT_BLATZ-KO_RUBBER 2-168
*MAT_HIGH_EXPLOSIVE_BURN 2-170
*MAT_NULL 2-173
*MAT_ELASTIC_PLASTIC_HYDRO 2-175
*MAT_STEINBERG 2-181
*MAT_STEINBERG_LUND 2-186
*MAT_ISOTROPIC_ELASTIC_PLASTIC 2-190
*MAT_ISOTROPIC_ELASTIC_FAILURE 2-191
*MAT_SOIL_AND_FOAM_FAILURE 2-193
*MAT_JOHNSON_COOK 2-194
*MAT_PSEUDO_TENSOR 2-204
*MAT_ORIENTED_CRACK 2-212
*MAT_POWER_LAW_PLASTICITY 2-215
*MAT_STRAIN_RATE_DEPENDENT_PLASTICITY 2-217
*MAT_RIGID 2-220
*MAT_ORTHOTROPIC_THERMAL 2-228
*MAT_COMPOSITE_DAMAGE 2-237
*MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC 2-243
*MAT_PIECEWISE_LINEAR_PLASTICITY 2-249
*MAT_GEOLOGIC_CAP_MODEL 2-256
*MAT_HONEYCOMB 2-262
*MAT_MOONEY-RIVLIN_RUBBER 2-270
*MAT_RESULTANT_PLASTICITY 2-274
*MAT_FORCE_LIMITED 2-275
*MAT_SHAPE_MEMORY 2-282
*MAT_FRAZER_NASH_RUBBER_MODEL 2-288
*MAT_LAMINATED_GLASS 2-292
*MAT_BARLAT_ANISOTROPIC_PLASTICITY 2-294
*MAT_BARLAT_YLD96 2-299
*MAT_FABRIC 2-304
*MAT_FABRIC_MAP 2-331
*MAT_PLASTIC_GREEN-NAGHDI_RATE 2-348
*MAT_3-PARAMETER_BARLAT 2-349
*MAT_EXTENDED_3-PARAMETER_BARLAT 2-370
*MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC 2-375
*MAT_BLATZ-KO_FOAM 2-383
*MAT_FLD_TRANSVERSELY_ANISOTROPIC. 2-385
*MAT_NONLINEAR_ORTHOTROPIC 2-387
*MAT_USER_DEFINED_MATERIAL_MODELS 2-393
*MAT_BAMMAN 2-400
*MAT_BAMMAN_DAMAGE 2-405
*MAT_CLOSED_CELL_FOAM 2-408
*MAT_ENHANCED_COMPOSITE_DAMAGE 2-411
*MAT_LOW_DENSITY_FOAM. 2-429
*MAT_LAMINATED_COMPOSITE_FABRIC 2-434
*MAT_COMPOSITE_FAILURE 2-453
*MAT_ELASTIC_WITH_VISCOSITY 2-460
*MAT_ELASTIC_WITH_VISCOSITY_CURVE 2-463
*MAT_KELVIN-MAXWELL_VISCOELASTIC 2-466
*MAT_VISCOUS_FOAM 2-468
*MAT_CRUSHABLE_FOAM 2-470
*MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY 2-476
*MAT_MODIFIED_ZERILLI_ARMSTRONG 2-479
*MAT_LINEAR_ELASTIC_DISCRETE_BEAM 2-482
*MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM 2-485
*MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM 2-491
*MAT_SID_DAMPER_DISCRETE_BEAM 2-499
*MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM. 2-504
*MAT_CABLE_DISCRETE_BEAM 2-506
*MAT_CONCRETE_DAMAGE 2-509
*MAT_CONCRETE_DAMAGE_REL3 2-514

TABLE OF CONTENTS

*MAT_LOW_DENSITY_VISCOUS_FOAM 2-523
*MAT_ELASTIC_SPRING_DISCRETE_BEAM 2-529
*MAT_BILKHU/DUBOIS_FOAM 2-531
*MAT_GENERAL_VISCOELASTIC 2-534
*MAT_HYPERELASTIC_RUBBER 2-540
*MAT_OGDEN_RUBBER 2-553
*MAT_SOIL_CONCRETE 2-561
*MAT_HYSTERETIC_SOIL 2-565
*MAT_RAMBERG-OSGOOD 2-575
*MAT_PLASTICITY_WITH_DAMAGE 2-577
*MAT_FU_CHANG_FOAM 2-586
*MAT_WINFRITH_CONCRETE 2-598
*MAT_WINFRITH_CONCRETE_REINFORCEMENT 2-616
*MAT_ORTHOTROPIC_VISCOELASTIC. 2-618
*MAT_CELLULAR_RUBBER. 2-621
*MAT_MTS 2-626
*MAT_PLASTICITY_POLYMER 2-631
*MAT_ACOUSTIC 2-636
*MAT_ACOUSTIC_COMPLEX 2-638
*MAT_ACOUSTIC_DAMP 2-640
*MAT_ACOUSTIC_POROUS_DB 2-642
*MAT_SOFT_TISSUE 2-644
*MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM 2-651
*MAT_INELASTIC_SPRING_DISCRETE_BEAM 2-653
*MAT_INELASTIC_6DOF_SPRING_DISCRETE_BEAM 2-656
*MAT_BRITTLE_DAMAGE 2-658
*MAT_GENERAL_JOINT_DISCRETE_BEAM 2-662
*MAT_SIMPLIFIED_JOHNSON_COOK 2-664
*MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE. 2-667
*MAT_SPOTWELD 2-669
*MAT_SPOTWELD_DAIMLERCHRYSLER 2-694
*MAT_GEPLASTIC_SRATE_2000a 2-699
*MAT_INV_HYPERBOLIC_SIN 2-701
*MAT_ANISOTROPIC_VISCOPLASTIC 2-705
*MAT_ANISOTROPIC_PLASTIC 2-713
*MAT_DAMAGE_1 2-717
*MAT_DAMAGE_2 2-727
*MAT_ELASTIC_VISCOPLASTIC_THERMAL 2-731
*MAT_MODIFIED_JOHNSON_COOK 2-736
*MAT_ORTHO_ELASTIC_PLASTIC 2-746
*MAT_JOHNSON_HOLMQUIST_CERAMICS 2-751
*MAT_JOHNSON_HOLMQUIST_CONCRETE 2-755
*MAT_FINITE_ELASTIC_STRAIN_PLASTICITY 2-758
*MAT_TRIP. 2-761
*MAT_LAYERED_LINEAR_PLASTICITY 2-765
*MAT_UNIFIED_CREEP 2-769
*MAT_UNIFIED_CREEP_ORTHO 2-771
*MAT_COMPOSITE_LAYUP 2-776
*MAT_COMPOSITE_MATRIX 2-779
*MAT_COMPOSITE_DIRECT 2-782
*MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM 2-784
*MAT_GURSON 2-800
*MAT_GURSON_JC 2-807
*MAT_GURSON_RCDC 2-816
*MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM 2-822
*MAT_HILL_3R 2-825
*MAT_HILL_3R_3D 2-829
*MAT_HILL_3R_TABULATED 2-836
*MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY 2-839
*MAT_PLASTICITY_COMPRESSION_TENSION 2-847
*MAT_KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC 2-853
*MAT_MODIFIED_HONEYCOMB 2-860
*MAT_ARRUDA_BOYCE_RUBBER 2-875
*MAT_HEART_TISSUE 2-878
*MAT_LUNG_TISSUE 2-883
*MAT_SPECIAL_ORTHOTROPIC 2-886
*MAT_ISOTROPIC_SMEARED_CRACK 2-890
*MAT_ORTHOTROPIC_SMEARED_CRACK 2-893
*MAT_BARLAT_YLD2000 2-898
*MAT_VISCOELASTIC_FABRIC 2-913
*MAT_WTM_STM 2-917
*MAT_WTM_STM_PLC 2-929
*MAT_VEGTER 2-934
*MAT_VEGTER_STANDARD 2-941

TABLE OF CONTENTS

*MAT_VEGTER_2017 2-948
*MAT_COHESIVE_MIXED_MODE 2-954
*MAT_MODIFIED_FORCE_LIMITED 2-959
*MAT_VACUUM 2-973
*MAT_RATE_SENSITIVE_POLYMER 2-974
*MAT_TRANSVERSELY_ISOTROPIC_CRUSHABLE_FOAM 2-976
*MAT_WOOD 2-981
*MAT_PITZER_CRUSHABLE_FOAM 2-992
*MAT_SCHWER_MURRAY_CAP_MODEL 2-994
*MAT_1DOF_GENERALIZED_SPRING 2-1002
*MAT_FHWA_SOIL 2-1004
*MAT_FHWA_SOIL_NEBRASKA 2-1007
*MAT_GAS_MIXTURE 2-1008
*MAT_EMMI 2-1015
*MAT_DAMAGE_3. 2-1023
*MAT_DESHPANDE_FLECK_FOAM 2-1035
*MAT_PLASTICITY_COMPRESSION_TENSION_EOS 2-1038
*MAT_MUSCLE 2-1044
*MAT_ANISOTROPIC_ELASTIC_PLASTIC 2-1048
*MAT_RATE_SENSITIVE_COMPOSITE_FABRIC 2-1064
*MAT_CSCM 2-1071
*MAT_ALE_INCOMPRESSIBLE 2-1084
*MAT_COMPOSITE_MSC 2-1086
*MAT_MODIFIED_CRUSHABLE_FOAM 2-1099
*MAT_BRAIN_LINEAR_VISCOELASTIC 2-1102
*MAT_PLASTIC_NONLINEAR_KINEMATIC 2-1104
*MAT_MOMENT_CURVATURE_BEAM 2-1106
*MAT_MCCORMICK 2-1110
*MAT POLYMER 2-1113
*MAT_ARUP_ADHESIVE 2-1118
*MAT_RESULTANT_ANISOTROPIC 2-1129
*MAT_STEEL_CONCENTRIC_BRACE 2-1133
*MAT_CONCRETE_EC2 2-1140
*MAT_MOHR_COULOMB 2-1164
*MAT_RC_BEAM 2-1171
*MAT_VISCOELASTIC_THERMAL 2-1177
*MAT_QUASILINEAR_VISCOELASTIC 2-1182
*MAT_HILL_FOAM 2-1187
*MAT_VISCOELASTIC_HILL_FOAM 2-1191
*MAT_LOW_DENSITY_SYNTHETIC_FOAM 2-1196
*MAT_SIMPLIFIED_RUBBER/FOAM 2-1202
*MAT_SIMPLIFIED_RUBBER_WITH_DAMAGE 2-1211
*MAT_COHESIVE_ELASTIC 2-1215
*MAT_COHESIVE_TH 2-1217
*MAT_COHESIVE_GENERAL 2-1221
*MAT_SAMP-1 2-1226
*MAT_SAMP_LIGHT 2-1235
*MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP 2-1241
*MAT_ANISOTROPIC_THERMOELASTIC 2-1247
*MAT_FLD_3-PARAMETER_BARLAT 2-1251
*MAT_SEISMIC_BEAM 2-1257
*MAT_SOIL_BRICK 2-1267
*MAT_DRUCKER_PRAGER 2-1275
*MAT_RC_SHEAR_WALL 2-1279
*MAT_CONCRETE_BEAM 2-1287
*MAT_GENERAL_SPRING_DISCRETE_BEAM 2-1290
*MAT_SEISMIC_ISOLATOR 2-1295
*MAT_JOINTED_ROCK 2-1307
*MAT_BARLAT_YLD2004 2-1313
*MAT_BARLAT_YLD2004_27P 2-1318
*MAT_STEEL_EC3 2-1325
*MAT_HYSTERETIC_REINFORCEMENT 2-1328
*MAT_DISCRETE_BEAM_POINT_CONTACT 2-1336
*MAT_SOIL_SANISAND 2-1342
*MAT_BOLT_BEAM 2-1350
*MAT HYSTERETIC BEAM 2-1357
*MAT_SPR_JLR 2-1377
*MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE 2-1386
*MAT_DRY_FABRIC 2-1420
*MAT_4A_MICROMEC 2-1427
*MAT_ELASTIC_PHASE_CHANGE 2-1439
*MAT_ORTHOTROPIC_ELASTIC_PHASE_CHANGE 2-1441
*MAT_MOONEY-RIVLIN_PHASE_CHANGE 2-1446
*MAT_CODAM2 2-1451

TABLE OF CONTENTS

*MAT_RIGID_DISCRETE 2-1464
*MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE 2-1465
*MAT_TABULATED_JOHNSON_COOK 2-1476
*MAT_TABULATED_JOHNSON_COOK_GYS 2-1484
*MAT_VISCOPLASTIC_MIXED_HARDENING 2-1489
*MAT_KINEMATIC_HARDENING_BARLAT89 2-1491
*MAT_PML_ELASTIC 2-1497
*MAT_PML_ELASTIC_FLUID 2-1499
*MAT_PML_ACOUSTIC 2-1500
*MAT_BIOT_HYSTERETIC 2-1502
*MAT_CAZACU_BARLAT 2-1504
*MAT_VISCOELASTIC_LOOSE_FABRIC 2-1519
*MAT_MICROMECHANICS_DRY_FABRIC 2-1525
*MAT_SCC_ON_RCC 2-1531
*MAT_PML_HYSTERETIC 2-1535
*MAT_PERT_PIECEWISE_LINEAR_PLASTICITY 2-1536
*MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE 2-1537
*MAT_JOHNSON_HOLMQUIST_JH1 2-1551
*MAT_KINEMATIC_HARDENING_BARLAT2000 2-1555
*MAT_HILL_90 2-1562
*MAT_UHS_STEEL 2-1573
*MAT_PML_OPTIONTROPIC_ELASTIC 2-1594
*MAT_PML_NULL 2-1598
*MAT_PHS_BMW 2-1600
*MAT_REINFORCED_THERMOPLASTIC 2-1621
*MAT_REINFORCED_THERMOPLASTIC_CRASH 2-1632
*MAT_REINFORCED_THERMOPLASTIC_UDFIBER 2-1647
*MAT_TAILORED_PROPERTIES 2-1653
*MAT_TOUGHENED_ADHESIVE_POLYMER 2-1657
*MAT_GENERALIZED_PHASE_CHANGE. 2-1666
*MAT_PIECEWISE_LINEAR_PLASTIC_THERMAL 2-1684
*MAT_AMORPHOUS_SOLIDS_FINITE_STRAIN 2-1687
*MAT_NON_QUADRATIC_FAILURE 2-1690
*MAT_STOUGHTON_NON_ASSOCIATED_FLOW 2-1694
*MAT_MOHR_NON_ASSOCIATED_FLOW 2-1705
*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO 2-1719
*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO 2-1733
*MAT_LOU-YOON_ANISOTROPIC_PLASTICITY 2-1751
*MAT_TABULATED_JOHNSON_COOK_ORTHO_PLASTICITY 2-1759
*MAT_CONSTRAINED 2-1768
*MAT_TISSUE_DISPERSED 2-1776
*MAT_EIGHT_CHAIN_RUBBER 2-1784
*MAT_BERGSTROM_BOYCE_RUBBER 2-1796
*MAT_CWM 2-1799
*MAT_POWDER 2-1805
*MAT_RHT 2-1813
*MAT_CONCRETE_DAMAGE_PLASTIC_MODEL 2-1822
*MAT PAPER 2-1830
*MAT_SMOOTH_VISCOELASTIC_VISCOPLASTIC 2-1840
*MAT_CHRONOLOGICAL_VISCOELASTIC 2-1848
*MAT_ADHESIVE_CURING_VISCOELASTIC 2-1851
*MAT_CF_MICROMECHANICS 2-1855
*MAT_COHESIVE_PAPER 2-1862
*MAT_GLASS 2-1867
*MAT_SHAPE_MEMORY_ALLOY 2-1876
*MAT ELASTIC PERI 2-1887
*MAT_ELASTIC_PERI_LAMINATE 2-1888
*MAT_COMPRF 2-1890
*MAT_ANISOTROPIC_HYPERELASTIC 2-1896
*MAT_ANAND_VISCOPLASTICITY 2-1915
*MAT_DMN_COMPOSITE_FRC 2-1918
*MAT_HOT_PLATE_ROLLING 2-1934
*MAT_GENERALIZED_ADHESIVE_CURING 2-1943
*MAT_RRR_POLYMER 2-1971
*MAT_TNM_POLYMER 2-1975
*MAT IFPD 2-1979
*MAT_COHESIVE_GASKET 2-1980
*MAT_ALE_VACUUM 2-1984
*MAT_ALE_GAS_MIXTURE 2-1985
*MAT_ALE_VISCOUS 2-1986
*MAT_ALE_MIXING_LENGTH 2-1989
*MAT_ALE_INCOMPRESSIBLE 2-1992
*MAT ALE HERSCHEL 2-1993
*MAT ISPG CARREAU 2-1996

TABLE OF CONTENTS

*MAT_ISPG_CROSSMODEL 2-1998
*MAT_ISPG_ISO_NEWTONIAN 2-2000
*MAT SPH VISCOUS 2-2002
*MAT_SPH_INCOMPRESSIBLE_FLUID 2-2006
*MAT_SPH_INCOMPRESSIBLE_STRUCTURE 2-2008
*MAT_SPRING_ELASTIC 2-2010
*MAT_DAMPER_VISCOUS 2-2011
*MAT_SPRING_ELASTOPLASTIC 2-2012
*MAT_SPRING_NONLINEAR_ELASTIC 2-2013
*MAT_DAMPER_NONLINEAR_VISCOUS 2-2014
*MAT_SPRING_GENERAL_NONLINEAR 2-2015
*MAT_SPRING_MAXWELL 2-2018
*MAT_SPRING_INELASTIC 2-2020
*MAT_SPRING_TRILINEAR_DEGRADING 2-2021
*MAT_SPRING_SQUAT_SHEARWALL 2-2022
*MAT_SPRING_MUSCLE 2-2023
*MAT_SEATBELT 2-2028
*MAT_THERMAL 3-1
*MAT_THERMAL_ISOTROPIC 3-2
*MAT_THERMAL_ORTHOTROPIC 3-4
*MAT_THERMAL_ISOTROPIC_TD 3-7
*MAT_THERMAL_ORTHOTROPIC_TD. 3-9
*MAT_THERMAL_DISCRETE_BEAM 3-14
*MAT_THERMAL_CHEMICAL_REACTION 3-15
*MAT_THERMAL_CWM 3-25
*MAT_THERMAL_ORTHOTROPIC_TD_LC 3-28
*MAT_THERMAL_ISOTROPIC_PHASE_CHANGE 3-34
*MAT_THERMAL_ISOTROPIC_TD_LC 3-37
*MAT_THERMAL_USER_DEFINED 3-41
*MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC 3-44

*EOS

When defining an equation of state, the type of equation of state is specified by a corresponding 3-digit number in the command name, e.g., *EOS_004, or equivalently, by it's more descriptive designation, e.g., *EOS_GRUNEISEN. The equations of state can be used with a subset of the materials that are available for solid elements; see the MATERIAL MODEL REFERENCE TABLES in the beginning of the *MAT section of this Manual. *EOS_015 is linked to the type 2 thick shell element and can be used to model engine gaskets.

The meaning associated with particular extra history variables for a subset of material models and equations of state are tabulated at http://www.dynasupport.com/howtos-/material/history-variables. The first three extra history variables when using an equation of state are (1) internal energy, (2) pressure due to bulk viscosity, and (3) the element volume from the previous time step.

TYPE 1: *EOS_LINEAR_POLYNOMIAL
TYPE 2: *EOS_JWL
TYPE 3: *EOS_SACK_TUESDAY
TYPE 4: *EOS_GRUNEISEN
TYPE 5: *EOS_RATIO_OF_POLYNOMIALS
TYPE 6: *EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK
TYPE 7: *EOS_IGNITION_AND_GROWTH_OF_REACTION_IN_HE
TYPE 8: *EOS_TABULATED_COMPACTION
TYPE 9: *EOS_TABULATED
TYPE 10: *EOS_PROPELLANT_DEFLAGRATION
TYPE 11: *EOS_TENSOR_PORE_COLLAPSE
TYPE 12: *EOS_IDEAL_GAS
TYPE 13: *EOS_PHASE_CHANGE
TYPE 14: *EOS_JWLB

TYPE 15: *EOS_GASKET
TYPE 16: *EOS_MIE_GRUNEISEN
TYPE 19: *EOS_MURNAGHAN
TYPE 21-30: *EOS_USER_DEFINED
An additional option TITLE may be appended to all the *EOS keywords. If this option is used then an additional line is read for each section in 80 a format which can be used to describe the equation of state. At present LS-DYNA does not make use of the title. Inclusion of title simply gives greater clarity to input decks.

Definitions and Conventions

In order to prescribe the boundary and/or initial thermodynamic condition, manual computations are often necessary. Conventions or definitions must be established to simplify this process. Some basic variables are defined in the following. Since many of these variables have already been denoted by different symbols, the notations used here are unique in this section only! They are presented to only clarify their usage. A corresponding SI unit set is also presented as an example.

First consider a few volumetric parameters since they are a measure of compression (or expansion).

Volume:

$$
V \approx\left(\mathrm{~m}^{3}\right)
$$

Mass:

$$
M \approx(\mathrm{Kg})
$$

Current specific volume (per mass):

$$
v=\frac{V}{M}=\frac{1}{\rho} \approx\left(\frac{m^{3}}{\mathrm{Kg}}\right)
$$

Reference specific volume:

$$
v_{0}=\frac{V_{0}}{M}=\frac{1}{\rho_{0}} \approx\left(\frac{m^{3}}{\mathrm{Kg}}\right)
$$

Relative volume:

$$
v_{r}=\frac{V}{V_{0}}=\frac{(V / M)}{\left(V_{0} / M\right)}=\frac{v}{v_{0}}=\frac{\rho_{0}}{\rho}
$$

Current normalized volume increment:

$$
\frac{d v}{v}=\frac{v-v_{0}}{v}=1-\frac{1}{v_{r}}=1-\frac{\rho}{\rho_{0}}
$$

A frequently used volumetric parameter is:

$$
\mu=\frac{1}{v_{r}}-1=\frac{v_{0}-v}{v}=-\frac{d v}{v}=\frac{\rho}{\rho_{0}}-1
$$

Sometimes another volumetric parameter is used:

$$
\eta=\frac{v_{0}}{v}=\frac{\rho}{\rho_{0}}
$$

Thus, the relation between μ and η is,

$$
\mu=\frac{v_{0}-v}{v}=\eta-1
$$

The following table summarizes these volumetric parameters.

VARIABLES	COMPRESSION	NO LOAD	EXPANSION
$v_{r}=\frac{v}{v_{0}}=\frac{\rho_{0}}{\rho}$	<1	1	>1
$\eta=\frac{1}{v_{r}}=\frac{v_{0}}{v}=\frac{\rho}{\rho_{0}}$	>1	1	<1
$\mu=\frac{1}{v_{r}}-1=\eta-1$	>0	0	<0

VO - Initial Relative Volume

There are 3 definitions of density that must be distinguished from each other:

$$
\begin{aligned}
\rho_{0} & =\rho_{\text {ref }} \\
& =\text { Density at nominal/reference state, usually non-stress or non-deformed state. } \\
\left.\rho\right|_{t=0} & =\text { Density at time } 0 \\
\rho & =\text { Current density }
\end{aligned}
$$

Recalling the current relative volume

$$
v_{r}=\frac{\rho_{0}}{\rho}=\frac{v}{v_{0}}
$$

at time $=0$ the relative volume is

$$
v_{r_{0}}=\left.v_{r}\right|_{t=0}=\frac{\rho_{0}}{\left.\rho\right|_{t=0}}=\frac{\left.v\right|_{t=0}}{v_{0}} .
$$

Generally, the V0 input parameter in an ${ }^{*}$ EOS card refers to this $v_{r 0} \cdot \rho_{0}$ is generally the density defined in the ${ }^{*}$ MAT card. Hence, if a material is mechanically compressed at $\mathrm{t}=0, \mathrm{~V} 0$, or $v_{r 0}$, the initial relative volume, may be computed and input accordingly $\left(v_{0} \neq\right.$ $V 0)$.

The "reference" state is a unique state with respect to which the material stress tensor is computed. Therefore v_{0} is very critical in computing the pressure level in a material. Incorrect choice of v_{0} would lead to incorrect pressure computed. In general, v_{0} is chosen such that at zero compression or expansion, the material should be in equilibrium with its ambient surrounding. In many of the equations shown in the EOS section, μ is frequently used as a measure of compression (or expansion). However, the users must clearly distinguish between μ and $v_{r_{0}}$.

E0 - Internal Energy

Internal energy represents the thermal energy state (temperature dependent component) of a system. One definition for internal energy is

$$
E=M C_{v} T \approx(\text { Joule })
$$

Note that the capital " E " here is the absolute internal energy. It is not the same as that used in the subsequent *EOS keyword input, or some equations shown for each *EOS card. This internal energy is often defined with respect to a mass or volume unit.

Internal energy per unit mass (also called specific internal energy):

$$
e=\frac{E}{M}=C_{V} T \approx\left(\frac{\text { Joule }}{\mathrm{Kg}}\right)
$$

Internal energy per unit current volume:

$$
e_{V}=\frac{M}{V} C_{V} T=\rho C_{V} T=\frac{C_{V} T}{v} \approx\left(\frac{\text { Joule }}{\mathrm{m}^{3}}=\frac{\mathrm{N}}{\mathrm{~m}^{2}}\right)
$$

Internal energy per unit reference volume:

$$
e_{V_{0}}=\frac{M}{V_{0}} C_{v} T=\rho_{0} C_{v} T=\frac{C_{v} T}{v_{0}} \approx\left(\frac{\text { Joule }}{\mathrm{m}^{3}}=\frac{\mathrm{N}}{\mathrm{~m}^{2}}\right)
$$

$e_{V_{0}}$ typically refers to the capital " E " shown in some equations under this "EOS" section. Hence the initial "internal energy per unit reference volume", E0, a keyword input parameter in the *EOS section can be computed from

$$
\left.e_{V_{0}}\right|_{t=0}=\left.\rho_{0} C_{V} T\right|_{t=0}
$$

To convert from $e_{V 0}$ to e_{V}, simply divide $e_{V 0}$ by v_{r}

$$
e_{V}=\rho C_{V} T=\left[\rho_{0} C_{V} T\right] \frac{\rho}{\rho_{0}}=\frac{e_{V_{0}}}{v_{r}}
$$

Equations of States (EOS)

A thermodynamic state of a homogeneous material, not undergoing any chemical reactions or phase changes, may be defined by two state variables. This relation is generally called an equation of state. For example, a few possible forms relating pressure to two other state variables are

$$
P=P(\rho, T)=P(v, e)=P\left(v_{r}, e_{V}\right)=P\left(\mu, e_{V_{0}}\right)
$$

The last equation form is frequently used to compute pressure. The EOS for solid phase materials is sometimes partitioned into 2 terms, a cold pressure and a thermal pressure

$$
P=P_{c}(\mu)+P_{T}\left(\mu, e_{V_{0}}\right)
$$

$P_{c}(\mu)$ is the cold pressure hypothetically evaluated along a 0-degree-Kelvin isotherm. This is sometimes called a 0-K pressure-volume relation or cold compression curve. $P_{T}\left(\mu, e_{V_{0}}\right)$ is the thermal pressure component that depends on both volumetric compression and thermal state of the material.

Different forms of the EOS describe different types of materials and how their volumetric compression (or expansion) behaviors. The coefficients for each EOS model come from data-fitting, phenomenological descriptions, or derivations based on classical thermodynamics, etc.

Linear Compression

In low pressure processes, pressure is not significantly affected by temperature. When volumetric compression is within an elastic linear deformation range, a linear bulk modulus may be used to relate volume changes to pressure changes. Recalling the definition of an isotropic bulk modulus is [Fung 1965],

$$
\frac{\Delta v}{v}=-\frac{P}{K} .
$$

This may be rewritten as

$$
P=K\left[-\frac{\Delta v}{v}\right]=K \mu
$$

The bulk modulus, K, thus is equivalent to C_{1} in *EOS_LINEAR_POLYNOMIAL when all other coefficients are zero. This is a simplest form of an EOS. To initialize a pressure for such a material, only $v_{r_{0}}$ must be defined.

Initial Conditions

In general, a thermodynamic state must be defined by two state variables. The need to specify $v_{r_{0}}$ and/or $\left.e_{V_{0}}\right|_{t=0}$ depends on the form of the EOS chosen. The user should review the equation term-by-term to establish what parameters to be initialized.

For many of the EOS available, pressure is specified (given), and the user must make an assumption on either $\left.e_{V_{0}}\right|_{t=0}$ or $v_{r 0}$. Consider two possibilities (1) $\left.T\right|_{t=0}$ is defined or assumed from which $\left.e_{V_{0}}\right|_{t=0}$ may be computed, or (2) $\left.\rho\right|_{t=0}$ is defined or assumed from which $v_{r_{0}}$ may be obtained.

When to Use EOS

For small strains considerations, a total stress tensor may be partitioned into a deviatoric stress component and a mechanical pressure.

$$
\begin{gathered}
\sigma_{i j}=\sigma_{i j}^{\prime}+\frac{\sigma_{k k}}{3} \delta_{i j}=\sigma_{i j}^{\prime}-P \delta_{i j} \\
P=-\frac{\sigma_{k k}}{3}
\end{gathered}
$$

The pressure component may be written from the diagonal stress components.
Note that $\frac{\sigma_{k k}}{3}=\frac{\left[\sigma_{11}+\sigma_{22}+\sigma_{33}\right]}{3}$ is positive in tension while P is positive in compression.
Similarly, the total strain tensor may be partitioned into a deviatoric strain component (volume-preserving deformation) and a volumetric deformation.

$$
\varepsilon_{i j}=\varepsilon_{i j}^{\prime}+\frac{\varepsilon_{k k}}{3} \delta_{i j}
$$

where $\frac{\varepsilon_{k k}}{3}$ is called the mean normal strain, and $\varepsilon_{k k}$ is called the dilatation or volume strain (change in volume per unit initial volume)

$$
\varepsilon_{k k}=\frac{V-V_{0}}{V_{0}}
$$

Roughly speaking, a typical convention may refer to the relation $\sigma_{i j}^{\prime}=f\left(\varepsilon_{i j}^{\prime}\right)$ as a "constitutive equation", and $P=f\left(\mu, e_{V_{0}}\right)$ as an EOS. The use of an EOS may be omitted only when volumetric deformation is very small, and $|P| \ll\left|\sigma_{i j}^{\prime}\right|$.

A Note About Contact When Using an Equation of State

When a part includes an equation of state, it is important that the initial geometry of that part not be perturbed by the contact algorithm. Such perturbation can arise due to initial penetrations in the contact surfaces but can usually be avoided by setting the variable IGNORE to 1 or 2 in the ${ }^{*}$ CONTACT input or by using a segment based contact ($\mathrm{SOFT}=2$).

*EOS_LINEAR_POLYNOMIAL

This is Equation of State Form 1.
Purpose: Define coefficients for a linear polynomial EOS, and initialize the thermodynamic state of the material by defining E0 and V0 below.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	C0	C1	C2	C3	C4	C5	C6
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	E0	V0						
Type	F	F						

VARIABLE

EOSID

C0

C1

C6

V0

E0 Initial internal energy per unit reference volume (see the beginning of the *EOS section)

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).

The $0^{\text {th }}$ polynomial equation coefficient
The $1^{\text {st }}$ polynomial equation coefficient (when used by itself, this is the elastic bulk modulus, meaning it cannot be used for deformation that is beyond the elastic regime).

The $6^{\text {th }}$ polynomial equation coefficient

Initial relative volume (see the beginning of the *EOS section)

Remarks:

1. Pressure. The linear polynomial equation of state is linear in internal energy. The pressure is given by:

$$
P=C_{0}+C_{1} \mu+C_{2} \mu^{2}+C_{3} \mu^{3}+\left(C_{4}+C_{5} \mu+C_{6} \mu^{2}\right) E .
$$

where terms $C_{2} \mu^{2}$ and $C_{6} \mu^{2}$ are set to zero if $\mu<0, \mu=\rho / \rho_{0}-1$, and ρ / ρ_{0} is the ratio of current density to reference density. ρ is a nominal or reference density defined in the *MAT_NULL card.

The linear polynomial equation of state may be used to model gas with the gamma law equation of state. This may be achieved by setting:

$$
C_{0}=C_{1}=C_{2}=C_{3}=C_{6}=0
$$

and

$$
C_{4}=C_{5}=\gamma-1
$$

where

$$
\gamma=\frac{C_{p}}{C_{v}}
$$

is the ratio of specific heats. Pressure for a perfect gas is then given by:

$$
P=(\gamma-1) \frac{\rho}{\rho_{0}} E=(\gamma-1) \frac{e_{V_{0}}}{v_{r}}
$$

E has the units of pressure (where $E=e_{V_{0}}$ and $v_{r}=\rho_{0} / \rho$).
2. Initial Pressure. When $C_{0}=C_{1}=C_{2}=C_{3}=C_{6}=0$, it does not necessarily mean that the initial pressure is zero $\left(P_{0} \neq C_{0}\right.$!). The initial pressure depends on the values of all the coefficients and on $\left.\mu\right|_{t=0}$ and $\left.E\right|_{t=0}$. The pressure in material is computed from the whole equation above, $P=P(\mu, E)$. It is always preferable to initialize the initial condition based on $\left.\mu\right|_{t=0}$ and $\left.E\right|_{t=0}$. The use of $C_{0}=C_{1}=$ $C_{2}=C_{3}=C_{6}=0$ must be done with caution as it may change the form and behavior of the material. The safest way is to use the whole EOS equation to manually check for the pressure value. For example, for an ideal gas, only C_{4} and C_{5} are nonzero; C_{4} and C_{5} are equal to $\gamma-1$ while all other coefficients (C_{0}, C_{1}, C_{2}, C_{3}, and C_{6}) are zero to satisfy the perfect gas equation form.
3. V0 and E0. V0 and E0 defined in this card must be the same as the time-zero ordinates for the 2 load curves defined in the *BOUNDARY_AMBIENT_EOS card, if it is used. This is so that they would both consistently define the same initial state for a material.

*EOS_JWL_\{OPTION\}

This is Equation of State Form 2.
Available options are:
<BLANK>
AFTERBURN

Card Summary:

Card 1. This card is required.

EOSID	A	B	R1	R2	OMEG	E0	V0

Card 2a. This card is included if and only if the AFTERBURN keyword option is used and $\mathrm{OPT}=1$ or 2 .

OPT	QT	T1	T2				

Card 2b. This card is included if and only if the AFTERBURN keyword option is used and $\mathrm{OPT}=3$.

OPT	QO	QA	QM	QN	CONM	CONL	CONT

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	A	B	R1	R2	OMEG	E0	V0
Type	A	F	F	F	F	F	F	F

VARIABLE

EOSID

A
B
R1

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).
A, see Remarks.
B, see Remarks.
R_{1}, see Remarks.
*EOS_JWL

VARIABLE

R2
OMEG
E0

V0

DESCRIPTION

R_{2}, see Remarks.
ω, see Remarks.
Detonation energy per unit initial volume and initial value for $e_{V_{0}}$. See Remarks.

Initial relative volume, which gives the initial value for v_{r}. See Remarks.

Afterburn Card. Additional card for AFTERBURN option with OPT = 1 or 2.

Card 2a	1	2	3	4	5	6	7	8
Variable	OPT	QT	T1	T2				
Type	F	F	F	F				

VARIABLE

OPT

Afterburn energy per unit volume for simple afterburn
Start time of energy addition for simple afterburn
End time of energy addition for simple afterburn

Afterburn Card. Additional card for AFTERBURN option with OPT=3.

Card 2b	1	2	3	4	5	6	7	8
Variable	OPT	Q0	QA	QM	QN	CONM	CONL	CONT
Type	F	F	F	F	F	F	F	F
Default	none	none	none	0.5	$1 / 6$	1.	1.	1.

VARIABLE
OPT

DESCRIPTION

Afterburn option
EQ.0.0: No afterburn energy (Standard *EOS_JWL)
EQ.1.0: Constant rate of afterburn energy added between times T1 and T2

EQ.2.0: Linearly increasing rate of afterburn energy added between times T1 and T2

EQ.3.0: Miller's extension for afterburn energy
Q0 Afterburn energy per unit volume for Miller's extension
QA Energy release constant a for Miller's extension
QM Energy release exponent m for Miller's extension
QN Pressure exponent n for Miller's extension
CONM Mass Conversion factors:
GT.0.0: Mass conversion factor from model units to calibration units for Miller's extension

LT.O.O: Use predefined factors to convert model units to published calibration units of $\mathrm{g}, \mathrm{cm}, \mu \mathrm{s}$. Choices for model units are:

EQ.-1.0: g, mm, ms
EQ.-2.0: g, cm, ms
EQ.-3.0: kg, m, s
EQ.-4.0: kg, mm, ms
EQ.-5.0: metric ton, mm, s

VARIABLE

CONL
CONM.GT.O.0: Length conversion factor from model units to calibration units for Miller's extension
CONM.LT.O.O: Ignored

CONT
CONM.GT.O.0: Time conversion factor from model units to calibration units for Miller's extension
CONM.LT.0.0: Ignored

Remarks:

1. Equation of State. The JWL equation of state defines the pressure as

$$
p=A\left(1-\frac{\omega}{R_{1} v_{r}}\right) e^{-R_{1} v_{r}}+B\left(1-\frac{\omega}{R_{2}}\right) e^{-R_{2} v_{r}}+\frac{\omega e_{V_{0}}}{v_{r}},
$$

and is usually used for detonation products of high explosives.
A, B, and E0 have units of pressure. R1, R2, OMEG, and V0 are dimensionless. We recommend using a unit system of grams, centimeters, and microseconds when a model includes high explosive(s). In this consistent unit system, pressure is in Mbar.
2. Afterburn. The AFTERBURN option allows the addition of afterburn energy Q to the calculation of pressure by replacing $e_{V_{0}}$ in the above equation with ($e_{V_{0}}+$ $Q)$, that is, the last term on the right-hand side becomes

$$
\frac{\omega\left(e_{V_{0}}+Q\right)}{v_{r}}
$$

The simple afterburn option adds the energy at a constant rate ($\mathrm{OPT}=1$) or a linearly-increasing rate $(\mathrm{OPT}=2)$ between times T 1 and T 2 such that the total energy added per unit volume at time T2 is the specified energy QT.

For the Miller's extension model (OPT = 3), the afterburn energy is added using a time-dependent growth term

$$
\frac{d \lambda}{d t}=a(1-\lambda)^{m} p^{n}, \quad Q=\lambda Q_{0} .
$$

Here, m, n, and λ are dimensionless, with λ a positive fraction less than 1.0. The parameter a has units consistent with this growth equation, and Q_{0} has units of pressure.

The values for Q_{0}, a, m, n published by Miller and Guirguis (1993) are calibrated in the units of $\mathrm{g}, \mathrm{cm}, \mu \mathrm{s}$, with the consistent pressure unit of Mbar, though in principle any consistent set of units may be used for calibration. The factors CONM, CONL, and CONT convert the unit system of the model being analyzed to the calibration unit system in which the Miller's extension parameters are specified, such that a mass value in model units may be multiplied by CONM to obtain the corresponding value in calibration units. These conversion factors allow consistent evaluation of the growth equation in the calibrated units. For user convenience, predefined conversion factors are provided for converting various choices for the model units system to the calibration unit system used by Miller and Guirguis.
3. History Variables. When this equation of state is used with *MAT_HIGH_EXPLOSIVE_BURN in which the variable BETA is set to 0 or 2 , the absolute value of the history variable labeled as "effective plastic strain" is the explosive lighting time. This lighting time takes into account shadowing if invoked (see *CONTROL_EXPLOSIVE_SHADOW).

There are four additional history variables for the JWL equation of state. Those history variables are internal energy, bulk viscosity in units of pressure, volume, and burn fraction, respectively. To output the history variables, set the variable NEIPH in *DATABASE_EXTENT_BINARY.

The AFTERBURN option introduces an additional $5^{\text {th }}$ history variable that records the added afterburn energy Q for simple afterburn (OPT = 1 or 2) but contains the growth term λ when using the Miller's extension model (OPT = 3).

*EOS_SACK_TUESDAY

This is Equation of State Form 3.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	A1	A2	A3	B1	B2	E0	V0
Type	A	F	F	F	F	F	F	F

VARIABLE
EOSID

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).
$\mathrm{A} i, \mathrm{~B} i \quad$ Constants in the equation of state
E0 Initial internal energy
V0 Initial relative volume

Remarks:

The Sack equation of state defines pressure as

$$
p=\frac{A_{3}}{V^{A_{1}}} e^{-A_{2} V}\left(1-\frac{B_{1}}{V}\right)+\frac{B_{2}}{V} E
$$

and is used for detonation products of high explosives.

*EOS_GRUNEISEN

This is Equation of State Form 4.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	C	S1	S2	S3	GAMMAO	A	E0
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	V0	(not used)	LCID					
Type	F		1					

VARIABLE

EOSID

C, Si,
GAMMA0
A First order volume correction coefficient
E0 Initial internal energy
V0 Initial relative volume
LCID Load curve ID, which can be the ID of a *DEFINE_CURVE, *DEFINE_CURVE_FUNCTION, or *DEFINE_FUNCTION, defining the energy deposition rate as a function of time. If an energy leak rate is intended, do not specify a negative ordinate in LCID, rather, use the constant(s) in the equation of state, that is, set GAMMA0 and/or A to a negative value. If *DEFINE_FUNCTION is used, the input of the defined function is time.

Remarks:

The Gruneisen equation of state with cubic shock-velocity as a function of particle-velocity $v_{s}\left(v_{p}\right)$ defines pressure for compressed materials as

$$
p=\frac{\rho_{0} C^{2} \mu\left[1+\left(1-\frac{\gamma_{0}}{2}\right) \mu-\frac{a}{2} \mu^{2}\right]}{\left[1-\left(S_{1}-1\right) \mu-S_{2} \frac{\mu^{2}}{\mu+1}-S_{3} \frac{\mu^{3}}{(\mu+1)^{2}}\right]^{2}}+\left(\gamma_{0}+a \mu\right) E
$$

and for expanded materials as

$$
p=\rho_{0} C^{2} \mu+\left(\gamma_{0}+a \mu\right) E .
$$

Here C is the intercept of the $v_{s}\left(v_{p}\right)$ curve (in velocity units); S_{1}, S_{2}, and S_{3} are the unitless coefficients of the slope of the $v_{s}\left(v_{p}\right)$ curve; γ_{0} is the unitless Gruneisen gamma; a is the unitless, first order volume correction to γ_{0}; and

$$
\mu=\frac{\rho}{\rho_{0}}-1
$$

E denotes the internal energy, which is increased according to an energy deposition rate as a function of time curve (LCID).

*EOS_RATIO_OF_POLYNOMIALS

This is Equation of State Form 5.

Card Summary:

Card 1. This card is required.

EOSID							

Card 2. This card is required.

A10	A11	A12	A13

Card 3. This card is required.

A20	A21	A22	A23

Card 4. This card is required.

A30	A31	A32	A33

Card 5. This card is required.

A40	A41	A42	A43

Card 6. This card is required.

A50	A51	A52	A53

Card 7. This card is required.

A60	A61	A62	A63

Card 8. This card is required.

A70	A71	A72	A73

Card 9. This card is required.

A14	A24		

Card 10. This card is required.

ALPHA	BETA	E0	V0

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID							
Type	A							

VARIABLE

DESCRIPTION

EOSID Equation of state ID. A unique number or label must be specified (see *PART).

Card 2	1	2	3	4	5	6	7	8
Variable	A10		A11		A12		A13	
Type	F		F		F		F	

Card 3	1	2	3	4	5	6	7	8
Variable	A20		A21		A22		A23	
Type	F		F		F	F		

Card 4	1	2	3	4	5	6	7	8
Variable	A30		A31		A32		A33	
Type	F		F		F	F		

Card 5	1	2	3	4	5	6	7	8
Variable	A40		A41		A42		A43	
Type	F		F		F	F		

Card 6	1		2	3		4	5		6	7		8
Variable	A50				A51			A52			A53	
Type		F			F			F			F	

Card 7	1	2	3	4	5	6	7	8
Variable	A60		A61		A62		A63	
Type	F		F		F		F	

Card 8	1	2	3	4	5	6	7	8
Variable	A70		A71		A72		A73	
Type	F		F		F		F	

Card 9	1	2	3	4	5	6	7	8
Variable	A14		A24					
Type	F		F					

VARIABLE

DESCRIPTION

Aij Polynomial coefficients

Card 10	1	2	3	4	5	6	7	8
Variable	ALPHA		BETA		E0		Vo	
Type	F		F		F		F	

Remarks:

The ratio of polynomials equation of state defines the pressure as

$$
p=\frac{F_{1}+F_{2} E+F_{3} E^{2}+F_{4} E^{3}}{F_{5}+F_{6} E+F_{7} E^{2}}(1+\alpha \mu)
$$

where

$$
\begin{gathered}
F_{i}=\sum_{j=0}^{n} A_{i j} \mu^{j}, \quad n= \begin{cases}4 & i<3 \\
3 & i \geq 3\end{cases} \\
\mu=\frac{\rho}{\rho_{0}}-1
\end{gathered}
$$

In expanded elements F_{1} is replaced by $F_{1}^{\prime}=F_{1}+\beta \mu^{2}$. By setting coefficient $A_{10}=1.0$, the delta-phase pressure modeling for this material will be initiated. The code will reset it to 0.0 after setting flags.

*EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK

This is Equation of State Form 6.

Purpose: Define coefficients for a linear polynomial EOS and initialize the thermodynamic state of the material by defining E0 and V0 below. Energy deposition is prescribed using a curve.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	C0	C1	C2	C3	C 4	C 5	C 6
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	E0	V0	LCID					
Type	F	F	I					

VARIABLE

EOSID

Ci
E0
V0
LCID Load curve ID, which can be the ID of *DEFINE_CURVE, *DEFINE_CURVE_FUNCTION or *DEFINE_FUNCTION, defining the energy deposition rate as a function of time. If an energy leak rate is intended, do not specify a negative ordinate in LCID, rather, use the constant(s) in the equation of state, such as setting C4 to a negative value. If *DEFINE_FUNCTION is used, the input of the defined function is time.

Remarks:

This polynomial equation of state, linear in the internal energy per initial volume, E, is given by

$$
p=C_{0}+C_{1} \mu+C_{2} \mu^{2}+C_{3} \mu^{3}+\left(C_{4}+C_{5} \mu+C_{6} \mu^{2}\right) E
$$

in which $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, and C_{6} are user defined constants and

$$
\mu=\frac{1}{V}-1
$$

where V is the relative volume. In expanded elements, we set the coefficients of μ^{2} to zero, that is,

$$
C_{2}=C_{6}=0
$$

Internal energy, E, is increased according to an energy deposition rate as a function of time curve (LCID).

*EOS_IGNITION_AND_GROWTH_OF_REACTION_IN_HE

This is Equation of State Form 7.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	A	B	XP1	XP2	FRER	G	R1
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	R2	R3	R5	R6	FMXIG	FREQ	GROW1	EM
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	AR1	ES1	CVP	CVR	EETAL	CCRIT	ENQ	TMP0
Type	F	F	F	F	F	F	F	F

Card 4	1	2	3	4	5	6	7	8
Variable	GROW2	AR2	ES2	EN	FMXGR	FMNGR		
Type	F	F	F	F	F	F		

VARIABLE
EOSID

A

XP1

B Product JWL constant (see second equation in Remarks)

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).

Product JWL constant (see second equation in Remarks)

Product JWL constant (see second equation in Remarks)

VARIABLE	DESCRIPTION
XP2	Product JWL constant (see second equation in Remarks)
FRER	Constant in ignition term of reaction equation
G	ωC_{v} of product
R1	Unreacted JWL constant (see first equation in Remarks)
R2	Unreacted JWL constant (see first equation in Remarks)
R3	ωC_{v} of unreacted explosive
R5	Unreacted JWL constant (see first equation in Remarks)
R6	Unreacted JWL constant (see first equation in Remarks)
FMXIG	Maximum F for ignition term
FREQ	Constant in ignition term of reaction equation
GROW1	Constant in growth term of reaction equation
EM	Constant in growth term of reaction equation
AR1	Constant in growth term of reaction equation
ES1	Constant in growth term of reaction equation
CVP	Heat capacity of reaction products
CVR	Heat capacity of unreacted HE
EETAL	Constant in ignition term of reaction equation
CCRIT	Constant in ignition term of reaction equation
ENQ	Heat of reaction
TMP0	Initial temperature (${ }^{\circ} \mathrm{K}$)
GROW2	Constant in completion term of reaction equation
AR2	Constant in completion term of reaction equation
ES2	Constant in completion term of reaction equation
EN	Constant in completion term of reaction equation

VARIABLE
DESCRIPTION
FMXGR
Maximum F for growth term
FMNGR Minimum F for completion term

Remarks:

Equation of State Form 7 is used to calculate the shock initiation (or failure to initiate) and detonation wave propagation of solid high explosives. It should be used instead of the ideal HE burn options whenever there is a question whether the HE will react, there is a finite time required for a shock wave to build up to detonation, and/or there is a finite thickness of the chemical reaction zone in a detonation wave. At relatively low initial pressures ($<2-3 \mathrm{GPa}$), this equation of state should be used with material type 10 for accurate calculations of the unreacted HE behavior. At higher initial pressures, material type 9 can be used. A JWL equation of state defines the pressure in the unreacted explosive as

$$
P_{e}=r_{1} e^{-r_{5} V_{e}}+r_{2} e^{-r_{6} V_{e}}+r_{3} \frac{T_{e}}{V_{e}}, \quad\left(r_{3}=\omega_{e} \mathrm{C}_{\mathrm{v}_{\mathrm{r}}}\right)
$$

where V_{e} and T_{e} are the relative volume and temperature, respectively, of the unreacted explosive. Another JWL equation of state defines the pressure in the reaction products as

$$
P_{p}=a e^{-x p_{1} V_{p}}+b e^{-x p_{2} V_{p}}+\frac{g T_{p}}{V_{p}}, \quad\left(g=\omega_{p} C_{\mathrm{v}_{\mathrm{p}}}\right)
$$

where V_{p} and T_{p} are the relative volume and temperature, respectively, of the reaction products. As the chemical reaction converts unreacted explosive to reaction products, these JWL equations of state are used to calculate the mixture of unreacted explosive and reaction products defined by the fraction reacted F ($F=0$ implies no reaction, $F=1 \mathrm{im}-$ plies complete reaction). The temperatures and pressures are assumed to be equal ($T_{e}=$ $T_{p}, p_{e}=p_{p}$) and the relative volumes are additive, that is,

$$
V=(1-F) V_{e}+F V_{p}
$$

The chemical reaction rate for conversion of unreacted explosive to reaction products consists of three physically realistic terms: an ignition term in which a small amount of explosive reacts soon after the shock wave compresses it; a slow growth of reaction as this initial reaction spreads; and a rapid completion of reaction at high pressure and temperature. The form of the reaction rate equation is

$$
\begin{gathered}
\frac{\partial F}{\partial t}=\frac{\text { Ignition }}{\text { FREQ } \times(1-F)^{\mathrm{FRER}}\left(V_{e}^{-1}-1-\mathrm{CCRIT}\right)^{\mathrm{EETAL}}}+\frac{\text { Growth }}{\mathrm{GROW} 1 \times(1-F)^{\mathrm{ES} 1} F^{\mathrm{AR} 1} p^{\mathrm{EM}}} \\
+\underbrace{\mathrm{GROW} 2 \times(1-F)^{\mathrm{ES} 2} F^{\mathrm{AR} 2} p^{\mathrm{EN}}}_{\text {Completion }}
\end{gathered}
$$

The ignition rate is set equal to zero when $F \geq$ FMXIG, the growth rate is set equal to zero when $F \geq$ FMXGR, and the completion rate is set equal to zero when $F \leq$ FMNGR.

Details of the computational methods and many examples of one and two dimensional shock initiation and detonation wave calculation can be found in the references (Cochran and Chan [1979], Lee and Tarver [1980]). Unfortunately, sufficient experimental data has been obtained for only two solid explosives to develop very reliable shock initiation models: PBX-9504 (and the related HMX-based explosives LX-14,LX-10,LX-04, etc.) and LX17 (the insensitive TATB-based explosive). Reactive flow models have been developed for other explosives (TNT, PETN, Composition B, propellants, etc.) but are based on very limited experimental data.

When this EOS is used with *MAT_009, history variables 4, 7, 9, and 10 are temperature, burn fraction, $1 / V_{e}$, and $1 / V_{p}$, respectively. When used with ${ }^{*}$ MAT_010, those histories variables are incremented by 1 , that is, history variables $5,8,10$, and 11 are temperature, burn fraction, $1 / V_{e}$, and $1 / V_{p}$, respectively. See NEIPH in *DATABASE_EXTENT_BINARY if these output variables are desired in the databases for post-processing.

*EOS_TABULATED_COMPACTION

This is Equation of State Form 8.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	GAMMA	E0	V0	LCC	LCT	LCK	LCID
Type	A	F	F	F	I	I	I	1

Parameter Card Pairs. Include one pair of the following two cards for each of VAR $=\varepsilon_{v_{i}}$, C_{i}, T_{i}, and K_{i}. These cards consist of four additional pairs for a total of 8 additional cards.

Card 3	1	2	3	4	5	6	7	8	9	10
Variable	[VAR]1	[VAR]2	[VAR]3	[VAR]4	[VAR]5					
Type	F	F	F	F	F					

Card 4	1	2	3	4	5	6	7	8	9	10
Variable	[VAR]6	[VAR]7	[VAR]8	[VAR]9	[VAR]10					
Type	F	F	F	F	F					

GAMMA $\quad \gamma$ (unitless); see equation in Remarks.
E0 Initial internal energy per unit reference volume (force per unit area)

Initial relative volume (unitless)
Load curve defining tabulated function C. See equation in Remarks. The abscissa values of LCC, LCT and LCK must be negative of the volumetric strain in monotonically increasing order, in

VARIABLE	DESCRIPTION
	contrast to the convention in *EOS_009. The definition can extend into the tensile regime.
LCT	Load curve defining tabulated function T. See equation in Remarks.
LCK	Load curve defining tabulated bulk modulus
LCID	Load curve ID, which can be the ID of *DEFINE_CURVE, *DEFINE_CURVE_FUNCTION or *DEFINE_FUNCTION, defining the energy deposition rate as a function of time. If an energy leak rate is intended, do not specify a negative ordinate in LCID, rather, use the constant(s) in the equation of state, that is, set GAMMA to a negative value. If *DEFINE_FUNCTION is used, the input of the defined function is time.
$\varepsilon_{v_{1}}, \varepsilon_{v_{2}}, \ldots, \varepsilon_{v_{N}}$	Volumetric strain, $\ln (V)$. The first abscissa point, EV1, must be 0.0 or positive if the curve extends into the tensile regime with subsequent points decreasing monotonically.
$C_{1}, C_{2}, \ldots, C_{N}$	$C\left(\varepsilon_{V}\right)$ (units = force per unit area); see equation in Remarks.
$T_{1}, T_{2}, \ldots, T_{N}$	$T\left(\varepsilon_{V}\right)$ (unitless) ; see equation in Remarks.
$K_{1}, K_{2}, \ldots, K_{N}$	Bulk unloading modulus (units = force per unit area)

Remarks:

The tabulated compaction model is linear in the internal energy E, which is increased according to an energy deposition rate as a function of time curve (LCID). Pressure is defined by

$$
p=C\left(\varepsilon_{V}\right)+\gamma T\left(\varepsilon_{V}\right) E
$$

in the loading phase. The volumetric strain, ε_{V}, is given by the natural logarithm of the relative volume, V. Unloading occurs along the unloading bulk modulus to the pressure cutoff. The pressure cutoff, a tension limit, is defined in the material model definition. Reloading always follows the unloading path to the point where unloading began and continues on the loading path; see Figure EOS8-1. Up to 10 points and as few as 2 may be used when defining the tabulated functions. LS-DYNA will extrapolate to find the pressure if necessary.

Figure EOS8-1. Pressure as a function of volumetric strain curve for Equation of State Form 8 with compaction. In the compacted states the bulk unloading modulus depends on the peak volumetric strain. Volumetric strain values should be input with correct sign (negative in compression) and in descending order. Pressure is positive in compression.

*EOS_TABULATED

This is Equation of State Form 9.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	GAMA	E0	V0	LCC	LCT		
Type	A	F	F	F	I	I		

Parameter Card Pairs. Include one pair of the following two cards for each of $\mathrm{VAR}=\varepsilon_{V_{i}}$, C_{i}, T_{i}. These cards consist of three additional pairs for a total of 6 additional cards. These cards are not required if LCC and LCT are specified.

Card 2	1	2	3	4	5	6	7	8	9	10
Variable	[VAR]1	[VAR]2	[VAR]3	[VAR]4	[VAR]5					
Type	F	F	F	F	F					

Card 3	1	2	3	4	5	6	7	8	9	10
Variable	[VAR]6	[VAR]7	[VAR]8	[VAR]9	[VAR]10					
Type	F		F		F	F	F			

VARIABLE

EOSID

GAMA $\quad \gamma$, (unitless) see equation in Remarks.

V0 Initial relative volume (unitless).
LCC Load curve defining tabulated function C. See equation in Remarks. The abscissa values of LCC and LCT must increase

VARIABLE

LCT
Load curve defining tabulated function T. See equation in Remarks.
$\varepsilon_{V_{1}}, \varepsilon_{V_{2}}, \ldots, \varepsilon_{V_{N}} \quad$ Volumetric strain, $\ln (V)$, where V is the relative volume. The first abscissa point, EV1, must be 0.0 or positive if the curve extends into the tensile regime with subsequent points decreasing monotonically.
$C_{1}, C_{2}, \ldots, C_{N} \quad$ Tabulated points for function C (force per unit area).
$T_{1}, T_{2}, \ldots, T_{N} \quad$ Tabulated points for function T (unitless).

Remarks:

The tabulated equation of state model is linear in internal energy. Pressure is defined by

$$
P=C\left(\varepsilon_{V}\right)+\gamma T\left(\varepsilon_{V}\right) E
$$

The volumetric strain, ε_{V} is given by the natural logarithm of the relative volume V. Up to 10 points and as few as 2 may be used when defining the tabulated functions. LSDYNA will extrapolate to find the pressure if necessary.

*EOS_PROPELLANT_DEFLAGRATION

This is Equation of State Form 10. It has been added to model airbag propellants.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	A	B	XP1	XP2	FRER		
Type	A	F	F	F	F	F		

Card 2	1	2	3	4	5	6	7	8
Variable	G	R1	R2	R3	R5			
Type	F	F	F	F	F			

Card 3	1	2	3	4	5	6	7	8
Variable	R6	FMXIG	FREQ	GROW1	EM			
Type	F	F	F	F	F			

Card 4	1	2	3	4	5	6	7	8
Variable	AR1	ES1	CVP	CVR	EETAL	CCRIT	ENQ	TMP0
Type	F	F	F	F	F			

Card 5	1	2	3	4	5	6	7	8
Variable	GROW2	AR2	ES2	EN	FMXGR	FMNGR		
Type	F	F	F	F	F	F		

VARIABLE		DESCRIPTION			
EOSID		$\begin{array}{l}\text { Equation of state ID. A unique number or label must be specified } \\ \text { (see *PART). }\end{array}$			
A		Product JWL coefficient			
B		Product JWL coefficient	$]$	XP1	
:---	:---				
Product JWL coefficient					

VARIABLE	DESCRIPTION
TMP0	
GROW2	Initial Temperature $\left(298^{\circ} \mathrm{K}\right)$
AR2	
Expond burn rate coefficient	
EN	Exponent on $(1-F)\left(2^{\text {nd }}\right.$ term $)$
FMXGR	Pressure Exponent $\left(2^{\text {nd }}\right.$ term $)$
FMNGR	Maximum F for $1^{\text {st }}$ term
Minimum F for $2^{\text {nd }}$ term	

Remarks:

A deflagration (burn rate) reactive flow model requires an unreacted solid equation of state, a reaction product equation of state, a reaction rate law and a mixture rule for the two (or more) species. The mixture rule for the standard ignition and growth model [Lee and Tarver 1980] assumes that both pressures and temperatures are completely equilibrated as the reaction proceeds. However, the mixture rule can be modified to allow no thermal conduction or partial heating of the solid by the reaction product gases. For this relatively slow process of airbag propellant burn, the thermal and pressure equilibrium assumptions are valid. The equations of state currently used in the burn model are the JWL, Gruneisen, the van der Waals co-volume, and the perfect gas law, but other equations of state can be easily implemented. In this propellant burn, the gaseous nitrogen produced by the burning sodium azide obeys the perfect gas law as it fills the airbag but may have to be modeled as a van der Waal's gas at the high pressures and temperatures produced in the propellant chamber. The chemical reaction rate law is pressure, particle geometry and surface area dependent, as are most high-pressure burn processes. When the temperature profile of the reacting system is well known, temperature dependent Arrhenius chemical kinetics can be used.

Since the airbag propellant composition and performance data are company private information, it is very difficult to obtain the required information for burn rate modeling. However, Imperial Chemical Industries (ICI) Corporation supplied pressure exponent, particle geometry, packing density, heat of reaction, and atmospheric pressure burn rate data which allowed us to develop the numerical model presented here for their $\mathrm{NaN}_{3}+$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ driver airbag propellant. The deflagration model, its implementation, and the results for the ICI propellant are presented in [Hallquist, et.al., 1990].

The unreacted propellant and the reaction product equations of state are both of the form:

$$
p=A e^{-R_{1 V}}+B e^{-R_{2 V}}+\frac{\omega C_{v T}}{V-d}
$$

where p is pressure (in Mbars), V is the relative specific volume (inverse of relative density), ω is the Gruneisen coefficient, C_{v} is heat capacity (in Mbars -cc $/ c^{\circ} \mathrm{K}$), T is the temperature in ${ }^{\circ} \mathrm{K}, d$ is the co-volume, and A, B, R_{1} and R_{2} are constants. Setting $A=B=0$ yields the van der Waal's co-volume equation of state. The JWL equation of state is generally useful at pressures above several kilobars, while the van der Waal's is useful at pressures below that range and above the range for which the perfect gas law holds. Additionally, setting $A=B=d=0$ yields the perfect gas law. If accurate values of ω and C_{v} plus the correct distribution between "cold" compression and internal energies are used, the calculated temperatures are very reasonable and thus can be used to check propellant performance.

The reaction rate used for the propellant deflagration process is of the form:

$$
\frac{\partial F}{\partial t}=\underbrace{Z(1-F)^{y} F^{x} p^{w}}_{0<F<F_{\text {limit1 }}}+\underbrace{V(1-F)^{u} F^{r} p^{s}}_{F_{\text {limit } 1}<F<1}
$$

where F is the fraction reacted ($F=0$ implies no reaction, $F=1$ is complete reaction), t is time, and p is pressure (in Mbars), $r, s, u, w, x, y, F_{\text {limit1 }}$ and $F_{\text {limit2 }}$ are constants used to describe the pressure dependence and surface area dependence of the reaction rates. Two (or more) pressure dependant reaction rates are included in case the propellant is a mixture or exhibited a sharp change in reaction rate at some pressure or temperature. Burning surface area dependencies can be approximated using the $(1-F)^{y} F^{x}$ terms. Other forms of the reaction rate law, such as Arrhenius temperature dependent $e^{-E / R T}$ type rates, can be used, but these require very accurate temperatures calculations. Although the theoretical justification of pressure dependent burn rates at kilobar type pressures is not complete, a vast amount of experimental burn rate as a function of pressure data does demonstrate this effect and hydrodynamic calculations using pressure dependent burn accurately simulate such experiments.

The deflagration reactive flow model is activated by any pressure or particle velocity increase on one or more zone boundaries in the reactive material. Such an increase creates pressure in those zones and the decomposition begins. If the pressure is relieved, the reaction rate decreases and can go to zero. This feature is important for short duration, partial decomposition reactions. If the pressure is maintained, the fraction reacted eventually reaches one and the material is completely converted to product molecules. The deflagration front rates of advance through the propellant calculated by this model for several propellants are quite close to the experimentally observed burn rate versus pressure curves.

To obtain good agreement with experimental deflagration data, the model requires an accurate description of the unreacted propellant equation of state, either an analytical fit to experimental compression data or an estimated fit based on previous experience with
similar materials. This is also true for the reaction products equation of state. The more experimental burn rate, pressure production and energy delivery data available, the better the form and constants in the reaction rate equation can be determined.

Therefore, the equation used in the burn subroutine for the pressure in the unreacted propellant is

$$
P_{u}=\mathrm{R} 1 \times e^{-\mathrm{R} 5 \times V_{u}}+\mathrm{R} 2 \times e^{-\mathrm{R} 6 \backslash \text { times } V_{u}}+\frac{\mathrm{R} 3 \times T_{u}}{V_{u}-\mathrm{FRER}},
$$

where V_{u} and T_{u} are the relative volume and temperature respectively of the unreacted propellant. The relative density is obviously the inverse of the relative volume. The pressure P_{p} in the reaction products is given by:

$$
P_{p}=\mathrm{A} \times e^{-\mathrm{XP} 1 \times V_{p}}+\mathrm{B} \times e^{-\mathrm{XP} 2 \times V_{p}}+\frac{G \times T_{p}}{V_{P}-\mathrm{CCRIT}} .
$$

As the reaction proceeds, the unreacted and product pressures and temperatures are assumed to be equilibrated $\left(T_{u}=T_{p}=T, P=P_{u}=P_{p}\right)$ while the relative volumes are additive:

$$
V=(1-F) V_{u}+F V_{p}
$$

where V is the total relative volume. Other mixture assumptions can and have been used in different versions of DYNA2D/3D. The reaction rate law has the form:

$$
\begin{aligned}
\frac{\partial F}{\partial t}=\mathrm{GROW} & \times(P+\mathrm{FREQ})^{\mathrm{EM}}(F+\mathrm{FMXIG})^{\mathrm{AR} 1}(1-F+\text { FMIXG })^{\mathrm{ES} 1} \\
& +\mathrm{GROW} 2 \times(P+\mathrm{FREQ})^{\mathrm{EN}}(F+\mathrm{FMIXG})^{\mathrm{AR} 2}(1-F+\mathrm{FMIXG})^{\mathrm{ES} 2}
\end{aligned}
$$

If F exceeds FMXGR, the GROW1 term is set equal to zero, and, if F is less than FMNGR, the GROW2 term is zero. Thus, two separate (or overlapping) burn rates can be used to describe the rate at which the propellant decomposes.

This equation of state subroutine is used together with a material model to describe the propellant. In the airbag propellant case, a null material model (type \#10) can be used. Material type 10 is usually used for a solid propellant or explosive when the shear modulus and yield strength are defined. The propellant material is defined by the material model and the unreacted equation of state until the reaction begins. The calculated mixture states are used until the reaction is complete and then the reaction product equation of state is used. The heat of reaction, ENQ, is assumed to be a constant and the same at all values of F but more complex energy release laws could be implemented.

History variables 4 and 7 are temperature and burn fraction, respectively. See NEIPH in *DATABASE_EXTENT_BINARY if these output variables are desired in the databases for post-processing.

*EOS_TENSOR_PORE_COLLAPSE

This is Equation of State Form 11.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	NLD	NCR	MU1	MU2	IE0	EC0	
Type	A	F	F	F	F	F	F	

VARIABLE
EOSID

NCR

IE0

EC0

NLD Virgin loading load curve ID

MU1 Excess Compression required before any pores can collapse
MU2 Excess Compression point where the Virgin Loading Curve and the Completely Crushed Curve intersect

DESCRIPTION
Equation of state ID. A unique number or label must be specified (see *PART).

Completely crushed load curve ID Initial Internal Energy

Initial Excess Compression

Remarks:

The pore collapse model described in the TENSOR manual [23] is no longer valid and has been replaced by a much simpler method. This is due in part to the lack of experimental data required for the more complex model. It is desired to have a close approximation of the TENSOR model in the LS-DYNA code to enable a quality link between them. The TENSOR model defines two curves, the virgin loading curve and the completely crushed curve, as shown in Figure EOS11-1, as well as the excess compression point required for pore collapse to begin, μ_{1}, and the excess compression point required to completely crush the material, μ_{2}. From this data and the maximum excess compression the material has attained, $u_{\max }$, the pressure for any excess compression, μ, can be determined.

Unloading occurs along the virgin loading curve until the excess compression surpasses μ_{1}. After that, the unloading follows a path between the completely crushed curve and the virgin loading curve. Reloading will follow this curve back up to the virgin loading

Figure EOS11-1. Pressure versus compaction curve
curve. Once the excess compression exceeds μ_{2}, then all unloading will follow the completely crushed curve.

For unloading between μ_{1} and μ_{2} a partially crushed curve is determined by:

$$
p_{\mathrm{pc}}(\mu)=p_{\mathrm{cc}} \frac{\mu_{a}}{\left[\frac{\left(1+\mu_{B}\right)(1+\mu)}{1+\mu_{\max }}-1\right]},
$$

where

$$
\mu_{B}=P_{\mathrm{cc}}^{-1}\left(P_{\max }\right)
$$

and the subscripts " pc " and " cc " refer to the partially crushed and completely crushed states, respectively. This is more readily understood in terms of the relative volume, V.

$$
\begin{gathered}
V=\frac{1}{1+\mu} \\
P_{\mathrm{pc}}(V)=P_{\mathrm{cc}}\left(\frac{V_{B}}{V_{\min }} V\right)
\end{gathered}
$$

This representation suggests that for a fixed

$$
V_{\min }=\frac{1}{\mu_{\max }+1}
$$

the partially crushed curve will separate linearly from the completely crushed curve as V increases to account for pore recovery in the material.

The bulk modulus K is determined to be the slope of the current curve times one plus the excess compression

$$
K=\frac{\partial P}{\partial \mu}(1+\mu) .
$$

The slope $\frac{\partial P}{\partial \mu}$ for the partially crushed curve is obtained by differentiation as:

$$
\frac{\partial p_{\mathrm{pc}}}{\partial \mu}=\left.\frac{\partial p_{\mathrm{cc}}}{\partial x}\right|_{x=\frac{\left(1+\mu_{b}\right)(1+\mu)}{1+\mu_{\max }}-1}\left(\frac{1+\mu_{b}}{1+\mu_{\max }}\right) .
$$

Simplifying,

$$
K=\left.\frac{\partial P_{\mathrm{cc}}}{\partial \mu_{a}}\right|_{\mu_{\mathrm{a}}}\left(1+\mu_{a}\right)
$$

where

$$
\mu_{a}=\frac{\left(1+\mu_{B}\right)(1+\mu)}{\left(1+\mu_{\max }\right)}-1
$$

The bulk sound speed is determined from the slope of the completely crushed curve at the current pressure to avoid instabilities in the time step.

The virgin loading and completely crushed curves are modeled with monotonic cubicsplines. An optimized vector interpolation scheme is then used to evaluate the cubicsplines. The bulk modulus and sound speed are derived from a linear interpolation on the derivatives of the cubic-splines.

*EOS_IDEAL_GAS

Purpose: This is Equation of State Form 12 for modeling ideal gas. It is an alternate approach to using ${ }^{*}$ EOS_LINEAR_POLYNOMIAL with $\mathrm{C} 4=\mathrm{C} 5=(\gamma-1)$ to model ideal gas. This has a slightly improved energy accounting algorithm.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	ALPHAV	ALPHAP	BETA	GAMMA	T0	V0	VC0
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	ADIAB							
Type	F							

VARIABLE
EOSID

ALPHAV Nominal constant-volume specific heat coefficient, α_{v} (see Remark 1)

ALPHAP Nominal constant-pressure specific heat coefficient, α_{p} (see Remark 1)

BETA Linear coefficient, β, for the variations of C_{v} and C_{p} as a function of T (see Remark 1)

GAMMA Quadratic coefficient, γ, for the variations of C_{v} and C_{p} as a function of T (see Remark 1)

Initial temperature
V0 Initial relative volume (see the beginning of the *EOS section)
VCO Van der Waals covolume

EQ.1.0: On; ideal gas follows adiabatic law

Remarks:

1. Pressure. The pressure in the ideal gas law is defined as

$$
\begin{aligned}
p & =\rho\left(C_{p}-C_{v}\right) T \\
C_{p} & =\alpha_{p}+\beta T+\gamma T^{2} \\
C_{v} & =\alpha_{v}+\beta T+\gamma T^{2}
\end{aligned}
$$

where C_{p} and C_{v} are the specific heat capacities at constant pressure and at constant volume, respectively. ρ is the density. The relative volume is defined as

$$
v_{r}=\frac{V}{V_{0}}=\frac{(V / M)}{\left(V_{0} / M\right)}=\frac{v}{v_{0}}=\frac{\rho_{0}}{\rho},
$$

where ρ_{0} is a nominal or reference density defined in the ${ }^{*}$ MAT_NULL card. The initial pressure can then be manually computed as

$$
\begin{aligned}
\left.P\right|_{t=0} & =\left.\left.\rho\right|_{t=0}\left(C_{P}-C_{V}\right) T\right|_{t=0} \\
\left.\rho\right|_{t=0} & =\left\{\frac{\rho_{0}}{\left.v_{r}\right|_{t=0}}\right\} \\
\left.P\right|_{t=0} & =\left.\left\{\frac{\rho_{0}}{\left.v_{r}\right|_{t=0}}\right\}\left(C_{P}-C_{V}\right) T\right|_{t=0}
\end{aligned}
$$

The initial relative volume, $\left.v_{r}\right|_{t=0}(\mathrm{~V} 0)$, initial temperature, $\left.T\right|_{t=0}(\mathrm{~T} 0)$, and heat capacity information are defined in the *EOS_IDEAL_GAS input. Note that the "reference" density is typically a density at a non-stressed or nominal stress state. The initial pressure should always be checked manually against simulation result.
2. Energy Conservation. With adiabatic flag on, the adiabatic state is conserved, but exact internal energy conservation is sacrificed.
3. Deviation from Ideal Gas Model. The ideal gas model is good for low density gas only. Deviation from the ideal gas behavior may be indicated by the compressibility factor defined as

$$
\mathrm{Z}=\frac{P v}{R T}
$$

When Z deviates from 1, the gas behavior deviates from ideal.
4. Initial Temperature and Initial Relative Volume. V0 and T0 defined in this card must be the same as the time-zero ordinates for the 2 load curves defined in the *BOUNDARY_AMBIENT_EOS card, if it is used. This is so that they both would consistently define the same initial state for a material.

*EOS_PHASE_CHANGE

This is Equation of State Form 13. This EOS was designed for phase change from liquid to vapor, based on the homogeneous Schmidt model.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	RHOL	RHOV	CL	CV	GAMAL	PV	KL
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	E0	V0						
Type	F	F						

VARIABLE

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).

RHOL
Density of liquid
RHOV
Density of saturated vapor
CL
Speed of sound of liquid

CV

GAMAL Gamma constant of liquid
PV

KL

E0

V0

Bulk compressibility of liquid
Pressure of vapor

Initial internal energy
Initial relative volume or initial pressure.
GT.0.0: Initial relative volume. Default = 1
LT.0.0: Initial pressure.

Remarks:

This model is barotropic, so the pressure is only a function of density change. Details of the model can be found in Souli et al. [2014]. Examples of applications for this model are simulations involving water hammer or fuel injection. The ambient pressure should normally be set to atmospheric pressure.

Example input for water in the MKS system ($\mathrm{m}, \mathrm{kg}, \mathrm{s}$):

```
*EOS_PHASE_CHANGE
$ EOSID 
```


*EOS_JWLB

This is Equation of State Form 14. The JWLB (Jones-Wilkens-Lee-Baker) equation of state, developed by Baker [1991] and further described by Baker and Orosz [1991], describes the high pressure regime produced by overdriven detonations while retaining the low pressure expansion behavior required for standard acceleration modeling. The derived form of the equation of state is based on the JWL form due to its computational robustness and asymptotic approach to an ideal gas at high expansions. Additional exponential terms and a variable Gruneisen parameter have been added to adequately describe the high-pressure region above the Chapman-Jouguet state.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	A1	A2	A3	A4	A5		
Type	A	F	F	F	F	F		

Card 2	1	2	3	4	5	6	7	8
Variable	R1	R2	R3	R4	R5			
Type	F	F	F	F	F			

Card 3	1	2	3	4	5	6	7	8
Variable	AL1	AL2	AL3	AL4	AL5			
Type	F	F	F	F	F			

Card 4	1	2	3	4	5	6	7	8
Variable	BL1	BL2	BL3	BL4	BL5			
Type	F	F	F	F	F			

Card 5	1	2	3	4	5	6	7	8
Variable	RL1	RL2	RL3	RL4	RL5			
Type	F	F	F	F	F			

Card 6	1	2	3	4	5	6	7	8
Variable	C	OMEGA	E	Vo				
Type	F	F	F	F				

VARIABLE
EOSID

Ri

OMEGA

E

V0

Equation of state coefficient A_{i}. See below.

AL $i \quad$ Equation of state coefficient $A_{\lambda i}$. See below.
$\mathrm{BL} i \quad$ Equation of state coefficient $B_{\lambda i}$. See below.
RLi Equation of state coefficient $R_{\lambda i}$. See below.
C Equation of state coefficient C. See below.
DESCRIPTION
Equation of state identification. A unique number or label must be specified (see *PART).

Equation of state coefficient R_{i}. See below.

Equation of state coefficient ω. See below.
Energy density per unit volume
Initial relative volume

Remarks:

The JWLB equation-of-state defines the pressure as

$$
p=\sum_{i=1}^{5} A_{i}\left(1-\frac{\lambda}{R_{i} V}\right) e^{-R_{i} V}+\frac{\lambda E}{V}+C\left(1-\frac{\lambda}{\omega}\right) V^{-(\omega+1)}
$$

$$
\lambda=\sum_{i=1}^{5}\left(A_{\lambda i} V+B_{\lambda i}\right) e^{-R_{\lambda i} V}+\omega
$$

where V is the relative volume, E is the energy per unit initial volume, and $A_{i}, R_{i}, A_{\lambda i}$, $B_{\lambda i}, R_{\lambda i}, C$, and ω are input constants defined above.

JWLB input constants for some common explosives as found in Baker and Stiel [1997] are given in the following table.

	TATB	LX-14	PETN	TNT	Octol 70/30
$\rho_{0}(\mathrm{~g} / \mathrm{cc})$	1.800	1.821	1.765	1.631	1.803
$E_{0}(\mathrm{Mbar})$.07040	.10205	.10910	.06656	.09590
$D_{\mathrm{CJ}}(\mathrm{cm} / \mu \mathrm{s})$.76794	.86619	.83041	.67174	.82994
$P_{\mathrm{CJ}}(\mathrm{Mbar})$.23740	.31717	.29076	.18503	.29369
$A_{1}(\mathrm{Mbar})$	550.06	549.60	521.96	490.07	526.83
A_{2} (Mbar)	22.051	64.066	71.104	56.868	60.579
A_{3} (Mbar)	.42788	2.0972	4.4774	.82426	.91248
$A_{4}(\mathrm{Mbar})$.28094	.88940	.97725	.00093	.00159
R_{1}	16.688	34.636	44.169	40.713	52.106
R_{2}	6.8050	8.2176	8.7877	9.6754	8.3998
R_{3}	2.0737	20.401	25.072	2.4350	2.1339
R_{4}	2.9754	2.0616	2.2251	.15564	.18592
$C(\mathrm{Mbar})$.00776	.01251	.01570	.00710	.00968
ω	.27952	.38375	.32357	.30270	.39023
$A_{\lambda 1}$	1423.9	18307.	12.257	.00000	.011929
$B_{\lambda 1}$	14387.	1390.1	52.404	1098.0	18466.
$R_{\lambda 1}$	19.780	19.309	43.932	15.614	20.029
$A_{\lambda 2}$	5.0364	4.4882	8.6351	11.468	5.4192
$B_{\lambda 2}$	-2.6332	-2.6181	-4.9176	-6.5011	-3.2394
$R_{\lambda 2}$	1.7062	1.5076	2.1303	2.1593	1.5868

*EOS_GASKET

This is Equation of State Form 15. This EOS works with solid elements and thick shell formulations ELFORM $=2,3,5$ and 7 to model the response of gaskets. For the thick shell formulation \#2 only, it is completely decoupled from the shell material, meaning in the local coordinate system of the shell, this model defines the normal stress, $\sigma_{z z}$, and does not change any of the other stress components. The model is a reduction of the *MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	LCID1	LCID2	LCID3	LCID4			
Type	A	1	1	1	1			

Card 2	1	2	3	4	5	6	7	8
Variable	UNLOAD	K	DMPF	TFS	CFS	LOFFSET	IVS	
Type	F	F	F	F	F	F	F	

VARIABLE

EOSID

LCID1 Load curve for loading
LCID2 Load curve for unloading
LCID3 Load curve for damping as a function of volumetric strain rate
LCID4 Load curve for scaling the damping as a function of the volumetric strain

UNLOAD Unloading option (see Figure EOS15-1):
EQ.0.0: Loading and unloading follow loading curve
EQ.1.0: Loading follows loading curve, unloading follows unloading curve. The unloading curve ID if undefined is taken as the loading curve.

EQ.2.0: Loading follows loading curve, unloading follows

VARIABLE

DESCRIPTION

unloading stiffness, K , to the unloading curve. The loading and unloading curves may only intersect at the origin of the axes.

EQ.3.0: Quadratic unloading from peak displacement value to a permanent offset.

K Unloading stiffness, for UNLOAD = 2 only
DMPF
Damping factor for stability. Values in the neighborhood of unity are recommended. The damping factor is properly scaled to eliminate time step size dependency.

Figure EOS15-1. Load and unloading behavior.

VARIABLE

TFS
CFS
OFFSET

IVS

DESCRIPTION

Tensile failure strain
Compressive failure strain
Offset factor between 0 and 1.0 to determine permanent set upon unloading if the UNLOAD $=3.0$. The permanent sets in compression and tension are equal to the product of this offset value and the maximum compressive and tensile displacements, respectively.

Initial volume strain

*EOS_MIE_GRUNEISEN

This is Equation of State Form 16, a Mie-Gruneisen form with a $p-\alpha$ compaction model.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	GAMMA	A1	A2	A3	PEL	PC0	N
Type	A	F	F	F	F	F	F	F
Default	none							

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHAO	E0	V0					
Type	F	F	F					
Default	none	none	none					

VARIABLE
EOSID

GAMMA

Ai
PEL Crush pressure
PCO

N
ALPHA0 Initial porosity
E0 Initial internal energy
V0 Initial relative volume specified (see *PART).

Gruneisen gamma
Hugoniot polynomial coefficient

Compaction pressure
Porosity exponent

DESCRIPTION

Equation of state identification. A unique number or label must be

Remarks:

The equation of state is a Mie-Gruneisen form with a polynomial Hugoniot curve and a $p-\alpha$ compaction model. First, we define a history variable representing the porosity α that is initialised to $\alpha_{0}>1$. The evolution of this variable is given as

$$
\alpha(t)=\max \left\{1, \min \left[\alpha_{0}, \min _{s \leq t}\left(1+\left(\alpha_{0}-1\right)\left[\frac{p_{\text {comp }}-p(s)}{p_{\text {comp }}-p_{e l}}\right]^{N}\right)\right]\right\}
$$

where $p(t)$ indicates the pressure at time t. For later use, we define the cap pressure as

$$
p_{c}=p_{\text {comp }}-\left(p_{\text {comp }}-p_{e l}\right)\left[\frac{\alpha-1}{\alpha_{0}-1}\right]^{\frac{1}{N}}
$$

The remainder of the EOS model is given by the equations

$$
\begin{gathered}
p(\rho, e)=\Gamma \alpha \rho e+p_{H}(\eta)\left[1-\frac{1}{2} \Gamma \eta\right] \\
p_{H}(\eta)=A_{1} \eta+A_{2} \eta^{2}+A_{3} \eta^{3}
\end{gathered}
$$

together with

$$
\eta(\rho)=\frac{\alpha \rho}{\alpha_{0} \rho_{0}}-1
$$

*EOS_MURNAGHAN

This is Equation of State Form 19. This EOS was designed to model incompressible fluid flow with SPH or ALE elements.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	GAMMA	K0	V0				
Type	A	F	F	F				

VARIABLE
EOSID

GAMMA, K0
V0

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).

Constants in the equation of state
Initial relative volume

Remarks:

The Murnaghan equation of state defines pressure as

$$
p=k_{0}\left[\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-1\right] .
$$

To model fluid flows accurately, γ is often set to 7 , and k_{0} is chosen such that

$$
c_{0}=\sqrt{\frac{\gamma k_{0}}{\rho_{0}}} \geq 10 v_{\max }
$$

where $v_{\text {max }}$ is the maximum expected fluid flow velocity. This will ensure low compressibility while allowing for a relatively large time step size.

*EOS_USER_DEFINED

These are Equations of State 21-30. The user can supply his own subroutines. See also Appendix B. The keyword input must be used for the user interface with data.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	EOST	LMC	NHV	IVECT	EO	V0	BULK
Type	A	I	I	I	I	F	F	F

Define LMC material parameters using 8 parameters per card.

Card 2	1	2	3	4	5	6	7	8
Variable	P1	P2	P3	P4	P5	P6	P7	P8
Type	F	F	F	F	F	F	F	F

VARIABLE

EOSID

EOST

LMC Length of material constant array which is equal to the number of material constants to be input. (LMC ≤ 48)

NHV Number of history variables to be stored, see Appendix B.

DESCRIPTION

Equation of state ID. A unique number or label must be specified (see *PART).

User equation of state type (21-30 inclusive). A number between 21 and 30 has to be chosen.

IVECT Vectorization flag (on =1). A vectorized user subroutine must be supplied.

EO Initial internal energy
V0
BULK

Pi
Initial relative volume
Bulk modulus. This value is used in the calculation of the contact surface stiffness.

Material parameters $i=1, \ldots$, LMC.

*EOS_USER_LIBRARY

This is Equation of State Form 42.
Purpose: Select a material ID defined in a library called seslib, and initialize the thermodynamic state of the material by defining E0 and V0 below. seslib must be in the working directory.

Card 1	1	2	3	4	5	6	7	8
Variable	EOSID	SESMID						
Type	A	1						

Card 2	1	2	3	4	5	6	7	8
Variable	E0	V0						
Type	F	F						

VARIABLE

EOSID

SESMID

E0 Initial internal energy per unit reference volume (see the beginning of the *EOS section)

V0 Initial relative volume (see the beginning of the *EOS section)

*MAT

LS-DYNA has historically referenced each material model by a number. As shown below, a three digit numerical designation can still be used, e.g., *MAT_001, and is equivalent to a corresponding descriptive designation, e.g., *MAT_ELASTIC. The two equivalent commands for each material model, one numerical and the other descriptive, are listed below. The numbers in square brackets (see key below) identify the element formulations for which the material model is implemented. The number in the curly brackets, $\{n\}$, indicates the default number of history variables per element integration point that are stored in addition to the 7 history variables which are stored by default. Just as an example, for the type 16 fully integrated shell elements with 2 integration points through the thickness, the total number of history variables is $8 \times(n+7)$. For the Be-lytschko-Tsay type 2 element the number is $2 \times(n+7)$.

The meaning associated with particular extra history variables for a subset of material models and equations of state are tabulated at http:/ /www.dynasupport.com/howtos-/material/history-variables.

An additional option TITLE may be appended to a *MAT keyword in which case an additional line is read in 80a format which can be used to describe the material. At present, LS-DYNA does not make use of the title. Inclusion of titles simply gives greater clarity to input decks.

Key to numbers in square brackets

0 - Solids (and 2D continuum elements, that is, shell formulations 13, 14, 15)
1H - Hughes-Liu beam
1B - Belytschko resultant beam
1I - Belytschko integrated solid and tubular beams
1T - Truss
1D - Discrete beam
1SW - Spotweld beam
2 - Shells
3a - Thick shell formulations 1, 2, 6
3c - Thick shell formulations 3, 5, 7
4 - Special airbag element
5 - SPH element (particle)
6 - Acoustic solid
7 - Cohesive solid
8A - Multi-material ALE solid (validated)

8B - Multi-material ALE solid (implemented but not validated ${ }^{1}$)
9 - Membrane element
10 - SPR2/SPR3 connectors
11 - Peridynamics element
12 - Incompressible SPG
*MAT_ADD_AIRBAG_POROSITY_LEAKAGE ${ }^{2}$
*MAT_ADD_CHEM_SHRINKAGE ${ }^{2}$
*MAT_ADD_COHESIVE ${ }^{2}$ [7] \{see associated material model\}
*MAT_ADD_DAMAGE_DIEM ${ }^{2}$ [0,2]
*MAT_ADD_DAMAGE_GISSMO ${ }^{2}$ [0,1H,2,3a,3c,5]
*MAT_ADD_EROSION ${ }^{2}$ [0,1H,2,3a,3c,5,7]
*MAT_ADD_FATIGUE ${ }^{2}$
*MAT_ADD_GENERALIZED_DAMAGE ${ }^{2}$ [0,2]
*MAT_ADD_INELASTICITY²
*MAT_ADD_PERMEABILTY ${ }^{2}$
*MAT_ADD_PORE_AIR ${ }^{2}$
*MAT_ADD_PROPERTY_DEPENDENCE ${ }^{2}$
*MAT_ADD_PZELECTRIC ${ }^{2}$ [0,3c]
*MAT_ADD_SOC_EXPANSION ${ }^{2}$ [0]
*MAT_ADD_THERMAL_EXPANSION ${ }^{2}$
*MAT_NONLOCAL ${ }^{2}$

*MAT_001:	*MAT_ELASTIC [0,1H,1B,11,1T,2,3a,3c,5,8A] \{0\}
*MAT_001_FLUID:	*MAT_ELASTIC_FLUID [0,8A] \{0\}
*MAT_002:	*MAT_OPTIONTROPIC_ELASTIC [0,2,3a,3c] \{15\}
*MAT_003:	*MAT_PLASTIC_KINEMATIC [0,1H,1I,1T,2,3a,3c,5,8A] \{5\}
*MAT_004:	*MAT_ELASTIC_PLASTIC_THERMAL [0,1H,1T,2,3a,3c,5,8B] \{3
*MAT_005:	*MAT_SOIL_AND_FOAM [0,5,3c,8A] \{0\}
MAT_006:	${ }^{}$ MAT_VISCOELASTIC $[0,1 \mathrm{H}, 2,3 \mathrm{a}, 3 \mathrm{c}, 5,8 \mathrm{~B}]\{19\}$
*MAT_007:	*MAT_BLATZ-KO_RUBBER [0,2,3ac,8B] \{9\}
*MAT_008:	*MAT_HIGH_EXPLOSIVE_BURN [0,5,3c,8A] \{4\}
*MAT_009:	*MAT_NULL [0,1,2,3c,5,8A] \{3\}
*MAT_010:	*MAT_ELASTIC_PLASTIC_HYDRO_\{OPTION\} [0,3c,5,8B] \{4\}
*MAT_011:	*MAT_STEINBERG [0,3c,5,8B] \{5\}
*MAT_011_LUND:	*MAT_STEINBERG_LUND [0,3c,5,8B] \{5\}
*MAT_012:	*MAT_ISOTROPIC_ELASTIC_PLASTIC [0,2,3a,3c,5,8B] \{0\}
*MAT_013:	*MAT_ISOTROPIC_ELASTIC_FAILURE [$0,3 \mathrm{c}, 5, \mathrm{BB}]\{1\}$
*MAT_014:	*MAT_SOIL_AND_FOAM_FAILURE [0,3c,5, 8 B $]\{1\}$
*MAT_015:	*MAT_JOHNSON_COOK $[0,2,3 \mathrm{a}, 3 \mathrm{c}, 5,8 \mathrm{~A}]\{6\}$
*MAT_016:	*MAT_PSEUDO_TENSOR [0,3c,5,8B] \{6\}

[^0]*MAT_017:
*MAT_018:
*MAT_019:
*MAT_020:
*MAT_021:
*MAT_022:
*MAT_023:
*MAT_024:
*MAT 025:
*MAT_026:
*MAT_027:
*MAT_028:
*MAT_029:
*MAT_030:
*MAT_031:
*MAT_032:
*MAT_033:
*MAT_033_96:
*MAT_034:
*MAT_034M:
*MAT_035:
*MAT_036:
*MAT_036E:
*MAT_037:
*MAT_038:
*MAT_039:
*MAT_040:
*MAT_041-050:
*MAT_051:
*MAT_052:
*MAT_053:
*MAT_054-055:
*MAT_057:
*MAT_058:
*MAT_059:
*MAT_060:
*MAT_060C:
*MAT_061:
*MAT_062:
*MAT_063:
*MAT_064:
*MAT_065:
*MAT_066:
*MAT_067:
*MAT_068:
*MAT_069:
*MAT_070:
*MAT_071:
*MAT_072:
*MAT_072R3:
*MAT_073:
*MAT_074:
*MAT_075:
*MAT_076:
*MAT_ORIENTED_CRACK [0,3c] \{14\}
*MAT_POWER_LAW_PLASTICITY [0,1H,2,3a,3c,5,8B] \{0\}
*MAT_STRAIN_RATE_DEPENDENT_PLASTICITY [0,2,3a,3c,5,8B] \{6\}
*MAT_RIGID [0,1H,1B,1T,2,3a] \{0\}
*MAT_ORTHOTROPIC_THERMAL [0,2,3ac] \{29\}
*MAT_COMPOSITE_DAMAGE [0,2,3a,3c,5] \{12\}
*MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC [0,2,3ac] \{19\}
*MAT_PIECEWISE_LINEAR_PLASTICITY [0,1H,2,3a,3c,5,8A] \{5\}
*MAT_GEOLOGIC_CAP_MODEL $[0,3 c, 5]\{12\}$
*MAT_HONEYCOMB [0,3c] \{20\}
*MAT_MOONEY-RIVLIN_RUBBER [0,1T,2,3c,8B] \{9\}
*MAT_RESULTANT_PLASTICITY [1B,2] \{5\}
*MAT_FORCE_LIMITED [1B] \{30\}
*MAT_SHAPE_MEMORY [0,1H,2,3ac,5] \{23\}
*MAT_FRAZER_NASH_RUBBER_MODEL [0,3c,8B] \{9\}
*MAT_LAMINATED_GLASS [2,3a] \{0\}
*MAT_BARLAT_ANISOTROPIC_PLASTICITY [0,2,3a,3c] \{9\}
*MAT_BARLAT_YLD96 [2,3a] \{9\}
*MAT_FABRIC [4] \{29\}
*MAT_FABRIC_MAP [4] \{17\}
*MAT_PLASTIC_GREEN-NAGHDI_RATE [0,3c,5,8B] \{22\}
*MAT_3-PARAMETER_BARLAT [2,3a,3c] \{7\}
*MAT_EXTENDED_3-PARAMETER_BARLAT [2,3a,3c] \{7\}
*MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC [2,3a] \{9\}
*MAT_BLATZ-KO_FOAM [0,2,3c,8B] \{9\}
*MAT_FLD_TRANSVERSELY_ANISOTROPIC [2,3a] \{6\}
${ }^{*}$ MAT_NONLINEAR_ORTHOTROPIC $[0,2,3 \mathrm{c}]\{17\}$
*MAT_USER_DEFINED_MATERIAL_MODELS [0,1H,1T,1D,2,3a,3c,5,8B] \{0\}
*MAT_BAMMAN [0,2,3a,3c,5,8B] $\{8\}$
*MAT_BAMMAN_DAMAGE [0,2,3a,3c,5,8B] \{10\}
*MAT_CLOSED_CELL_FOAM [0,3c,8B] 00$\}$
*MAT_ENHANCED_COMPOSITE_DAMAGE [0,2,3a,3c] \{20\}
*MAT_LOW_DENSITY_FOAM [0,3c,5,8B] \{26\}
*MAT_LAMINATED_COMPOSITE_FABRIC $[0,2,3 \mathrm{a}]\{15\}$
*MAT_COMPOSITE_FAILURE_\{OPTION\}_MODEL [0,2,3c,5] \{22\}
*MAT_ELASTIC_WITH_VISCOSITY [0,2,3a,3c,5,8B] $\{8\}$
*MAT_ELASTIC_WITH_VISCOSITY_CURVE $[0,2,3 \mathrm{a}, 3 \mathrm{c}, 5,8 \mathrm{~B}]\{8\}$
*MAT_KELVIN-MAXWELL_VISCOELASTIC [0,3c,5,8B] \{14\}
*MAT_VISCOUS_FOAM [0,3c,8B] \{7\}
*MAT_CRUSHABLE_FOAM [0,3c,5,8B] \{8\}
*MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY [0,2,3a,3c,5,8B] \{30\}
*MAT_MODIFIED_ZERILLI_ARMSTRONG $[0,2,3 a, 3 c, 5,8 B]\{6\}$
*MAT_LINEAR_ELASTIC_DISCRETE_BEAM [1D] \{8\}
*MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM [1D] \{14\}
*MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM [1D] \{25\}
*MAT_SID_DAMPER_DISCRETE_BEAM [1D] \{13\}
*MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM [1D] \{8\}
*MAT_CABLE_DISCRETE_BEAM [1D] $\{8\}$
*MAT_CONCRETE_DAMAGE $[0,3 \mathrm{c}, 5,8 \mathrm{~B}]\{6\}$
*MAT_CONCRETE_DAMAGE_REL3 [0,3c,5] \{6\}
*MAT_LOW_DENSITY_VISCOUS_FOAM [0,3c,8B] \{56\}
*MAT_ELASTIC_SPRING_DISCRETE_BEAM [1D] \{8\}
*MAT_BILKHU /DUBOIS_FOAM [0,3c,5,8B] \{8\}
*MAT_GENERAL_VISCOELASTIC [0,2,3a,3c,5,8B] \{53\}
*MAT_077_H: *MAT_HYPERELASTIC_RUBBER [0,2,3c,5,8B] \{54\}
*MAT_077_O: *MAT_OGDEN_RUBBER [0,2,3c,5,8B] \{54\}
*MAT_078: \quad *MAT_SOIL_CONCRETE $[0,3 c, 5,8 \mathrm{~B}]\{3\}$
*MAT_079: *MAT_HYSTERETIC_SOIL [0,3c,5,8B] \{96\}
*MAT_080: \quad *MAT_RAMBERG-OSGOOD $[0,3 \mathrm{c}, 8 \mathrm{~B}]$ \{18\}
*MAT_081: \quad *MAT_PLASTICITY_WITH_DAMAGE $[0,2,3 \mathrm{a}, 3 \mathrm{c}]\{5\}$
*MAT_082(_RCDC): *MAT_PLASTICITY_WITH_DAMAGE_ORTHO(_RCDC) [0,2,3a,3c] \{22\}
*MAT_083: \quad *MAT_FU_CHANG_FOAM $[0,3 \mathrm{c}, 5,8 \mathrm{~B}]\{54\}$
MAT_084: ${ }^{}$ MAT_WINFRITH_CONCRETE [0] \{54\}
*MAT_086: \quad *MAT_ORTHOTROPIC_VISCOELASTIC [2,3a] \{17\}
*MAT_087: *MAT_CELLULAR_RUBBER $[0,3 \mathrm{c}, 5,8 \mathrm{~B}]\{19\}$
*MAT_088: \quad *MAT_MTS $[0,2,3 \mathrm{a}, 3 \mathrm{c}, 5,8 \mathrm{~B}]\{5\}$
*MAT_089: \quad *MAT_PLASTICITY_POLYMER [0,2,3a,3c] \{46\}
*MAT_090: \quad *MAT_ACOUSTIC [6] \{25\}
*MAT_091: \quad *MAT_SOFT_TISSUE [0,2] \{16\}
*MAT_092: \quad *MAT_SOFT_TISSUE_VISCO $[0,2]\{58\}$
*MAT_093: *MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM [1D] \{25\}
*MAT_094: *MAT_INELASTIC_SPRING_DISCRETE_BEAM [1D] \{9\}
*MAT_095: *MAT_INELASTC_6DOF_SPRING_DISCRETE_BEAM [1D] \{25\}
*MAT_096: \quad *MAT_BRITTLE_DAMAGE $[0,8 \mathrm{~B}]\{51\}$
MAT_097: ${ }^{}$ MAT_GENERAL_JOINT_DISCRETE_BEAM [1D] \{23\}
*MAT_098: *MAT_SIMPLIFIED_JOHNSON_COOK [0,1H,1B,1T,2,3a,3c] \{6\}
*MAT_099: *MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE [0,2,3a,3c] \{22\}
*MAT_100: \quad *MAT_SPOTWELD_\{OPTION\} [0,1SW] $\{6\}$
MAT_100_DA: ${ }^{}$ MAT_SPOTWELD_DAIMLERCHRYSLER [0] \{6\}
MAT_101: ${ }^{}$ MAT_GEPLASTIC_SRATE_2000a [2,3a] \{15\}
*MAT_102(_T): *MAT_INV_HYPERBOLIC_SIN(_THERMAL) [0,3c,8B] \{15\}
${ }^{*}$ MAT_103: $\quad{ }^{*}$ MAT_ANISOTROPIC_VISCOPLASTIC $[0,2,3 \mathrm{a}, 3 \mathrm{c}, 5]$ \{20\}
*MAT_103_P: \quad *MAT_ANISOTROPIC_PLASTIC $[2,3 \mathrm{a}, 3 \mathrm{c}]\{20\}$
*MAT_104: *MAT_DAMAGE_1 [0,2,3a,3c] \{11\}
MAT_105: ${ }^{}$ MAT_DAMAGE_2 [0,2,3a,3c] \{7\}
*MAT_106: *MAT_ELASTIC_VISCOPLASTIC_THERMAL [0,2,3a,3c,5] \{20\}
*MAT_107: *MAT_MODIFIED_JOHNSON_COOK [0,2,3a,3c,5,8B] \{15\}
*MAT_108: *MAT_ORTHO_ELASTIC_PLASTIC [2,3a] \{15\}
*MAT_110: *MAT_JOHNSON_HOLMQUIST_CERAMICS [0,3c,5] \{15\}
*MAT_111: *MAT_JOHNSON_HOLMQUIST_CONCRETE [0,3c,5] \{25\}
*MAT_112: *MAT_FINITE_ELASTIC_STRAIN_PLASTICITY [0,3c,5] \{22\}
MAT_113: ${ }^{}$ MAT_TRIP [2,3a] \{5\}
*MAT_114: *MAT_LAYERED_LINEAR_PLASTICITY [2,3a] \{13\}
*MAT_115: *MAT_UNIFIED_CREEP [0,2,3a,3c,5] \{1\}
*MAT_115_O: *MAT_UNIFIED_CREEP_ORTHO [0,3c,5] \{1\}
MAT_116: $\quad{ }^{}$ MAT_COMPOSITE_LAYUP [2] \{30\}
MAT_117: ${ }^{}$ MAT_COMPOSITE_MATRIX [2] \{30\}
*MAT_118: \quad *MAT_COMPOSITE_DIRECT [2] \{10\}
*MAT_119: *MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM [1D] \{62\}
*MAT_120: \quad *MAT_GURSON $[0,2,3 \mathrm{a}, 3 \mathrm{c}]\{12\}$
MAT_120_JC: $\quad{ }^{}$ MAT_GURSON_JC $[0,2]\{12\}$
*MAT_120_RCDC:
*MAT_121:
MAT_122: ${ }^{}$ MAT_HILL_3R $[2,3 \mathrm{a}]\{8\}$
*MAT_122_3D: *MAT_HILL_3R_3D [0] \{28\}
*MAT_122_TAB: \quad *MAT_HILL_3R_TABULATED $[2,3 a]\{8\}$
*MAT_123: *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY [0,2,3a,3c,5] \{11\}
*MAT_124: \quad *MAT_PLASTICITY_COMPRESSION_TENSION $[0,1 \mathrm{H}, 2,3 \mathrm{a}, 3 \mathrm{c}, 5,8 \mathrm{~B}]\{7\}$
*MAT_125:
*MAT_126:
*MAT_127:
*MAT 128:
*MAT_129:
*MAT_130:
*MAT_131:
*MAT_132:
*MAT 133:
*MAT_134:
*MAT_135:
*MAT_135_PLC:
*MAT_136:
*MAT_136_STD:
*MAT_136_2017:
*MAT_138:
*MAT_139:
*MAT_140:
*MAT_141:
*MAT_142:
*MAT_143:
*MAT_144:
*MAT_145:
*MAT_146:
*MAT_147
*MAT_147_N:
*MAT_148:
*MAT_151:
*MAT_153:
*MAT_154:
*MAT_155:
*MAT_156:
*MAT_157:
*MAT_158:
*MAT_159:
*MAT_160:
*MAT_161:
*MAT_162:
*MAT_163
*MAT_164:
*MAT_165:
*MAT_166:
*MAT_167:
*MAT_168:
*MAT_169:
*MAT_170:
*MAT_171:
*MAT_172:
*MAT_173:
*MAT_174:
*MAT_175:
*MAT_176:
*MAT_177:
*MAT_178:
*MAT_KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC [0,2,3a,3c] \{11\}
*MAT_MODIFIED_HONEYCOMB [0,3c] $\{20\}$
*MAT_ARRUDA_BOYCE_RUBBER [0,3c,5] \{49\}
*MAT_HEART_TISSUE [0,3c] \{15\}
*MAT_LUNG_TISSUE [0,3c] \{49\}
*MAT_SPECIAL_ORTHOTROPIC [2] \{35\}
*MAT_ISOTROPIC_SMEARED_CRACK $[0,5,8 \mathrm{~B}]\{15\}$
*MAT_ORTHOTROPIC_SMEARED_CRACK [0] \{61\}
${ }^{*}$ MAT_BARLAT_YLD2000 [0,2,3a,3c] \{9\}
*MAT_VISCOELASTIC_FABRIC [9]
*MAT_WTM_STM [2,3a,3c] \{30\}
*MAT_WTM_STM_PLC $[2,3 a]\{30\}$
*MAT_VEGTER [2,3a] \{5\}
*MAT_VEGTER_STANDARD $[2,3 a]\{5\}$
*MAT_VEGTER_2017 [2,3a] \{5\}
*MAT_COHESIVE_MIXED_MODE [7] \{0\}
*MAT_MODIFIED_FORCE_LIMITED [1B] \{35\}
*MAT_VACUUM [0,8A] \{0\}
*MAT_RATE_SENSITIVE_POLYMER [0,3c,8B] \{6\}
*MAT_TRANSVERSELY_ISOTROPIC_CRUSHABLE_FOAM [0,3c] \{12\}
*MAT_WOOD_\{OPTION\} [0,3c,5] \{37\}
*MAT_PITZER_CRUSHABLE_FOAM [0,3c,8B] \{7\}
*MAT_SCHWER_MURRAY_CAP_MODEL [0,5] \{50\}
*MAT_1DOF_GENERALIZED_SPRING [1D] \{1\}
*MAT_FHWA_SOIL [0,3c,5,8B] \{15\}
*MAT_FHWA_SOIL_NEBRASKA $[0,3 c, 5,8 B]\{15\}$
*MAT_GAS_MIXTURE [0,8A] \{14\}
*MAT_EMMI [0,3c,5,8B] \{23\}
*MAT_DAMAGE_3 [0,1H,2,3a,3c]
*MAT_DESHPANDE_FLECK_FOAM [0,3c,8B] \{10\}
*MAT_PLASTICITY_COMPRESSION_TENSION_EOS [0,3c,5,8B] \{16\}
*MAT_MUSCLE [1T] $\{0\}$
*MAT_ANISOTROPIC_ELASTIC_PLASTIC [0,2,3a] \{5\}
*MAT_RATE_SENSITIVE_COMPOSITE_FABRIC [2,3a] \{54\}
*MAT_CSCM_\{OPTION\} [0,3c,5] \{22\}
*MAT_ALE_INCOMPRESSIBLE
*MAT_COMPOSITE_MSC [0] \{34\}
*MAT_COMPOSITE_DMG_MSC [0] \{40\}
*MAT_MODIFIED_CRUSHABLE_FOAM [0,3c,5,8B] \{10\}
*MAT_BRAIN_LINEAR_VISCOELASTIC [0] \{14\}
*MAT_PLASTIC_NONLINEAR_KINEMATIC $[0,2,3 \mathrm{a}, 3 \mathrm{c}, 8 \mathrm{~B}]\{8\}$
*MAT_MOMENT_CURVATURE_BEAM [1B] \{54\}
*MAT_MCCORMICK [03c,,8B] \{8\}
*MAT_POLYMER [0,3c,8B] \{60\}
*MAT_ARUP_ADHESIVE [0] \{30\}
*MAT_RESULTANT_ANISOTROPIC [2,3a] \{67\}
*MAT_STEEL_CONCENTRIC_BRACE [1B] \{35\}
*MAT_CONCRETE_EC2 [1H,2,3a] \{64\}
*MAT_MOHR_COULOMB $[0,3 \mathrm{c}, 5]\{52\}$
*MAT_RC_BEAM [1H] \{22\}
*MAT_VISCOELASTIC_THERMAL [0,2,3a,3c,5,8B] \{86\}
*MAT_QUASILINEAR_VISCOELASTIC $[0,2,3 a, 3 c, 5,8 B]\{81\}$
${ }^{*}$ MAT_HILL_FOAM [0,3c] \{12\}
*MAT_VISCOELASTIC_HILL_FOAM [0,3c] $\{92\}$
*MAT_179:
*MAT_180:
*MAT_181:
*MAT_183:
*MAT_184:
*MAT_185:
*MAT_186:
*MAT_187:
*MAT_187L:
*MAT_188:
*MAT_189:
*MAT_190:
*MAT_191:
*MAT_192:
*MAT_193:
*MAT_194:
*MAT_195:
*MAT_196:
*MAT_197:
*MAT_198:
*MAT_199:
*MAT_199_27P
*MAT_202:
*MAT_203:
*MAT_205:
*MAT_207:
*MAT_208:
*MAT_209:
*MAT_211:
*MAT_213:
*MAT_214:
*MAT_215:
*MAT_216:
*MAT_217:
*MAT_218:
*MAT_219:
*MAT_220:
*MAT_221:
*MAT_224:
*MAT_224_GYS:
*MAT_225:
*MAT_226:
*MAT_230:
*MAT_231:
*MAT_232:
*MAT_233:
*MAT_234:
*MAT_235:
*MAT_236:
*MAT_237:
*MAT_238:
*MAT_240:
*MAT_241:
*MAT_242:
*MAT_LOW_DENSITY_SYNTHETIC_FOAM_\{OPTION\} [0,3c] \{77\}
*MAT_LOW_DENSITY_SYNTHETIC_FOAM_ORTHO [0,3c]
*MAT_SIMPLIFIED_RUBBER/FOAM_\{OPTION\} [0,2,3c] \{39\}
*MAT_SIMPLIFIED_RUBBER_WITH_DAMAGE [0,2,3c] \{44\}
*MAT_COHESIVE_ELASTIC [7] \{0\}
*MAT_COHESIVE_TH [7] $\{0\}$
*MAT_COHESIVE_GENERAL [7] \{6\}
*MAT_SAMP-1 [0,2,3a,3c] \{38\}
*MAT_SAMP_LIGHT [0,2,3a,3c] \{7\}
*MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP [0,2,3a,3c] \{27\}
*MAT_ANISOTROPIC_THERMOELASTIC [0,3c,8B] \{21\}
*MAT_FLD_3-PARAMETER_BARLAT [2,3a] \{36\}
*MAT_SEISMIC_BEAM [1B] \{36\}
*MAT_SOIL_BRICK [0,3c] \{96\}
*MAT_DRUCKER_PRAGER $[0,3 \mathrm{c}, 5]\{24\}$
*MAT_RC_SHEAR_WALL [2,3a] \{36\}
*MAT_CONCRETE_BEAM [1H] \{5\}
*MAT_GENERAL_SPRING_DISCRETE_BEAM [1D] \{25\}
*MAT_SEISMIC_ISOLATOR [1D] \{20\}
*MAT_JOINTED_ROCK [0,3c] \{31\}
*MAT_BARLAT_YLD2004 [0,3c] \{11\}
*MAT_BARLAT_YLD2004_27P [0,3c] \{11\}
*MAT_STEEL_EC3 [1H] \{3\}
*MAT_HYSTERETIC_REINFORCEMENT [1H,2,3a] \{64\}
*MAT_DISCRETE_BEAM_POINT_CONTACT [1D]
*MAT_SOIL_SANISAND [0]
*MAT_BOLT_BEAM [1D] \{16\}
*MAT_HYSTERETIC_BEAM [1B] \{50\}
*MAT_SPR_JLR [0] \{60\}
*MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE [0,2] \{54\}
*MAT_DRY_FABRIC [9]
*MAT_4A_MICROMEC [0,2,3a,3c]
*MAT_ELASTIC_PHASE_CHANGE [0]
*MAT_ORTHOTROPIC_ELASTIC_PHASE_CHANGE [2]
*MAT_MOONEY-RIVLIN_PHASE_CHANGE [0]
*MAT_CODAM2 [0,2,3a,3c]
*MAT_RIGID_DISCRETE [0,2]
*MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE [0,3c,5] \{17\}
*MAT_TABULATED_JOHNSON_COOK [0,2,3a,3c,,5] \{17\}
*MAT_TABULATED_JOHNSON_COOK_GYS [0] \{17\}
*MAT_VISCOPLASTIC_MIXED_HARDENING [0,2,3a,3c,5]
*MAT_KINEMATIC_HARDENING_BARLAT89 [2,3a]
*MAT_PML_ELASTIC [0] \{24\}
*MAT_PML_ACOUSTIC [6] \{35\}
*MAT_BIOT_HYSTERETIC [0,2,3a] \{30\}
*MAT_CAZACU_BARLAT [2,3a]
*MAT_VISCOELASTIC_LOOSE_FABRIC [2,3a]
*MAT_MICROMECHANICS_DRY_FABRIC [2,3a]
*MAT_SCC_ON_RCC [2,3a]
*MAT_PML_HYSTERETIC [0] \{54\}
*MAT_PERT_PIECEWISE_LINEAR_PLASTICITY [0,1H,2,3,5,8A]
*MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE [7] \{17\}
*MAT_JOHNSON_HOLMQUIST_JH1 [0,3c,5]
*MAT_KINEMATIC_HARDENING_BARLAT2000 [2,3a]

```
*MAT_243: *MAT_HILL_90 [2,3a,3c]
*MAT_244: *MAT_UHS_STEEL [0,2,3a,3c,5] {35}
*MAT_245: *MAT_PML_{OPTION}TROPIC_ELASTIC [0] {30}
*MAT_246: *MAT_PML_NULL [0] {27}
*MAT_248: *MAT_PHS_BMW [2] {38}
*MAT_249: *MAT_REINFORCED_THERMOPLASTIC [2]
*MAT_249_CRASH: *MAT_REINFORCED_THERMOPLASTIC_CRASH [2]
*MAT_249_UDFIBER:*MAT_REINFORCED_THERMOPLASTIC_UDFIBER [2]
*MAT_251: *MAT_TAILORED_PROPERTIES [2] {6}
*MAT_252: *MAT_TOUGHENED_ADHESIVE_POLYMER [0,7] {10}
*MAT_254: *MAT_GENERALIZED_PHASE_CHANGE [0,2]
*MAT_255: *}\mp@subsup{}{}{*}MAT_PIECEWISE_LINEAR_PLASTIC_THERMAL [0,2,3a,3c]
*MAT_256: *MAT_AMORPHOUS_SOLIDS_FINITE_STRAIN [0]
*MAT_258: *
*MAT_260A: *MAT_STOUGHTON_NON_ASSOCIATED_FLOW [0,2]
*MAT_260B: *MAT_MOHR_NON_ASSOCIATED_FLOW [2]
*MAT_261: *MAT_LAMINATED_FRACTURE_DAIMLER_PINHO [0,2,3a,3c]
*MAT_262: *MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO [0,2,3a,3c]
*MAT_263: *MAT_LOU-YOON_ANISOTROPIC_PLASTICITY [0,2]
*MAT_264: *MAT_TABULATED_JOHNSON_COOK_ORTHO_PLASTICITY [0,3c]
*MAT_265: *MAT_CONSTRAINED [10]
*MAT_266: *MAT_TISSUE_DISPERSED [0]
*MAT_267: *MAT_EIGHT_CHAIN_RUBBER [0,5]
*MAT_269: *MAT_BERGSTROM_BOYCE_RUBBER [0,5]
*MAT_270: *MAT_CWM [0,2,5]
*MAT_271: *MAT_POWDER [0,5]
*MAT_272: *MAT_RHT [0,5]
*MAT_273: *MAT_CONCRETE_DAMAGE_PLASTIC_MODEL [0]
*MAT_274: *MAT_PAPER [0,2]
*MAT_275: *MAT_SMOOTH_VISCOELASTIC_VISCOPLASTIC [0]
*MAT_276: *MAT_CHRONOLOGICAL_VISCOELASTIC [2,3a,3c]
*MAT_277: *MAT_ADHESIVE_CURING_VISCOELASTIC [0,2]
*MAT_278: *MAT_CF_MICROMECHANICS [0,2]
*MAT_279: *MAT_COHESIVE_PAPER [7]
*MAT_280: *MAT_GLASS [2,3a] {32}
*MAT_291: *MAT_SHAPE_MEMORY_ALLOY [0] {20}
*MAT_292: *MAT_ELASTIC_PERI [11]
*MAT_292A: *MAT_ELASTIC_PERI_LAMINATE [11]
*MAT_293: *MAT_COMPRF [2] {7}
*MAT_295: *MAT_ANISOTROPIC_HYPERELASTIC [0] {9}
*MAT_296: *MAT_ANAND_VISCOPLASTICITY [0]
*MAT_303: *MAT_DMN_COMPOSITE_FRC [0,2]
*MAT_305: *MAT_HOT_PLATE_ROLLING [0]{12}
*MAT_307: *MAT_GENERALIZED_ADHESIVE_CURING [0,7]
*MAT_317: *MAT_RRR_POLYMER [0] {10}
*MAT_318: *
*MAT_319: *}\mp@subsup{}{}{*}MAT_IFPD [12]
*MAT_326: *MAT_COHESIVE_GASKET [7] {0}
```

For discrete (type 6) beam elements, which are used to model complicated dampers and multi-dimensional spring-damper combinations, the following material types are available:

```
*MAT_066:
*MAT_067: *MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM
*MAT_068: *MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM
*MAT_069:
*MAT_070: *MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM
*MAT_071: *}MATMCABLE_DISCRETE_BEAM
*MAT_074: *MAT_ELASTIC_SPRING_DISCRETE_BEAM
*MAT_093: *MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM
*MAT_094: *MAT_INELASTIC_SPRING_DISCRETE_BEAM
*MAT_095: *MAT_INELASTIC_6DOF_SPRING_DISCRETE_BEAM
*MAT_119: *MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM
*MAT_121: *MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM
*MAT_146: *MAT_1DOF_GENERALIZED_SPRING
*MAT_196: *MAT_GENERAL_SPRING_DISCRETE_BEAM
*MAT_197: *MAT_SEISMIC_ISOLATOR
*MAT_205: *MAT_DISCRETE_BEAM_POINT_CONTACT
*MAT_208: *MAT_BOLT_BEAM
*MAT_LINEAR_ELASTIC_DISCRETE_BEAM
*MAT_SID_DAMPER_DISCRETE_BEAM
```

For discrete springs and dampers, the following material types are available:

```
```

*MAT_S01: *MAT_SPRING_ELASTIC

```
```

*MAT_S01: *MAT_SPRING_ELASTIC
*MAT_S02: *MAT_DAMPER_VISCOUS
*MAT_S02: *MAT_DAMPER_VISCOUS
*MAT_S03: *MAT_SPRING_ELASTOPLASTIC
*MAT_S03: *MAT_SPRING_ELASTOPLASTIC
*MAT_S04: *
*MAT_S04: *
*MAT_S05: *MAT_DAMPER_NONLINEAR_VISCOUS
*MAT_S05: *MAT_DAMPER_NONLINEAR_VISCOUS
*MAT_S06: *MAT_SPRING_GENERAL_NONLINEAR
*MAT_S06: *MAT_SPRING_GENERAL_NONLINEAR
*MAT_S07: *MAT_SPRING_MAXWELL
*MAT_S07: *MAT_SPRING_MAXWELL
*MAT_S08: *MAT_SPRING_INELASTIC
*MAT_S08: *MAT_SPRING_INELASTIC
*MAT_S13: *MAT_SPRING_TRILINEAR_DEGRADING
*MAT_S13: *MAT_SPRING_TRILINEAR_DEGRADING
*MAT_S14: *MAT_SPRING_SQUAT_SHEARWALL
*MAT_S14: *MAT_SPRING_SQUAT_SHEARWALL
*MAT_S15: *MAT_SPRING_MUSCLE

```
```

*MAT_S15: *MAT_SPRING_MUSCLE

```
```

For ALE solids the following material types are available:

```
```

```
*MAT_ALE_01: *MAT_ALE_VACUUM
```

```
```

*MAT_ALE_01: *MAT_ALE_VACUUM

```
```

```
*MAT_ALE_01: *MAT_ALE_VACUUM
*MAT_ALE_02: *MAT_ALE_GAS_MIXTURE
*MAT_ALE_02: *MAT_ALE_GAS_MIXTURE
*MAT_ALE_02: *MAT_ALE_GAS_MIXTURE
*MAT_ALE_03: *MAT_ALE_VISCOUS
*MAT_ALE_03: *MAT_ALE_VISCOUS
*MAT_ALE_03: *MAT_ALE_VISCOUS
*MAT_ALE_04: *}\mp@subsup{}{}{*}MAT_ALE_MIXING_LENGTH
*MAT_ALE_04: *}\mp@subsup{}{}{*}MAT_ALE_MIXING_LENGTH
*MAT_ALE_04: *}\mp@subsup{}{}{*}MAT_ALE_MIXING_LENGTH
*MAT_ALE_05: *MAT_ALE_INCOMPRESSIBLE
*MAT_ALE_05: *MAT_ALE_INCOMPRESSIBLE
*MAT_ALE_05: *MAT_ALE_INCOMPRESSIBLE
*MAT_ALE_06: *MAT_ALE_HERSCHEL
```

```
*MAT_ALE_06: *MAT_ALE_HERSCHEL
```

```
*MAT_ALE_06: *MAT_ALE_HERSCHEL
```

```
```

(same as *MAT_009)
*MAT_ALE_MIXING_LENGTH (same as *MAT_149)
MAT_ALE_01:

```
MAT_ALE_01:
```

MAT_ALE_01:

```
(same as *MAT_140)
(same as *MAT_148)
(same as *MAT_009)
(same as *MAT_149)
(same as *MAT_160)

The following material models are only available for the incompressible smoothed particle Galerkin (ISPG) method:
```

*MAT_ISPG_01: *MAT_ISPG_CARREAU
*MAT_ISPG_02: *MAT_ISPG_CROSSMODEL
*MAT_ISPG_03: *MAT_ISPG_ISO_NEWTONIAN

```

The following material type is only available for SPH particles:
```

*MAT_SPH_01: *MAT_SPH_VISCOUS (same as *MAT_009)
*MAT_SPH_02: *MAT_SPH_INCOMPRESSIBLE_FLUID
*MAT_SPH_03: *MAT_SPH_INCOMPRESSIBLE_STRUCTURE

```

In addition, most of the material types which are available for solids are also available for SPH. Those material models that may be used for SPH have a " 5 " included in square brackets in the list of materials given above. In the detailed descriptions of those materials which come later in the User's Manual, the word "solids" implies "solids and SPH".

For seat belts one material is available:
```

*MAT_B01: *MAT_SEATBELT

```

For thermal materials in a coupled structural/thermal or thermal-only analysis, the following materials are available. These materials are related to the structural material through the *PART card.
```

*MAT_T01: *MAT_THERMAL_ISOTROPIC
*MAT_T02: *MAT_THERMAL_ORTHOTROPIC
*MAT_T03: *MAT_THERMAL_ISOTROPIC_TD
*MAT_T04: *MAT_THERMAL_ORTHOTROPIC_TD
*MAT_T05: *MAT_THERMAL_DISCRETE_BEAM
*MAT_T06: *}MAT_THERMAL_CHEMICAL_REACTION
*MAT_T07: *MAT_THERMAL_CWM
*MAT_T08 *MAT_THERMAL_ORTHOTROPIC_TD_LC
*MAT_T09 *MAT_THERMAL_ISOTROPIC_PHASE_CHANGE
*MAT_T10 *MAT_THERMAL_ISOTROPIC_TD_LC
*MAT_T11-T15: *MAT_THERMAL_USER_DEFINED DEFINED
*MAT_T17: *MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC

```

\section*{Remarks:}

Curves and tables are sometimes needed for defining material properties. An example would be a curve of effective stress as a function of effective plastic strain defined using the command *DEFINE_CURVE. In general, the following can be said about curves and tables that are referenced by material models:
1. Curves are internally rediscretized using equal increments along the \(x\)-axis.
2. Curve data is interpolated between rediscretized data points within the defined range of the curve and extrapolated as needed beyond the defined range of the curve.
3. Extrapolation is not employed for table value. See the manual entries for the *DEFINE_TABLE_... keywords.
4. See Remarks under *DEFINE_CURVE and *DEFINE_TABLE

\section*{MATERIAL MODEL REFERENCE TABLES}

The tables provided on the following pages list the material models, some of their attributes, and the general classes of physical materials to which the numerical models might be applied.

If a material model, without consideration of *MAT_ADD_EROSION, *MAT_ADD_THERMAL_EXPANSION, *MAT_ADD_SOC_EXPANSION, *MAT_ADD_DAMAGE, *MAT_ADD_GENERALIZED_DAMAGE or *MAT_ADD_INELASTICITY, includes any of the following attributes, \(a\) " \(Y\) " will appear in the respective column of the table:

SRATE - Strain-rate effects
FAIL - Failure criteria
EOS - Equation-of-State required for 3D solids and 2D continuum elements
THERMAL - Thermal effects
ANISO - Anisotropic/orthotropic
DAM - Damage effects
TENS - Tension handled differently than compression in some manner

Potential applications of the material models, in terms of classes of physical materials, are abbreviated in the table as follows:

GN - General
CM - Composite
CR - Ceramic
FL - Fluid
FM - Foam
GL - Glass
HY - Hydrodynamic material
MT - Metal
PL - Plastic
RB - Rubber
SL - Soil, concrete, or rock
AD - Adhesive or Cohesive material
BIO - Biological material
CIV - Civil Engineering component
HT - Heat Transfer
F - Fabric
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\frac{1}{\underset{4}{4}}
\] & \[
\begin{aligned}
& \infty \\
& \hline \mathrm{B}
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{00}{2}
\end{aligned}
\] & \[
\sum_{0}
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\square}}\) & APPS \\
\hline 1 & Elastic & & & & & & & & GN, FL \\
\hline 2 & Orthotropic Elastic (Anisotropic-solids) & & & & & Y & & & CM, MT \\
\hline 3 & Plastic Kinematic/Isotropic & Y & Y & & & & & & \[
\begin{gathered}
\text { CM, MT, } \\
\text { PL }
\end{gathered}
\] \\
\hline 4 & Elastic Plastic Thermal & & & & Y & & & & MT, PL \\
\hline 5 & Soil and Foam & & & & & & & Y & FM, SL \\
\hline 6 & Linear Viscoelastic & Y & & & & & & & RB \\
\hline 7 & Blatz-Ko Rubber & & & & & & & & RB \\
\hline 8 & High Explosive Burn & & & Y & & & & & HY \\
\hline 9 & Null Material & Y & Y & Y & & & & Y & FL, HY \\
\hline 10 & Elastic Plastic Hydro(dynamic) & & Y & Y & & & & Y & HY, MT \\
\hline 11 & Steinberg: Temp. Dependent Elastoplastic & Y & Y & Y & Y & & & Y & HY, MT \\
\hline 12 & Isotropic Elastic Plastic & & & & & & & & MT \\
\hline 13 & Isotropic Elastic with Failure & & Y & & & & & Y & MT \\
\hline 14 & Soil and Foam with Failure & & Y & & & & & Y & FM, SL \\
\hline 15 & Johnson/Cook Plasticity Model & Y & Y & Y & Y & & Y & Y & HY, MT \\
\hline 16 & Pseudo Tensor Geological Model & Y & Y & Y & & & Y & Y & SL \\
\hline 17 & Oriented Crack (Elastoplastic w/ Fracture) & & Y & Y & & Y & & Y & \[
\begin{gathered}
\text { HY, MT, } \\
\text { PL, CR }
\end{gathered}
\] \\
\hline 18 & Power Law Plasticity (Isotropic) & Y & & & & & & & MT, PL \\
\hline 19 & Strain Rate Dependent Plasticity & Y & Y & & & & & & MT, PL \\
\hline 20 & Rigid & & & & & & & & \\
\hline 21 & Orthotropic Thermal (Elastic) & & & & Y & Y & & & GN \\
\hline 22 & Composite Damage & & Y & & & Y & & Y & CM \\
\hline 23 & Temperature Dependent Orthotropic & & & & Y & Y & & & CM \\
\hline 24 & Piecewise Linear Plasticity (Isotropic) & Y & Y & & & & & & MT, PL \\
\hline 25 & Inviscid Two Invariant Geologic Cap & & Y & & & & & Y & SL \\
\hline 26 & Honeycomb & Y & Y & & & Y & & Y & \[
\begin{gathered}
\text { CM, FM, } \\
\text { SL }
\end{gathered}
\] \\
\hline 27 & Mooney-Rivlin Rubber & & & & & & & Y & RB \\
\hline 28 & Resultant Plasticity & & & & & & & & MT \\
\hline 29 & Force Limited Resultant Formulation & & & & & & & Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} & \[
\begin{gathered}
\underset{\sim}{\underset{\sim}{c}} \\
\underset{\sim}{c} \\
\hline
\end{gathered}
\] & \[
\stackrel{-1}{\gtrless}
\] & \[
\begin{aligned}
& \infty \\
& \text { ® }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{00}{2} \\
& \gtrless
\end{aligned}
\] & \[
\sum
\] & \(\stackrel{\sim}{\sim}\) & APPS \\
\hline 30 & Shape Memory & & & & & & & & MT \\
\hline 31 & Frazer-Nash Rubber & & & & & & & Y & RB \\
\hline 32 & Laminated Glass (Composite) & & Y & & & & & & CM, GL \\
\hline 33 & Barlat Anisotropic Plasticity & & & & & Y & & & CR, MT \\
\hline 33_96 & Barlat YLD96 & Y & & & & Y & & & MT \\
\hline 34 & Fabric & & & & & Y & & Y & F \\
\hline 35 & Plastic-Green Naghdi Rate & Y & & & & & & & MT \\
\hline 36 & Three-Parameter Barlat Plasticity & Y & & & Y & Y & & & MT \\
\hline 37 & Transversely Anisotropic Elastic Plastic & & & & & Y & & & MT \\
\hline 38 & Blatz-Ko Foam & & & & & & & & FM, PL \\
\hline 39 & FLD Transversely Anisotropic & & & & & Y & & & MT \\
\hline 40 & Nonlinear Orthotropic & & Y & & Y & Y & & Y & CM \\
\hline 41-50 & User Defined Materials & Y & Y & Y & Y & Y & Y & Y & GN \\
\hline 51 & Bamman (Temp/Rate Dependent Plasticity) & Y & & & Y & & & & GN \\
\hline 52 & Bamman Damage & Y & Y & & Y & & Y & & MT \\
\hline 53 & Closed cell foam (Low density polyurethane) & & & & & & & & FM \\
\hline 54 & Composite Damage with Chang Failure & & Y & & & Y & Y & Y & CM \\
\hline 55 & Composite Damage with Tsai-Wu Failure & & Y & & & Y & Y & Y & CM \\
\hline 57 & Low Density Urethane Foam & Y & Y & & & & & Y & FM \\
\hline 58 & Laminated Composite Fabric & & Y & & & Y & Y & Y & CM, F \\
\hline 59 & Composite Failure (Plasticity Based) & & Y & & & Y & & Y & CM, CR \\
\hline 60 & Elastic with Viscosity (Viscous Glass) & Y & & & Y & & & & GL \\
\hline 61 & Kelvin-Maxwell Viscoelastic & Y & & & & & & & FM \\
\hline 62 & Viscous Foam (Crash dummy Foam) & Y & & & & & & & FM \\
\hline 63 & Isotropic Crushable Foam & Y & & & & & & Y & FM \\
\hline 64 & Rate Sensitive Powerlaw Plasticity & Y & & & & & & & MT \\
\hline 65 & Zerilli-Armstrong (Rate/Temp Plasticity) & Y & & Y & Y & & & Y & MT \\
\hline 66 & Linear Elastic Discrete Beam & Y & & & & Y & & & \\
\hline 67 & Nonlinear Elastic Discrete Beam & Y & & & & Y & & Y & \\
\hline 68 & Nonlinear Plastic Discrete Beam & Y & Y & & & Y & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} & \[
\begin{gathered}
\underset{\sim}{\underset{\sim}{c}} \\
\underset{\sim}{c} \\
\hline
\end{gathered}
\] & \[
\underset{\underset{\sim}{\underset{4}{4}}}{\frac{1}{2}}
\] & \[
\begin{aligned}
& \infty \\
& \text { O- }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \frac{2}{2}
\end{aligned}
\] & \[
\sum_{\Delta}^{i}
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\square}}\) & APPS \\
\hline 69 & SID Damper Discrete Beam & Y & & & & & & & \\
\hline 70 & Hydraulic Gas Damper Discrete Beam & Y & & & & & & & \\
\hline 71 & Cable Discrete Beam (Elastic) & & & & & & & Y & Cables \\
\hline 72 & Concrete Damage (incl. Release III) & Y & Y & Y & & & Y & Y & SL \\
\hline 73 & Low Density Viscous Foam & Y & Y & & & & & Y & FM \\
\hline 74 & Elastic Spring Discrete Beam & Y & Y & & & & & Y & \\
\hline 75 & Bilkhu/Dubois Foam & & & & & & & Y & FM \\
\hline 76 & General Viscoelastic (Maxwell Model) & Y & & & Y & & & Y & RB \\
\hline 77 & Hyperelastic and Ogden Rubber & Y & & & & & & Y & RB \\
\hline 78 & Soil Concrete & & Y & & & & Y & Y & SL \\
\hline 79 & Hysteretic Soil (Elasto-Perfectly Plastic) & & Y & & & & & Y & SL \\
\hline 80 & Ramberg-Osgood & & & & & & & & SL \\
\hline 81 & Plasticity with Damage & Y & Y & & & & Y & & MT, PL \\
\hline 82 & Plasticity with Damage Ortho & Y & Y & & & Y & Y & & \\
\hline 83 & Fu Chang Foam & Y & Y & & & & Y & Y & FM \\
\hline 84 & Winfrith Concrete & Y & & & & & & Y & FM, SL \\
\hline 86 & Orthotropic Viscoelastic & Y & & & & Y & & & RB \\
\hline 87 & Cellular Rubber & Y & & & & & & Y & RB \\
\hline 88 & MTS & Y & & Y & Y & & & & MT \\
\hline 89 & Plasticity Polymer & Y & & & & & & Y & PL \\
\hline 90 & Acoustic & & & & & & & Y & FL \\
\hline 91 & Soft Tissue & Y & Y & & & Y & & Y & BIO \\
\hline 92 & Soft Tissue (viscous) & & & & & & & & \\
\hline 93 & Elastic 6DOF Spring Discrete Beam & Y & Y & & & Y & & Y & \\
\hline 94 & Inelastic Spring Discrete Beam & Y & Y & & & & & Y & \\
\hline 95 & Inelastic 6DOF Spring Discrete Beam & Y & Y & & & Y & & Y & \\
\hline 96 & Brittle Damage & Y & Y & & & Y & Y & Y & SL \\
\hline 97 & General Joint Discrete Beam & & & & & & & & \\
\hline 98 & Simplified Johnson Cook & Y & Y & & & & & & MT \\
\hline 99 & Simpl. Johnson Cook Orthotropic Damage & Y & Y & & & Y & Y & & MT \\
\hline 100 & Spotweld & Y & Y & & & & Y & Y & MT \\
\hline 101 & GE Plastic Strain Rate & Y & Y & & & & & Y & PL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} & \[
\begin{gathered}
\underset{\sim}{\underset{\sim}{r}} \\
\underset{\sim}{c} \\
\hline
\end{gathered}
\] & \[
\frac{1}{\underset{4}{4}}
\] & \[
\begin{aligned}
& \infty \\
& \text { O }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \underset{<}{2}
\end{aligned}
\] & \[
\sum_{\Delta}
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\square}}\) & APPS \\
\hline 102(_T) & Inv. Hyperbolic Sin (Thermal) & Y & & & Y & & & & MT, PL \\
\hline 103 & Anisotropic Viscoplastic & Y & Y & & & Y & & & MT \\
\hline 103P & Anisotropic Plastic & & & & & Y & & & MT \\
\hline 104 & Damage 1 & Y & Y & & & Y & Y & & MT \\
\hline 105 & Damage 2 & Y & Y & & & & Y & & MT \\
\hline 106 & Elastic Viscoplastic Thermal & Y & & & Y & & & & PL \\
\hline 107 & Modified Johnson Cook & Y & Y & & Y & & Y & & MT \\
\hline 108 & Ortho Elastic Plastic & & & & & Y & & & \\
\hline 110 & Johnson Holmquist Ceramics & Y & Y & & & & Y & Y & CR, GL \\
\hline 111 & Johnson Holmquist Concrete & Y & Y & & & & Y & Y & SL \\
\hline 112 & Finite Elastic Strain Plasticity & Y & & & & & & & PL \\
\hline 113 & Transformation Induced Plasticity (TRIP) & & & & Y & & & & MT \\
\hline 114 & Layered Linear Plasticity & Y & Y & & & & & & \[
\begin{gathered}
\text { MT, PL, } \\
\text { CM }
\end{gathered}
\] \\
\hline 115 & Unified Creep & & & & & & & & GN \\
\hline 115_O & Unified Creep Ortho & & & & & Y & & & GN \\
\hline 116 & Composite Layup & & & & & Y & & & CM \\
\hline 117 & Composite Matrix & & & & & Y & & & CM \\
\hline 118 & Composite Direct & & & & & Y & & & CM \\
\hline 119 & General Nonlinear 6DOF Discrete Beam & Y & Y & & & Y & & Y & \\
\hline 120 & Gurson & Y & Y & & & & Y & Y & MT \\
\hline 121 & General Nonlinear 1DOF Discrete Beam & Y & Y & & & & & Y & \\
\hline 122 & Hill 3RC & & & & & Y & & & MT \\
\hline 122_3D & Hill 3R 3D & & & & & Y & & & MT, CM \\
\hline 122_TAB & Hill 3R Tabulated & & & & & Y & & & MT \\
\hline 123 & Modified Piecewise Linear Plasticity & Y & Y & & & & & & MT, PL \\
\hline 124 & Plasticity Compression Tension & Y & Y & & & & & Y & MT, PL \\
\hline 125 & Kinematic Hardening Transversely Aniso. & & & & & Y & & & MT \\
\hline 126 & Modified Honeycomb & Y & Y & & & Y & Y & Y & CM, FM, SL \\
\hline 127 & Arruda Boyce Rubber & Y & & & & & & & RB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} & \[
\begin{gathered}
\underset{\sim}{\underset{\sim}{c}} \\
\underset{\sim}{c} \\
\hline
\end{gathered}
\] & \[
\underset{\underset{4}{\underset{4}{4}}}{\frac{1}{2}}
\] & \[
\begin{aligned}
& \text { ๗ } \\
& \text { O }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \sum_{<}
\end{aligned}
\] & \[
\sum_{\Delta}^{\infty}
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\square}}\) & APPS \\
\hline 128 & Heart Tissue & & & & & Y & & Y & BIO \\
\hline 129 & Lung Tissue & Y & & & & & & Y & BIO \\
\hline 130 & Special Orthotropic & & & & & Y & & & \\
\hline 131 & Isotropic Smeared Crack & & Y & & & & Y & Y & MT, CM \\
\hline 132 & Orthotropic Smeared Crack & & Y & & & Y & Y & & MT, CM \\
\hline 133 & Barlat YLD2000 & Y & & & Y & Y & & & MT \\
\hline 134 & Viscoelastic Fabric & & & & & & & & \\
\hline 135 & Weak and Strong Texture Model & Y & Y & & & Y & & & MT \\
\hline 136 & Vegter & & & & & Y & & & MT \\
\hline 136_STD & Vegter Standard Input & Y & & & & Y & & & MT \\
\hline 136_2017 & Vegter Simplified Input & Y & & & & Y & & & MT \\
\hline 138 & Cohesive Mixed Mode & & Y & & & Y & Y & Y & AD \\
\hline 139 & Modified Force Limited & & & & & & Y & Y & \\
\hline 140 & Vacuum & & & & & & & & \\
\hline 141 & Rate Sensitive Polymer & Y & & & & & & & PL \\
\hline 142 & Transversely Isotropic Crushable Foam & & & & & & & Y & FM \\
\hline 143 & Wood & Y & Y & & & Y & Y & Y & Wood \\
\hline 144 & Pitzer Crushable Foam & Y & & & & & & Y & FM \\
\hline 145 & Schwer Murray Cap Model & Y & Y & & & & Y & Y & SL \\
\hline 146 & 1DOF Generalized Spring & Y & & & & & & & \\
\hline 147 & FWHA Soil & Y & & & & & Y & Y & SL \\
\hline 147N & FHWA Soil Nebraska & Y & & & & & Y & Y & SL \\
\hline 148 & Gas Mixture & & & & Y & & & & FL \\
\hline 151 & Evolving Microstructural Model of Inelast. & Y & Y & & Y & Y & Y & & MT \\
\hline 153 & Damage 3 & Y & Y & & & & Y & & MT, PL \\
\hline 154 & Deshpande Fleck Foam & & Y & & & & & & FM \\
\hline 155 & Plasticity Compression Tension EOS & Y & Y & Y & & & & Y & Ice \\
\hline 156 & Muscle & Y & & & & & & Y & BIO \\
\hline 157 & Anisotropic Elastic Plastic & & & & & Y & & & MT, CM \\
\hline 158 & Rate-Sensitive Composite Fabric & Y & Y & & & Y & Y & Y & CM \\
\hline 159 & CSCM & Y & Y & & & & Y & Y & SL \\
\hline 160 & ALE incompressible & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\stackrel{\underset{1}{4}}{\underset{4}{2}}
\] & \[
\begin{aligned}
& \text { ๗ } \\
& \text { O }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \sum_{4}
\end{aligned}
\] & \[
\sum
\] & \(\stackrel{\text { ¢ }}{\stackrel{0}{+}}\) & APPS \\
\hline 161,162 & Composite MSC (Dmg) & Y & Y & & & Y & Y & Y & CM \\
\hline 163 & Modified Crushable Foam & Y & & & & & & Y & FM \\
\hline 164 & Brain Linear Viscoelastic & Y & & & & & & & BIO \\
\hline 165 & Plastic Nonlinear Kinematic & & Y & & & & & & MT \\
\hline 166 & Moment Curvature Beam & Y & Y & & & & & Y & CIV \\
\hline 167 & McCormick & Y & & & & & & & MT \\
\hline 168 & Polymer & & & & Y & & & Y & PL \\
\hline 169 & Arup Adhesive & Y & Y & & & Y & & Y & AD \\
\hline 170 & Resultant Anisotropic & & & & & Y & & & PL \\
\hline 171 & Steel Concentric Brace & & & & & & Y & Y & CIV \\
\hline 172 & Concrete EC2 & & Y & & Y & & & Y & SL, MT \\
\hline 173 & Mohr Coulomb & & Y & & & Y & Y & Y & SL \\
\hline 174 & RC Beam & & & & & & Y & Y & SL \\
\hline 175 & Viscoelastic Thermal & Y & & & Y & & & Y & RB \\
\hline 176 & Quasilinear Viscoelastic & Y & Y & & & & Y & Y & BIO \\
\hline 177 & Hill Foam & & & & & & & Y & FM \\
\hline 178 & Viscoelastic Hill Foam (Ortho) & Y & & & & & & Y & FM \\
\hline 179 & Low Density Synthetic Foam & Y & Y & & & Y & Y & Y & FM \\
\hline 181 & Simplified Rubber/Foam & Y & Y & & & & Y & Y & RB, FM \\
\hline 183 & Simplified Rubber with Damage & Y & & & & & Y & Y & RB \\
\hline 184 & Cohesive Elastic & & Y & & & & & Y & AD \\
\hline 185 & Cohesive TH & & Y & & & Y & Y & Y & AD \\
\hline 186 & Cohesive General & & Y & & & Y & Y & Y & AD \\
\hline 187 & Semi-Analytical Model for Polymers 1 & Y & Y & & & & Y & Y & PL \\
\hline 187L & SAMP light & Y & & & & & & Y & PL \\
\hline 188 & Thermo Elasto Viscoelastic Creep & Y & & & Y & & & & MT \\
\hline 189 & Anisotropic Thermoelastic & & & & Y & Y & & & \\
\hline 190 & Flow limit diagram 3-Parameter Barlat & & Y & & & Y & & Y & MT \\
\hline 191 & Seismic Beam & & & & & & & Y & CIV \\
\hline 192 & Soil Brick & Y & & & & Y & & Y & SL \\
\hline 193 & Drucker Prager & & & & & & & Y & SL \\
\hline 194 & RC Shear Wall & & Y & & & & Y & Y & CIV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\stackrel{\underset{1}{4}}{\underset{4}{2}}
\] & \[
\begin{aligned}
& \text { © } \\
& \text { B }
\end{aligned}
\] &  & \[
\] & \[
\underset{\Delta}{i}
\] & \(\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \square}}\) & APPS \\
\hline 195 & Concrete Beam & Y & Y & & & & Y & Y & CIV \\
\hline 196 & General Spring Discrete Beam & Y & & & & & & Y & \\
\hline 197 & Seismic Isolator & Y & Y & & & Y & & Y & CIV \\
\hline 198 & Jointed Rock & & Y & & & Y & & Y & SL \\
\hline 199 & Barlat YLD2004 & Y & & & & Y & & & MT \\
\hline 199_27P & Barlat YLD2004 extended to 27 parameters by Aretz & Y & & & & Y & & & MT \\
\hline 202 & Steel EC3 & & Y & & Y & & & & CIV \\
\hline 203 & Hysteretic Reinforcement & & Y & & & Y & Y & Y & CIV \\
\hline 205 & Discrete Beam Point Contact & & Y & & & & & Y & GN, CIV \\
\hline 207 & Simple ANIsotropic SAND (SANISAND) & & & & & Y & & Y & SL \\
\hline 208 & Bolt Beam & & Y & & & & Y & Y & MT \\
\hline 209 & Hysteretic Beam & & Y & & & & Y & Y & CIV \\
\hline 211 & SPR JLR & Y & Y & & & & & & MT \\
\hline 213 & Composite tabulated plasticity and damage & Y & Y & & Y & Y & Y & Y & CM \\
\hline 214 & Dry Fabric & Y & Y & & & Y & Y & Y & \\
\hline 215 & 4A Micromec & Y & Y & & & Y & Y & & CM, PL \\
\hline 216 & Elastic Phase Change & & & & & & & & GN \\
\hline 217 & Orthotropic Elastic Phase Change & & & & & Y & & & GN \\
\hline 218 & Mooney Rivlin Rubber Phase Change & & & & & & & Y & RB \\
\hline 219 & CODAM2 & & Y & & & Y & Y & Y & CM \\
\hline 220 & Rigid Discrete & & & & & & & & \\
\hline 221 & Orthotropic Simplified Damage & & Y & & & Y & Y & Y & CM \\
\hline 224 & Tabulated Johnson Cook & Y & Y & Y & Y & & Y & Y & \[
\begin{gathered}
\text { HY, MT, } \\
\text { PL }
\end{gathered}
\] \\
\hline 224_GYS & Tabulated Johnson Cook GYS & Y & Y & Y & Y & & Y & Y & \begin{tabular}{l}
HY, MT, \\
PL
\end{tabular} \\
\hline 225 & Viscoplastic Mixed Hardening & Y & Y & & & & & & MT, PL \\
\hline 226 & Kinematic hardening Barlat 89 & & & & & Y & & & MT \\
\hline 230 & Elastic Perfectly Matched Layer (PML) & Y & & & & & & & SL \\
\hline 231 & Acoustic PML & & & & & & & & FL \\
\hline 232 & Biot Linear Hysteretic Material & Y & & & & & & & SL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\stackrel{\underset{1}{4}}{\underset{4}{2}}
\] & \[
\begin{aligned}
& \text { © } \\
& \text { B }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{00}{Z}
\end{aligned}
\] & \[
\sum_{i}^{i}
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\square}}\) & APPS \\
\hline 233 & Cazacu Barlat & & & & & Y & & Y & MT \\
\hline 234 & Viscoelastic Loose Fabric & Y & Y & & & Y & & Y & F \\
\hline 235 & Micromechanic Dry Fabric & & & & & Y & & Y & F \\
\hline 236 & SCC_on_RCC & & Y & & & Y & & Y & CM, CR \\
\hline 237 & Biot Hysteretic PML & Y & & & & & & & SL \\
\hline 238 & Piecewise linear plasticity (PERT) & Y & Y & & & & & & MT, PL \\
\hline 240 & Cohesive mixed mode & Y & Y & & & Y & Y & Y & AD \\
\hline 241 & Johnson Holmquist JH1 & Y & Y & & & & Y & Y & CR, GL \\
\hline 242 & Kinematic hardening Barlat 2000 & & & & & Y & & & MT \\
\hline 243 & Hill 90 & Y & & & Y & Y & & & MT \\
\hline 244 & UHS Steel & Y & & & Y & & & & MT \\
\hline 245 & Orthotropic/anisotropic PML & Y & & & & & & & SL \\
\hline 246 & Null material PML & & & Y & & & & & FL \\
\hline 248 & PHS BMW & Y & & & Y & Y & & & MT \\
\hline 249 & Reinforced Thermoplastic & & & & Y & Y & & Y & CM, F \\
\hline \begin{tabular}{l}
\[
249
\] \\
CRASH
\end{tabular} & Reinforced Thermoplastic Crash & & Y & & & Y & Y & Y & CM, F \\
\hline \begin{tabular}{l}
\[
249
\] \\
UDfiber
\end{tabular} & Reinforced Thermoplastic UDfiber & & & & Y & Y & & Y & CM, F \\
\hline 251 & Tailored Properties & Y & Y & & & & & & MT, PL \\
\hline 252 & Toughened Adhesive Polymer & Y & Y & & Y & Y & Y & Y & AD \\
\hline 254 & Generalized Phase Change & Y & & & Y & & & & MT \\
\hline 255 & Piecewise linear plastic thermal & Y & Y & & Y & & & Y & MT \\
\hline 256 & Amorphous solid (finite strain) & Y & & & & & & Y & GL \\
\hline 258 & Non-quadratic failure & Y & Y & & & & Y & & MT \\
\hline 260A & Stoughton non-associated flow & Y & & & & Y & & & MT \\
\hline 260B & Mohr non-associated flow & Y & Y & & Y & Y & Y & & MT \\
\hline 261 & Laminated Fracture Daimler Pinho & Y & Y & & & Y & Y & Y & CM \\
\hline 262 & Laminated Fracture Daimler Camanho & Y & Y & & & Y & Y & Y & CM \\
\hline 263 & Anisotropic plasticity & & & & & Y & & & MT \\
\hline 264 & Tabulated Johnson Cook Orthotropic Plasticity & Y & Y & Y & Y & Y & Y & Y & \begin{tabular}{l}
HY, MT, \\
PL
\end{tabular} \\
\hline 265 & Constrained SPR2/SPR3 & & Y & & & & Y & & MT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Material & umber And Description & \[
\begin{gathered}
\underset{\sim}{\underset{\sim}{c}} \\
\underset{\sim}{\mathbf{c}}
\end{gathered}
\] & \[
\underset{\underset{4}{\underset{~}{4}}}{ }
\] & \[
\begin{aligned}
& 0 \\
& \text { O } \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{01}{2}
\end{aligned}
\] & \[
\sum_{\Delta}^{i}
\] & \(\stackrel{\sim}{¢}\) & APPS \\
\hline 266 & Dispersed tissue & & & & & Y & & & BIO \\
\hline 267 & Eight chain rubber & Y & & & & Y & & & RB, PL \\
\hline 269 & Bergström Boyce rubber & Y & & & & & & & RB \\
\hline 270 & Welding material & & & & Y & & & & MT, PL \\
\hline 271 & Powder compaction & & & & & & & Y & CR, SL \\
\hline 272 & RHT concrete model & Y & Y & & & & Y & Y & SL, CIV \\
\hline 273 & Concrete damage plastic & Y & Y & & & & Y & Y & SL \\
\hline 274 & Paper & & & & & Y & & Y & CM, PL \\
\hline 275 & Smooth viscoelastic viscoplastic & Y & & & & & & & MT, PL \\
\hline 276 & Chronological viscoelastic & Y & & & Y & & & & RB \\
\hline 277 & Adhesive curing viscoelastic & Y & & & Y & & & & AD \\
\hline 278 & CF Micromechanics & Y & Y & & Y & Y & & & CM \\
\hline 279 & Cohesive Paper & & Y & & & & & Y & AD \\
\hline 280 & Glass & & & & & Y & Y & Y & GL \\
\hline 291 & Shape Memory Alloy & & & & Y & Y & & Y & MT \\
\hline 292 & Isotropic Elastic for Peridynamic Solids & & Y & & & & & & \[
\begin{aligned}
& \text { GL, CR, } \\
& \text { PL, SL }
\end{aligned}
\] \\
\hline 292A & Elastic for Peridynamic Laminates & & Y & & & Y & & & CM \\
\hline 293 & COMPRF & Y & & & & Y & & Y & CM \\
\hline 295 & Anisotropic hyperelastic & & & & & Y & & Y & \[
\begin{gathered}
\mathrm{BIO}, \\
\mathrm{CM}, \mathrm{RB}
\end{gathered}
\] \\
\hline 296 & Soldering metal in semiconductor packaging & Y & & & Y & & & & MT \\
\hline 303 & Machine-learning base multiscale material model for fiber-reinforced composites & & & & & Y & & Y & CM \\
\hline 305 & Hot Plate Rolling & Y & & & Y & & & & MT \\
\hline 307 & Generalized Adhesive Curing & Y & Y & & Y & Y & Y & Y & AD \\
\hline 317 & RRR Polymer & Y & & & & & & & PL \\
\hline 318 & TNM Polymer & Y & & & Y & & & & PL \\
\hline 319 & Incompressible Fluids with ISPG & & & & & & & & FL \\
\hline 326 & Gaskets & & & & & & & Y & AD \\
\hline ALE_01 & ALE Vacuum & & & & & & & & FL \\
\hline ALE_02 & ALE Gas Mixture & & & & Y & & & & FL \\
\hline ALE_03 & ALE Viscous & & & Y & & & & Y & FL \\
\hline \multicolumn{2}{|l|}{R15@d71677e2e (02/29/24)} & & & & & & & & 2-19 (MAT) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\frac{1}{\underset{4}{4}}
\] & \[
\begin{aligned}
& \text { ๗ } \\
& \text { O }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \underset{<}{2}
\end{aligned}
\] & \[
\sum
\] & \(\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\square}}\) & APPS \\
\hline ALE_04 & ALE Mixing Length & & & & & & & & FL \\
\hline ALE_05 & ALE Incompressible & & & & & & & & FL \\
\hline ALE_06 & ALE Herschel & & & Y & & & & Y & FL \\
\hline ISPG_01 & Incompressible SPG Carreau model & Y & & & Y & & & & FL \\
\hline ISPG_02 & Incompressible SPG Cross model & Y & & & Y & & & & FL \\
\hline ISPG_03 & Incompressible SPG Netwonian flow behavior of an incompressible free surface flow & & & & Y & & & & FL \\
\hline SPH_01 & SPH Viscous & & & Y & & & & Y & FL \\
\hline SPH_02 & SPH Incompressible Fluid & & & & & & & Y & FL \\
\hline SPH_03 & SPH Incompressible Structure & & & & & & & & FL \\
\hline S1 & Spring Elastic (Linear) & & & & & & & & \\
\hline S2 & Damper Viscous (Linear) & Y & & & & & & & \\
\hline S3 & Spring Elastoplastic (Isotropic) & & & & & & & & \\
\hline S4 & Spring Nonlinear Elastic & Y & & & & & & Y & \\
\hline S5 & Damper Nonlinear Viscous & Y & & & & & & Y & \\
\hline S6 & Spring General Nonlinear & & & & & & & Y & \\
\hline S7 & Spring Maxwell (3-Parameter Viscoelastic) & Y & & & & & & & \\
\hline S8 & Spring Inelastic (Tension or Compression) & & & & & & & Y & \\
\hline S13 & Spring Trilinear Degrading & & Y & & & & Y & & CIV \\
\hline S14 & Spring Squat Shearwall & & & & & & Y & & CIV \\
\hline S15 & Spring Muscle & Y & & & & & & Y & BIO \\
\hline B1 & Seatbelt & & & & & & & Y & \\
\hline T01 & Thermal Isotropic & & & & Y & & & & HT \\
\hline T02 & Thermal Orthotropic & & & & Y & Y & & & HT \\
\hline T03 & Thermal Isotropic (Temp Dependent) & & & & Y & & & & HT \\
\hline T04 & Thermal Orthotropic (Temp Dependent) & & & & Y & Y & & & HT \\
\hline T05 & Thermal Discrete Beam & & & & Y & & & & HT \\
\hline T06 & Thermal chemical reaction & & & & Y & & & & HT \\
\hline T07 & Thermal CWM (Welding) & & & & Y & & & & HT \\
\hline T08 & Thermal Orthotropic(Temp dep-load curve) & & & & Y & Y & & & HT \\
\hline T09 & Thermal Isotropic (Phase Change) & & & & Y & & & & HT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Material Number And Description} &  & \[
\frac{1}{\underset{\sim}{4}}
\] & \[
\begin{aligned}
& \infty \\
& \text { O }
\end{aligned}
\] &  & \begin{tabular}{l} 
O \\
\hline 8 \\
2
\end{tabular} & \(\sum_{i}^{\text {¢ }}\) & \(\stackrel{\sim}{\square}\) & APPS \\
\hline T10 & Thermal Isotropic (Temp dep-load curve) & & & & Y & & & & HT \\
\hline T11 & Thermal User Defined & & & & Y & & & & HT \\
\hline T17 & Thermal Chemical Reaction Orthotropic & & & & Y & Y & & & HT \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}

\section*{Alphabetized Materials List}
\begin{tabular}{ll}
\hline Material Keyword & Number \\
\hline *EOS_GASKET & *EOS_015 \\
*EOS_GRUNEISEN & *EOS_004 \\
*EOS_IDEAL_GAS & *EOS_012 \\
*EOS_IGNITION_AND_GROWTH_OF_REACTION_IN_HE & *EOS_007 \\
*EOS_JWL & *EOS_002 \\
*EOS_JWLB & *EOS_014 \\
*EOS_LINEAR_POLYNOMIAL & *EOS_001 \\
*EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK & *EOS_006 \\
*EOS_MIE_GRUNEISEN & *EOS_016 \\
*EOS_MURNAGHAN & *EOS_019 \\
*EOS_PHASE_CHANGE & *EOS_013 \\
*EOS_PROPELLANT_DEFLAGRATION & *EOS_010 \\
*EOS_RATIO_OF_POLYNOMIALS & *EOS_005 \\
*EOS_SACK_TUESDAY & *EOS_003 \\
*EOS_TABULATED & *EOS_009 \\
*EOS_TABULATED_COMPACTION & *EOS_008 \\
*EOS_TENSOR_PORE_COLLAPSE & *EOS_011 \\
*EOS_USER_DEFINED & *EOS_021-*EOS_030 \\
*MAT_OOPTION\}TROPIC_ELASTIC & *MAT_002 \\
*MAT_1DOF_GENERALIZED_SPRING & *MAT_146 \\
*MAT_3-PARAMETER_BARLAT & *MAT_036 \\
*MAT_4A_MICROMEC & \\
*MAT_ACOUSTIC & \\
*MAT_ADD_AIRBAG_POROSITY_LEAKAGE & \\
*MAT_ADD_CHEM_SHRINKAGE & \\
*MAT_ADD_COHESIVE & \\
*MAT_ADD_DAMAGE_DIEM & \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_ADD_DAMAGE_GISSMO & \\
\hline *MAT_ADD_EROSION & \\
\hline *MAT_ADD_FATIGUE & \\
\hline *MAT_ADD_GENERALIZED_DAMAGE & \\
\hline *MAT_ADD_PERMEABILITY & \\
\hline *MAT_ADD_PORE_AIR & \\
\hline *MAT_ADD_SOC_EXPANSION & \\
\hline *MAT_ADD_THERMAL_EXPANSION & \\
\hline *MAT_ADHESIVE_CURING_VISCOELASTIC & *MAT_277 \\
\hline *MAT_ALE_GAS_MIXTURE & *MAT_ALE_02 \\
\hline *MAT_ALE_HERSCHEL & *MAT_ALE_06 \\
\hline *MAT_ALE_INCOMPRESSIBLE & *MAT_160 \\
\hline *MAT_ALE_MIXING_LENGTH & *MAT_ALE_04 \\
\hline *MAT_ALE_VACUUM & *MAT_ALE_01 \\
\hline *MAT_ALE_VISCOIS & *MAT_ALE_03 \\
\hline *MAT_AMORPHOUS_SOLIDS_FINITE_STRAIN & *MAT_256 \\
\hline *MAT_ANAND_VISCOPLASTICITY & *MAT_296 \\
\hline *MAT_ANISOTROPIC_ELASTIC & *MAT_002_ANISO \\
\hline *MAT_ANISOTROPIC_ELASTIC_PLASTIC & *MAT_157 \\
\hline *MAT_ANISOTROPIC_HYPERELASTIC & *MAT_295 \\
\hline *MAT_ANISOTROPIC_PLASTIC & *MAT_103_P \\
\hline *MAT_ANISOTROPIC_THERMOELASTIC & *MAT_189 \\
\hline *MAT_ANISOTROPIC_VISCOPLASTIC & *MAT_103 \\
\hline *MAT_ARRUDA_BOYCE_RUBBER & *MAT_127 \\
\hline *MAT_ARUP_ADHESIVE & *MAT_169 \\
\hline *MAT_BAMMAN & *MAT_051 \\
\hline *MAT_BAMMAN_DAMAGE & *MAT_052 \\
\hline *MAT_BARLAT_ANISOTROPIC_PLASTICITY & *MAT_033 \\
\hline *MAT_BARLAT_YLD2000 & *MAT_133 \\
\hline *MAT_BARLAT_YLD2004 & *MAT_199 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_BARLAT_YLD2004_27P & *MAT_199_27P \\
\hline *MAT_BARLAT_YLD96 & *MAT_033_96 \\
\hline *MAT_BERGSTROM_BOYCE_RUBBER & *MAT_269 \\
\hline *MAT_BILKHU/DUBOIS_FOAM & *MAT_075 \\
\hline *MAT_BIOT_HYSTERETIC & *MAT_232 \\
\hline *MAT_BLATZ-KO_FOAM & *MAT_038 \\
\hline *MAT_BLATZ-KO_RUBBER & *MAT_007 \\
\hline *MAT_BOLT_BEAM & *MAT_208 \\
\hline *MAT_BRAIN_LINEAR_VISCOELASTIC & *MAT_164 \\
\hline *MAT_BRITTLE_DAMAGE & *MAT_096 \\
\hline *MAT_CABLE_DISCRETE_BEAM & *MAT_071 \\
\hline *MAT_CAZACU_BARLAT & *MAT_233 \\
\hline *MAT_CELLULAR_RUBBER & *MAT_087 \\
\hline *MAT_CF_MICROMECHANICS & *MAT_278 \\
\hline *MAT_CHRONOLOGICAL_VISCOELASTIC & *MAT_276 \\
\hline *MAT_CLOSED_CELL_FOAM & *MAT_053 \\
\hline *MAT_CODAM2 & *MAT_219 \\
\hline *MAT_COHESIVE_ELASTIC & *MAT_184 \\
\hline *MAT_COHESIVE_GASKET & *MAT_326 \\
\hline *MAT_COHESIVE_GENERAL & *MAT_186 \\
\hline *MAT_COHESIVE_MIXED_MODE & *MAT_138 \\
\hline *MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE & *MAT_240 \\
\hline *MAT_COHESIVE_PAPER & *MAT_279 \\
\hline *MAT_COHESIVE_TH & *MAT_185 \\
\hline *MAT_COMPOSITE_DAMAGE & *MAT_022 \\
\hline *MAT_COMPOSITE_DIRECT & *MAT_118 \\
\hline *MAT_COMPOSITE_DMG_MSC & *MAT_162 \\
\hline *MAT_COMPOSITE_FAILURE_\{OPTION\}_MODEL & *MAT_059 \\
\hline *MAT_COMPOSITE_LAYUP & *MAT_116 \\
\hline *MAT_COMPOSITE_MATRIX & *MAT_117 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_COMPOSITE_MSC & *MAT_161 \\
\hline *MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE & *MAT_213 \\
\hline *MAT_COMPRF & *MAT_293 \\
\hline *MAT_CONCRETE_BEAM & *MAT_195 \\
\hline *MAT_CONCRETE_DAMAGE & *MAT_072 \\
\hline *MAT_CONCRETE_DAMAGE_PLASTIC_MODEL & *MAT_273 \\
\hline *MAT_CONCRETE_DAMAGE_REL3 & *MAT_072R3 \\
\hline *MAT_CONCRETE_EC2 & *MAT_172 \\
\hline *MAT_CONSTRAINED & *MAT_265 \\
\hline *MAT_CRUSHABLE_FOAM & *MAT_063 \\
\hline *MAT_CSCM_\{OPTION\} & *MAT_159 \\
\hline *MAT_CWM & *MAT_270 \\
\hline *MAT_DAMAGE_1 & *MAT_104 \\
\hline *MAT_DAMAGE_2 & *MAT_105 \\
\hline *MAT_DAMAGE_3 & *MAT_153 \\
\hline *MAT_DAMPER_NONLINEAR_VISCOUS & *MAT_S05 \\
\hline *MAT_DAMPER_VISCOUS & *MAT_S02 \\
\hline *MAT_DESHPANDE_FLECK_FOAM & *MAT_154 \\
\hline *MAT_DISCRETE_BEAM_POINT_CONTACT & *MAT_205 \\
\hline *MAT_DMN_COMPOSITE_FRC & *MAT_303 \\
\hline *MAT_DRUCKER_PRAGER & *MAT_193 \\
\hline *MAT_DRY_FABRIC & *MAT_214 \\
\hline *MAT_EIGHT_CHAIN_RUBBER & *MAT_267 \\
\hline *MAT_ELASTIC & *MAT_001 \\
\hline *MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM & *MAT_093 \\
\hline *MAT_ELASTIC_FLUID & *MAT_001_FLUID \\
\hline *MAT_ELASTIC_PERI & *MAT_292 \\
\hline *MAT_ELASTIC_PERI_LAMINATE & *MAT_292A \\
\hline *MAT_ELASTIC_PHASE_CHANGE & *MAT_216 \\
\hline *MAT_ELASTIC_PLASTIC_HYDRO_\{OPTION\} & *MAT_010 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_ELASTIC_PLASTIC_THERMAL & *MAT_004 \\
\hline *MAT_ELASTIC_SPRING_DISCRETE_BEAM & *MAT_074 \\
\hline *MAT_ELASTIC_VISCOPLASTIC_THERMAL & *MAT_106 \\
\hline *MAT_ELASTIC_WITH_VISCOSITY & *MAT_060 \\
\hline *MAT_ELASTIC_WITH_VISCOSITY_CURVE & *MAT_060C \\
\hline *MAT_EMMI & *MAT_151 \\
\hline *MAT_ENHANCED_COMPOSITE_DAMAGE & *MAT_054-055 \\
\hline *MAT_EXTENDED_3-PARAMETER_BARLAT & *MAT_036E \\
\hline *MAT_FABRIC & *MAT_034 \\
\hline *MAT_FABRIC_MAP & *MAT_034M \\
\hline *MAT_FHWA_SOIL & *MAT_147 \\
\hline *MAT_FHWA_SOIL_NEBRASKA & *MAT_147_N \\
\hline *MAT_FINITE_ELASTIC_STRAIN_PLASTICITY & *MAT_112 \\
\hline *MAT_FLD_3-PARAMETER_BARLAT & *MAT_190 \\
\hline *MAT_FLD_TRANSVERSELY_ANISOTROPIC & *MAT_039 \\
\hline *MAT_FORCE_LIMITED & *MAT_029 \\
\hline *MAT_FRAZER_NASH_RUBBER_MODEL & *MAT_031 \\
\hline *MAT_FU_CHANG_FOAM & *MAT_083 \\
\hline *MAT_GAS_MIXTURE & *MAT_148 \\
\hline *MAT_GENERAL_JOINT_DISCRETE_BEAM & *MAT_097 \\
\hline *MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM & *MAT_121 \\
\hline *MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM & *MAT_119 \\
\hline *MAT_GENERAL_SPRING_DISCRETE_BEAM & *MAT_196 \\
\hline *MAT_GENERAL_VISCOELASTIC & *MAT_076 \\
\hline *MAT_GENERALIZED_ADHESIVE_CURING & *MAT_307 \\
\hline *MAT_GENERALIZED_PHASE_CHANGE & *MAT_254 \\
\hline *MAT_GEOLOGIC_CAP_MODEL & *MAT_025 \\
\hline *MAT_GEPLASTIC_SRATE_2000a & *MAT_101 \\
\hline *MAT_GLASS & *MAT_280 \\
\hline *MAT_GURSON & *MAT_120 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_GURSON_JC & *MAT_120_JC \\
\hline *MAT_GURSON_RCDC & *MAT_120_RCDC \\
\hline *MAT_HEART_TISSUE & *MAT_128 \\
\hline *MAT_HIGH_EXPLOSIVE_BURN & *MAT_008 \\
\hline *MAT_HILL_3R & *MAT_122 \\
\hline *MAT_HILL_3R_3D & *MAT_122_3D \\
\hline *MAT_HILL_3R_TABULATED & *MAT_122_TAB \\
\hline *MAT_HILL_90 & *MAT_243 \\
\hline *MAT_HILL_FOAM & *MAT_177 \\
\hline *MAT_HONEYCOMB & *MAT_026 \\
\hline *MAT_HOT_PLATE_ROLLING & *MAT_305 \\
\hline *MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM & *MAT_070 \\
\hline *MAT_HYPERELASTIC_RUBBER & *MAT_077_H \\
\hline *MAT_HYSTERETIC_BEAM & *MAT_209 \\
\hline *MAT_HYSTERETIC_REINFORCEMENT & *MAT_203 \\
\hline *MAT_HYSTERETIC_SOIL & *MAT_079 \\
\hline *MAT_IFPD & *MAT_319 \\
\hline *MAT_INELASTC_6DOF_SPRING_DISCRETE_BEAM & *MAT_095 \\
\hline *MAT_INELASTIC_6DOF_SPRING_DISCRETE_BEAM & *MAT_095 \\
\hline *MAT_INELASTIC_SPRING_DISCRETE_BEAM & *MAT_094 \\
\hline *MAT_INV_HYPERBOLIC_SIN(_THERMAL) & *MAT_102(_T) \\
\hline *MAT_ISOTROPIC_ELASTIC_FAILURE & *MAT_013 \\
\hline *MAT_ISOTROPIC_ELASTIC_PLASTIC & *MAT_012 \\
\hline *MAT_ISOTROPIC_SMEARED_CRACK & *MAT_131 \\
\hline *MAT_ISPG_CARREAU & *MAT_ISPG_01 \\
\hline *MAT_ISPG_CROSSMODEL & *MAT_ISPG_02 \\
\hline *MAT_ISPG_ISO_NEWTONIAN & *MAT_ISPG_03 \\
\hline *MAT_JOHNSON_COOK & *MAT_015 \\
\hline *MAT_JOHNSON_HOLMQUIST_CERAMICS & *MAT_110 \\
\hline *MAT_JOHNSON_HOLMQUIST_CONCRETE & *MAT_111 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_JOHNSON_HOLMQUIST_JH1 & *MAT_241 \\
\hline *MAT_JOINTED_ROCK & *MAT_198 \\
\hline *MAT_KELVIN-MAXWELL_VISCOELASTIC & *MAT_061 \\
\hline *MAT_KINEMATIC_HARDENING_BARLAT2000 & *MAT_242 \\
\hline *MAT_KINEMATIC_HARDENING_BARLAT89 & *MAT_226 \\
\hline *MAT_KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC & *MAT_125 \\
\hline *MAT_LAMINATED_COMPOSITE_FABRIC & *MAT_058 \\
\hline *MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO & *MAT_262 \\
\hline *MAT_LAMINATED_FRACTURE_DAIMLER_PINHO & *MAT_261 \\
\hline *MAT_LAMINATED_GLASS & *MAT_032 \\
\hline *MAT_LAYERED_LINEAR_PLASTICITY & *MAT_114 \\
\hline *MAT_LINEAR_ELASTIC_DISCRETE_BEAM & *MAT_066 \\
\hline *MAT_LOU-YOON_ANISOTROPIC_PLASTICITY & *MAT_263 \\
\hline *MAT_LOW_DENSITY_FOAM & *MAT_057 \\
\hline *MAT_LOW_DENSITY_SYNTHETIC_FOAM_\{OPTION\} & *MAT_179 \\
\hline *MAT_LOW_DENSITY_VISCOUS_FOAM & *MAT_073 \\
\hline *MAT_LUNG_TISSUE & *MAT_129 \\
\hline *MAT_MCCORMICK & *MAT_167 \\
\hline *MAT_MICROMECHANICS_DRY_FABRIC & *MAT_235 \\
\hline *MAT_MODIFIED_CRUSHABLE_FOAM & *MAT_163 \\
\hline *MAT_MODIFIED_FORCE_LIMITED & *MAT_139 \\
\hline *MAT_MODIFIED_HONEYCOMB & *MAT_126 \\
\hline *MAT_MODIFIED_JOHNSON_COOK & *MAT_107 \\
\hline *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY & *MAT_123 \\
\hline *MAT_MODIFIED_ZERILLI_ARMSTRONG & *MAT_065 \\
\hline *MAT_MOHR_COULOMB & *MAT_173 \\
\hline *MAT_MOHR_NON_ASSOCIATED_FLOW & *MAT_260B \\
\hline *MAT_MOMENT_CURVATURE_BEAM & *MAT_166 \\
\hline *MAT_MOONEY-RIVLIN_RUBBER & *MAT_027 \\
\hline *MAT_MOONEY-RIVLIN_PHASE_CHANGE & *MAT_218 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_MTS & *MAT_088 \\
\hline *MAT_MUSCLE & *MAT_156 \\
\hline *MAT_NON_QUADRATIC_FAILURE & *MAT_258 \\
\hline *MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM & *MAT_067 \\
\hline *MAT_NONLINEAR_ORTHOTROPIC & *MAT_040 \\
\hline *MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM & *MAT_068 \\
\hline \multicolumn{2}{|l|}{*MAT_NONLOCAL} \\
\hline *MAT_NULL & *MAT_009 \\
\hline *MAT_OGDEN_RUBBER & *MAT_077_O \\
\hline *MAT_OPTIONTROPIC_ELASTIC & *MAT_002 \\
\hline *MAT_ORIENTED_CRACK & *MAT_017 \\
\hline *MAT_ORTHO_ELASTIC_PLASTIC & *MAT_108 \\
\hline *MAT_ORTHOTROPIC_ELASTIC_PHASE_CHANGE & *MAT_217 \\
\hline *MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE & *MAT_221 \\
\hline *MAT_ORTHOTROPIC_SMEARED_CRACK & *MAT_132 \\
\hline *MAT_ORTHOTROPIC_THERMAL & *MAT_021 \\
\hline *MAT_ORTHOTROPIC_VISCOELASTIC & *MAT_086 \\
\hline *MAT_PAPER & *MAT_274 \\
\hline *MAT_PERT_PIECEWISE_LINEAR_PLASTICITY & *MAT_238 \\
\hline *MAT_PHS_BMW & *MAT_248 \\
\hline *MAT_PIECEWISE_LINEAR_PLASTIC_THERMAL & *MAT_255 \\
\hline *MAT_PIECEWISE_LINEAR_PLASTICITY & *MAT_024 \\
\hline *MAT_PITZER_CRUSHABL_EFOAM & *MAT_144 \\
\hline *MAT_PLASTIC_GREEN-NAGHDI_RATE & *MAT_035 \\
\hline *MAT_PLASTIC_KINEMATIC & *MAT_003 \\
\hline *MAT_PLASTIC_NONLINEAR_KINEMATIC & *MAT_165 \\
\hline *MAT_PLASTICITY_COMPRESSION_TENSION & *MAT_124 \\
\hline *MAT_PLASTICITY_COMPRESSION_TENSION_EOS & *MAT_155 \\
\hline *MAT_PLASTICITY_POLYMER & *MAT_089 \\
\hline *MAT_PLASTICITY_WITH_DAMAGE & *MAT_081 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_PLASTICITY_WITH_DAMAGE_ORTHO(_RCDC) & *MAT_082(_RCDC) \\
\hline *MAT_PML_\{OPTION\}TROPIC_ELASTIC & *MAT_245 \\
\hline *MAT_PML_ACOUSTIC & *MAT_231 \\
\hline *MAT_PML_ELASTIC & *MAT_230 \\
\hline *MAT_PML_ELASTIC_FLUID & *MAT_230 \\
\hline *MAT_PML_HYSTERETIC & *MAT_237 \\
\hline *MAT_PML_NULL & *MAT_246 \\
\hline *MAT_POLYMER & *MAT_168 \\
\hline *MAT_POWDER & *MAT_271 \\
\hline *MAT_POWER_LAW_PLASTICITY & *MAT_018 \\
\hline *MAT_PSEUDO_TENSOR & *MAT_016 \\
\hline *MAT_QUASILINEAR_VISCOELASTIC & *MAT_176 \\
\hline *MAT_RAMBERG-OSGOOD & *MAT_080 \\
\hline *MAT_RATE_SENSITIVE_COMPOSITE_FABRIC & *MAT_158 \\
\hline *MAT_RATE_SENSITIVE_POLYMER & *MAT_141 \\
\hline *MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY & *MAT_064 \\
\hline *MAT_RC_BEAM & *MAT_174 \\
\hline *MAT_RC_SHEAR_WALL & *MAT_194 \\
\hline *MAT_REINFORCED_THERMOPLASTIC & *MAT_249 \\
\hline *MAT_REINFORCED_THERMOPLASTIC_UDFIBER & *MAT_249_UDFIBER \\
\hline *MAT_RESULTANT_ANISOTROPIC & *MAT_170 \\
\hline *MAT_RESULTANT_PLASTICITY & *MAT_028 \\
\hline *MAT_RHT & *MAT_272 \\
\hline *MAT_RIGID & *MAT_020 \\
\hline *MAT_RIGID_DISCRETE & *MAT_220 \\
\hline *MAT_RRR_POLYMER & *MAT_317 \\
\hline *MAT_SAMP-1 & *MAT_187 \\
\hline *MAT_SAMP_LIGHT & *MAT_187L \\
\hline *MAT_SCC_ON_RCC & *MAT_236 \\
\hline *MAT_SCHWER_MURRAY_CAP_MODEL & *MAT_145 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_SEATBELT & *MAT_B01 \\
\hline *MAT_SEISMIC_BEAM & *MAT_191 \\
\hline *MAT_SEISMIC_ISOLATOR & *MAT_197 \\
\hline *MAT_SHAPE_MEMORY & *MAT_030 \\
\hline *MAT_SHAPE_MEMORY_ALLOY & *MAT_291 \\
\hline *MAT_SID_DAMPER_DISCRETE_BEAM & *MAT_069 \\
\hline *MAT_SIMPLIFIED_JOHNSON_COOK & *MAT_098 \\
\hline *MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE & *MAT_099 \\
\hline *MAT_SIMPLIFIED_RUBBER/FOAM_\{OPTION\} & *MAT_181 \\
\hline *MAT_SIMPLIFIED_RUBBER_WITH_DAMAGE & *MAT_183 \\
\hline *MAT_SMOOTH_VISCOELASTIC_VISCOPLASTIC & *MAT_275 \\
\hline *MAT_SOFT_TISSUE & *MAT_091 \\
\hline *MAT_SOFT_TISSUE_VISCO & *MAT_092 \\
\hline *MAT_SOIL_AND_FOAM & *MAT_005 \\
\hline *MAT_SOIL_AND_FOAM_FAILURE & *MAT_014 \\
\hline *MAT_SOIL_BRICK & *MAT_192 \\
\hline *MAT_SOIL_CONCRETE & *MAT_078 \\
\hline *MAT_SOIL_SANISAND & *MAT_207 \\
\hline *MAT_SPECIAL_ORTHOTROPIC & *MAT_130 \\
\hline *MAT_SPH_INCOMPRESSIBLE_FLUID & *MAT_SPH_02 \\
\hline *MAT_SPH_INCOMPRESSIBLE_STRUCTURE & *MAT_SPH_03 \\
\hline *MAT_SPH_VISCOUS & *MAT_SPH_01 \\
\hline *MAT_SPOTWELD_\{OPTION\} & *MAT_100 \\
\hline *MAT_SPOTWELD_DAIMLERCHRYSLER & *MAT_100_DA \\
\hline *MAT_SPR_JLR & *MAT_211 \\
\hline *MAT_SPRING_ELASTIC & *MAT_S01 \\
\hline *MAT_SPRING_ELASTOPLASTIC & *MAT_S03 \\
\hline *MAT_SPRING_GENERAL_NONLINEAR & *MAT_S06 \\
\hline *MAT_SPRING_INELASTIC & *MAT_S08 \\
\hline *MAT_SPRING_MAXWELL & *MAT_S07 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_SPRING_MUSCLE & *MAT_S15 \\
\hline *MAT_SPRING_NONLINEAR_ELASTIC & *MAT_S04 \\
\hline *MAT_SPRING_SQUAT_SHEARWALL & *MAT_S14 \\
\hline *MAT_SPRING_TRILINEAR_DEGRADING & *MAT_S13 \\
\hline *MAT_STEEL_CONCENTRIC_BRACE & *MAT_171 \\
\hline *MAT_STEEL_EC3 & *MAT_202 \\
\hline *MAT_STEINBERG & *MAT_011 \\
\hline *MAT_STEINBERG_LUND & *MAT_011_LUND \\
\hline *MAT_STOUGHTON_NON_ASSOCIATED_FLOW & *MAT_260A \\
\hline *MAT_STRAIN_RATE_DEPENDENT_PLASTICITY & *MAT_019 \\
\hline *MAT_TABULATED_JOHNSON_COOK & *MAT_224 \\
\hline *MAT_TABULATED_JOHNSON_COOK_GYS & *MAT_224_GYS \\
\hline *MAT_TABULATED_JOHNSON_COOK_ORTHO_PLASTICITY & *MAT_264 \\
\hline *MAT_TAILORED_PROPERTIES & *MAT_251 \\
\hline *MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC & *MAT_023 \\
\hline *MAT_THERMAL_CHEMICAL_REACTION & *MAT_T06 \\
\hline *MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC & *MAT_T17 \\
\hline *MAT_THERMAL_CWM & *MAT_T07 \\
\hline *MAT_THERMAL_DISCRETE_BEAM & *MAT_T05 \\
\hline *MAT_THERMAL_ISOTROPIC & *MAT_TO1 \\
\hline *MAT_THERMAL_ISOTROPIC_PHASE_CHANGE & *MAT_T09 \\
\hline *MAT_THERMAL_ISOTROPIC_TD & *MAT_T03 \\
\hline *MAT_THERMAL_ISOTROPIC_TD_LC & *MAT_T10 \\
\hline *MAT_THERMAL_OPTION & *MAT_T00 \\
\hline *MAT_THERMAL_ORTHOTROPIC & *MAT_T02 \\
\hline *MAT_THERMAL_ORTHOTROPIC_TD & *MAT_T04 \\
\hline *MAT_THERMAL_ORTHOTROPIC_TD_LC & *MAT_T08 \\
\hline *MAT_THERMAL_USER_DEFINED & *MAT_T11 \\
\hline *MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP & *MAT_188 \\
\hline *MAT_TISSUE_DISPERSED & *MAT_266 \\
\hline
\end{tabular}

\section*{ALPHABETIZED MATERIALS LIST}
\begin{tabular}{|c|c|}
\hline Material Keyword & Number \\
\hline *MAT_TNM_POLYMER & *MAT_318 \\
\hline *MAT_TOUGHENED_ADHESIVE_POLYMER & *MAT_252 \\
\hline *MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC & *MAT_037 \\
\hline *MAT_TRANSVERSELY_ISOTROPIC_CRUSHABLE_FOAM & *MAT_142 \\
\hline *MAT_TRIP & *MAT_113 \\
\hline *MAT_UHS_STEEL & *MAT_244 \\
\hline *MAT_UNIFIED_CREEP & *MAT_115 \\
\hline *MAT_UNIFIED_CREEP_ORTHO & *MAT_115_O \\
\hline *MAT_USER_DEFINED_MATERIAL_MODELS & *MAT_041-050 \\
\hline *MAT_VACUUM & *MAT_140 \\
\hline *MAT_VEGTER & *MAT_136 \\
\hline *MAT_VEGTER_STANDARD & *MAT_136_STD \\
\hline *MAT_VEGTER_2017 & *MAT_136_2017 \\
\hline *MAT_VISCOELASTIC & *MAT_006 \\
\hline *MAT_VISCOELASTIC_FABRIC & *MAT_134 \\
\hline *MAT_VISCOELASTIC_HILL_FOAM & *MAT_178 \\
\hline *MAT_VISCOELASTIC_LOOSE_FABRIC & *MAT_234 \\
\hline *MAT_VISCOELASTIC_THERMAL & *MAT_175 \\
\hline *MAT_VISCOPLASTIC_MIXED_HARDENING & *MAT_225 \\
\hline *MAT_VISCOUS_FOAM & *MAT_062 \\
\hline *MAT_WINFRITH_CONCRETE_REINFORCEMENT & *MAT_084_REINF \\
\hline *MAT_WINFRITH_CONCRETE & *MAT_084 \\
\hline *MAT_WOOD_\{OPTION\} & *MAT_143 \\
\hline *MAT_WTM_STM & *MAT_135 \\
\hline *MAT_WTM_STM_PLC & *MAT_135_PLC \\
\hline
\end{tabular}

\section*{*MAT_ADD_AIRBAG_POROSITY_LEAKAGE}

This command allows users to model porosity leakage through non-fabric material when such material is used as part of control volume, airbag. It applies to both *AIRBAG_HYBRID and *AIRBAG_WANG_NEFSKE.

\section*{Card Summary:}

Card 1a. This card is included if and only if \(0<X 0<1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & X2 & X3 & ELA & FVOPT & X0 & X1 & \\
\hline
\end{tabular}

Card 1b. This card is included if \(\mathrm{X0}=0\) and \(\mathrm{FVOPT}<7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
\hline
\end{tabular}

Card 1c. This card is included if \(\mathrm{X0}=0\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
\hline
\end{tabular}

Card 1d. This card is included if X0 \(=1\) and FVOPT \(<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
\hline
\end{tabular}

Card 1e. This card is included if \(\mathrm{X0}=1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}

This card is included if and only if \(0<\mathrm{X} 0<1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & X2 & X3 & ELA & FVOPT & X0 & X1 & \\
Type & A & F & F & F & F & F & F & \\
Default & none & none & 1.0 & none & none & none & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

\section*{DESCRIPTION}

Material ID for which the porosity leakage property applies

\section*{VARIABLE}

X2

X3

ELA

FVOPT Fabric venting option.
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.
EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

EQ.7: Leakage is based on gas volume outflow as a function of pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
EQ.8: Leakage is based on gas volume outflow as a function of pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
*MAT_ADD_AIRBAG_POROSITY_LEAKAGE

\section*{VARIABLE}

X0, X1

\section*{DESCRIPTION}

Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area:
\[
A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)
\]

This card is included if X0 \(=0\) and FVOPT \(<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
Type & A & F & F & F & F & F & F & \\
Default & none & opt & 1.0 & none & none & none & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID
FLC Optional fabric porous leakage flow coefficient:
GE.O.O: fabric porous leakage flow coefficient
LT.O.O: \(\mid\) FLC| is the load curve ID of the curve defining FLC as a function of time.

FAC Optional fabric characteristic parameter:
GE.0.0: optional fabric characteristic parameter
LT.O.O: \(|\mathrm{FAC}|\) is the load curve ID of the curve defining FAC as a function of absolute pressure.

ELA Effective leakage area for blocked fabric, ELA.
LT.O.O: |ELA| is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of 10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

FVOPT Fabric venting option.
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

\section*{VARIABLE}

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area:
\[
A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)
\]

This card is included if \(\mathrm{X} 0=0\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
Type & A & F & F & F & F & F & F & \\
Default & none & opt & 1.0 & none & none & none & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

FLC Optional fabric porous leakage flow coefficient:
GE.O.O: fabric porous leakage flow coefficient
LT.0.0: \(|\mathrm{FLC}|\) is the load curve ID of the curve defining FLC as a function of time.

FAC Optional fabric characteristic parameter:

\section*{VARIABLE}

\section*{DESCRIPTION}

GE.0.0: optional fabric characteristic parameter
LT.0.0: FAC defines leakage volume flux rate as a function of absolute pressure. The volume flux (per area) rate (per time) has the unit of velocity and it is equivalent to relative porous gas speed.
\[
\left[\frac{d\left(\mathrm{Vol}_{\text {flux }}\right)}{d t}\right]=\frac{[\text { volume }]}{[\text { area }]} \frac{1}{[\text { time }]}=\frac{[\text { length }]}{[\text { time }]}=[\text { velocity }]
\]

ELA Effective leakage area for blocked fabric, ELA.
LT.O.O: |ELA| is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

FVOPT Fabric venting option.
EQ.7: Leakage is based on gas volume outflow as a function of pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
EQ.8: Leakage is based on gas volume outflow as a function of pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area:
\[
A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)
\]

This card is included if X0 \(=1\) and FVOPT \(<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
Type & A & F & F & F & F & F & F & \\
Default & none & opt & 1.0 & none & none & none & none & \\
\hline
\end{tabular}

VARIABLE
MID
FLC

FAC

ELA

FVOPT

\section*{DESCRIPTION}

Material ID for which the porosity leakage property applies
Optional fabric porous leakage flow coefficient:
GE.0.0: fabric porous leakage flow coefficient
LT.0.0: \(|\mathrm{FLC}|\) is the load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\).

Optional fabric characteristic parameter:
GE.0.0: optional fabric characteristic parameter
LT.O.O: \(|\mathrm{FAC}|\) is the load curve ID defining FAC as a function of the pressure ratio defined as \(r_{p}=P_{\mathrm{air}} / P_{\mathrm{bag}}\). See Remark 2 of *MAT_FABRIC.

Effective leakage area for blocked fabric, ELA.
LT.O.O: \(|\mathrm{ELA}|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of . 10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

Fabric venting option.
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.
*MAT_ADD_AIRBAG_POROSITY_LEAKAGE

\section*{VARIABLE}

X0, X1

\section*{DESCRIPTION}

Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area:
\[
A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)
\]

This card is included if \(\mathrm{X} 0=1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1e & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & FLC & FAC & ELA & FVOPT & X0 & X1 & \\
Type & A & F & F & F & F & F & F & \\
Default & none & opt & 1.0 & none & none & none & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

MID
Material ID for which the porosity leakage property applies
FLC Optional fabric characteristic parameter:
GE.0.0: optional fabric characteristic parameter
LT.O.O: \(|\mathrm{FAC}|\) is the the load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\).

FAC Optional fabric characteristic parameter:
GE.O.O: optional fabric characteristic parameter
LT.O.O: FAC defines leakage volume flux rate as a function of absolute pressure. The volume flux (per area) rate (per time) has the unit of velocity and it is equivalent to relative porous gas speed.
\[
\left[\frac{d\left(\mathrm{Vol}_{\text {flux }}\right)}{d t}\right]=\frac{[\text { volume }]}{[\text { area }]} \frac{1}{[\text { time }]}=\frac{[\text { length }]}{[\text { time }]}=[\text { velocity }]
\]

ELA Effective leakage area for blocked fabric, ELA.
LT.O.O: |ELA| is the load curve ID of the curve defining ELA versus time. The default value of zero assumes that no leakage occurs. A value of 10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

Fabric venting option.
EQ.7: Leakage is based on gas volume outflow as a function of pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
EQ.8: Leakage is based on gas volume outflow as a function of pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area:
\[
A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)
\]

\section*{*MAT_ADD_CHEM_SHRINKAGE}

The ADD_CHEM_SHRINKAGE option allows for adding the chemical shrinkage effect to a material model.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PID & LCID & & & & & & \\
Type & I & 1 & & & & & & \\
Default & none & none & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PID

LCID Load curve ID (see *DEFINE_CURVE) defining the chemical shrinkage coefficient, \(\beta\), or a proxy in experiments for the chemical shrinkage coefficient, \(\alpha\), as a function of temperature, \(T\). If \(\alpha\) as a function of \(T\) is defined, \(\alpha\) is converted to the chemical shrinkage coefficient by LS-DYNA (see Remark 2).

\section*{Remarks:}
1. Chemical Shrinkage Effect on Strain. If the chemical shrinkage effect is included, the strain rate tensor, \(\dot{\varepsilon}\), is given by
\[
\dot{\varepsilon}=\dot{\varepsilon}^{e}+\dot{\varepsilon}^{p}+\dot{\varepsilon}^{c} .
\]

Here, \(\dot{\varepsilon}^{e}\) is the elastic strain rate tensor, \(\dot{\varepsilon}^{p}\) is the plastic strain rate tensor, and \(\dot{\varepsilon}^{c}\) is the chemical shrinkage strain rate tensor. \(\dot{\varepsilon}^{c}\) is given by
\[
\dot{\boldsymbol{\varepsilon}}^{c}=\beta \dot{T} \mathbf{I} .
\]

Here \(\beta\) is the chemical shrinkage coefficient and \(\dot{T}\) is the rate of temperature change.
2. Chemical Shrinkage Coefficient. The chemical shrinkage coefficient can be defined in two ways with LCID: either directly or through the proxy variable from experiments, \(\alpha\). If \(\alpha\) is defined as the ordinate, LS-DYNA internally converts the ordinate of the load curve, LCID, to \(\beta\) :
\[
\beta=(1-\alpha)^{3}-1 .
\]

Note that DATTYP on *DEFINE_CURVE must be set to -100 if LCID defines \(\alpha\) as a function of temperature.
3. Thermal Expansion with Shrinkage Effects. If both thermal expansion and chemical shrinkage effects are modeled in one simulation, the thermal expansion should be defined with *MAT_THERMAL_ISOTROPIC_TITLE. The TITLE keyword option must be defined to distinguish between the thermal expansion and chemical shrinkage.

\section*{*MAT_ADD_COHESIVE}

The ADD_COHESIVE option offers the possibility to use a selection of three-dimensional material models in LS-DYNA in conjunction with cohesive elements. See Remark 1.

Usually the cohesive elements (ELFORM = 19 and 20 of *SECTION_SOLID) can only be used with a small number of material models (41-50, 138, 184, 185, 186, 240). But with this additional keyword, a larger number of standard three-dimensional material models can be used that would only be available for solid elements in general. Currently the following material models are supported: \(1,3,4,6,15,24,41-50,57,81,82,83,89,96,98\), 103, 104, 105, 106, 107, 115, 120, 123, 124, 141, 168, 173, 187, 188, 193, 224, 225, 251, 252, 255,277 , and 307.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PID & ROFLG & INTFAIL & THICK & UNIAX & & & \\
Type & I & F & F & F & F & & & \\
Default & none & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PID
ROFLG Flag for whether density is specified per unit area or volume.
EQ.0.0: Density specified per unit volume (default).
EQ.1.0: Density specified per unit area for controlling the mass of cohesive elements with an initial volume of zero.

INTFAIL The number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 the recommended value.

LT.0.0: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration points have failed.

EQ.0.0: Employs a Newton-Cotes integration scheme. The element will not be deleted even if it satisfies the failure criterion.

GT.0.0: Employs a Gauss integration scheme. The element will be deleted when INTFAIL integration points have

\section*{VARIABLE}

THICK Thickness of the adhesive layer (see Remark 3):
EQ.0.0: The actual thickness of the cohesive element is used.
GT.0.0: User specified thickness.
UNIAX \(\quad\) Flag for enforcing a uniaxial stress state (see Remark 2):
EQ.0.0: No modification of the three-dimensional stress state (default).

EQ.1.0: Stress components that are not used for the cohesive element are reset to 0.0 after each evaluation of the constitutive model.

\section*{Remarks:}
1. Three-dimensional constitutive laws with cohesive elements. Cohesive elements possess 3 kinematic variables, namely, two relative displacements \(\delta_{1}, \delta_{2}\) in tangential directions and one relative displacement \(\delta_{3}\) in normal direction. In a corresponding constitutive model, they are used to compute 3 associated traction stresses \(t_{1}, t_{2}\), and \(t_{3}\). For example, in the elastic case ( \({ }^{*} \mathrm{MAT}_{-}\)COHESIVE_ELASTIC):
\[
\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{ccc}
E_{T} & 0 & 0 \\
0 & E_{T} & 0 \\
0 & 0 & E_{N}
\end{array}\right]\left[\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3}
\end{array}\right] .
\]

Hypoelastic three-dimensional material models for standard solid elements, however, are formulated with respect to 6 independent strain rates and 6 associated stress rates. For isotropic elasticity ( \({ }^{*} \mathrm{MAT}_{\text {_ }}\) ELASTIC):
\(\left[\begin{array}{c}\dot{\sigma}_{x x} \\ \dot{\sigma}_{y y} \\ \dot{\sigma}_{z z} \\ \dot{\sigma}_{x y} \\ \dot{\sigma}_{y z} \\ \dot{\sigma}_{z x}\end{array}\right]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}1-v & v & v & 0 & 0 & 0 \\ v & 1-v & v & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-2 v & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-2 v & 0 \\ 0 & 0 & 0 & 0 & 0 & 1-2 v\end{array}\right]\left[\begin{array}{c}\dot{\varepsilon}_{x x} \\ \dot{\varepsilon}_{y y} \\ \dot{\varepsilon}_{z z} \\ \dot{\varepsilon}_{x y} \\ \dot{\varepsilon}_{y z} \\ \dot{\varepsilon}_{z x}\end{array}\right]\).
To be able to use such three-dimensional material models in a cohesive element environment, an assumption is necessary to transform 3 relative displacements to 6 strain rates. Therefore, we assume that neither lateral expansion nor inplane shearing is possible. Thus,
\[
\left[\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\dot{\varepsilon}_{x x} \\
\dot{\varepsilon}_{y y} \\
\dot{\varepsilon}_{z z} \\
\dot{\varepsilon}_{x y} \\
\dot{\varepsilon}_{y z} \\
\dot{\varepsilon}_{z x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\dot{\delta}_{3} /\left(t+\delta_{3}\right) \\
0 \\
\dot{\delta}_{2} /\left(t+\delta_{3}\right) \\
\dot{\delta}_{1} /\left(t+\delta_{3}\right)
\end{array}\right],
\]
where \(t\) is the initial thickness of the adhesive layer; see parameter THICK. These strain rates are then used in a three-dimensional constitutive model to obtain new Cauchy stresses, where 3 components can finally be used for the cohesive element:
\[
\left[\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\sigma_{x y} \\
\sigma_{y z} \\
\sigma_{z x}
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{z x} \\
\sigma_{y z} \\
\sigma_{z z}
\end{array}\right] .
\]

For hyperelastic material models 57 and 83, the deformation gradient is obtained by an incremental update of the strain rates mentioned above.
2. Forcing uniaxial stress state. As stated in Remark 1, only three values from the six stress components are used for the cohesive element. By default, the remaining stress components are not modified. Consequently, transverse normal stresses, \(\sigma_{x x}\) and \(\sigma_{y y}\), and in-plane shear stress, \(\sigma_{x y}\), will in most cases build-up during the simulation of uniaxial loading of the cohesive zone due to Poisson's effect and the given reduced strain rate tensor. These stress components should not affect the response of the cohesive element for elastic or viscoelastic material models. They will, however, have a significant effect for most materials with plasticity If undesired, the effect can be reduced by setting the UNIAX flag which resets the unused stress components \(\sigma_{x x}, \sigma_{y y}\) and \(\sigma_{x y}\) to 0.0 after each evaluation of the three-dimensional constitutive model.
3. Critical time step. The critical time step size for cohesive elements depends on nodal masses (that is, element volume and density) and the stiffness of the material, \(\max \left(E_{T}, E_{N}\right)\). Note that stiffness has units of stress per length \({ }^{3}\), such as \(\mathrm{N} / \mathrm{mm}^{3}\). With *MAT_ADD_COHESIVE, the elastic moduli (stress unit) from the corresponding 3-dimensional material model are taken and related to the thickness (length unit) of the cohesive element. Thus, the thickness of the cohesive element (either coming from geometry or THICK) changes the critical time step size. Therefore, we recommend using a reasonable value for THICK.
4. Output to d3plot. If this keyword is used with a three-dimensional material model, the output to d3plot or elout is organized as with other material models for cohesive elements; see for example *MAT_184. Instead of the usual six stress components, three traction stresses are written into those databases. The in-
plane shear traction along the 1-2 edge replaces the \(x\) component of stress, the orthogonal in-plane shear traction replaces the \(y\) component of stress, and the traction in the normal direction replaces the \(z\) component of stress.

\section*{*MAT_ADD_DAMAGE_DIEM}

Many of the constitutive models in LS-DYNA do not allow failure and erosion. The ADD_DAMAGE_DIEM option provides a way of including damage and failure in these models. DIEM comprises various "damage initiation and evolution models." See remarks for details.

This keyword originates from a split out of *MAT_ADD_EROSION, where only "sudden" failure criteria without damage remain. It applies to nonlinear element formulations including 2D continuum elements, beam element formulation 1, 3D shell elements (including isogeometric shells), 3D solid elements (including isogeometric solids) and thick shells.

NOTE: All \({ }^{*} \mathrm{MAT}_{1} A D D \_D A M A G E \_D I E M\) commands in a model can be disabled by using *CONTROL_MAT.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & NDIEMC & DINIT & DEPS & NUMFIP & VOLFRAC & & \\
Type & A & F & F & F & F & F & & \\
Default & none & 0.0 & 0.0 & 0.0 & 1.0 & 0.5 & & \\
\hline
\end{tabular}

Data Card Pairs. Include NDIEMC pairs of Cards 2 and 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DITYP & P1 & P2 & P3 & P4 & P5 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DETYP & DCTYP & Q1 & Q2 & Q3 & Q4 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

NDIEMC Number of damage initiation and evolution model (DIEM) criteria to be applied, at most 5 is allowed.

DINIT Damage initialization option:
EQ.O: No action is taken.
EQ.1: Damage history is initiated based on values of the initial plastic strains and the initial strain tensor. This is to be used in multistage analyses.

DEPS Plastic strain increment between evaluation of damage instability and evolution criteria. See Remark 1. The default is zero.

NUMFIP Number or percentage of failed integration points prior to element deletion (default value is 1). NUMFIP does not apply to higher order solid element types \(24,25,26,27,28\), and 29 , rather see the variable VOLFRAC. Also, when the material is a composite defined with *PART_COMPOSITE with different materials through-the-thickness, do not use NUMFIP; use *DEFINE_ELEMENT_EROSION instead.

GT.0.0: Number of integration points which must fail before element is deleted.

LT.0.0: Applies only to shells. |NUMFIP| is the percentage of layers which must fail before an element fails. For shell formulations with 4 integration points per layer, the layer is considered failed if any of the integration points in the layer fails.

\section*{VARIABLE}

DITYP Damage initiation type (see Damage Initiation section):
EQ.0.0: Ductile based on stress triaxiality
EQ.1.0: Shear
EQ.2.0: MSFLD
EQ.3.0: FLD
EQ.4.0: Ductile based on normalized principal stress
Damage initiation parameter:
DITYP.EQ.0.0: Load curve/table ID representing plastic strain at the onset of damage as a function of stress triaxiality \((\eta)\) and optionally plastic strain rate, represented by \(\varepsilon_{D}^{p}\) in the theory below. If the first strain rate value in the table is negative, it is assumed to be given with respect to logarithmic strain rate.
DITYP.EQ.1.0: Load curve/table ID representing plastic strain at onset of damage as a function of shear influence \((\theta)\) and optionally plastic strain rate, represented by \(\varepsilon_{D}^{p}\) in the theory below. If the first strain rate value in the table is negative, it is assumed to be given with respect to logarithmic strain rate.

DITYP.EQ.2.0: Load curve/table ID representing plastic strain at onset of damage as a function of ratio of principal plastic strain rates \((\alpha)\) and optionally plastic strain rate, represented by \(\varepsilon_{D}^{p}\) in the theory below. If the first strain rate value in the table is negative, it is assumed to be given with respect to logarithmic strain rate.
DITYP.EQ.3.0: Load curve/table ID representing plastic strain at onset of damage as a function of ratio of principal plastic strain rates \((\alpha)\) and optionally plastic strain rate, represented by \(\varepsilon_{D}^{p}\) in the theory below. If the first strain rate value in the table is negative, it is assumed to be given with respect

\section*{DESCRIPTION}
to logarithmic strain rate.
DITYP.EQ.4.0: Load curve/table ID representing plastic strain at onset of damage as a function of stress state parameter \((\beta)\) and optionally plastic strain rate, represented by \(\varepsilon_{D}^{p}\) in the theory below. If the first strain rate value in the table is negative, it is assumed to be given with respect to logarithmic strain rate.

P2 Damage initiation parameter:
DITYP.EQ.0.0: Not used
DITYP.EQ.1.0: Pressure influence parameter, \(k_{s}\)
DITYP.EQ.2.0: Layer specification:
EQ.0: Mid layer
EQ.1: Outer layer
DITYP.EQ.3.0: Layer specification:
EQ.0: Mid layer
EQ.1: Outer layer
DITYP.EQ.4.0: Triaxiality influence parameter, \(k_{d}\)
P3 Damage initiation parameter:
DITYP.EQ.0.0: Not used
DITYP.EQ.1.0: Computation of maximum shear stress for shells:
EQ.0: 3-dimensional
EQ.1: 2-dimensional
DITYP.EQ.2.0: Initiation formulation:
EQ.0: Direct
EQ.1: Incremental
DITYP.EQ.3.0: Initiation formulation:
EQ.0: Direct
EQ.1: Incremental
DITYP.EQ.4.0: Not used
P4 Plane stress option for shell elements:
EQ.0.0: Transverse shear stresses, \(\sigma_{y z}\) and \(\sigma_{z x}\), are included in the computation of stress invariants, such as the
triaxiality.
EQ.1.0: Transverse shear stresses, \(\sigma_{y z}\) and \(\sigma_{z x}\), are not included in the computation of stress invariants, such as the triaxiality. Useful in combination with "plane stress" material models, where the transverse shear stresses are also excluded from the yield condition, such as *MAT_024_2D or *MAT_036.

P5 Load curve or table ID representing regularization factor as a function of the characteristic element size (curve) or regularization factor as a function of the characteristic element size and abscissa value of the criterion used (table). The criterion is the curve/table specified in P1. For example, for DITYP \(=0.0\), the regularization factor would depend on stress triaxiality. This factor scales the plastic strain at the onset of damage defined with P1.

DETYP Damage evolution type:
EQ.0.0: Linear softening. Evolution of damage is a function of the plastic displacement after the initiation of damage.
EQ.1.0: Linear softening, Evolution of damage is a function of the fracture energy after the initiation of damage.

DCTYP Damage composition option for multiple criteria:
EQ.-1.0: Damage not coupled to stress
EQ.0.0: Maximum
EQ.1.0: Multiplicative
Q1 Damage evolution parameter:
DETYP.EQ.0.0: Plastic displacement at failure, \(u_{f}^{p}\). A negative value corresponds to a table ID for \(u_{f}^{p}\) as a function of triaxiality and damage.
DETYP.EQ.1.0: Fracture energy at failure, \(G_{f}\)
Q2 Set to 1.0 to output information to log files (messag and d3hsp) when an integration point fails.

Q3
Damage evolution parameter:
DETYP.EQ.0.0: Exponent, \(\alpha\), in nonlinear damage evolution

\section*{VARIABLE}

\section*{DESCRIPTION}
\[
\text { law, activated when } u_{f}^{p}>0 \text { and } \alpha>0 .
\]

\section*{DETYP.EQ.1.0: Not used.}

Load curve or table ID representing regularization factor as a function of the characteristic element size (curve) or regularization factor as a function of the characteristic element size and abscissa value of the criterion used (table). The criterion is the curve/table specified in P1. For example, for DITYP \(=0.0\), the regularization factor would depend on stress triaxiality. If Q4 is input with a negative sign, the second table input should be plastic strain rate instead of the abscissa value. This factor scales the damage evolution parameter Q1.

\section*{Remarks:}
1. DEPS. In DIEM, you may invoke up to 5 damage initiation and evolution criteria. For the sake of efficiency, the parameter DEPS can be used to only check these criteria in quantified increments of plastic strain. In other words, the criteria are only checked when the effective plastic strain goes beyond DEPS, \(2 \times\) DEPS, \(3 \times\) DEPS, etc. For DEPS \(=0\) the checks are performed in each step there is plastic flow. A reasonable value of DEPS could, for instance, be DEPS \(=0.0001\).
2. Damage initiation and evolution variables. Assume that \(n\) initiation/evolution types have been specified in the input deck ( \(n=\) NDIEMC). At each integration point a damage initiation variable, \(\omega_{D}^{i}\), and an evolution history variable \(D^{i}\) exist, such that,
\[
\omega_{D}^{i} \in[0, \infty)
\]
and
\[
D^{i} \in[0,1], \quad i=1, \ldots n
\]

These are initially set to zero and evolve with the deformation of the elements according to rules associated with the specific damage initiation and evolution type chosen, see below for details.

These quantities can be post-processed as ordinary material history variables and their positions in the history variables array is given in d3hsp, search for the string Damage history listing. The damage initiation variables do not influence the results but serve to indicate the onset of damage. As an alternative, the keyword *DEFINE_MATERIAL_HISTORIES can be used to output the instability and damage, following
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & Attributes & Description \\
\hline Instability & - & \[
\text { Maximum initiation variable, } \max _{i=1, \ldots, n} \omega_{D}^{i}
\] \\
\hline Damage & - - & Effective damage \(D\), see below \\
\hline
\end{tabular}

The damage evolution variables govern the damage in the material and are used to form the global damage \(D \in[0,1]\). Each criterion is of either of DCTYP set to maximum ( \(\mathrm{DCTYP}=0\) ) or multiplicative ( \(\mathrm{DCTYP}=1\) ), or one could choose to not couple damage to the stress by setting DCTYP \(=-1\). This means that the damage value is calculated and stored, but it is not affecting the stress as for the other options, so if all DCTYP are set to -1 there will be no damage or failure. Letting \(I_{\max }\) denote the set of evolution types with DCTYP set to maximum and \(I_{\text {mult }}\) denote the set of evolution types with DCTYP set to multiplicative the global damage, \(D\), is defined as
\[
D=\max \left(D_{\max }, D_{\text {mult }}\right)
\]
where
\[
D_{\max }=\max _{i \in I_{\max }} D^{i}
\]
and
\[
D_{\text {mult }}=1-\prod_{i \in I_{\text {mult }}}\left(1-D^{i}\right)
\]

The damage variable relates the macroscopic (damaged) to microscopic (true) stress by
\[
\sigma=(1-D) \tilde{\sigma} .
\]

Once the damage has reached the level of \(D_{\text {erode }}(=0.99\) by default) the stress is set to zero and the integration point is assumed failed and not processed thereafter. For NUMFIP \(>0\), a shell element is eroded and removed from the finite element model when NUMFIP integration points have failed. For NUMFIP < 0, a shell element is eroded and removed from the finite element model when NUMFIP percent of the layers have failed.
3. VOLFRAC. The volumes associated with individual integration points in higher order finite elements and isogeometric elements varies widely. Thus, the number of failed integration points is not a reliable criterion for determining element failure. To obtain a more stable and consistent response, LS-DYNA uses the volume fraction of the failed material for these types of elements.

\section*{Damage Initiation, \(\omega_{D}\) :}

For each evolution type \(i, \omega_{D}^{i}\) governs the onset of damage. For \(i \neq j\), the evolution of \(\omega_{D}^{i}\) is independent from the evolution of \(\omega_{D}^{j}\). The following list enumerates the algorithms for modelling damage initiation.

In this subsection we suppress the superscripted \(i\) indexing the evolution type.
1. Ductility based on stress triaxiality (DITYP \(=\mathbf{0}\) ). For the ductile initiation option, a function \(\varepsilon_{D}^{p}=\varepsilon_{D}^{p}\left(\eta, \dot{\varepsilon}^{p}\right)\) represents the plastic strain at onset of damage (P1). This is a function of stress triaxiality defined as
\[
\eta=-\frac{p}{q}
\]
with \(p\) being the pressure and \(q\) the von Mises equivalent stress. Optionally this can be defined as a table with the second dependency being on the effective plastic strain rate \(\dot{\varepsilon}^{p}\), where a negative sign of the first strain rate in the table means that it is in logarithmic scale. The damage initiation history variable evolves according to
\[
\omega_{D}=\int_{0}^{\varepsilon^{p}} \frac{d \varepsilon^{p}}{\varepsilon_{D}^{p}} .
\]
2. Shear (DITYP = 1). For the shear initiation option, a function \(\varepsilon_{D}^{p}=\varepsilon_{D}^{p}\left(\theta, \dot{\varepsilon}^{p}\right)\) represents the plastic strain at onset of damage (P1). This is a function of a shear stress function defined as
\[
\theta=\frac{q+k_{S} p}{\tau}
\]

Here \(p\) is the pressure, \(q\) is the von Mises equivalent stress and \(\tau\) is the maximum shear stress defined as a function of the principal stress values:
\[
\tau=\frac{\left(\sigma_{\text {major }}-\sigma_{\text {minor }}\right)}{2}
\]

Parameter P3 allows you to select which principal stresses are used in this equation for shell elements. With P3 = 0, only the in-plane stresses are considered (2dimensional approach), whereas with \(\mathrm{P} 3=1\), they are computed from the full stress tensor (3-dimensional approach). The latter case leads to higher shear fracture risk for the range between uniaxial and biaxial loading. Introduced here is also the pressure influence parameter \(k_{s}(\mathrm{P} 2)\). Optionally this can be defined as a table with the second dependency being on the effective plastic strain rate \(\dot{\varepsilon}^{p}\), where a negative sign of the first strain rate in the table means that it is in logarithmic scale. The damage initiation history variable evolves according to
\[
\omega_{D}=\int_{0}^{\varepsilon^{p}} \frac{d \varepsilon^{p}}{\varepsilon_{D}^{p}}
\]
3. MSFLD (DITYP = 2). For the MSFLD initiation option, a function \(\varepsilon_{D}^{p}=\varepsilon_{D}^{p}\left(\alpha, \dot{\varepsilon}^{p}\right)\) represents the plastic strain at onset of damage (P1). This is a function of the ratio of principal plastic strain rates defined as
\[
\alpha=\frac{\dot{\varepsilon}_{\text {minor }}^{p}}{\dot{\varepsilon}_{\text {major }}^{p}}
\]

The MSFLD criterion is only relevant for shells and with restrictions (discussed in the section MSFLD and FLD with solid and thick shell elements) for hexa/penta solids/tshells. The principal strains should be interpreted as the inplane principal strains. For simplicity the plastic strain evolution in this formula is assumed to stem from an associated von Mises flow rule. Hence,
\[
\alpha=\frac{s_{\text {minor }}}{s_{\text {major }}}
\]
with \(s\) being the deviatoric stress. This ensures that the calculation of \(\alpha\), is in a sense, robust at the expense of being slightly inaccurate for materials with anisotropic yield functions and/or non-associated flow rules. Optionally this can be defined as a table with the second dependency being on the effective plastic strain rate, \(\varepsilon^{p}\), where a negative sign of the first strain rate in the table means that it is in logarithmic scale. For \(\dot{\varepsilon}^{p}=0\), the value of \(\varepsilon_{D}^{p}\) is set to a large number to prevent the onset of damage for no plastic evolution. Furthermore, the plastic strain used in this failure criteria is a modified effective plastic strain that only evolves when the pressure is negative, meaning the material is not affected in compression.

This modified plastic strain can be monitored as the second history variable of the initiation history variables in the binary output database. For \(\mathrm{P} 3=0\), the damage initiation history variable is calculated directly from the ratio of (modified) plastic strain and the critical plastic strain
\[
\omega_{D}=\max _{t \leq T} \frac{\varepsilon^{p}}{\varepsilon_{D}^{p}} .
\]

This should be interpreted as the maximum value up to this point in time. If P3 \(=1\) the damage initiation history variable is instead incrementally updated from the ratio of (modified) plastic strain and the critical plastic strain
\[
\omega_{D}=\int_{0}^{\varepsilon^{p}} \frac{d \varepsilon^{p}}{\varepsilon_{D}^{p}} .
\]

For this initiation option with shells, P 2 is used to determine the layer in the shell where the criterion is evaluated. If \(\mathrm{P} 2=0\), the criterion is evaluated in the midlayer only, whereas if \(\mathrm{P} 2=1\), it is evaluated in the outer layers only (bottom and top). This can be used to distinguish between a membrane instability typically used for FLD evaluations \((\mathrm{P} 2=0)\) and a bending instability \((\mathrm{P} 2=1)\). For shells, as soon as \(\omega_{D}\) reaches 1 in any of the integration points of interest, all integration
points in the shell goes over in damage mode, meaning subsequent damage is applied to the entire element. For solids/tshells, only P2 \(=0\) is currently supported, and when \(\omega_{D}\) reaches 1 in the center of the section then all elements in the section goes into damage mode. Again, more details for solids or thick shells are provided in the section titled MSFLD and FLD with solid and thick shell elements.
4. FLD (DITYP = 3). The FLD initiation criterion is identical to MSFLD with one subtle difference: the plastic strain used to evaluate the criteria does not account for the sign of the hydrostatic stress but is instead identical to the effective plastic strain directly from the underlying material model. In other words, it is not the modified plastic strain used in the MSFLD criterion, but apart from that it is an identical criterion.
5. Ductile based on normalized principal stress (DITYP = 4). For the ductile initiation option the plastic strain at the onset of damage (P1) is taken as a function of \(\beta\) and \(\dot{\varepsilon}^{p}\), that is \(\varepsilon_{D}^{p}=\varepsilon_{D}^{p}\left(\beta, \dot{\varepsilon}^{p}\right)\). Here \(\beta\) is the normalized principal stress
\[
\beta=\frac{q+k_{d} p}{\sigma_{\text {major }}}
\]
where \(p\) is the pressure, \(q\) is the von Mises equivalent stress, \(\sigma_{\text {major }}\) is the major principal stress, and \(k_{d}\) is the pressure influence parameter specified in the P2 field. Optionally, this can be defined as a table with the second dependency being on the effective plastic strain rate \(\dot{\varepsilon}^{p}\), where a negative sign of the first strain rate in the table means that it is in logarithmic scale. The damage initiation history variable evolves according to
\[
\omega_{D}=\int_{0}^{\varepsilon^{p}} \frac{d \varepsilon^{p}}{\varepsilon_{D}^{p}}
\]

\section*{MSFLD and FLD with solid and thick shell elements}

When using MSFLD or FLD with solid or thick shell elements, the following restrictions apply:
- The part should be a thin walled section, with a well-defined "thickness" direction, \(\boldsymbol{t}\), and associated "plane" indicated in blue in Figure 2-1.
- Only low order hexahedra or pentahedra may be used.
- The same number of elements in \(t\)-direction must be used, essentially in the form of an extruded shell mesh. The stack of elements at any location, from bottom to top, comprises the "section".
- The element numbering scheme must in itself indicate the thickness direction, \(t\), as illustrated in Figure 2-1, for each element in the part.


Pentahedron numbering scheme for thick shells

Figure 2-1. Solid and thick shell elements must be oriented in a part in a specific way when using MSFLD or FLD (DITYP \(=2\) or 3 ). This figure illustrates the required element numbering scheme and the thickness direction, \(\mathbf{t}\).
- The geometry may be curved, but the mesh topology must not change. Thus, for T-intersections and similar geometries, appropriate pre-processing measures must be undertaken.

\section*{Damage Evolution, D:}

For the evolution of the associated damage variable, \(D\), we introduce the plastic displacement, \(u^{P}\), which evolves according to
\[
\dot{u}^{p}= \begin{cases}0 & \omega_{D}<1 \\ l \dot{\varepsilon}^{p} & \omega_{D} \geq 1\end{cases}
\]

Here \(l\) is a characteristic length of the element. Fracture energy is related to plastic displacement as follows
\[
G_{f}=\int_{0}^{u_{f}^{p}} \sigma_{y} d u^{p},
\]
where \(\sigma_{y}\) is the yield stress. The following list enumerates the algorithms available for modelling damage.


Figure 2-2. Top plot illustrates plastic displacement at failure as a function of damage for a given triaxiality for DETYP \(=0\) and \(\alpha=0\). The different curves illustrate different possible types of post-instability characteristics. The bottom plot illustrates qualitatively how these curves may interact in a tension test. \(d\) is the displacement and \(f\) is the force.
1. Linear (DETYP = 0). With this option, if \(\alpha=0(\mathrm{Q} 3)\) and Q 1 is positive, the damage variable evolves linearly with the plastic displacement after onset of damage:
\[
\dot{D}=\frac{\dot{u}^{p}}{u_{f}^{p}}
\]

Here \(u_{f}^{p}\) is the plastic displacement at failure (Q1).
If Q1 is negative, then -Q1 refers to a table that defines \(u_{f}^{p}\) as a function of triaxiality and damage, that is, \(u_{f}^{p}=u_{f}^{p}(\eta, D)\). In this case with \(\alpha=0\), the damage evolution law generalizes to:
\[
\dot{D}=\frac{\dot{u}^{p}}{\frac{\partial u_{f}^{p}}{\partial D}} .
\]

For a fixed triaxiality, \(\eta, \bar{u}_{f}^{p}:=u_{f}^{p}(\eta, 1)\) defines the plastic displacement at failure, and the shape of \(u_{f}^{p}(\eta, D)\) as a function of \(D\) determines the post-instability characteristics.
A linear curve, as illustrated by the solid line in Figure 2-2, corresponds exactly to a constant plastic displacement to failure equal to \(\bar{u}_{f}^{p}\) and can be seen as a reference curve for this discussion. For simplicity assume uniaxial tension ( \(\eta=\) 1/3). A curve with positive curvature, represented by the dash-dots in Figure 2-2, means that damage evolves quickly right after onset of instability and more slowly when approaching failure. In contrast, damage evolves slowly early and more quickly later on for a curve with negative curvature, represented by the dashes. The qualitative effect these curves have in a uniaxial tension test is also illustrated. The correlation between a damage curve and the actual behavior in tests is not straightforward, thus these curves need to be established on a trial-and-error basis.

For \(\alpha>0\) and \(u_{f}^{p}>0\), the damage evolution follows an exponential law given by
\[
D=\frac{1-e^{-\alpha \frac{u^{p}}{u_{f}^{p}}}}{1-e^{-\alpha}}
\]
where \(u^{p}=\int \dot{u}^{p}\).
2. Linear (DETYP = 1). With this option the damage variable evolves linearly as follows
\[
\dot{D}=\frac{\dot{u}^{p}}{u_{f}^{p}}
\]
where \(u_{f}^{p}=2 G_{f} / \sigma_{y_{0}}\) and \(\sigma_{y_{0}}\) is the yield stress when failure criterion is reached.

\section*{*MAT_ADD_DAMAGE_GISSMO_\{OPTION\}}

Available options include:
<BLANK>
STOCHASTIC
Many of the constitutive models in LS-DYNA do not allow failure and erosion. *MAT_ADD_DAMAGE_GISSMO provides a way to include damage and failure in these models. GISSMO is the "generalized incremental stress-state dependent damage model." It applies to nonlinear element formulations including 2D continuum elements, beam element formulation 1, 3D shells (including isogeometric shells), 3D thick shells, 3D solids (including isogeometric solids), and SPH. See GISSMO Damage Model for details. The STOCHASTIC option allows spatially varying failure behavior. See *DEFINE_STOCHASTIC_VARIATION and *DEFINE_HAZ_PROPERTIES for additional information.
*MAT_ADD_DAMAGE_GISSMO originates from splitting *MAT_ADD_EROSION. Only "sudden" failure criteria without damage remain in *MAT_ADD_EROSION.

NOTE: Use *CONTROL_MAT to disable all *MAT_ADD_DAMAGE_GISSMO commands in a model.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & & DTYP & REFSZ & NUMFIP & VOLFRAC & & \\
Type & A & & F & F & F & F & & \\
Default & none & & 0.0 & 0.0 & 1.0 & 0.5 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSDG & ECRIT & DMGEXP & DCRIT & FADEXP & LCREGD & INSTF & LCSOFT \\
Type & F & F & F & F & F & F & 1 & 1 \\
Default & 0.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSRS & SHRF & BIAXF & LCDLIM & MIDFAIL & HISVN & SOFT & LP2BI \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

This card is optional.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RGTR1 & RGTR2 & & & & & & \\
Type & F & F & & & & & & \\
Default & 0.0 & 0.0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

DTYP

\section*{DESCRIPTION}

Material identification for which this erosion definition applies. A unique number or label must be specified (see *PART).

DTYP is interpreted digit-wise as follows:
\[
\text { DTYP }=[N M]=M+10 \times N
\]
M.EQ.O: Damage is accumulated, but there is no coupling to flow stress and no failure.
M.EQ.1: Damage is accumulated, and element failure occurs for \(D=1\). Coupling of damage to flow stress depending on parameters, see GISSMO Damage Model below.
N.EQ.O: Equivalent plastic strain is the driving quantity for the damage. (To be more precise, it's the history variable that LS-PrePost blindly labels as "plastic strain." What this history variable actually represents depends on the material model.)
N.GT.O: The \(\mathrm{N}^{\text {th }}\) additional history variable is the driving quantity for damage. These additional history variables are the same ones flagged by the *DATABASE_EXTENT_BINARY keyword's NEIPS and NEIPH fields. For example, for solid elements with *MAT_187, setting \(N=\)

\section*{VARIABLE}

REFSZ Reference element size for which an additional output of damage (and potentially plastic strain) will be generated. This is necessary to ensure the applicability of resulting damage quantities when transferred to different mesh sizes.

GT.O: Reference size related damage values are written to history variables ND +9 and ND +10 . These damage values are computed in the same fashion as the actual damage, just with the given reference element size.

LT.O: The reference element size is |REFSZ|. In addition to the reference size related damage values, a corresponding plastic strain is computed and written to history variable ND + 17. See Remark 2.

Number or percentage of failed integration points prior to element deletion (default value is 1 ). NUMFIP does not apply to higher order solid element types \(24,25,26,27,28\), and 29 , rather see the variable VOLFRAC. Also, when the material is a composite defined with *PART_COMPOSITE with different materials through-the-thickness, do not use NUMFIP; use *DEFINE_ELEMENT_EROSION instead.

GT.0.0: Number of integration points which must fail before element is deleted.

LT.O.O: Applies only to shells. |NUMFIP| is the percentage of layers which must fail before an element is deleted. For shell formulations with 4 integration points per layer, the layer is considered failed if any of the integration points in the layer fails.

VOLFRAC Volume fraction required to fail before element deletion. The default is 0.5 . It is used for higher-order solid element types \(24,25,26\), 27,28 , and 29, and all isogeometric solids and shell elements. See Remark 3.

LCSDG Failure strain curve/table or function:
GT.0.0: Load curve ID or table ID. As a load curve, it defines equivalent plastic strain to failure as a function of triaxiality. As a table, it defines for each Lode parameter value (between -1 and 1) a load curve ID giving the equivalent plastic strain to failure as a function of

\section*{VARIABLE}

ECRIT Critical plastic strain (material instability); see below.
LT.O.O: \(|E C R I T|\) is either a load curve ID defining critical equivalent plastic strain versus triaxiality or a table ID defining critical equivalent plastic strain as a function of triaxiality and Lode parameter (as in LCSDG). With HISVN \(\neq 0\), a 3D table can be used, where critical strain is a function of the history variable (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE). With HISVN \(=0\), a 3D table introduces thermal effects, that is, critical strain is a function of temperature (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE). As a 4D table, critical strain is a function of strain rate (TABLE_4D), temperature (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE).
EQ.0.0: Fixed value DCRIT defining critical damage is read (see below).

GT.0.0: Fixed value for stress-state independent critical equivalent plastic strain

DMGEXP Exponent for nonlinear damage accumulation; see GISSMO Damage Model and Remark 2.

DCRIT

\section*{DESCRIPTION}
triaxiality for that Lode parameter value. With HISVN \(\neq 0\), a 3D table can be used, where failure strain is a function of the history variable (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE). With HISVN \(=0\), a 3D table introduces thermal effects, that is, failure strain is a function of temperature (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE). As a 4D table, failure strain is a function of strain rate (TABLE_4D), temperature (TABLE_3D), Lode parameter (TABLE), and triaxiality (CURVE).
LT.O.O: |LCSDG| is the ID of a function (*DEFINE_FUNCTION) with the arguments triaxiality \(\eta\), Lode parameter \(L\), plastic strain rate \(\dot{\varepsilon}^{p}\), temperature \(T\), history variable HISVN, and element size \(l_{e}: f\left(\eta, L, \dot{\varepsilon}^{p}, T, H I S V N, l_{e}\right)\). Note that the sequence of the arguments is important, not their names.

Damage threshold value (critical damage). If a load curve of criti- cal plastic strain or fixed value is given by ECRIT, input is ignored.

\section*{VARIABLE}

FADEXP

LCREGD

INSTF

LCSOFT

\section*{DESCRIPTION}

Exponent for damage-related stress fadeout:
LT.0.0: |FADEXP| is a load curve ID or table ID. As a load curve it gives the fading exponent as a function of element size. As a table, it specifies the fading exponent as a function triaxiality (TABLE) and element size (CURVE). For 3D tables, it specifies the fading exponent as a function Lode parameter (TABLE_3D), triaxiality (TABLE), and element size (CURVE).
GT.0.0: Constant fading exponent
Load curve ID or table ID defining element size dependent regularization factors for equivalent plastic strain to failure:

GT.0.0: Load curve ID (regularization factor as a function of element size) or table ID (regularization factor vs. element size curves vs. effective rate)
LT.0.0: |LCREGD| is a table ID (regularization factor vs. element size curves vs. triaxiality) or a 3D table ID (regularization factor as function of Lode parameter, triaxiality, and element size). This table provides an alternative to the use of SHRF and BIAXF for defining the effect of triaxiality on element size regularization of equivalent plastic strain to failure.

Flag for governing the behavior of instability measure, \(F\), and fading exponent, FADEXP (see GISSMO Damage Model):

EQ.0: \(F\) is incrementally updated, and FADEXP, if from a table, is allowed to vary.

EQ.1: \(F\) is incrementally updated, and FADEXP is kept constant after \(F=1\).

EQ.2: \(F\) is only 0 or 1 (after ECRIT is reached), and FADEXP, if from a table, is allowed to vary.

EQ.3: \(F\) is only 0 or 1 (after ECRIT is reached), and FADEXP is kept constant after \(F=1\).

Load curve or table with ID | LCSOFT | giving the soft reduction factor for failure strain in crashfront elements. Crashfront elements are elements that are direct neighbors of failed (deleted) elements. A load curve specifies the soft reduction factor as a function of triaxiality. A table gives the soft reduction factor as a function of triaxiality (curve) and element size (table). The sign of LCSOFT
determines which strains are scaled:
EQ.0: Inactive
GT.O: Plastic failure strain, \(\varepsilon_{f}\) (LCSDG), and critical plastic strain, \(\varepsilon_{\mathrm{p}, \text { loc }}\) (ECRIT), will be scaled by LCSOFT.
LT.O: Only plastic failure strain, \(\varepsilon_{f}\) (LCSDG), will be scaled by LCSOFT.

SOFT is ignored when LCSOFT is active.
LCSRS Load curve ID or table ID. Load curve ID defining failure strain scaling factor for LCSDG as a function of strain rate. If the first strain rate value in the curve is negative, it is assumed that all strain rate values are given as a natural logarithm of the strain rate. The curve should not extrapolate to zero or failure may occur at low strain. Table ID defining failure strain scaling factor as a function of strain rate (TABLE) and triaxiality (CURVE).

GT.0: Scale ECRIT.
LT.O: Do not scale ECRIT.
SHRF Reduction factor for regularization for shear stress states. This parameter can be defined between -1.0 and +1.0. See Remark 1 .

BIAXF Reduction factor for regularization for biaxial stress states. This parameter can be defined between -1.0 and +1.0 . See Remark 1 .

LCDLIM Load curve ID defining damage limit values as a function of triaxiality. Damage can be restricted to values less than 1.0 to prevent further stress reduction and failure for certain triaxialities.

MIDFAIL Mid-plane failure option for shell elements. If active, then critical strain is only checked at the mid-plane integration point (IP), meaning an odd number for NIP should be used. The other integration points compute their damage, but no coupling to the stresses is done first. As soon as the mid-plane IP reaches ECRIT/DCRIT, then all the other IPs are also checked.

EQ.0.0: Inactive.
EQ.1.0: Active. Those of the non-mid-plane IPs that are already above their critical value immediately start to reduce the stresses. Those still below the critical value still do not couple, only if they reach their criterion.
EQ.2.0: Active. All of the non-mid-plane IPs immediately start

VARIABLE

HISVN

SOFT Softening reduction factor for failure strain in crashfront elements. Crashfront elements are elements that are direct neighbors of failed (deleted) elements.

EQ.0.0: Inactive
GT.0.0: Plastic failure strain, \(\varepsilon_{f}\) (LCSDG), and critical plastic strain, \(\varepsilon_{\mathrm{p}, \text { loc }}\) (ECRIT), will be scaled by SOFT.
LT.O.O: Only plastic failure strain, \(\varepsilon_{f}\) (LCSDG), will be scaled by |SOFT|.

LP2BI Option to use a bending indicator instead of the Lode parameter. If active ( \(>0\) ), the expression "bending indicator" replaces the term "Lode parameter" everywhere in this manual page. We adopted the bending indicator from *MAT_258 (compare with variable \(\Omega\) ). LP2BI \(>0\) is only available for shell elements and requires NUM\(\mathrm{FIP}=1\).

EQ.0.0: Inactive.
EQ.1.0: Active. Constant regularization (LCREGD) applied.
EQ.2.0: Active. Regularization (LCRGED) fully applied under pure membrane loading \((\Omega=0)\) but not at all under pure bending \((\Omega=1)\). Linear interpolation in between.

\section*{VARIABLE}

RGTR1

RGTR2 Second triaxiality value for optional "tub-shaped" regularization. See Remark 1.

\section*{GISSMO Damage Model:}

The GISSMO damage model is a phenomenological formulation that allows for an incremental description of damage accumulation, including softening and failure. It is intended to provide a maximum in variability for the description of damage for a variety of metallic materials, such as *MAT_024, *MAT_036, and *MAT_103. The input of parameters is based on tabulated data, allowing the user to directly convert test data to numerical input. The model was originally developed by Neukamm et al. [2008] and further investigated and enhanced by Effelsberg et al. [2012] and Andrade et al. [2014, 2016].

The model is based on an incremental formulation of damage accumulation:
\[
\Delta D=\frac{\mathrm{DMGEXP} \times D^{\left(1-\frac{1}{\mathrm{DMGEXP}}\right)}}{\varepsilon_{f}} \Delta \varepsilon_{p}
\]
where,
\(D\) Damage value \((0 \leq D \leq 1)\). For numerical reasons, \(D\) is initialized to a value of \(10^{-20}\) for all damage types in the first time step.
\(\varepsilon_{f} \quad\) Equivalent plastic strain to failure, determined from LCSDG as a function of the current triaxiality value \(\eta\) (and Lode parameter \(L\) as an option).
A typical failure curve LCSDG for metal sheet, modelled with shell elements is shown in Figure 2-3. Triaxiality should be monotonically increasing in this curve. A reasonable range for triaxiality is \(-2 / 3\) to \(2 / 3\) if shell elements are used (plane stress).
For 3-dimensional stress states (solid elements), the possible range of triaxiality goes from \(-\infty\) to \(+\infty\), but to get a good resolution in the internal load curve discretization (depending on parameter LCINT of *CONTROL_SOLUTION) you should define lower limits, such as -1 to 1 if LCINT \(=100\) (default).
\(\Delta \varepsilon_{p} \quad\) Equivalent plastic strain increment
For constant values of failure strain, this damage rate can be integrated to get a relation of damage and actual equivalent plastic strain:


Figure 2-3. Typical failure curve for metal sheet, modeled with shell elements.
\[
D=\left(\frac{\varepsilon_{p}}{\varepsilon_{f}}\right)^{\text {DMGEXP }}, \quad \text { for } \varepsilon_{f}=\mathrm{constant}
\]

Triaxiality, \(\eta\), as a measure of the current stress state is defined as
\[
\eta=\frac{\sigma_{H}}{\sigma_{M}}
\]
with hydrostatic stress, \(\sigma_{H}\), and von Mises stress, \(\sigma_{M}\). Lode parameter \(L\) as an additional measure of the current stress state is defined as
\[
L=\frac{27}{2} \frac{J_{3}}{\sigma_{M}{ }^{3}}
\]
with third invariant of the stress deviator, \(J_{3}\).

For DTYP \(=0\), damage is accumulated according to the description above, yet no softening and failure is taken into account. Thus, parameters ECRIT, DCRIT and FADEXP will not have any influence. This option can be used to calculate pre-damage in multi-stage deformations without influencing the simulation results.

For DTYPE \(=1\), elements will be deleted if \(D \geq 1\).

Depending on the set of parameters given by ECRIT (or DCRIT) and FADEXP, a Le-maitre-type coupling of damage and stress (effective stress concept) can be used.

To define damage, use one of the following three principal ways:
1. Input of a fixed value of critical plastic strain (ECRIT \(>0\).). As soon as the magnitude of plastic strain reaches this value, the current damage parameter \(D\) is stored as critical damage DCRIT and the damage coupling flag is set to unity, in order to facilitate an identification of critical elements in post-processing. From this point on, damage is coupled to the stress tensor using the following relation:
\[
\sigma=\tilde{\sigma}\left[1-\left(\frac{D-\mathrm{DCRIT}}{1-\mathrm{DCRIT}}\right)^{\mathrm{FADEXP}}\right]
\]

This leads to a continuous reduction of stress, up to the load-bearing capacrmarkrity completely vanishing as \(D\) reaches unity. The fading exponent FADEXP can be element size dependent to allow for the consideration of an elementsize dependent amount of energy to be dissipated during element fade-out.
2. Input of a load curve defining critical plastic strain as a function of triaxiality (ECRIT < 0.), pointing to load curve ID |ECRIT|. This allows for a definition of triaxiality-dependent material instability, which takes account of instability and localization occurring depending on the actual load case. One possibility is the use of instability curves predicted by instability models (e.g., Swift, Hill, Marciniak-Kuczynski, etc.). Another possibility is the use of a transformed Forming Limit Diagram as an input for the expected onset of softening and localization. Using this load curve, the instability measure \(F\) is accumulated using the following relation, which is similar to the accumulation of damage \(D\) except for the instability curve is used as an input:
\[
\Delta F=\frac{\text { DMGEXP }}{\varepsilon_{p, l o c}} F^{\left(1-\frac{1}{\text { DMGEXP }}\right)} \Delta \varepsilon_{p}
\]
with,
\(F \quad\) Instability measure \((0 \leq F \leq 1)\).
\(\varepsilon_{\text {p,loc }}\) Equivalent plastic strain to instability, determined from ECRIT
\(\Delta \varepsilon_{p} \quad\) Equivalent plastic strain increment
As soon as the instability measure \(F\) reaches unity, the current value of damage \(D\) in the respective element is stored. Damage will from this point on be coupled to the flow stress using the relation described above.
3. If no input for ECRIT is made, parameter DCRIT will be considered. Coupling of damage to the stress tensor starts if this value (damage threshold) is exceeded \((0 \leq\) DCRIT \(\leq 1)\). Coupling of damage to stress is done using the relation described above.

This input allows for the use of extreme values also - for example, DCRIT = 1.0 would lead to no coupling at all, and element deletion under full load (brittle fracture).

\section*{Remarks:}
1. Regularization. The values of SHRF and BIAXF generally lie between 0.0 and 1.0 where 0.0 means full regularization and 1.0 means no regularization under shear (triaxiality \(=0.0\) for SHRF \(=1.0\) ) or biaxial tension (triaxiality \(=2 / 3\) for BI\(\mathrm{AXF}=1.0\) ). Any other intermediate triaxiality follows a linear interpolation between triaxiality 0.0 and \(1 / 3\) and also between triaxiality \(1 / 3\) and \(2 / 3\). Notice that a full regularization is always for a one-dimensional tensile stress state (triaxiality \(=1 / 3\) ) according to the factors defined under LCREGD (see the next paragraph for an exception to this restriction). For the sake of generalization, both SHRF and BIAXF can also assume negative values (e.g., SHRF=-1.0 and BIAXF=1.0). In this case, regularization is affected not at triaxialities 0.0 and \(2 / 3\) but rather at the triaxialities where the failure curve (LCSDG) crosses the instability curve (-ECRIT). The use of a triaxiality-dependent regularization approach may be necessary because simple regularization only depending on the element size can be unrealistic for certain stress states.

The restriction of a full regularization at triaxiality \(=1 / 3\) can be lifted with the optional parameters RGTR1 and RGTR2. As shown in Figure 2-4, full regularization starts at RGTR1 and ends at RGTR2. A linear interpolation is used between 0.0 and RGTR1 and between RGTR2 and 2/3. Together with SHRF \(=\) BI\(\mathrm{AXF}=1\) this gives a trapezoidal-(or tub-)shaped regularization. This seems to be a reasonable approach in many cases and is therefore easily accessible now.


Figure 2-4. The left figure provides an example of the regularization curves produced with an LCREGD curve for three different element sizes. SHRF and BIAXF are both 1.0 in this case. The right figure illustrates how these curves become tub-shaped by additionally defining RGTR1 and RGTR2.
2. Reference element size. If the results of a first simulation should be transferred to a second computation with potentially modified mesh size, such as mapping from forming to crash, it might be necessary to alter damage values
(and maybe plastic strain) as well. For that purpose, reference element size REFSZ can be defined. With REFSZ \(>0\), corresponding damage is computed in the same fashion as the actual damage, just with the given reference element size instead, and written to history variable ND +9 . An alternative approach is available with the definition of REFSZ < 0 . In that case, a plastic strain with regard to |REFSZ| is computed first:
\[
\Delta \varepsilon_{p}^{|\mathrm{REFSZ}|}=\Delta \varepsilon_{p} \frac{\varepsilon_{p}^{f}(|\mathrm{REFSZ}|)-\varepsilon_{p}^{\mathrm{ECRIT}}}{\varepsilon_{p}^{f}\left(l_{e}\right)-\varepsilon_{p}^{\mathrm{ECRIT}}} \quad(\text { if } F \geq 1)
\]

The accumulated value of that is written to history variable ND + 17. Afterwards, damage with respect to the |REFSZ| is computed similarly to the standard damage accumulation, only using this new reference plastic strain:
\[
\Delta D^{|\mathrm{REFSZ}|}=\frac{\mathrm{DMGEXP} \times\left(D^{|\mathrm{REFSZ}|}\right)^{\left(1-\frac{1}{\mathrm{DMGEXP}}\right)}}{\varepsilon_{p}^{f}(|\operatorname{REFSZ}|)} \Delta \varepsilon_{p}^{|\mathrm{REFSZ}|}
\]

This "reference damage" is stored on history variable ND +9 .
3. VOLFRAC. The volumes associated with individual integration points in higher order finite elements and isogeometric elements varies widely. Thus, the number of failed integration points is not a reliable criterion for determining element failure. To obtain a more stable and consistent response, LS-DYNA uses the volume fraction of the failed material for these types of elements.
4. History Variable. History variables of the GISSMO damage model are written to the post-processing database. Therefore, NEIPH and NEIPS must be set in *DATABASE_EXTENT_-BINARY. The damage history variables start at position ND, which is displayed in d3hsp file as, for example, "first damage history variable \(=6^{\prime \prime}\) which means that \(\mathrm{ND}=6\). For example, if you wish to view the damage parameter (first GISSMO history variable) for a *MAT_024 shell element, you must set NEIPS \(=6\). In LS-PrePost, you access the damage parameter as history variable \#6.
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline ND & Damage parameter \(D\left(10^{-20}<D \leq 1\right)\) \\
\(\mathrm{ND}+1\) & Damage threshold DCRIT \\
\(\mathrm{ND}+2\) & \begin{tabular}{l} 
Domain flag for damage coupling (0: no coupling, 1: \\
coupling)
\end{tabular} \\
\(\mathrm{ND}+3\) & Triaxiality variable, \(\eta=\sigma_{H} / \sigma_{M}\) \\
\(\mathrm{ND}+4\) & Equivalent plastic strain \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline ND + 5 & Regularization factor for failure strain (determined from LCREGD) \\
\hline ND +6 & Exponent for stress fading FADEXP \\
\hline ND +7 & Calculated element size, \(l_{e}\) \\
\hline ND +8 & Instability measure \(F\) \\
\hline ND + 9 & Resultant damage parameter \(D\) for element size REFSZ \\
\hline \(N D+10\) & Resultant damage threshold DCRIT for element size REFSZ \\
\hline ND +11 & Averaged triaxiality:
\[
\eta_{n+1}^{\mathrm{avg}}=\frac{1}{D_{n+1}}\left(D_{n} \times \eta_{n}^{\text {avg }}+\left(D_{n+1}-D_{n}\right) \times \eta_{n+1}\right)
\] \\
\hline \(N D+12\) & Lode parameter value \(L\) (only calculated if LCSDG refers to a table) \\
\hline ND + 13 & Alternative damage value: \(D^{1 / \text { DMGEXP }}\) \\
\hline ND + 14 & Averaged Lode parameter:
\[
L_{n+1}^{\text {avg }}=\frac{1}{D_{n+1}}\left(D_{n} \times L_{n}^{\text {avg }}+\left(D_{n+1}-D_{n}\right) \times L_{n+1}\right)
\] \\
\hline \(N D+15\) & MIDFAIL control flag (set to -1 in case mid-plane IP reaches ECRIT/DCRIT) \\
\hline ND +16 & Number of IPs/layers (NUMFIP \(>0 /<0\) ) that must fail before an element gets deleted \\
\hline ND + 17 & Plastic strain value related to reference element size (only if REFSZ < 0) \\
\hline ND + 18 & Effective damage value (stress scaling factor) \\
\hline ND + 19 & History variable for 3D table LCSDG (only if HISVN \(\neq 0\) ) \\
\hline ND + 20 & Random scale factor on failure strain (only if STOCHASTIC option is used) \\
\hline
\end{tabular}

\section*{*MAT_ADD_EROSION}

Many of the constitutive models in LS-DYNA do not allow failure and erosion. The ADD_EROSION option provides a way of including failure in these models. This option can also be applied to constitutive models that already include other failure/erosion criteria.

LS-DYNA applies each of the failure criteria defined here independently. Upon satisfaction of a sufficient number of the specified criteria (see NCS on Card 1), LS-DYNA deletes the element from the calculation.

This keyword applies to nonlinear element formulations, including 2D continuum elements, beam formulations 1 and 11,3D shell elements (including isogeometric shells), 3D thick shell elements, 3D solid elements (including isogeometric solids), and SPH.

Damage models GISSMO and DIEM are still available using IDAM on Card 3 for backward compatibility. The keywords *MAT_ADD_DAMAGE_DIEM and *MAT_ADD_DAMAGE_GISSMO are preferable methods for adding damage. A combination of *MAT_ADD_EROSION failure criteria with damage from *MAT_ADD_DAMAGE_DIEM/GISSMO is possible as long as IDAM \(=0\) is used.

NOTE: To disable all *MAT_ADD_EROSION commands in a model, use *CONTROL_MAT.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & EXCL & MXPRES & MNEPS & EFFEPS & VOLEPS & NUMFIP & NCS \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MNPRES & SIGP1 & SIGVM & MXEPS & EPSSH & SIGTH & IMPULSE & FAILTM \\
\hline
\end{tabular}

\section*{Card 3. This card is optional.}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline IDAM & & & & & & & LCREGD \\
\hline
\end{tabular}

Card 4. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCFLD & NSFF & EPSTHIN & ENGCRT & RADCRT & LCEPS12 & LCEPS13 & LCEPSMX \\
\hline
\end{tabular}

Card 5. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DTEFLT & VOLFRAC & MXTMP & DTMIN & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & EXCL & MXPRES & MNEPS & EFFEPS & VOLEPS & NUMFIP & NCS \\
Type & A & F & F & F & F & F & F & F \\
Default & none & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & \(1.0 / 0.0\) \\
\hline
\end{tabular}

VARIABLE
MID

EXCL

MXPRES

MNEPS

EFFEPS

\section*{DESCRIPTION}

Material identification for which this erosion definition applies. A unique number or label must be specified (see *PART).

The exclusion number (default value of 0.0 is recommended). For any failure value in *MAT_ADD_EROSION which is set to this exclusion number, the associated failure criterion is not invoked. Or in other words, only the failure values which are not set to the exclusion number are invoked. The default value of EXCL (0.0) eliminates from consideration any failure criterion whose failure value is left blank or set to 0.0 .
As an example, to prevent a material from developing tensile pressure, you could specify an unusual value for the exclusion number, such as 1234 , set MNPRES to 0.0 , and set all the other failure values in \({ }^{*} \mathrm{MAT}_{2} A D D \_E R O S I O N\) to 1234. However, use of an exclusion number in this way is nonessential since the same effect could be achieved without use of the exclusion number by setting MNPRES to a very small negative value and leaving all the other failure values blank (or set to zero).

Maximum pressure at failure, \(P_{\max }\). If the value is exactly zero, it is automatically excluded to maintain compatibility with old input files.

Minimum principal strain at failure, \(\varepsilon_{\min }\). If the value is exactly zero, it is automatically excluded to maintain compatibility with old input files.

Maximum effective strain at failure:
\[
\varepsilon_{\mathrm{eff}}=\sum_{i j} \sqrt{\frac{2}{3} \varepsilon_{i j}^{\mathrm{dev}} \varepsilon_{i j}^{\mathrm{dev}}} .
\]

If the value is exactly zero, it is automatically excluded to maintain compatibility with old input files. If the value is negative, then |EFFEPS| is the effective plastic strain at failure. In combination with cohesive elements, EFFEPS is the maximum effective in-plane strain.

VOLEPS Volumetric strain at failure,
\[
\varepsilon_{\mathrm{vol}}=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33},
\]
or
\[
\ln \text { (relative volume) . }
\]

VOLEPS can be a positive or negative number depending on whether the failure is in tension or compression, respectively. If the value is exactly zero, it is automatically excluded to maintain compatibility with old input files.

NUMFIP Number or percentage of failed integration points prior to element deletion (default is 1). See Remark 2. NUMFIP does not apply to higher order solid element types \(24,25,26,27,28\), and 29 , rather see the variable VOLFRAC. Also, when the material is a composite defined with *PART_COMPOSITE with different materials through-the-thickness, this field should not be used; use *DEFINE_ELEMENT_EROSION instead.

GT.0.0: Number of integration points which must fail before element is deleted

LT.0.0: Applies only to shells. |NUMFIP| is the percentage of integration points which must exceed the failure criterion before the element fails. If NUMFIP < -100, then |NUMFIP|-100 is the number of failed integration points prior to element deletion.

NCS Number of failure conditions to satisfy before failure occurs. For example, if SIGP1 and SIGVM are defined and if NCS \(=2\), both failure criteria must be met before element deletion can occur. The default is set to unity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MNPRES & SIGP1 & SIGVM & MXEPS & EPSSH & SIGTH & IMPULSE & FAILTM \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
Default & none \\
\hline
\end{tabular}

VARIABLE
MNPRES

SIGP1

SIGVM Equivalent stress at failure, \(\bar{\sigma}_{\text {max }}\)
LT.0: -SIGVM is a load curve ID giving the equivalent stress at failure as a function of the effective strain rate (the curve should not extrapolate to zero or failure may occur at low strain). A filter can be applied to the effective strain rate according to DTEFLT (see Card 5).

MXEPS Variable to invoke a failure criterion based on maximum principal strain.

GT.0.0: Maximum principal strain at failure, \(\varepsilon_{\max }\)
LT.O.O: -MXEPS is the ID of a curve giving maximum principal strain at failure as a function of effective strain rate (the curve should not extrapolate to zero or failure may occur at low strain). A filter is applied to the effective strain rate according to DTEFLT (see Card 5).

EPSSH Tensorial shear strain at failure, \(\gamma_{\max } / 2\)
SIGTH \(\quad\) Threshold stress, \(\sigma_{0}\)
IMPULSE \(\quad\) Stress impulse for failure, \(K_{f}\)

\section*{VARIABLE}

FAILTM

\section*{DESCRIPTION}

Failure time. When the problem time exceeds the failure time, the material is removed.

GT.O: Failure time is active during any phase of the analysis.
LT.O: Failure time is set to |FAILTM|. This criterion in inactive during the dynamic relaxation phase.

Damage Model Card. The following card is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IDAM & & & & & & & LCREGD \\
Type & A8 & & & & & & & F \\
Default & 0.0 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

IDAM

\section*{DESCRIPTION}

Flag for damage model.
EQ.0: No damage model is used.
NE.0: Damage models GISSMO or DIEM, see manuals of R10 and before. Still available here for backward compatibility (see preferred keywords *MAT_ADD_DAMAGE_DIEM/GISSMO as of R11).

LCREGD Load curve ID defining element size dependent regularization factors. This feature can be used with the standard failure criteria of Cards 1 (MXPRES, MNEPS, EFFEPS, VOLEPS), 2 (MNPRES, SIGP1, SIGVM, MXEPS, EPSSH, IMPULSE) and 4 (LCFLD, EPSTHIN).

Additional Failure Criteria Card. This card is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCFLD & NSFF & EPSTHIN & ENGCRT & RADCRT & LCEPS12 & LCEPS13 & LCEPSMX \\
Type & F & F & F & F & F & 1 & 1 & 1 \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
LCFLD

NSFF Number of explicit time step cycles for stress fade-out used in the LCFLD criterion. Default is 10 .

EPSTHIN Thinning strain at failure for thin and thick shells.
GT.0.0: Individual thinning for each integration point from \(z\) strain

LT.O.O: Averaged thinning strain from element thickness change

ENGCRT Critical energy for nonlocal failure criterion; see Remark 1i below.
RADCRT Critical radius for nonlocal failure criterion; see Remark 1i below.
LCEPS12 Load curve ID defining in-plane shear strain limit \(\gamma_{12}^{c}\) as a function of element size. See Remark 1j.

LCEPS13 Load curve ID defining through-thickness shear strain limit \(\gamma_{13}^{c}\) as a function of element size. See Remark 1 j .

LCEPSMX Load curve ID defining in-plane major strain limit \(\varepsilon_{1}^{c}\) as a function of element size. See Remark 1 j .

Additional Failure Criteria Card. This card is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DTEFLT & VOLFRAC & MXTMP & DTMIN & & & & \\
Type & F & F & F & F & & & & \\
Default & \(\downarrow\) & 0.5 & none & none & & & & \\
\hline
\end{tabular}

VARIABLE
DTEFLT

VOLFRAC

\section*{DESCRIPTION}

The time period (or inverse of the cutoff frequency) for the lowpass filter applied to the effective strain rate when SIGP1, SIGVM, or MXEPS is negative. If DTEFLT is set to zero or left blank, no filtering of the effective strain rate is performed.

The volume fraction required to fail before the element is deleted. The default is 0.5 . It is used for higher order solid element types 24 , \(25,26,27,28\), and 29 , and all isogeometric solids and shell elements. See Remark 4.

Maximum temperature at failure
Minimum time step size at failure

\section*{Remarks:}
1. Failure Criteria. In addition to failure time, supported criteria for failure are:
a) \(P \geq P_{\max }\), where \(P\) is the pressure (positive in compression), and \(P_{\max }\) is the maximum pressure at failure
b) \(\varepsilon_{3} \leq \varepsilon_{\text {min }}\), where \(\varepsilon_{3}\) is the minimum principal strain, and \(\varepsilon_{\text {min }}\) is the minimum principal strain at failure
c) \(P \leq P_{\min }\), where \(P\) is the pressure (positive in compression), and \(P_{\min }\) is the minimum pressure at failure
d) \(\sigma_{1} \geq \sigma_{\text {max }}\), where \(\sigma_{1}\) is the maximum principal stress, and \(\sigma_{\max }\) is the maximum principal stress at failure
e) \(\sqrt{\frac{3}{2} \sigma_{i j}^{\prime} \sigma_{i j}^{\prime}} \geq \bar{\sigma}_{\text {max }}\), where \(\sigma_{i j}^{\prime}\) are the deviatoric stress components, and \(\bar{\sigma}_{\max }\) is the equivalent stress at failure
f) \(\varepsilon_{1} \geq \varepsilon_{\max }\), where \(\varepsilon_{1}\) is the maximum principal strain, and \(\varepsilon_{\max }\) is the maximum principal strain at failure
g) \(\gamma_{1} \geq \gamma_{\max } / 2\), where \(\gamma_{1}\) is the maximum tensorial shear strain \(=\left(\varepsilon_{1}-\varepsilon_{3}\right) / 2\), and \(\gamma_{\text {max }}\) is the engineering shear strain at failure
h) The Tuler-Butcher criterion,
\[
\int_{0}^{t}\left[\max \left(0, \sigma_{1}-\sigma_{0}\right)\right]^{2} \mathrm{dt} \geq \mathrm{K}_{\mathrm{f}},
\]
where \(\sigma_{1}\) is the maximum principal stress, \(\sigma_{0}\) is a specified threshold stress, \(\sigma_{1} \geq \sigma_{0} \geq 0\), and \(\mathrm{K}_{\mathrm{f}}\) is the stress impulse for failure. Stress values below the threshold value are too low to cause fracture even for very long duration loadings.
i) A nonlocal failure criterion which is mainly intended for windshield impact can be defined using ENGCRT, RADCRT, and one additional "main" failure criterion (only SIGP1 is available at the moment). All three parameters should be defined for one part, namely, the windshield glass, and the glass should be discretized with shell elements. The course of events of this nonlocal failure model is as follows: If the main failure criterion SIGP1 is fulfilled, the corresponding element is flagged as the center of impact, but no element erosion takes place yet. Then, the internal energy of shells inside a circle, defined by RADCRT, around the center of impact is tested against the product of the given critical energy ENGCRT and the "area factor". The area factor is defined as,
\[
\text { Area Factor }=\frac{\text { total area of shell elements found inside the circle }}{2 \pi \times \text { RADCRT }^{2}}
\]

The reason for having two times the circle area in the denominator is that we expect two layers of shell elements, as would typically be the case for laminated windshield glass. If this energy criterion is exceeded, all elements of the part are now allowed to be eroded by the main failure criterion.

Up through version R14.0, this nonlocal energy criterion could only be used once in an LS-DYNA model. This was based on the assumption that one calculates the head impact on a glass pane, where both pane layers (inner and outer) were united in one part. The factor " 2 " in the above formula comes from this assumption.

In subsequent versions (R14.1, R15, ...). it is possible to define the energy criterion for each part separately, meaning as often as desired in a model. The criterion can be defined with either *MAT_ADD_EROSION or *MAT_-
280. This could be used, for example, to assign different values for ENGCRT and RADCRT to the inner and outer glass layers or in even more general cases. We kept the factor " 2 " in the formula for the Area Factor to not falsify old results.
j) An element size dependent mixed-mode fracture criterion (MMFC) can be defined for shell elements using load curves LCEPS12, LCEPS23, and LCEPSMX. Failure happens if NCS (see Card 1) of these three criteria are met

LCEPS12: \(\quad \gamma_{12}=\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}\right) \geq \gamma_{12}^{c}\left(l_{e}\right) \quad\) if \(\quad-2.0 \leq \varepsilon_{2} / \varepsilon_{1} \leq-0.5\)
LCEPS13: \(\quad \gamma_{13}=\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{3}\right) \geq \gamma_{13}^{c}\left(l_{e}\right) \quad\) if \(\quad-0.5 \leq \varepsilon_{2} / \varepsilon_{1} \leq 1.0\)
LCEPSMX: \(\quad \varepsilon_{1} \geq \varepsilon_{1}^{c}\left(l_{e}\right) \quad\) if \(\quad-0.5 \leq \varepsilon_{2} / \varepsilon_{1} \leq 1.0\)
where \(\gamma_{12}\) and \(\gamma_{13}\) are in-plane and through-thickness shear strains, \(\varepsilon_{1}\) and \(\varepsilon_{2}\) are in-plane major and minor strains, and \(\varepsilon_{3}\) is the through-thickness strain. The characteristic element size is \(l_{e}\) and it is computed as the square root of the shell element area. More details can be found in Zhu \& Zhu (2011).
2. NUMFIP. Element erosion depends on the type of element and the value of NUMFIP.
a) When NUMFIP > 0, elements erode when NUMFIP points fail.
b) For shells only, when \(-100 \leq\) NUMFIP < 0, elements erode when |NUMFIP| percent of the integration points fail.
c) For shells only, when NUMFIP < -100, elements erode when |NUMFIP| 100 integration points fail.

For NUMFIP \(>0\) and \(-100 \leq\) NUMFIP \(<0\), layers retain full strength until the element is eroded. For NUMFIP <-100, the stress at an integration point immediately drops to zero when failure is detected at that integration point.
3. Instability. If the keyword *DEFINE_MATERIAL_HISTORIES is used to output the instability, the following table gives a summary of the output properties. Currently only failure values based on the first two cards of this keyword are supported but others can be added on request; for the unsupported options the output will be zero. The instability value is defined as the quantity of interest divided by its corresponding upper limit (restricted to be positive).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Label} & \multicolumn{3}{|l|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline & & Attributes & Description \\
\hline Instability & - & - - & Maximum of the ones listed below \\
\hline Instability & -1 & - - - & P/MXPRES \\
\hline Instability & -2 & - - - & \(\varepsilon_{3} / \mathrm{MNEPS}\) \\
\hline Instability & -3 & - - - & \(\varepsilon_{p} /\) EFFEPS \\
\hline Instability & -4 & - - - & \(\varepsilon_{\text {vol }} /\) VOLEPS \\
\hline Instability & -5 & - - - & P/MNPRES \\
\hline Instability & -6 & - - - & \(\sigma_{1} /\) SIGP1 \\
\hline Instability & -7 &  & \[
\sqrt{\frac{3}{2} \sigma_{i j}^{\prime} \sigma_{i j}^{\prime}} / \mathrm{SIGVM}
\] \\
\hline Instability & -8 & - - - & \(\varepsilon_{1} / \mathrm{MXEPS}\) \\
\hline Instability & -9 & - - - & \(\gamma_{1} /\) EPSSH \\
\hline Instability & -10 & - - - & \(\int_{0}^{t}\left[\max \left(0, \sigma_{1}-\sigma_{0}\right)\right]^{2} d t / \mathrm{IMPULSE}\) \\
\hline Instability & -12 & - - - & \(t /\) FAILTM \\
\hline
\end{tabular}
4. VOLFRAC. The volumes associated with individual integration points in higher order finite elements and isogeometric elements varies widely. Thus, the number of failed integration points is not a reliable criterion for determining element failure. To obtain a more stable and consistent response, LS-DYNA uses the volume fraction of the failed material for these types of elements.

\section*{*MAT_ADD_FATIGUE_\{OPTION\}}

Available options include:
<BLANK>
EN
The ADD_FATIGUE option defines the S-N or the E-N (with option EN) fatigue property of a material model.

\section*{Card Summary:}

Card 1a. This card is included if and only if no keyword option (<BLANK \(>\) ) is used and LCID > 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & LCID & LTYPE & & & & SNLIMT & SNTYPE \\
\hline
\end{tabular}

Card 1b. This card is included if and only if no keyword option (<BLANK \(>\) ) is used and LCID \(<0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & LCID & LTYPE & A & B & STHRES & SNLIMT & SNTYPE \\
\hline
\end{tabular}

Card 1c. This card is included if and only if the keyword option EN is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & KP & NP & SIGMAF & EPSP & BP & CP & \\
\hline
\end{tabular}

Card 2a. This card is read if no keyword option ( \(<\) BLANK \(>\) ) is used and LCID \(<0\). Include one card for each additional S-N curve segment. Between zero and seven of these cards may be included in the deck. This input ends at the next keyword ("**) card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & Ai & Bi & STHRES \(i\) & & \\
\hline
\end{tabular}

Card \(2 b\). This card is read if the keyword option EN is used. Card \(2 b\) is not needed if \(E\) and PR have been defined in the original material card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(E\) & PR & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & LCID & LTYPE & & & & SNLIMT & SNTYPE \\
Type & A & 1 & 1 & & & & 1 & 1 \\
Default & none & -1 & 0 & & & & 0 & 0 \\
\hline
\end{tabular}

SNLIMT SNLIMNT determines the algorithm used when stress is lower

VARIABLE
MID
LCID

LTYPE

SNTYPE

SNLIMT SNLIMNT determines the algorithm used when stress is lower than the lowest stress on S-N curve.

EQ.O: Use the life at the last point on S-N curve
EQ.1: Extrapolation from the last two points on S-N curve
EQ.2: Infinity
Q.O. Semi-log interpolation (default)

EQ.1: Log-log interpolation
EQ.2: Linear-linear interpolation

Stress type of S-N curve:
EQ.0: Stress range (default)
EQ.1: Stress amplitude
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & LCID & LTYPE & A & B & STHRES & SNLIMT & SNTYPE \\
Type & A & I & 1 & F & F & F & 1 & 1 \\
Default & none & -1 & 0 & 0.0 & 0.0 & none & 0 & 0 \\
\hline
\end{tabular}

STHRES Fatigue threshold stress

\section*{VARIABLE}

MID
LCID

LTYPE

A

B

SNLIMT

\section*{DESCRIPTION}

Material ID for which the fatigue property applies
S-N fatigue curve ID:
EQ.-1: S-N fatigue curve uses equation \(N S^{b}=a\)
EQ.-2: S-N fatigue curve uses equation \(\log (S)=a-b \log (N)\)
EQ.-3: S-N fatigue curve uses equation \(S=a N^{b}\)
EQ.-4: S-N fatigue curve uses equation \(S=a-b \log (N)\)

Material parameter \(b\) in S-N fatigue equation
EQ.2: Linear-linear interpolation
EQ.0: Semi-log interpolation (default)
EQ.1: Log-log interpolation

Material parameter \(a\) in S-N fatigue equation

SNLIMIT determines the algorithm used when stress is lower than STHRES.

EQ.O: Use the life at STHRES
EQ.1: Ignored
EQ.2: Infinity
SNTYPE Stress type of S-N curve.
EQ.0: Stress range (default)
EQ.1: Stress amplitude
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & KP & NP & SIGMAF & EPSP & BP & CP & \\
Type & A & F & F & F & F & F & F & \\
Default & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID
KP \(\quad K^{\prime}\), the cyclic strength coefficient
\(\mathrm{NP} \quad \mathrm{N}^{\prime}\), the cyclic strain hardening exponent
SIGMAP \(\quad \sigma_{f}^{\prime}\), the fatigue strength coefficient
EPSP \(\quad \varepsilon_{f}^{\prime}\), the fatigue ductility coefficient
BP \(\quad b^{\prime}\), the fatigue strength exponent (Basquin's exponent)
CP \(\quad c^{\prime}\), the fatigue ductility exponent (Coffin-Manson exponent)

S-N Curve Segment Cards. Include one card for each additional S-N curve segment. Between zero and seven of these cards may be included in the deck. This input ends at the next keyword ("*") card.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & Ai & Bi & STHRES \(i\) & & \\
Type & & & & F & F & F & & \\
Default & & & & 0.0 & 0.0 & none & & \\
\hline
\end{tabular}

\section*{VARIABLE}

A \(i\)
Bi

\section*{DESCRIPTION}

Material parameter \(a\) in S-N fatigue equation for the \(i^{\text {th }}\) segment
Material parameter \(b\) in S-N fatigue equation for the \(i^{\text {th }}\) segment

VARIABLE
STHRES \(i\)

\section*{DESCRIPTION}

Fatigue threshold stress for the \(i^{\text {th }}\) segment which acts as the lower stress limit of that segment
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E & PR & & & & & & \\
Type & I & F & & & & & & \\
Default & none & none & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

E

PR

\section*{DESCRIPTION}

Young's modulus
Poisson's ratio

\section*{Remarks:}
1. S-N Curves. For fatigue analysis based on stress (OPTION \(=<\) BLANK \(>\) ), S-N curves can be defined by *DEFINE_CURVE or by a predefined equation. When they are defined by curves, the abscissa values (the first column under *DEFINE_CURVE) represent N (number of cycles to failure) and the ordinate values ( \(2^{\text {nd }}\) column under \({ }^{*}\) DEFINE_CURVE) represent \(S\) (stress). There are 4 different predefined equations:
a) \(\operatorname{LCID}=-1\) :
\[
N S^{b}=a
\]
b) \(\operatorname{LCID}=-2\) :
\[
\log (S)=a-b \log (N)
\]
c) \(\operatorname{LCID}=-3\) :
\[
S=a N^{b}
\]
d) \(\operatorname{LCID}=-4\) :
\[
S=a-b \log (N)
\]

Here \(N\) is the number of cycles for fatigue failure and \(S\) is the stress amplitude. Note that the two equations can be converted to each other, with some minor algebraic manipulation on the constants \(a\) and \(b\).


Figure 2-5. S-N Curve having multiple slopes

To define an S-N curve with multiple slopes, the S-N curve can be split into multiple segments with each segment defined by a set of parameters \(\mathrm{A} i, \mathrm{~B} i\) and STHRESi. Up to 8 sets of the parameters ( \(\mathrm{A} i, \mathrm{~B} i\) and STHRESi) can be defined. The lower limit of the \(i^{\text {th }}\) segment is represented by the threshold stress STHRES \(i\), as shown in Figure 2-5. This only applies to the case where LCID \(<0\).
2. Related Keywords. This model is applicable to frequency domain fatigue analysis, defined by the keywords: *FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE and *FREQUENCY_DOMAIN_SSD_FATIGUE. It also applies to time domain fatigue analysis, defined by the keyword *FATIGUE (see these keywords for further details).
3. Strain-Based Fatigue. For fatigue analysis based on strain (OPTION \(=\mathrm{EN}\) ), the cyclic stress-strain curve is defined by
\[
\varepsilon=\frac{\sigma}{E}+\left(\frac{\sigma}{K^{\prime}}\right)^{\frac{1}{n^{\prime}}} .
\]

The relationship between true local strain amplitude and endurance is
\[
\frac{\Delta \varepsilon}{2}=\frac{\sigma_{f}^{\prime}}{E}(2 N)^{b^{\prime}}+\varepsilon_{f}^{\prime}(2 N)^{c^{\prime}}
\]

\section*{*MAT_ADD_GENERALIZED_DAMAGE}

This option provides a way of including generalized (tensor type) damage and failure in standard LS-DYNA material models. The basic idea is to apply a general damage model (e.g. GISSMO) using several history variables as damage driving quantities at the same time. With this feature it may be possible to obtain, for example, anisotropic damage behavior or separate stress degradation for volumetric and deviatoric deformations. A maximum of three simultaneous damage evolutions (meaning definition of 3 history variables) is possible. A detailed description of this model can be found in Erhart et al. [2017].

This option currently applies to shell element types \(1,2,3,4,16\), and 17 and solid element types \(-2,-1,1,2,3,4,10,13,15,16\), and 17 .

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & IDAM & DTYP & REFSZ & NUMFIP & LP2BI & PDDT & NHIS \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline HIS1 & HIS2 & HIS3 & IFLG1 & IFLG2 & IFLG3 & IFLG4 & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D11 & D22 & D33 & D44 & D55 & D66 & & \\
\hline
\end{tabular}

Card 4a. Include this card for shell elements
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D12 & D21 & D24 & D42 & D14 & D41 & & \\
\hline
\end{tabular}

Card 4b. Include this card for solid elements.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D12 & D21 & D23 & D32 & D13 & D31 & & \\
\hline
\end{tabular}

Card 5.1. Define NHIS sets of Cards 5.1 and 5.2 (total of \(2 \times\) NHIS cards) for each history variable (HISn).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCSDG & ECRIT & DMGEXP & DCRIT & FADEXP & LCREG & & \\
\hline
\end{tabular}

Card 5.2. Define NHIS sets of Cards 5.1 and 5.2 (total of \(2 \times\) NHIS cards) for each history variable (HISn).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCSRS & SHRF & BIAXF & LCDLIM & MIDFAIL & NFLOC & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & IDAM & DTYP & REFSZ & NUMFIP & LP2BI & PDDT & NHIS \\
Type & A & 1 & 1 & F & F & F & 1 & 1 \\
Default & none & 0 & 0 & 0.0 & 1.0 & 0.0 & 0 & 1 \\
\hline
\end{tabular}

VARIABLE
MID
IDAM

DTYP

REFSZ

NUMFIP Number of failed integration points prior to element deletion. The default is unity.

LT.O: |NUMFIP| is the percentage of layers which must fail before the element fails.

LP2BI Option to use a bending indicator instead of the Lode parameter. If active ( \(>0\) ), the expression "bending indicator" replaces the term "Lode parameter" everywhere in this manual page. We adopted the bending indicator from *MAT_258 (compare with variable \(\Omega\) ). LP2BI > 0 is only available for shell elements and requires NUMFIP \(=1\).

EQ.O.0: Inactive.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1.0: Active. Constant regularization (LCREG) applied.
EQ.2.0: Active. Regularization (LCREG) fully applied under pure membrane loading \((\Omega=0)\) but not at all under pure bending \((\Omega=1)\). Linear interpolation in between.

PDDT Pre-defined damage tensors. If non-zero, damage tensor coefficients D11 to D66 on Cards 3 and 4 will be ignored. See Remark 2.

EQ.0: No pre-defined damage tensor is used.
EQ.1: Isotropic damage tensor
EQ.2: 2-parameter isotropic damage tensor for volumetric-deviatoric split

EQ.3: Anisotropic damage tensor as in MAT_104 (FLAG =-1)
EQ.4: 3-parameter damage tensor associated with IFLG1 \(=2\)

NHIS \(\quad\) Number of history variables as driving quantities \((1 \leq\) NHIS \(\leq 3)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HIS1 & HIS2 & HIS3 & IFLG1 & IFLG2 & IFLG3 & IFLG4 & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
Default & 0 & optional & optional & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}

VARIABLE
HISn

DESCRIPTION
Choice of variable as driving quantity for damage, called "history value" in the following:

EQ.0: Equivalent plastic strain rate is the driving quantity for the damage if IFLG1 = 0. Alternatively, if IFLG1 = 1, components of the plastic strain rate tensor are driving quantities for damage (see Remarks 2 and 3).

GT.0: The rate of the additional history variable HISn is the driving quantity for damage. IFLG1 should be set to 0 .
LT.0: *DEFINE_FUNCTION IDs defining the damage driving quantities as a function of the components of the plastic strain rate tensor; IFLG1 should be set to 1 .

\section*{DESCRIPTION}

Damage driving quantities:
EQ.O: Rates of history variables HISn
EQ.1: Specific components of the plastic strain rate tensor; see Remarks 2 and 3.

EQ.2: Predefined functions of plastic strain rate components for orthotropic damage model. HISn inputs will be ignored, and IFLG2 should be set to 1 . This option is available for shell elements only.
EQ.3: Specific components of the total strain rate tensor; see Remarks 2 and 3.

Damage strain coordinate system:
EQ.0: Local element system (shells) or global system (solids)
EQ.1: Material system, only applicable for non-isotropic material models. Supported models for shell elements: all materials with AOPT feature. Supported models for solid elements: 22, 33, 41-50, 58, 103, 122, 133, 157, 199, 233.

EQ.2: Principal strain system (rotating)
EQ.3: Principal strain system (fixed when instability/coupling starts)

Erosion criteria and damage coupling system:
EQ.O: Erosion occurs when one of the damage parameters computed reaches unity; the damage tensor components are based on the individual damage parameters d 1 to d 3 .

EQ.1: Erosion occurs when a single damage parameter \(D\) reaches unity; the damage tensor components are based on this single damage parameter. Results in the isotropic limit case will only be correct if DMGEXP is set to 1.0 for all history variables.
EQ.2: Activation of the Domain of Shell-to-Solid Equivalence (DSSE) for shell elements, cf. Pack and Mohr (2017). Two damage variables are necessary for this model (a fracture initiation variable D1 and a localization initiation variable D2). If D1 reaches 1.0, stresses are set to zero and the integration point is no longer able to sustain any load. If \(\mathrm{D} 2=1.0\), no action is taken, and the integration point is still mechanically active. Erosion occurs when at least one

\section*{VARIABLE}

\section*{DESCRIPTION}
of the two damage variables (D1 or D2) reaches unity for all integration points. Additional required settings for this model: NUMFIP \(=-100\), DCRIT \(=1\), PDDT \(=1\), and NFLOC \(=0\).

IFLG4
Damage drivers' evolution flag. This option is relevant for cyclic loading when IFLG1 is set to 1 or 3 . Damage cannot increase with decreasing strain or history variable, but as soon as the strain/history increase again after unloading (i.e., below the previously reached maximum), the damage also increases again (behavior with IFLG4 \(=0\) ). This can be prevented with IFLG4 = 1, where the last maximum strain/history is saved.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D11 & D22 & D33 & D44 & D55 & D66 & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

Damage for Shell Elements Card. This card is included for shell elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D12 & D21 & D24 & D42 & D14 & D41 & & \\
Type & । & 1 & । & । & । & । & & \\
\hline
\end{tabular}

Damage for Solid Elements. This card is included for solid elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D12 & D21 & D23 & D32 & D13 & D31 & & \\
Type & । & । & । & । & 1 & । & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Dij DEFINE_FUNCTION IDs for damage tensor coefficients; see Remark 2.

Damage Definition Cards for IDAM = \(\mathbf{1}\) (GISSMO). NHIS sets of Cards 5.1 and 5.2 (total of \(2 \times\) NHIS cards) must be defined for each history variable (HISn).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSDG & ECRIT & DMGEXP & DCRIT & FADEXP & LCREG & & \\
Type & I & F & F & F & F & I & & \\
Default & 0 & 0.0 & 1.0 & 0.0 & 1.0 & 0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCSDG

ECRIT Critical history value (material instability):
LT.O.O: |ECRIT| is load curve ID defining critical history value as a function of triaxiality.

EQ.0.0: Fixed value DCRIT defining critical damage is read.
GT.0.0: Fixed value for stress-state independent critical history value

Exponent for nonlinear damage accumulation
Damage threshold value (critical damage). If a load curve of critical history value or fixed value is given by ECRIT, input is ignored.

Exponent for damage-related stress fadeout.
LT.0.0: |FADEXP| is load curve ID defining element-size dependent fading exponent

GT.O.O: Constant fading exponent
LCREG Load curve ID defining element size dependent regularization factors for history value to failure

Damage Definition Cards for IDAM = \(\mathbf{1}\) (GISSMO). NHIS sets of Cards 5.1 and 5.2 (total of \(2 \times\) NHIS cards) must be defined for each history variable (HISn).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSRS & SHRF & BIAXF & LCDLIM & MIDFAIL & NFLOC & & \\
Type & I & F & F & I & F & F & & \\
Default & 0 & 0.0 & 0.0 & 0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCSRS

\section*{DESCRIPTION}

Load curve ID defining failure history value scaling factor for LCSDG as a function of history value rate. If the first rate value in the curve is negative, it is assumed that all rate values are given as natural logarithm of the history rate.

GT.0: Scale ECRIT as well.

\section*{LT.0: Do not scale ECRIT.}

SHRF \(\quad\) Reduction factors for regularization at triaxiality \(=0\) (shear)
BIAXF \(\quad\) Reduction factors for regularization at triaxiality \(=2 / 3\) (biaxial)
LCDLIM Load curve ID defining damage limit values as a function of triaxiality. Damage can be restricted to values less than 1.0 to prevent further stress reduction and failure for certain triaxialities.

MIDFAIL Mid-plane failure option for shell elements. If active, then critical strain is only checked at the mid-plane integration point, meaning an odd number for NIP should be used. Damage is computed at the other integration points, but no coupling to the stresses is done first. As soon as the mid-plane IP reaches ECRIT/DCRIT, then all the other IPs are also checked (exception: MIDFAIL \(=4\) ).

EQ.0.0: Inactive
EQ.1.0: Active. The stresses immediately begin to reduce for non-mid-plane IPs that are already above their critical value. Coupling only occurs for IPs that reach their criterion.

EQ.2.0: Active. The stresses immediately begin to reduce for all the non-mid-plane IPs. NUMFIP is active.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.3.0: Active. Same as 2 , but when \(\mathrm{D}=1\) is reached in the middle integration point, the element is eroded instantaneously. NUMFIP is disregarded.

EQ.4.0: Active. Damage and failure is applied only on the midpoint. When \(\mathrm{D}=1\) on the midpoint, the element is eroded. NUMFIP is disregarded. Integration points away from the midplane see no stress reduction and no failure.

\begin{abstract}
NFLOC Optional "local" number of failed integration points prior to element deletion. Overwrites the definition of NUMFIP for history variable HISn.
\end{abstract}

\section*{Remarks:}
1. Comparison to GISSMO Damage Model. The GISSMO damage model is described in detail in the remarks of *MAT_ADD_DAMAGE_GISSMO. If NHIS \(=1\) and HIS1 \(=0\) is used, this keyword behaves the same as GISSMO. The main difference between this keyword and GISSMO is that up to 3 independent but simultaneous damage evolutions are possible. Therefore, parameters LCSDG, ECRIT, DMGEXP, DCRIT, FADEXP, LCREGD, LCSRS, SHRF, BIAXF, and LCDLIM can be defined separately for each history variable.
2. Damage Tensor. The relation between nominal (damaged) stresses \(\sigma_{i j}\) and effective (undamaged) stresses \(\tilde{\sigma}_{i j}\) is now expressed as
\[
\left[\begin{array}{c}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{array}\right]=\left[\begin{array}{cccccc}
D_{11} & D_{12} & D_{13} & 0 & 0 & 0 \\
D_{21} & D_{22} & D_{23} & 0 & 0 & 0 \\
D_{31} & D_{32} & D_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & D_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & D_{66}
\end{array}\right]\left[\begin{array}{l}
\tilde{\sigma}_{11} \\
\tilde{\sigma}_{22} \\
\tilde{\sigma}_{33} \\
\tilde{\sigma}_{12} \\
\tilde{\sigma}_{23} \\
\tilde{\sigma}_{31}
\end{array}\right]
\]
with damage tensor \(\mathbf{D}\). Each damage tensor coefficient \(D_{i j}\) can be defined using *DEFINE_FUNCTION as a function of damage parameters \(d_{1}\) to \(d_{3}\). For simple isotropic damage driven by plastic strain \(\quad(\mathrm{NHIS}=1, \quad \mathrm{HIS} 1=0\), IFLG1 \(=\) IFLG2 \(=\) IFLG3 \(=0\) ) that would be
\[
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{array}\right]=\left(1-d_{1}\right)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{\sigma}_{11} \\
\tilde{\sigma}_{22} \\
\tilde{\sigma}_{33} \\
\tilde{\sigma}_{12} \\
\tilde{\sigma}_{23} \\
\tilde{\sigma}_{31}
\end{array}\right]
\]

That means the following function should be defined for D11 to D66 (Card 3):
```

*DEFINE_FUNCTION
1,D11toD66
funcl(d1,d2,d3)=(1.0-d1)

```
and all entries in Card 4 can be left empty or equal to zero in that case.
If GISSMO (IDAM = 1) is used, the damage parameters used in those functions are internally replaced by
\[
d_{i} \rightarrow\left(\frac{d_{i}-\mathrm{DCRIT}_{i}}{1-\mathrm{DCRIT}_{i}}\right)^{\mathrm{FADEXP}_{i}}
\]

In the case of plane stress (shell) elements, coupling between normal stresses and shear stresses is implemented and the damage tensor is defined as below:
\[
\left[\begin{array}{c}
\sigma_{11} \\
\sigma_{22} \\
0 \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{array}\right]=\left[\begin{array}{cccccc}
D_{11} & D_{12} & 0 & D_{14} & 0 & 0 \\
D_{21} & D_{22} & 0 & D_{24} & 0 & 0 \\
0 & 0 & D_{33} & 0 & 0 & 0 \\
D_{41} & D_{42} & 0 & D_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & D_{66}
\end{array}\right]\left[\begin{array}{c}
\tilde{\sigma}_{11} \\
\tilde{\sigma}_{22} \\
0 \\
\tilde{\sigma}_{12} \\
\tilde{\sigma}_{23} \\
\tilde{\sigma}_{31}
\end{array}\right]
\]

Since the evaluation of *DEFINE_FUNCTION for variables D11 to D66 is relatively time consuming, pre-defined damage tensors (PDDT) can be used. Currently the following options are available for shell elements:
\begin{tabular}{|c|c|}
\hline PDDT & Damage Tensor \\
\hline 1 & \(\left(1-D_{1}\right)\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) \\
\hline 2 & \(\left[\begin{array}{cclccc}1-\frac{2}{3} D_{1}-\frac{1}{3} D_{2} & \frac{1}{3} D_{1}-\frac{1}{3} D_{2} & 0 & 0 & 0 & 0 \\ \frac{1}{3} D_{1}-\frac{1}{3} D_{2} & 1-\frac{2}{3} D_{1}-\frac{1}{3} D_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-D_{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) \\
\hline 3 & \(\left[\begin{array}{cccccc}1-D_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1-D_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-\frac{1}{2}\left(D_{1}+D_{2}\right) & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-\frac{1}{2} D_{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1-\frac{1}{2} D_{1}\end{array}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{lcccccc}
\hline PDDT & \multicolumn{6}{c}{ Damage Tensor } \\
\hline 4 & {\(\left[\begin{array}{cccccc}1-D_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 1-D_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 1-D_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\)} \\
\hline
\end{tabular}
and the following ones for solid elements:
\begin{tabular}{|c|c|c|c|c|}
\hline PDDT & \multicolumn{4}{|l|}{Damage Tensor} \\
\hline 1 & \(\left(1-D_{1}\right)\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) & & & \\
\hline 2 & \(\left[\begin{array}{cc}1-\frac{2}{3} D_{1}-\frac{1}{3} D_{2} & \frac{1}{3} D_{1}-\frac{1}{3} D_{2} \\ \frac{1}{3} D_{1}-\frac{1}{3} D_{2} & 1-\frac{2}{3} D_{1}-\frac{1}{3} D_{2} \\ \frac{1}{3} D_{1}-\frac{1}{3} D_{2} & \frac{1}{3} D_{1}-\frac{1}{3} D_{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right.\) & \(\frac{1}{3} D_{1}-\frac{1}{3} D_{2}\)
\(\frac{1}{3} D_{1}-\frac{1}{3} D_{2}\)
\(1-\frac{2}{3} D_{1}-\frac{1}{3} D_{2}\)
0
0
0 & \(\begin{array}{ccc} & & 0 \\ & 0 & 0 \\ 2 & 0 & 0 \\ & 1-D_{1} & 0 \\ & 0 & 1-D_{1} \\ & 0 & 0\end{array}\) & \(\left.\begin{array}{cc} & 0 \\ & 0 \\ & 0 \\ & 0 \\ 0 \\ 1 & \\ & 1-D_{1}\end{array}\right]\) \\
\hline 3 & \(\left[\begin{array}{cccc}1-D_{1} & 0 & 0 & \\ 0 & 1-D_{2} & 0 & \\ 0 & 0 & 1-D_{3} & \\ 0 & 0 & 0 & 1- \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & \end{array}\right.\) & \(\begin{array}{cc}0 & \\ 0 & \\ 0 & \\ \frac{1}{2}\left(D_{1}+D_{2}\right) & \\ 0 & 1 \\ 0 & \end{array}\) & \(\begin{array}{cc}0 & \\ 0 & \\ 0 & \\ 0 & \\ 1-\frac{1}{2}\left(D_{2}+D_{3}\right) & \\ 0 & 1\end{array}\) & \(\left.\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{2}\left(D_{3}+D_{1}\right)\end{array}\right]\) \\
\hline
\end{tabular}
3. History Variables. The increment of the damage parameter is computed in GISSMO based on a driving quantity that has the dimension of a strain rate:
\[
\dot{d}=n d^{1-1 / n} \frac{\mathrm{HİS}_{l}}{\mathrm{epf}}
\]

The history variables defined by the user through HISi should thus have the dimension of a strain as the rate is computed internally by MAT_ADD_GENERALIZED_DAMAGE:
\[
\operatorname{HIS}_{l}=\frac{\operatorname{HIS}_{i}\left(t^{n+1}\right)-\operatorname{HIS}_{i}\left(t^{n}\right)}{t^{n+1}-t^{n}}
\]

History variables can either come directly from associated material models (IFLG1 \(=0\) and HIS \(i>0\) ), or they can be equivalent to plastic strain rate tensor components (IFLG1 \(=1\) and \(\mathrm{HIS} i=0\) ):
\[
\begin{array}{lllll}
\mathrm{HIS}_{1}=\dot{\varepsilon}_{x x,}^{p} & \text { HIS }_{2}=\dot{\varepsilon}_{y y}^{p} & \text { HIS }_{3}=\dot{\varepsilon}_{x y}^{p} & \text { for } & \text { IFLG2 }=0 \\
\text { HIS }_{1}=\dot{\varepsilon}_{a a}^{p}, & \text { HIS }_{2}=\dot{\varepsilon}_{b b}^{p} & \text { HIS }_{3}=\dot{\varepsilon}_{a b}^{p} & \text { for } & \text { IFLG2 }=1 \\
\text { HIS }_{1}=\dot{\varepsilon}_{1}^{p}, & \text { HIS }_{2}=\dot{\varepsilon}_{2}^{p}, & \text { HIS }_{3}=0 & \text { for } & \text { IFLG2 }=2
\end{array}
\]
or they can be provided via *DEFINE_FUNCTIONs by the user (IFLG1 = 1 and HIS \(i<0\) ):
\[
\begin{array}{ll}
\operatorname{HIS}_{i}=f_{i}\left(\dot{\varepsilon}_{x x p}^{p}, \dot{\varepsilon}_{y y}^{p}, \dot{\varepsilon}_{z z}^{p}, \dot{\varepsilon}_{x y}^{p}, \dot{\varepsilon}_{y z}^{p}, \dot{\varepsilon}_{z x}^{p}\right) & \text { for IFLG2 }=0 \\
\text { HIS }_{i}=f_{i}\left(\dot{\varepsilon}_{a a}^{p} \dot{\varepsilon}_{b b,}^{p}, \dot{z}_{z z}^{p} \dot{\varepsilon}_{a b}^{p}, \dot{c}_{b z}^{p}, \dot{\varepsilon}_{z a}^{p}\right) & \text { for IFLG2 }=1 \\
\text { HIS }_{i}=f_{i}\left(\dot{\varepsilon}_{1}^{p}, \dot{\varepsilon}_{2}^{p}\right) & \text { for }
\end{array}
\]

The following example defines a history variable (HIS \(i=-1234\) ) as function of the transverse shear strains in material coordinate system \((a, b, z)\) for shells:
```

*DEFINE_FUNCTION
1234
fhis1(eaa,ebb,ezz,eab,ebz,eza)=1.1547*sqrt(ebz**2+eza**2)

```

The plastic strain rate tensor is not always available in the material law and is estimated as:
\[
\dot{\varepsilon}^{p}=\frac{\dot{\varepsilon}_{e f f}^{p}}{\dot{\varepsilon}_{e f f}}\left[\dot{\varepsilon}-\frac{\dot{\varepsilon}_{v o l}}{3} \delta\right]
\]

This is a good approximation for isochoric materials with small elastic strains (such as metals) and correct for J2 plasticity.

You can also use the total strain rate components \(\dot{\varepsilon}_{i j}\) instead of the plastic strain rate components \(\dot{\varepsilon}_{i j}^{p}\) by changing IFLG1 \(=1\) to IFLG1 \(=3\). Setting IFLG4 \(=1\) should be considered in that case (see description for IFLG4).

The following table gives an overview of the driving quantities used for incrementing the damage in function of the input parameters (strain superscript " p " for "plastic" is omitted for convenience):
\begin{tabular}{ccccc}
\hline IFLG1 & IFLG2 & \(\mathrm{HISi}>0\) & \(\mathrm{HISi}=0\) & \(\mathrm{HISi}<0\) \\
\hline 0 & 0 & \(\mathrm{HIS}_{l}\) & \(\dot{\varepsilon}\) & - \\
0 & 1 & \(\mathrm{HIS}_{l}\) & - & - \\
0 & 2 & \(\mathrm{HIS}_{l}\) & - & - \\
\(1 / 3\) & 0 & - & \(\dot{\varepsilon}_{i j}\) & \(f\left(\dot{\varepsilon}_{i j}\right)\) \\
\(1 / 3\) & 1 & - & \(\dot{\varepsilon}_{\text {mat }}\) & \(f\left(\dot{\varepsilon}_{i j}^{m a t}\right)\) \\
\(1 / 3\) & 2 & - & \(\dot{\varepsilon}_{i}\) & \(f\left(\dot{\varepsilon}_{i}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\hline IFLG1 & IFLG2 & \(\mathrm{HISi}>0\) & \(\mathrm{HISi}=0\) & \(\mathrm{HISi}<0\) \\
\hline 2 & 0 & - & - & - \\
2 & 1 & Preprogrammed functions of plastic strain rate \\
2 & 2 & - & - & - \\
\hline
\end{tabular}
4. Post-Processing History Variables. History variables of the GENERALIZED_DAMAGE model are written to the post-processing database behind those already occupied by the material model which is used in combination:
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline ND & Triaxiality variable \(\sigma_{H} / \sigma_{M}\) \\
\(\mathrm{ND}+1\) & Lode parameter value \\
\(\mathrm{ND}+2\) & Single damage parameter \(D,\left(10^{-20}<D \leq 1\right)\), only for \\
& IFLG3 \(=1\) \\
\(\mathrm{ND}+3\) & Damage parameter \(d_{1}\) \\
\(\mathrm{ND}+4\) & Damage parameter \(d_{2}\) \\
\(\mathrm{ND}+5\) & Damage parameter \(d_{3}\) \\
\(\mathrm{ND}+6\) & Damage threshold DCRIT \\
\(\mathrm{ND}+7\) & Damage threshold \(\mathrm{DCRIT}_{2}\) \\
\(\mathrm{ND}+8\) & Damage threshold \(\mathrm{DCRIT}_{3}\) \\
\(\mathrm{ND}+12\) & History variable HIS \\
\(\mathrm{ND}+13\) & History variable \(\mathrm{HIS}_{2}\) \\
\(\mathrm{ND}+14\) & History variable HIS \\
\(\mathrm{ND}+15\) & Angle between principal and material axes \\
\(\mathrm{ND}+21\) & Characteristic element size (used in LCREG) \\
\hline
\end{tabular}

For instance, ND \(=6\) for \({ }^{*}\) MAT_024, ND \(=9\) for \({ }^{*} \mathrm{MAT}_{2} 036\), and ND \(=23\) for *MAT_187. Exact information of the variable locations can be found in the d3hsp section "MAGD damage history listing."

\section*{*MAT_ADD_INELASTICITY}

The purpose of this card is to add inelasticity features to an arbitrary standard material model. It may either be used as a modular concept on top of a simple elastic model or patching a more complex material model with a missing inelastic feature.

This keyword is under development and currently only applies to shell types 2,4 and 16 , and solid types \(-18,-2,-1,1,2,10,15,16\) and 17 . Implicit as well as explicit analyses are supported, and the user should be aware of an extra cost associated with using this feature.

\section*{Card Summary:}

Card 1. This card is required. NIELINKS groups of Cards 4 through 6 should follow this card, possibly after input of anisotropy information in Cards 2 and 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & NIELINKS & & \(G\) & \(K\) & AOPT & MACF & BETA \\
\hline
\end{tabular}

Card 2. For AOPT > 0, define Cards 2 and 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline XP & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 3. For AOPT > 0, define Cards 2 and 3.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & & \\
\hline
\end{tabular}

Card 4. For each link, Cards 4 through 6 are required. NIELAWS groups of Cards 5 and 6 should follow immediately after each Card 4.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline NIELAWS & WEIGHT & & & & & & \\
\hline
\end{tabular}

Card 5. NIELAWS sets of Cards 5 and 6 are required after each Card 4.
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline LAW & MODEL & & & & & & \\
\hline
\end{tabular}

Card 6a. This card is required for \(\mathrm{LAW}=3\) and \(\mathrm{MODEL}=1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & & & & & & \\
\hline
\end{tabular}

Card 6b. This card is required for \(\mathrm{LAW}=3\) and \(\mathrm{MODEL}=2\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & & & & & & & \\
\hline
\end{tabular}

Card 6c. This card is included for LAW \(=5\) and MODEL \(\leq 2\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & & & & & \\
\hline
\end{tabular}

Card 6 d . This card is required for \(\mathrm{LAW}=5\) and \(\mathrm{MODEL}=3\), and \(\mathrm{LAW}=6\) and MOD\(\mathrm{EL}=4\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & P4 & P5 & P6 & P7 & \\
\hline
\end{tabular}

Card 6 e. This card is required for LAW \(=5\) and MODEL \(=4\), and LAW \(=6\) and MODEL \(=5\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & P4 & & & & \\
\hline
\end{tabular}

Card 6 f. This card is required for \(\mathrm{LAW}=6\) and MODEL \(\leq 3\)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}

Main Card. Only one instance of this card is needed. NIELINKS groups of Cards 4 through 6 should follow this card, possibly after input of anisotropy information in Cards 2 and 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & NIELINKS & & G & K & AOPT & MACF & BETA \\
Type & A & I & & F & F & F & F & F \\
Default & none & 1 & & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

NIELINKS Number of links/networks/phases specified by the user. An additional link may be added internally if the weights below do not sum up to unity.

G Characteristic shear modulus used for some of the inelasticity models. This should reflect the elastic stiffness for the material without any inelasticity effects. For instance, if *MAT_ELASTIC is used, set \(G=E /(2(1+v))\).

K Characteristic bulk modulus used for some of the inelasticity models. This should reflect the elastic stiffness for the material without

\section*{VARIABLE}

AOPT

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in cylindrical coordinate system with the material axes determined by a vector, \(\mathbf{v}\), and an originating point, \(P\), defining the centerline axis. This option is for solid elements only.

LT.0.0: The absolute value of AOPT is a coordinate system ID.
MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 3 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

BETA Material angle in degrees for AOPT \(=0\) (shells only) and AOPT \(=3\) (all element types). This angle may be overriden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO.

Anisotropy cards. Include Cards 2 and 3 if AOPT \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

XP, YP, ZP
Coordinates of point, \(p\), for AOPT \(=1\) and 4 ; see *MAT_002.

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3

A1, A2, A3 Components of vector, \(\mathbf{a}\), for \(\mathrm{AOPT}=2\); see \({ }^{*}\) MAT_002.

\section*{DESCRIPTION}

Components of vector, \(\mathbf{v}\), for AOPT \(=3\) and 4 ; see *MAT_002.
Components of vector, \(\mathbf{d}\), for \(\mathrm{AOPT}=2\); see \({ }^{*} \mathrm{MAT}_{-} 002\).

Link/network/phase Cards. Include NIELINKS sets of all cards that follow; NIELAWS groups of Cards 5 and 6 should follow immediately after each Card 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & NIELAWS & WEIGHT & & & & & & \\
Type & I & F & & & & & & \\
Default & none & 0 or 1 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

NIELAWS Number of inelasticity laws that apply to this material model at this link, each contributing in its own way to the total inelastic strain (rate)

WEIGHT Weight of this link/network/phase used when computing total stress.

Inelasticity model cards. Include NIELAWS sets of Cards 5 and 6; the Card 6 determined by the law and model selected should follow immediately after Card 5.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LAW & MODEL & & & & & & \\
Type & 1 & 1 & & & & & & \\
Default & none & none & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LAW

\section*{DESCRIPTION}

Inelasticity law. One of the laws listed below must be chosen:

\section*{VARIABLE}

MODEL

\section*{DESCRIPTION}

EQ.3: Isotropic hardening plasticity
EQ.5: Creep
EQ.6: Viscoelasticity
Model definition with choice dependent on the specified law above. A valid combination of law and model must be chosen.
For isotropic hardening plasticity ( \(\mathrm{LAW}=3\) ), choices are
EQ.1: Linear hardening
EQ.2: Hardening from curve/table
For creep \((\mathrm{LAW}=5)\), choices are
EQ.1: Norton incremental formulation
EQ.2: Norton total formulation
EQ.3: Norton-Bailey formulation
EQ.4: Bergström-Boyce formulation
For viscoelasticity (LAW = 6), choices are
EQ.1: Bulk and shear decay, with optional temperature shifts, hypoelastic version

EQ.2: Bulk and shear decay, with optional temperature shifts, hyperelastic version \#1

EQ.3: Bulk and shear decay, with optional temperature shifts, hyperelastic version \#2
EQ.4: Norton-Bailey formulation
EQ.5: Bergström-Boyce formulation

Inelasticity Parameters. This card is included for LAW \(=3\) and MODEL \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & & & & & & \\
Type & F & F & & & & & \\
Default & 0.0 & 0.0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

P1
P2

\section*{DESCRIPTION}

Virgin yield stress, \(\sigma_{0}\)
Hardening, \(H\)

Inelasticity Parameters. This card is included for LAW \(=3\) and MODEL \(=2\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & & & & & & & \\
Type & I & & & & & & & \\
Default & 0 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

P1
Curve or table ID that defines the hardening
Inelasticity Parameters. This card is included for LAW \(=5\) and MODEL \(\leq 2\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & & & & & \\
Type & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

P1 Norton creep parameter, \(A\)
P2 Norton creep parameter, \(m\)
P3 Norton creep parameter, \(n\)

Inelasticity Parameters. This card is included for LAW \(=5\) with MODEL \(=3\) and for LAW \(=6\) with MODEL \(=4\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

P1 Norton-Bailey creep parameter, \(A\)
P2 Norton-Bailey creep parameter, \(\sigma_{0}\)
P3 Norton-Bailey creep parameter, \(n\)
P4 Norton-Bailey creep parameter, \(T_{0}\)
P5 Norton-Bailey creep parameter, \(p\)
P6 Norton-Bailey creep parameter, \(m\)
P7 Norton-Bailey creep parameter, \(\varepsilon_{0}\)

Inelasticity Parameters. This card is included for LAW = 5 with MODEL \(=4\) and for LAW \(=6\) with MODEL \(=5\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6e & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

P1 Bergström-Boyce creep parameter, \(A\)
P2 Bergström-Boyce creep parameter, \(m\)

\section*{VARIABLE}

P3
P4

\section*{DESCRIPTION}

Bergström-Boyce creep parameter, C
Bergström-Boyce creep parameter, \(E\)

Inelasticity Parameters. This card is included for \(\operatorname{LAW}=6\) and MODEL \(=1,2\), or 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6f & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

P1
Shear decay coefficient, \(\beta_{G}\)
P2 Bulk decay coefficient, \(\beta_{K}\)
P3 Shear reference temperature, \(T_{G}\)
P4 Shear shift coefficient, \(A_{G}\)
P5 Shear shift coefficient, \(B_{G}\)
P6 Bulk reference temperature, \(T_{K}\)
P7 Bulk shift coefficient, \(A_{K}\)
P8 Bulk shift coefficient, \(B_{K}\)

\section*{Remarks:}

\section*{General}

The resulting stress from an integration point with inelasticities is the sum of the stress \(\sigma_{I}\) from each link, weighed by its weight, \(w_{I}\) (see WEIGHT above). A link in this context can also be referred to as a network or a phase, depending on the physical interpretation, and we use the subscript \(I\) to refer to a specific one. So, the stress, \(\sigma\), is in the end given by


Figure 2-6. Schematic view of how inelasticity is added to the model.
\[
\sigma=\sum_{I=1}^{\operatorname{NIELINKS}(+1)} w_{I} \sigma_{I}
\]

The data for the links are specified by the user, except for a possible last one which is internally created if the weights do not sum to unity (whence the +1 in the number of terms in the sum above). This last link will get its stress \(\sigma_{\text {NIELINKS }+1}\) only from the material model without any inelasticities, and its weight will be
\[
w_{\text {NIELINKS }+1}=1-\sum_{I=1}^{\text {NIELINKS }} w_{I}
\]
that is, just enough for the total weight to sum to 1 . The stress for each link will be treated next, for which we drop the subscript \(I\) for the sake of clarity, and emphasize that this first part will only treat creep and plasticity, since viscoelasticity is somewhat different and explained on its own at the end of this section.

\section*{A single link/network/phase}

\section*{Infinitesimal description}

The inelasticity feature assumes that the strain or strain rate is somehow decomposed into an elastic and inelastic part. This decomposition is in general not trivial and depends upon the underlying material model, but to make things simple we can begin by restricting ourselves to a small deformation context. In this case the decomposition is additive, so
\[
\varepsilon=\varepsilon_{e}+\varepsilon_{i}
\]
where \(\varepsilon\) is the total (given) strain, \(\varepsilon_{e}\) is the elastic strain, and \(\varepsilon_{i}\) is the inelastic strain. A material model then amounts to determining the stress for the elastic strain, which can be written as
\[
\sigma=\sigma\left(\varepsilon_{e}\right)=\sigma\left(\varepsilon-\varepsilon_{i}\right)
\]

The material model used as a basis for this feature, that is, the model indicated by parameter MID above, here acts as the function \(\sigma(*)\). If no inelasticity is added to the model, \(\varepsilon_{i}=0\) and the stress will be given by \(\sigma(\varepsilon)\). It is simply a plain evaluation of the material model in the absence of this keyword. For linear elasticity, for instance, the function would be given by Hooke's law
\[
\sigma(\varepsilon)=C \varepsilon
\]
where \(C\) is the Hooke elasticity tensor. Needless to say, the material model itself can deal with inelasticities of various kinds, such as plasticity, creep, thermal expansion and viscoelasticity, so the variable \(\varepsilon_{i}\) is restricted to the inelasticities specifically defined here and thus added to whatever is used in the material model. For the sake of generality, we allow the inelastic strain to come from many sources and be combined:
\[
\varepsilon_{i}=\varepsilon_{i}^{1}+\varepsilon_{i}^{2}+\varepsilon_{i}^{3}+\cdots .
\]

Here each superscript on the right-hand side refers to a specific combination of LAW and MODEL (excluding viscoelastic laws).

\section*{Large strain formulation}

For incrementally updated material models, using hypoelasticity with an objective rate of stress, the exposition above is generalized to large deformations by applying the appropriate time derivative to strains and stresses:
\[
\varepsilon \rightarrow D, \quad \varepsilon_{e} \rightarrow D_{e}, \quad \varepsilon_{i} \rightarrow D_{i}, \quad \sigma \rightarrow \sigma^{\nabla}, \ldots
\]

Here \(\boldsymbol{D}\) is the rate of deformation tensor, and \(\nabla\) indicates an objective time derivative \({ }^{3}\). For now, we restrict the evolution of inelastic strain to be based on a von Mises stress potential:
\[
D_{i}^{j}=\dot{\varepsilon}_{i}^{j} \frac{\partial \bar{\sigma}}{\partial \sigma},
\]
where
\[
\bar{\sigma}=\sqrt{\frac{3}{2} s: s} \quad\left(s=\sigma-\frac{1}{3} \sigma: I\right)
\]
is the von Mises effective stress, and \(\dot{\varepsilon}_{i}^{j}\) is the rate of effective inelastic strain for the MODEL and LAW corresponding to superscript \(j\). The constitutive law is thus written as
\[
\sigma^{\nabla}=\sigma^{\nabla}\left(\boldsymbol{D}_{e}\right)=\sigma^{\nabla}\left(\boldsymbol{D}-\boldsymbol{D}_{i}\right) .
\]

\footnotetext{
\({ }^{3}\) In LS-DYNA the objective rate is to be understood as the Jaumann rate for solid elements and the rate resulting from the specific co-rotational formulation for shell elements.
}

For hyperelastic materials the role of \(\boldsymbol{D}_{e}\) is replaced by the elastic deformation gradient, \(\boldsymbol{F}_{e}\), and instead of a constitutive law for the rate of stress, the total stress is given as
\[
\sigma=\sigma\left(\boldsymbol{F}_{e}\right)
\]

The evolution of the elastic deformation gradient is taken as
\[
\dot{F}_{e}=\left(\boldsymbol{L}-L_{i}\right) \boldsymbol{F}_{e},
\]
where \(L=\frac{\partial v}{\partial x}\) is the spatial velocity gradient and \(L_{i}\) is the inelastic part. For simplicity, we assume zero plastic spin for all involved features, thus \(\boldsymbol{W}_{i}=\mathbf{0}\) and \(L_{i}=\boldsymbol{D}_{i}\).

From here, we will give the evolution law of the effective inelastic strain for the available contributions.

\section*{Isotropic hardening (LAW = 3)}

The current yield stress is defined as
\[
\sigma_{Y}=\left\{\begin{array}{cc}
\sigma_{0}+H \varepsilon_{p} & \text { MODEL }=1 \\
c\left(\varepsilon_{p}, \dot{\varepsilon}_{p}\right) & \text { MODEL }=2, ~
\end{array}\right.
\]
where the inelastic strain is represented by the plastic strain, \(\varepsilon_{p}\), and \(c\) is the curve or table used to evaluate the yield stress. The evolution of plastic strain is given by the KKT condition
\[
\bar{\sigma}-\sigma_{Y} \leq 0, \quad \dot{\varepsilon}_{p} \geq 0, \quad\left(\bar{\sigma}-\sigma_{Y}\right) \dot{\varepsilon}_{p}=0
\]

In other words, it is the classical von Mises plasticity available in many standard plasticity models; see, for instance, *MAT_PIECEWISE_LINEAR_PLASTICITY (*MAT_024). As an example, materials 1 and 2 below are equivalent.
```

*MAT_ELASTIC				
	1	7.8e-9	210000.0	0.3
*MAT ADD INELASTICITY				
\$ mid				
1				
\$ nielaws				
1				
\$ law model				
	3	2		
\$	cid			
1				
*MAT_PIECEWISE_LINEAR_PLASTICITY				
\$	mid	ro	e	pr
	1	7.8e-9	210000.0	0.3
\$		lcss		

```

CID/LCSS can be either a curve or table defining effective stress as a function of effective plastic strain.

\section*{Creep (LAW = 5)}

For creep, the inelastic strain is represented by the creep strain, \(\varepsilon_{c}\). The evolution depends on the model specified.
a) Norton incremental formulation \((M O D E L=1)\)
\[
\dot{\varepsilon}_{c}=A \bar{\sigma}^{m} t^{n}
\]

This is essentially the creep law available in *MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP (*MAT_188).
b) Norton total formulation \((M O D E L=2)\).
\[
\dot{\varepsilon}_{c}=\frac{d}{d t}\left(A \bar{\sigma}^{m} t^{n}\right)
\]

This is essentially the creep law available in *MAT_UNIFIED_CREEP (*MAT_115), with some slight modifications.
c) Norton-Bailey formulation ( \(M O D E L=3\) ).
\[
\dot{\varepsilon}_{c}=\left(A\left(\frac{\bar{\sigma}}{\sigma_{0}}\right)^{n}\left(\frac{T}{T_{0}}\right)^{p}\left((m+1)\left(\varepsilon_{0}+\varepsilon_{c}\right)\right)^{m}\right)^{\frac{1}{m+1}}
\]

Here \(T\) is the current temperature.
d) Bergström-Boyce formulation ( \(M O D E L=4\) ).
\[
\dot{\varepsilon}_{c}=A\left(\lambda_{c}-1+E\right)^{c} \bar{\sigma}^{m}
\]
where \(\lambda_{c}=\sqrt{\frac{1}{3} I: B_{c}} \geq 1\) and \(\boldsymbol{B}_{c}=\exp \left\{2 \varepsilon_{c}\right\}\)

\section*{Viscoelasticity (LAW = 6)}

In the absence of viscoelasticity, we are now done with the description of the stress update, and we simply set
\[
\begin{aligned}
& \boldsymbol{s}_{I}=\boldsymbol{s} \\
& p_{I}=p
\end{aligned}
\]
where we use \(s_{I}\) and \(p_{I}\) to denote the final deviatoric stress and pressure in link \(I\) that is used in the weighted sum at the beginning of this section. The \(s\) and \(p\) are to be understood as the deviatoric stress and pressure resulting from treatment of creep and plasticity that we just covered, so \(\sigma=s-p I\). For viscoelasticity the stress in link \(I\) will be subject to stress decay (relaxation and creep), in that it evolves according to the specified
viscoelastic law. For deviatoric and volumetric decay coefficients \(\beta_{s}\) and \(\beta_{p}\), we have for the hypoelastic laws (MODEL \(=1\) and \(\operatorname{MODEL}=4\) ):
\[
\begin{aligned}
s_{I}^{\nabla} & =s^{\nabla}-\beta_{s} s_{I} \\
\dot{p}_{I} & =\dot{p}-\beta_{p} p_{I}
\end{aligned}
\]

The hyperelastic laws are formulated directly in terms of the Kirchhoff stress \(\tau=J \sigma\), where \(J=\operatorname{det} F\). More specifically, using the notation \(q=-\frac{1}{3} \tau: I\) and \(t=\tau+q I\), we have for hyperelastic law \#1 (MODEL \(=2\) )
\[
\begin{aligned}
& \boldsymbol{t}_{I}=\boldsymbol{t}-\operatorname{dev}\left[\beta_{s} \int_{0}^{t} e^{-\beta_{s}(t-s)} \overline{\boldsymbol{F}}_{s \rightarrow t} \boldsymbol{t}(s) \overline{\boldsymbol{F}}_{s \rightarrow t}^{T} d s\right] \\
& q_{I}=q-\beta_{p} \int_{0}^{t} e^{-\beta_{p}(t-s)} q(s) d s
\end{aligned}
\]
and for hyperelastic law \#2 \((\mathrm{MODEL}=3)\)
\[
\begin{aligned}
& \boldsymbol{t}_{I}=\boldsymbol{t}-\operatorname{sym}\left[\beta_{s} \int_{0}^{t} e^{-\beta_{s}(t-s)} \boldsymbol{F}_{s \rightarrow t} \boldsymbol{t}(s) \boldsymbol{F}_{s \rightarrow t}^{-1} d s\right] \\
& q_{I}=q-\beta_{p} \int_{0}^{t} e^{-\beta_{p}(t-s)} q(s) d s
\end{aligned}
\]

The Kirchhoff stress for link \(I\) is obtained as \(\boldsymbol{\tau}_{I}=\boldsymbol{t}_{I}-q_{I} \boldsymbol{I}\). Here we use \(\overline{\boldsymbol{F}}_{s \rightarrow t}=J_{s \rightarrow t}^{-1 / 3} \boldsymbol{F}_{s \rightarrow t}\), where \(J_{s \rightarrow t}=\operatorname{det} \boldsymbol{F}_{s \rightarrow t}\), and \(\boldsymbol{F}_{s \rightarrow t}\) is the deformation gradient between the configuration at time \(s\) and time \(t\). For law \(\# 1, \bar{F}_{s \rightarrow t}\) is used to push the stress forward from time \(s\) to time \(t\), while for law \#2, \(F_{s \rightarrow t}\) is used to transform the stress from time \(s\) to time \(t\), both essential to preserve frame invariance.

The decay coefficients can be constants but can also dependent on the state of the system (stress, internal variables, temperature, etc.). Note that if the decay coefficients are equal to zero ( \(\beta_{s}=\beta_{p}=0\) ), this is equivalent to not having viscoelasticity. Currently, we can specify temperature dependent decay coefficients to affect both the deviatoric and volumetric stress, formalized in the following.

\section*{Linear viscoelasticity (MODEL = 1)}

For viscoelasticity, the decay of stress is governed by the decay coefficients \(\beta_{s}\) and \(\beta_{p}\), optionally incorporating shift functions depending on the temperature \(T\). In this implementation, the shear and bulk decay are given as
\[
\begin{aligned}
& \beta_{s}=\beta_{G} \phi_{G}(T) \\
& \beta_{p}=\beta_{K} \phi_{K}(T)
\end{aligned}
\]
where \(\phi_{*}(*\) being \(G\) or \(K)\) are shift functions given by
\[
\phi_{*}(T)= \begin{cases}e^{-A_{*}\left(\frac{1}{T}-\frac{1}{T_{*}}\right)} & \text { if } B_{*}=0 \text { (Arrhenius) } \\ e^{-A_{*}\left(\frac{T-T_{*}}{B_{*}+T-T_{*}}\right)} & \text { if } B_{*} \neq 0 \text { (Williams - Landel - Ferry) }\end{cases}
\]

This is essentially the viscoelastic law available in *MAT_GENERAL_VISCOELASTIC ( \({ }^{*}\) MAT_076), except that the driving mechanism for the stress is here \(s^{\nabla}\) and \(\dot{p}\) rather than \(2 G_{I} \boldsymbol{D}_{\mathrm{dev}}\) and \(K_{I} D_{\mathrm{vol}}\). Note also, that in contrast to *MAT_076, the shift coefficients are to be given for each link and for both the shear and bulk decay. This allows for using independent shifts for each link, and if the traditional usage of the shift functions is desired one needs to put the same triplet (i.e., the values of \(T_{*}, A_{*}\) and \(B_{*}\) ) on all links (parameters P3-P5 for shear, and P6-P8 for bulk). If *MAT_ELASTIC is used in combination with viscoelasticity here, the two formulations can be made (almost) equivalent after proper transformation of input data. For instance, the following two material definitions (1 and 2) are equivalent;


In general, with
\[
G=\frac{E}{2(1+v)}, \quad K=\frac{E}{3(1-2 v)}
\]
in *MAT_ELASTIC, and \(G_{I}\) and \(K_{I}\) in \({ }^{*}\) MAT_GENERAL_VISCOELASTIC, we have
\[
G=\sum G_{I}, \quad K=\sum K_{I}
\]
while the weights are given as
\[
w_{I}=\frac{G_{I}}{G}=\frac{K_{I}}{K}
\]
which implies that the add inelasticity approach is somewhat more restrictive than the general approach. However, an almost pure shear/bulk link can be created by setting the bulk/shear decay coefficient to a very large number compared to the simulation time. To be specific, to get a shear link set \(\beta_{K} \gg 1 / T\) and to get a bulk link set \(\beta_{G} \gg 1 / T\), where \(T\) is the termination time. See also VFLAG in *MAT_GENERAL_HYPERELASTIC_RUBBER for the difference of the two approaches.

\section*{Nonlinear viscoelasticity}

The nonlinear creep laws ( \(\mathrm{LAW}=5\) ) can be formulated as nonlinear viscoelastic laws (LAW = 6) by setting
\[
\begin{aligned}
& \beta_{s}=\frac{G}{\sigma_{I}} \dot{\varepsilon}_{c} \\
& \beta_{p}=0
\end{aligned}
\]
where \(G\) is an estimated elastic stiffness of the base material, \(\sigma_{I}\) is the von Mises effective stress of \(s_{I}\) and \(\dot{\varepsilon}_{c}\) is the creep law of interest. Currently the following models are supported
e) Norton-Bailey formulation ( \(\mathrm{MODEL}=4\) ).
\[
\dot{\varepsilon}_{c}=\left(A\left(\frac{\sigma_{I}}{\sigma_{0}}\right)^{n}\left(\frac{T}{T_{0}}\right)^{p}\left((m+1)\left(\varepsilon_{0}+\varepsilon_{c}\right)\right)^{m}\right)^{\frac{1}{m+1}},
\]
where \(T\) is the current temperature.
f) Bergström-Boyce formulation ( MODEL \(=5\) ).
\[
\dot{\varepsilon}_{c}=A\left(\lambda_{c}-1+E\right)^{C} \sigma_{I}^{m},
\]
where \(\lambda_{c}=\sqrt{\frac{1}{3} \mathrm{I}: \mathbf{B}_{\mathrm{c}}} \geq 1\) and \(\mathbf{B}_{c}=\exp \left\{2 \varepsilon_{c}\right\}\)
For linear elasticity the creep and nonlinear viscoelastic laws are equivalent. For other models they are similar assuming that a reasonable value of \(G\) is used (see input field 4 on Card 1).

\section*{History}

With *DEFINE_MATERIAL_HISTORIES you can output the effective plastic and creep strains for plastic and creep models, respectively. The presence of this keyword in the
input deck will automatically move the total plastic strain to the appropriate location in the d3plot database. Its value will be
\[
\varepsilon_{p}=\sum_{I=1}^{\text {NIELINKS }} w_{I} \varepsilon_{p}^{I} .
\]

The creep strain can also be retrieved similarly as shown in the following table.
\begin{tabular}{|cccc|}
\hline \hline & \multirow{2}{*}{\begin{tabular}{l} 
*DEFINE_MATERIAL_HISTORIES Properties \\
Label
\end{tabular}} & Attributes & Description \\
\hline \hline Effective Creep Strain & - & - & - \\
\hline
\end{tabular}

\section*{*MAT_ADD_PERMEABILITY}

Add permeability to material model for consolidation calculations. See *CONTROL_PORE_FLUID.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & PERM & PERMY & PERMZ & THEXP & LCKZ & PMTYP & \\
Type & A & F/I & F/I & F/I & F & 1 & 1 & \\
Default & none & none & PERM & PERM & 0.0 & none & 0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

PERM Permeability or load curve ID defining permeability, depending on the definition of PMTYP below. If PERMY and PERMZ are nonzero, then PERM gives the permeability in the global \(X\) direction. See Remark 3.

PERMY Optional permeability or load curve ID defining permeability in the global \(Y\) direction, depending on the definition of PMTYP below

PERMZ

THEXP Undrained volumetric thermal expansion coefficient (see Remark 2):

GE.0.0: Constant undrained volumetric thermal expansion coefficient

LT.0.0: |THEXP| is the ID of a load curve giving the thermal expansion coefficient (y-axis) as a function of temperature ( \(x\)-axis).

LCKZ Load curve giving factor on PERM as a function of \(z\)-coordinate
PMTYP Permeability definition type:
EQ.0: PERM is a constant.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1: PERM is a load curve ID giving permeability ( \(y\)-axis) as a function of the volume ratio of current volume to volume in the stress-free state ( \(x\)-axis).
EQ.2: PERM is a load curve ID giving permeability ( \(y\)-axis) as a function of effective plastic strain ( \(x\)-axis) of materials other than MAT_072R3. For MAT_072R3, the \(x\)-axis is the output selector specified by NOUT; see *MAT_072R3.
EQ.3: PERM is a load curve ID giving permeability ( \(y\)-axis) as a function of effective pressure ( \(x\)-axis) which is positive when in compression.

\section*{Remarks:}
1. Permeability Units. The units of PERM are length/time (volume flow rate of water per unit area per gradient of pore pressure head).
2. Thermal Expansion. THEXP represents the thermal expansion of the material caused by the pore fluid (units: \(1 /\) temperature). It should be set equal to \(n \alpha_{w}\), where \(n\) is the porosity of the soil and \(\alpha_{w}\) is the volumetric thermal expansion coefficient of the pore fluid. If the pore fluid is water, the thermal expansion coefficient varies strongly with temperature; a curve of coefficient as a function of temperature may be input instead of a constant value. Note that this property is for volumetric strain increase, whereas regular thermal expansion coefficients (e.g. on *MAT or *MAT_ADD_THERMAL_EXPANSION) are linear, meaning they describe thermal expansion in one direction. The volumetric expansion coefficient is three times the linear thermal expansion coefficient. The regular thermal expansion coefficients apply to the soil skeleton and to drained parts. Pore pressure can be generated due to the difference of expansion coefficients of the soil skeleton and pore fluid, that is, if THEXP is not equal to three times the regular thermal expansion coefficient for the part.
3. Isotropic/Orthotropic Permeability. If only PERM is defined and PERMY and PERMZ are left blank or zero, the permeability is isotropic. To obtain orthotropic permeability, define values for PERM, PERMY and PERMZ, giving the permeability in the global \(X, Y\) and \(Z\) directions respectively.

\section*{*MAT_ADD_PORE_AIR}

For pore air pressure calculations.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & PA_RHO & PA_PRE & PORE & & & & \\
Type & A & I & F & F & & & & \\
Default & none & AIR_RO & AIR_RO & 1. & & & & \\
Remarks & 1 & & & 1,2 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PERM1 & PERM2 & PERM3 & CDARCY & CDF & LCPGD1 & LCPGD2 & LCPGD3 \\
Type & F & F & F & F & F & I & I & I \\
Default & 0. & PERM1 & PERM1 & 1. & 0. & none & LCPGD1 & LCPGD1 \\
Remarks & \(2,3,4,5\) & \(2,3,4,5\) & \(2,3,4,5\) & 1 & 1,5 & 6 & 6 & 6 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

PA_PRE

PORE

PA_RHO Initial density of pore air. The default is the atmospheric air density, AIR_RO, defined in *CONTROL_PORE_AIR

\section*{DESCRIPTION}

Material identification which must be same as the structural material

Initial pressure of pore air. The default is the atmospheric air pressure, AIR_P, defined in *CONTROL_PORE_AIR

Porosity, meaning the ratio of pores to total volume (default \(=1\) )
\begin{tabular}{cl} 
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 3 } PERM \(i\) & \begin{tabular}{l} 
Permeability of pore air along \(x, y\), and \(z\)-directions. If less than 0, \\
PERM \(i\) is taken to be the curve ID defining the permeability coeffi- \\
cient as a function of volume ratio of current volume to volume in \\
the stress free state.
\end{tabular} \\
CDF & Coefficient of Darcy's law \\
LCPGD \(i\) & Coefficient of Dupuit-Forchheimer law
\end{tabular}

\section*{Remarks:}
1. Card 1. This card must be defined for all materials requiring consideration of pore air pressure. The pressure contribution of pore air is \(\left(\rho-\rho_{\mathrm{atm}}\right) R T \times\) PORE, where \(\rho\) and \(\rho_{\text {atm }}\) are the current and atmospheric air densities, \(R\) is air's gas constant, \(T\) is atmospheric air temperature and PORE is the porosity. The values for \(R, T\) and PORE are assumed to be constant during simulation.
2. Permeability Model. The unit of PERM \(i\) is [Length] \({ }^{3}\) [time]/[mass], (air flow velocity per gradient of excess pore pressure), i.e.
\[
\left(\mathrm{CDARCY}+\mathrm{CDF} \times\left|v_{i}\right|\right) \times \operatorname{PORE} \times v_{i}=\operatorname{PERM} i \times \frac{\partial P_{a}}{\partial x_{i}}, \quad i=1,2,3
\]
where \(v_{\mathrm{i}}\) is the pore air flow velocity along the \(i^{\text {th }}\) direction, \(\partial P_{a} / \partial x_{i}\) is the pore air pressure gradient along the \(\mathrm{i}^{\text {th }}\) direction, and \(x_{1}=x, x_{2}=y, x_{3}=z\).
3. Default Values for PERM2 and PERM3. PERM2 and PERM3 are assumed to be equal to PERM1 when they are not defined. A definition of " 0 " means no permeability.
4. Local Coordinate Systems. When MID is an orthotropic material, such as \({ }^{*} \mathrm{MAT}_{-} 002\) or \({ }^{*} \mathrm{MAT}_{-} 142,(x, y, z)\), or \((1,2,3)\), refers to the local material coordinate system ( \(a, b, c\) ); otherwise it refers to the global coordinate system.
5. CDF for Viscosity. CDF can be used to consider the viscosity effect for high speed air flow.
6. Nonlinearity. LCPGDi can be used to define a non-linear Darcy's law as follows:
\[
\left(\mathrm{CDARCY}+\mathrm{CDF} \times\left|v_{i}\right|\right) \times \operatorname{PORE} \times v_{i}=\operatorname{PERM} i \times f_{i} \frac{\partial P_{a}}{\partial x_{i}}, \quad i=1,2,3
\]
where \(f_{i}\) is the value of the function defined by the LCPGD \(i\) field. The linear version of Darcy's law (see Remark 2) can be recovered when the LCPGD \(i\) curves are defined as straight lines of slope of 1 .

\section*{*MAT_ADD_PROPERTY_DEPENDENCE_\{OPTION\}}

Available options include:
FREQ

\section*{TIME}

The ADD_PROPERTY_DEPENDENCE option defines dependence of a material property on frequency or time.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & & & & & \\
\hline Variable & MID & PROP & LCID & & & & & \\
Type & A & C & 1 & & & & & \\
Default & none & none & 0 & & & & & \\
\hline
\end{tabular}

VARIABLE
MID
PROP Name of the property (same as the variable for a material model in keyword card). For example, "E" is used for Young's modulus in *MAT_ELASTIC. See Remark 4.

LCID Curve ID to define the property dependence. For the FREQ keyword option, the abscissa values define frequency; for the TIME keyword option, the abscissa values define time. The ordinate values define the property at each frequency or each time

\section*{Remarks:}
1. Overview. This keyword defines how a property (for example, the Young's modulus) of a material changes with frequency (for FREQ option) or with time (for TIME option). Particularly, *MAT_ADD_PROPERTY_DEPENDENCE_FREQ can be used in direct SSD analysis (*FREQUENCY_DOMAIN_SSD_DIRECT_FREQUENCY_DEPENDENT).
2. Properties without Frequency/Time Dependence. Some properties of a material model have no frequency or time dependence. A warning message will be
issued if a dependence curve is defined on a property of a material, which has no frequency or time dependence.
3. Initial Property Values. The original property value defined in a material card will be overridden by the property values defined at frequency or time 0 in this keyword. If the starting frequency or time of LCID in this keyword is larger than 0 , then the original property value defined in the material card is used until the starting frequency or time of LCID is reached.
4. Supported Material Models and Properties. So far, only the Young's modulus (E) of *MAT_ELASTIC is supported by this keyword. More material models (and properties) will be supported in the future.

\section*{*MAT_ADD_PZELECTRIC}

The ADD_PZELECTRIC option is used to occupy an arbitrary material model in LS-DYNA with a piezoelectric property. This option applies to 4-node solids, 6-node solids, 8node solids, thick shells, 2D plane strain elements and axisymmetric solids. Orthotropic properties are assumed. This feature is available in SMP since 115324/dev and MPP since 126577 / dev. We recommend a double precision executable.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & DTYPE & GPT & AOPT & & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DXX & DYY & DZZ & DXY & DXZ & DYZ & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PX11 & PX22 & PX33 & PX12 & PX13 & PX23 & PY11 & PY22 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PY33 & PY12 & PY13 & PY23 & PZ11 & PZ22 & PZ33 & PZ12 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PZ13 & PZ23 & & & & & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & D1 & D2 & D3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & DTYPE & GPT & AOPT & & & & \\
Type & A & A & F & 1 & & & & \\
Default & none & S & 8 & 0 & & & & \\
\hline
\end{tabular}

VARIABLE
MID
DTYPE Type of piezoelectric property definition (see remarks below)
EQ.S: Stress based definition
EQ.E: Strain based definition

GPT Number of Gauss points used for integration:
EQ.O: Default value 8, full integration
EQ.1: Reduced integration
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):
EQ.O.O: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.
EQ.1.0: Locally orthotropic with material axes determined by a point in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DXX & DYY & DZZ & DXY & DXZ & DYZ & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
D \(\alpha \beta\)

\section*{DESCRIPTION}

Dielectric permittivity matrix, \(d_{\alpha \beta} . \alpha, \beta=x, y, z\) (see remarks below).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PX11 & PX22 & PX33 & PX12 & PX13 & PX23 & PY11 & PY22 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PY33 & PY12 & PY13 & PY23 & PZ11 & PZ22 & PZ33 & PZ12 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PZ13 & PZ23 & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

VARIABLE
Paij

\section*{DESCRIPTION}

Piezoelectric matrix which depends on DTYPE (see remarks below). \(\alpha=x, y, z\) and \(i, j=1,2,3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\)
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & D1 & D2 & D3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{Remarks:}

The stress-based definition for piezoelectric effects is:
\[
\begin{aligned}
\sigma_{i j} & =k_{i j k l} \varepsilon_{k l}-p_{\alpha i j} E_{\alpha} \\
\Delta_{\alpha} & =p_{\alpha k l} \varepsilon_{k l}+d_{\alpha \beta} E_{\beta}
\end{aligned}
\]

Here \(\sigma_{i j}\) are the mechanical stresses, \(k_{i j k l}\) are the material stiffness constants, \(\varepsilon_{k l}\) are the material strains, \(p_{\alpha i j}\) are the stress-based piezoelectric coefficients, \(\Delta_{\alpha}\) are the electric displacements, \(E_{\alpha}\) are the electronic fields, and \(d_{\alpha \beta}\) are the dielectric permittivity constants.

The strain-based definition for piezoelectric effects is:
\[
\begin{aligned}
& \varepsilon_{i j}=f_{i j k l} \sigma_{k l}+P_{\alpha i j} E_{\alpha} \\
& \Delta_{\alpha}=P_{\alpha k l} \sigma_{k l}+d_{\alpha \beta} E_{\beta}
\end{aligned}
\]

Here \(f_{i j k l}\) are the material flexibility parameters and \(P_{\alpha i j}\) are the strain-based piezoelectric coefficients.

\section*{*MAT_ADD_SOC_EXPANSION}

The ADD_SOC_EXPANSION option adds a state of charge (SOC) expansion property to an (arbitrary) material model in LS-DYNA. The state of charge comes from the EM module during a coupled simulation. This option currently only applies to solid elements type \(-2,-1,1,2\), and 10 and to hypoelastic material models.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PID & LCID & MULT & LCIDY & MULTY & LCIDZ & MULTZ & \\
Type & I & I & F & I & F & I & F & \\
Default & none & 0 & 1.0 & LCID & MULT & LCID & MULT & \\
\hline
\end{tabular}

\section*{VARIABLE}

PID
LCID For isotropic material models, LCID is the load curve ID defining the SOC expansion coefficient as a function of state of charge. In this case, LCIDY, MULTY, LCIDZ, and MULTZ are ignored. For anisotropic material models, LCID and MULT define the SOC expansion coefficient in the local material \(a\)-direction. In either case, if LCID is zero, the SOC expansion coefficient is constant and equal to MULT.

MULT Scale factor scaling load curve given by LCID
LCIDY Load curve ID defining the SOC expansion coefficient in the local material \(b\)-direction as a function of state of charge. If zero, the SOC expansion coefficient in the local material \(b\)-direction is constant and equal to MULTY. If MULTY \(=0.0\) as well, LCID and MULT specify the SOC expansion coefficient in the local material \(b\)-direction.

MULTY Scale factor scaling load curve given by LCIDY
LCIDZ Load curve ID defining the SOC expansion coefficient in the local material \(c\)-direction as a function of state of charge. If zero, the SOC expansion coefficient in the local material \(c\)-direction is constant and equal to MULTZ. If MULTZ \(=0.0\) as well, LCID and MULT specify the SOC expansion coefficient in the local material \(c\) -
direction.
MULTZ Scale factor scaling load curve given by LCIDZ

\section*{Remarks:}

When invoking the isotropic SOC expansion property (no local \(y\) and \(z\) parameters) for a material, the stress update is based on the elastic strain rates given by
\[
\dot{\varepsilon}_{i j}^{e}=\dot{\varepsilon}_{i j}-\gamma(\mathrm{SOC}) \mathrm{SOC} \times \delta_{i j}
\]
rather than on the total strain rates, \(\dot{\varepsilon}_{i j}\). For orthotropic properties, which apply only to materials with anisotropy, this equation is generalized to
\[
\dot{\varepsilon}_{i j}^{e}=\dot{\varepsilon}_{i j}-\gamma_{k}(\mathrm{SOC}) \mathrm{SOC} q_{i k} q_{j k} .
\]

Here \(q_{i j}\) represents the matrix with material directions with respect to the current configuration.

\section*{*MAT_ADD_THERMAL_EXPANSION}

The ADD_THERMAL_EXPANSION option adds a thermal expansion property to an arbitrary material model in LS-DYNA. This option applies to all nonlinear solid, shell, thick shell and beam elements and to all material models except those models which use resultant formulations, such as *MAT_RESULTANT_PLASTICITY and *MAT_SPECIAL_ORTHOTROPIC. Orthotropic expansion effects are supported for anisotropic materials.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PID & LCID & MULT & LCIDY & MULTY & LCIDZ & MULTZ & \\
Type & I & I & F & I & F & I & F & \\
Default & none & none & 1.0 & LCID & MULT & LCID & MULT & \\
\hline
\end{tabular}

\section*{VARIABLE}

PID
LCID For isotropic material models, LCID is the load curve ID defining the thermal expansion coefficient as a function of temperature. In this case, LCIDY, MULTY, LCIDZ, and MULTZ are ignored. For anisotropic material models, LCID and MULT define the thermal expansion coefficient in the local material \(a\)-direction. In either case, if LCID is zero, the thermal expansion coefficient is constant and equal to MULT.

MULT Scale factor scaling load curve given by LCID
LCIDY Load curve ID defining the thermal expansion coefficient in the local material \(b\)-direction as a function of temperature. If zero, the thermal expansion coefficient in the local material \(b\)-direction is constant and equal to MULTY. If MULTY \(=0\) as well, LCID and MULT define the thermal expansion coefficient in the local material \(b\)-direction.

MULTY Scale factor scaling load curve given by LCIDY
LCIDZ Load curve ID defining the thermal expansion coefficient in the local material \(c\)-direction as a function of temperature. If zero, the thermal expansion coefficient in the local material c-direction is constant and equal to MULTZ. If MULTZ \(=0\) as well, LCID and MULT define the thermal expansion coefficient in the local material

\section*{VARIABLE}

MULTZ Scale factor scaling load curve given by LCIDZ

\section*{Remarks:}

When invoking the isotropic thermal expansion property (no local \(y\) and \(z\) parameters) for a material, the stress update is based on the elastic strain rates given by
\[
\dot{\varepsilon}_{i j}^{e}=\dot{\varepsilon}_{i j}-\alpha(T) \dot{T} \delta_{i j}
\]
rather than on the total strain rates \(\dot{\varepsilon}_{i j}\). For a material with the stress based on the deformation gradient, \(F_{i j}\), the elastic part of the deformation gradient is used for the stress computations:
\[
F_{i j}^{e}=J_{T}^{-1 / 3} F_{i j}
\]
where \(J_{T}\) is the thermal Jacobian. The thermal Jacobian is updated using the rate given by
\[
\dot{J}_{T}=3 \alpha(T) \dot{T} J_{T}
\]

For orthotropic properties, which apply only to materials with anisotropy, these equations are generalized to
\[
\dot{\varepsilon}_{i j}^{e}=\dot{\varepsilon}_{i j}-\alpha_{k}(T) \dot{T} q_{i k} q_{j k}
\]
and
\[
F_{i j}^{e}=F_{i k} \beta_{l}^{-1} Q_{k l} Q_{j l}
\]
where the \(\beta_{i}\) are updated as
\[
\dot{\beta}_{i}=\alpha_{i}(T) \dot{T} \beta_{i} .
\]

Here \(q_{i j}\) represents the matrix with material directions with respect to the current configuration whereas \(Q_{i j}\) are the corresponding directions with respect to the initial configuration. For (shell) materials with multiple layers of different anisotropy directions, the mid surface layer determines the orthotropy for the thermal expansion.

\section*{*MAT_NONLOCAL}

In nonlocal failure theories, the failure criterion depends on the state of the material within a radius of influence which surrounds the integration point. An advantage of nonlocal failure is that mesh size sensitivity on failure is greatly reduced leading to results which converge to a unique solution as the mesh is refined.

Without a nonlocal criterion, strains will tend to localize randomly with mesh refinement leading to results which can change significantly from mesh to mesh. The nonlocal failure treatment can be a great help in predicting the onset and the evolution of material failure. This option can be used with two and three-dimensional solid elements, three-dimensional shell elements, and thick shell elements. This option applies to a subset of elastoplastic materials that include a damage-based failure criterion.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IDNL & PID & P & Q & L & NFREQ & NHV & NHVT \\
Type & I & I & F & F & F & I & I & I \\
Default & none \\
\hline
\end{tabular}

History Cards. Include as many cards as needed to identify the NHV and NHVT history variables. One card 2 will be read, even if both NHV and NHVT are zero. If only NHV \(>0\), then NLi are assumed to be incremental variables. If only NHVT \(>0\), then NLi are assumed to be non-incremental variables. If both NHV and NHVT are nonzero, then NHV variables will be read starting at Card 2, and NHVT variables will be read starting on a new line.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & NL1 & NL2 & NL3 & NL4 & NL5 & NL6 & NL7 & NL8 \\
Type & I & I & I & I & I & I & I & I \\
Default & none \\
\hline
\end{tabular}

Symmetry Plane Cards. Define one card for each symmetry plane. Up to six symmetry planes can be defined. The next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cards 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC1 & YC1 & ZC1 & XC2 & YC2 & ZC2 & & \\
Type & F & F & F & F & F & \(F\) & & \\
Default & none & none & none & none & none & none & & \\
\hline
\end{tabular}

\section*{VARIABLE}

IDNL
PID Part ID for nonlocal material
P Exponent of weighting function. A typical value might be 8 depending somewhat on the choice of L. See Remark 4.

Exponent of weighting function. A typical value might be 2. See Remark 4.

L Characteristic length. This length should span a few elements. See Remark 4.

NFREQ Number of time steps between searching for integration points that lie in the neighborhood. Nonlocal smoothing will be done each cycle using these neighbors until the next search is done. The neighbor search can add significant computational time, so it is suggested that NFREQ be set to a value between 10 and 100 depending on the problem. This parameter may be somewhat problem dependent. If NFREQ \(=0\), a single search will be done at the start of the calculation.

NHV Number of variables with nonlocal treatment of increments. See Remark 1

NHVT Number of variables with nonlocal treatment of total values. See Remark 1.

NL1, ..., NL8 Identifies the history variable(s) for nonlocal treatment. Define NHV + NHVT values (maximum of 8 values per line). See Remark 2.


Figure 2-7. Here \(\dot{f_{r}}\) and \(x_{r}\) are respectively the nonlocal rate of increase of damage and the center of the element \(e_{r}\), and \(f_{\text {local }}^{i}, V_{i}\) and \(y_{i}\) are respectively the local rate of increase of damage, the volume and the center of element \(e_{i}\).

\section*{VARIABLE}

XC1, YC1, ZC1
XC2, YC2, ZC2

\section*{DESCRIPTION}

Coordinate of point on symmetry plane
Coordinate of a point along the normal vector

\section*{Remarks:}
1. NHV and NHVT. NHV is a count of the number of variables for which increments of the variable are used in the nonlocal function. NHVT is a count of the number of variables for which the whole value of the variable is used in the nonlocal function. NHVT type variables would be used only if the variable is itself an increment of some value which is rare. Many history variables are calculated by a sum of increments, but since the variable is the sum, one would include this variable in the NHV type variables for nonlocal treatment so that only the increments are modified.
2. History Variables. For elastoplastic material models in LS-DYNA which use the plastic strain as a failure criterion, setting the variable NL1 to 1 would flag plastic strain for nonlocal treatment. A sampling of other history variables that can be flagged for nonlocal treatment are listed in the table below. The value in
the third column in the table below corresponds to the history variable number as tabulated at http:/ /www.dynasupport.com/howtos/material/history-variables. Note that the NLn value is the history variable number plus 1.
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Material Model Name } & \begin{tabular}{c} 
*MAT_NONLOCAL \\
NLn Value
\end{tabular} & \begin{tabular}{c} 
History Variable \\
Number
\end{tabular} \\
\hline JOHNSON_COOK & 15 & 5 (shells); 7 (solids) & 4 (shells); 6 (solids) \\
\hline PLASTICITY_WITH_DAMAGE & 81 & 2 & 1 \\
\hline DAMAGE_1 & 104 & 4 & 3 \\
\hline DAMAGE_2 & 105 & 2 & 1 \\
\hline JOHNSON_HOLMQUIST_CONCRETE & 111 & 2 & 1 \\
\hline GURSON & 120 & 2 & 1 \\
\hline
\end{tabular}
3. Integration Points and Nonlocal Equations. When applying the nonlocal equations to shell and thick shell elements, integration points lying in the same plane within the radius determined by the characteristic length are considered. Therefore, it is important to define the connectivity of the shell elements consistently within the part ID, so that, for example, the outer integration points lie on the same surface.
4. Nonlocal Equations. The equations and our implementation are based on the implementation by Worswick and Lalbin [1999] of the nonlocal theory to Pijaud-ier-Cabot and Bazant [1987]. Let \(\Omega_{r}\) be the neighborhood of radius, L , of element \(e_{r}\) and \(\left\{e_{i}\right\}_{i=1, \ldots, N_{r}}\) the list of elements included in \(\Omega_{r}\), then
\[
\dot{f_{r}}=\dot{f}\left(x_{r}\right)=\frac{1}{W_{r}} \int_{\Omega_{r}} \dot{f}_{\text {local }} w\left(x_{r}-y\right) d y \approx \frac{1}{W_{r}} \sum_{i=1}^{N_{r}} f_{\text {local }}^{i} w_{r i} V_{i}
\]
where
\[
\begin{aligned}
& W_{r}=W\left(x_{r}\right)=\int w\left(x_{r}-y\right) d y \approx \frac{1}{W_{r}} \sum_{i=1}^{N_{r}} w_{r i} V_{i} \\
& w_{r i}=w\left(x_{r}-y_{i}\right)=\frac{1}{\left[1+\left(\frac{\left\|x_{r}-y_{i}\right\|}{L}\right)^{p}\right]^{q}}
\end{aligned}
\]

\section*{*MAT_ELASTIC_\{OPTION\}}

This is Material Type 1. This is an isotropic hypoelastic material and is available for beam, shell, and solid elements in LS-DYNA. A specialization of this material allows for modeling fluids.

Available options include:
<BLANK>
FLUID
such that the keyword cards appear as:
```

*MAT_ELASTIC or MAT_001
*MAT_ELASTIC_FLUID or MAT_001_FLUID

```

The fluid option is valid for solid elements only.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & DA & DB & K & \\
Type & A & F & F & F & F & F & F & \\
Default & none & none & none & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

Additional card for FLUID keyword option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VC & CP & & & & & & \\
Type & F & F & & & & & & \\
Default & none & \(10^{20}\) & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline RO & Mass density \\
\hline E & Young's modulus \\
\hline PR & Poisson's ratio \\
\hline DA & Axial damping factor (used for Belytschko-Schwer beam, type 2, only). \\
\hline DB & Bending damping factor (used for Belytschko-Schwer beam, type 2, only). \\
\hline K & Bulk modulus (define for fluid option only). \\
\hline VC & Tensor viscosity coefficient; values between .1 and .5 should be okay. \\
\hline CP & Cavitation pressure ( default \(=10^{20}\) ) . \\
\hline
\end{tabular}

\section*{Remarks:}
1. Finite strains. This hypoelastic material model may not be stable for finite (large) strains. If large strains are expected, a hyperelastic material model, such as *MAT_002, would be more appropriate.
2. Damping factors. The axial and bending damping factors are used to damp down numerical noise. The update of the force resultants, \(F_{i}\), and moment resultants, \(M_{i}\), includes the damping factors:
\[
\begin{aligned}
F_{i}^{n+1} & =F_{i}^{n}+\left(1+\frac{D A}{\Delta t}\right) \Delta F_{i}^{n+\frac{1}{2}} \\
M_{i}^{n+1} & =M_{i}^{n}+\left(1+\frac{D B}{\Delta t}\right) \Delta M_{i}^{n+\frac{1}{2}}
\end{aligned}
\]
3. Effective plastic strain. The history variable labeled as "effective plastic strain" by LS-PrePost is volumetric strain in the case of *MAT_ELASTIC.
4. Truss elements and damping stress. Truss elements include a damping stress given by
\[
\sigma=0.05 \rho c L / \Delta t
\]
where \(\rho\) is the mass density, \(c\) is the material wave speed, \(L\) is the element length, and \(\Delta t\) is the computation time step.

If the damping stress is undesired, it can be switched off with IRATE \(=2\) on *CONTROL_IMPLICIT_DYNAMICS.
5. FLUID keyword option. For the FLUID keyword option, the bulk modulus field, \(K\), must be defined, and both the Young's modulus and Poisson's ratio fields are ignored. Fluid-like behavior is obtained where the bulk modulus, \(K\), and pressure rate, \(p\), are given by:
\[
\begin{aligned}
K & =\frac{E}{3(1-2 v)} \\
\dot{p} & =-K \dot{\varepsilon}_{i i}
\end{aligned}
\]
and the shear modulus is set to zero. A tensor viscosity is used which acts only the deviatoric stresses, \(S_{i j}^{n+1}\), given in terms of the damping coefficient as:
\[
S_{i j}^{n+1}=\mathrm{VC} \times \Delta L \times a \times \rho \dot{\varepsilon}_{i j}^{\prime}
\]
where \(\Delta L\) is a characteristic element length, \(a\) is the fluid bulk sound speed, \(\rho\) is the fluid density, and \(\dot{\varepsilon}_{i j}^{\prime}\) is the deviatoric strain rate.

\section*{*MAT_OPTIONTROPIC_ELASTIC}

This is Material Type 2. This material is valid for modeling the elastic-orthotropic behavior of solids, shells, and thick shells. An anisotropic option is available for solid elements. For orthotropic solids an isotropic frictional damping is available.

Depending on the element type and solver, the implementation of this material model changes. See the theory manual for more details than the overview provided here. In the case of solids with an explicit solver or nonlinear implicit solver (meaning NSOLVR \(\neq 1\) on *CONTROL_IMPLICIT_SOLUTION), the model is the (hyperelastic) St. VenantKirchhoff model. The stress update is performed using the second Piola-Kirchhoff tensor. It is then transformed into the Cauchy stress for output. For shells (and this includes the 2D continuum elements, that is, shell types 13,14 , and 15 ), the model is implemented in the local coordinates of the shell as linear elasticity for explicit and nonlinear implicit. While the material response is linear, the shells themselves can undergo finite rotations consistent with applied forces. For the linear implicit solver, this material model is a linear elasticity model.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.

Available options include:
ORTHO
ANISO
such that the keyword cards appear:
*MAT_ORTHOTROPIC_ELASTIC or MAT_002
(4 cards follow)
*MAT_ANISOTROPIC_ELASTIC or MAT_002_ANIS

\section*{Card Summary:}

Card 1a.1. This card is required for the ORTHO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 1a.2. This card is required for the ORTHO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAB & GBC & GCA & AOPT & G & SIGF & & \\
\hline
\end{tabular}

Card 1 lb .1 . This card is required for the ANISO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline MID & R0 & C11 & C12 & C22 & C13 & C23 & C33 \\
\hline
\end{tabular}

Card 1b.2. This card is required for the ANISO keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C14 & C24 & C34 & C44 & C15 & C25 & C35 & C45 \\
\hline
\end{tabular}

Card 1b.3. This card is required for the ANISO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C55 & C16 & C26 & C36 & C46 & C56 & C66 & AOPT \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & MACF & IHIS \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
\hline
\end{tabular}

\section*{Data Card Definitions:}

Orthotropic Card 1. Included for ORTHO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1a.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE \\ MID \\ RO \\ EA \\ EB}

EC \(\quad E_{c}\), Young's modulus in \(c\)-direction (nonzero value required but not used for shells)

PRBA

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
\(E_{a}\), Young's modulus in \(a\)-direction
\(E_{b}\), Young's modulus in b-direction \(v_{b a}\), Poisson's ratio in the ba direction
\begin{tabular}{ll} 
VARIABLE & DESCRIPTION \\
\cline { 1 - 1 } & \\
PRCA & \(v_{c a}\), Poisson's ratio in the \(c a\) direction \\
PRCB & \\
\(v_{c b}\), Poisson's ratio in the \(c b\) direction
\end{tabular}

Orthotropic Card 2. Included for ORTHO keyword option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1a.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AOPT & G & SIGF & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{cl} 
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } GAB & \(G_{a b}\), shear modulus in the \(a b\) direction \\
GBC & \(G_{b c}\), shear modulus in the \(b c\) direction \\
GCA & \begin{tabular}{l}
\(G_{c a}\), shear modulus in the \(c a\) direction \\
AOPT
\end{tabular} \begin{tabular}{l} 
Material axes option (see Figure M2-1 and the Material Directions \\
section):
\end{tabular}
\end{tabular}

EQ.O.O: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. The a-direction is from node 1 to node 2 of the element. The \(\mathbf{b}\)-direction is orthogonal to the a-direction and is in the plane formed by nodes 1,2 , and 4 . When this option is used in two-dimensional planar and axisymmetric analysis, it is critical that the nodes in the element definition be numbered counterclockwise for this option to work correctly. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors a and d input below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a

\section*{VARIABLE}
vector \(\mathbf{v}\) and the normal vector to the plane of the element (see Figure M2-1). The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: \(|\mathrm{AOPT}|\) is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

G Shear modulus for frequency independent damping. Frequency independent damping is based on a spring and slider in series. The critical stress for the slider mechanism is SIGF. For the best results, the value of G should be 250-1000 times greater than SIGF. This option applies only to solid elements.

SIGF Limit stress for frequency independent, frictional, damping

Anisotropic Card 1. Included for ANISO keyword option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & C11 & C12 & C22 & C 13 & C 23 & C 33 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Anisotropic Card 2. Included for ANISO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 14 & C 24 & C 34 & C 44 & C 15 & C 25 & C 35 & C 45 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Anisotropic Card 3. Included for ANISO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1b.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C55 & C16 & C26 & C36 & C46 & C56 & C66 & AOPT \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
C11

C12
\(\vdots\)
C66
AOPT

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
The 1,1 term in the \(6 \times 6\) anisotropic constitutive matrix. Note that 1 corresponds to the \(a\) material direction

The 1, 2 term in the \(6 \times 6\) anisotropic constitutive matrix. Note that 2 corresponds to the \(b\) material direction

The 6, 6 term in the \(6 \times 6\) anisotropic constitutive matrix.
Material axes option (see Figure M2-1 and the Material Directions section):

EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. The a-direction is from node 1 to node 2 of the element. The \(\mathbf{b}\)-direction is orthogonal to the a-direction and is in the plane formed by nodes 1,2 , and 4 . When this option is used in two-dimensional planar and axisymmetric analysis, it is critical that the nodes in the element definition be numbered counterclockwise for this option to work correctly. For shells only, the material axes are then rotated

\section*{DESCRIPTION}
about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors a and d input below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element (see Figure M2-1). The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: \(|\mathrm{AOPT}|\) is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

Local Coordinate System Card 1. Required for all keyword options.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MACF & IHIS \\
Type & F & F & F & F & F & F & I & I \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP
A1, A2, A3
MACF

IHIS

\section*{DESCRIPTION}

Coordinates of point \(P\) for AOPT \(=1\) and 4
Components of vector a for \(\mathrm{AOPT}=2\)
Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF when finding the final material axes. If BETA on *ELEMENT_SOLID_\{OP\(T I O N\}\) is defined, then that BETA rotates the axes for all AOPT options. Otherwise, unless \(\mathrm{AOPT}=3\), the material axes will be switched as specified by MACF, but no BETA rotation will occur. If \(\mathrm{AOPT}=3\), then BETA input on Card 3 rotates the axes.

Flag for anisotropic stiffness terms initialization (for solid elements only):

EQ.0: C11, C12, ... from Cards 1b.1, 1b.2, and 1.b3 are used.
EQ.1: C11, C12, ... are initialized with history data from *INITIAL_STRESS_SOLID.

Local Coordinate System Card 2. Required for all keyword options.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4.
D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).

\section*{VARIABLE}

BETA

\section*{DESCRIPTION}

Angle in degrees of a material rotation about the c-axis, available for AOPT \(=0\) (shells and tshells only) and AOPT \(=3\) (all element types). This angle may be overridden on the element card; see *ELEMENT_SHELL_BETA, \({ }^{*} E L E M E N T \_T S H E L L \_B E T A, ~ a n d ~ * E L E-~\) MENT_SOLID_ORTHO.

REF

Flag to use reference geometry specified with *INITIAL_FOAM_REFERENCE_GEOMETRY to initialize the stress tensor.

EQ.0.0: Off
EQ.1.0: On

\section*{Remarks:}
1. Stress-strain material law. The material law that relates stresses to strains is defined as:
\[
\mathbf{C}=\mathbf{T}^{\mathrm{T}} \mathbf{C}_{L} \mathbf{T}
\]
where \(\mathbf{T}\) is a transformation matrix, and \(\mathbf{C}_{L}\) is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\). The inverse of \(\mathbf{C}_{L}\) for the orthotropic case is defined as:
\[
\mathbf{C}_{L}^{-1}=\left[\begin{array}{cccccc}
\frac{1}{E_{a}} & -\frac{v_{b a}}{E_{b}} & -\frac{v_{c a}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a b}}{E_{a}} & \frac{1}{E_{b}} & -\frac{v_{c b}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a c}}{E_{a}} & -\frac{v_{b c}}{E_{b}} & \frac{1}{E_{c}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{a b}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{b c}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{c a}}
\end{array}\right]
\]
where,
\[
\frac{v_{a b}}{E_{a}}=\frac{v_{b a}}{E_{b}}, \quad \frac{v_{c a}}{E_{c}}=\frac{v_{a c}}{E_{a}}, \quad \frac{v_{c b}}{E_{c}}=\frac{v_{b c}}{E_{b}} .
\]
2. Frequency-independent damping. Frequency-independent damping is obtained by having a spring and slider in series as shown in the following sketch:


This option applies only to orthotropic solid elements and affects only the deviatoric stresses.
3. Poisson's ratio. PRBA is the minor Poisson's ratio if EA \(>\mathrm{EB}\), and the major Poisson's ratio will be equal to PRBA(EA/EB). If EB \(>\) EA, then PRBA is the major Poisson's ratio. PRCA and PRCB are similarly defined. They are the minor Poisson's ratio if EA \(>\mathrm{EC}\) or \(\mathrm{EB}>\mathrm{EC}\), and the major Poisson's ratio if the \(\mathrm{EC}>\mathrm{EA}\) or \(\mathrm{EC}>\mathrm{EB}\).

Care should be taken when using material parameters from third party products regarding the directional indices \(a, b\) and \(c\), as they may differ from the definition used in LS-DYNA.
4. History variables. This material has the following history variables. Note that for shells and thick shells with element formulations 1, 2, and 6 the history variable labeled as "effective plastic strain" by LS-PrePost is stiffness component \(C_{11}\).
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
History \\
Variable \#
\end{tabular} & \begin{tabular}{l} 
Description (solids and thick shells 3, \\
5, and 7 )
\end{tabular} & \begin{tabular}{l} 
Description (shells and \\
thick shells 1, 2 and 6)
\end{tabular} \\
\hline \hline 1 & \begin{tabular}{l} 
Deformation gradient component \(F_{11}\) \\
2
\end{tabular} & \begin{tabular}{l} 
Stiffness component \(C_{12}\) \\
3
\end{tabular} \\
4 & Deformation gradient component \(F_{12}\) & Stiffness component \(C_{13}\) \\
5 & Deformation gradient component \(F_{13}\) & Stiffness component \(C_{14}\) \\
6 & Deformation gradient component \(F_{22}\) & Stiffness component \(C_{23}\) \\
7 & Deformation gradient component \(F_{23}\) & Stiffness component \(C_{24}\) \\
8 & Deformation gradient component \(F_{32}\) & Stiffness component \(C_{34}\) \\
9 & Deformation gradient component \(F_{33}\) & Stiffness component \(C_{44}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
History \\
Variable \#
\end{tabular} & \begin{tabular}{c} 
Description (solids and thick shells 3, \\
5, and 7)
\end{tabular} & \begin{tabular}{l} 
Description (shells and \\
thick shells 1, 2 and 6)
\end{tabular} \\
\hline \hline 10 & & Stiffness component \(C_{55}\) \\
11 & & Stiffness component \(C_{56}\) \\
12 & & Stiffness component \(C_{66}\) \\
\hline
\end{tabular}

\section*{Material Directions:}

We will give an overview of how LS-DYNA finds the principal material directions for solid and shell elements for this material and other anisotropic materials based on the input. We will call the material coordinate system the \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) coordinate system. The AOPT options illustrated in Figure M2-1 define the preliminary \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) system for all elements of the parts that use the material, but this is not the final material direction. The \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) system defined by the AOPT options may be offset by a final rotation about the c-axis. The offset angle we call BETA. Note that *ELEMENT_SOLID_ORTHO and *ELEMENT_SHELL_MCID allow you to set the preliminary \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) coordinate system for individual solid and shell elements, instead of using the preliminary system created with AOPT. Figures M2-2 and M2-3 give the flow chart for finding the final material direction based on the input to the *MAT keyword and the *ELEMENT keyword. As indicated in the figures, the orientation of the final material axes is updated continuously through the simulation as the element moves and deforms, in accordance with the invariant numbering scheme (INN in *CONTROL_ACCURACY).

For solid elements, the BETA angle is specified in one of two ways. When using \(\mathrm{AOPT}=3\), the BETA parameter defines the offset angle for all elements that use the material. The BETA parameter on *MAT has no meaning for the other AOPT options. Alternatively, a BETA angle can be defined for individual solid elements as described in Remark 5 for *ELEMENT_SOLID_ORTHO. The BETA angle set using the ORTHO option is available for all values of AOPT, and it overrides the BETA angle on the *MAT card for AOPT \(=3\) (see Figure M2-2). Note that when the BETA angle is applied in either case depends on the value of MACF (if available) of the *MAT keyword. With MACF two of the material directions may be switched.

There are two fundamental differences between shell and solid element orthotropic materials. (In the following discussion, tshell elements fall into the "shell" category.) First, the \(\mathbf{c}\)-direction is always normal to a shell element such that the \(\mathbf{a}\) and \(\mathbf{b}\)-directions are within the plane of the element. Second, for some anisotropic materials, shell elements may have unique fiber directions within each layer through the thickness of the element so that a layered composite can be modeled with a single element.

As a result of the c-direction being defined by the element normal, MACF does not apply to shells. Similarly, AOPT = 1 and AOPT \(=4\) are not available for shells. Also, AOPT \(=2\) requires only the vector a be specified since \(\mathbf{d}\) is not used. The shell procedure projects the inputted a-direction onto each element surface.

Note that when AOPT \(=0\) is used in two-dimensional planar and axisymmetric analysis, it is critical that the nodes in the element definition be numbered counterclockwise for this option to work correctly.

Similar to solid elements, the \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) coordinate system determined by AOPT is then modified by a rotation about the c-axis which we will call \(\phi\). For those materials that allow a unique rotation angle for each integration point through the element thickness, the rotation angle is calculated by
\[
\phi_{i}=\beta+\beta_{i},
\]
where \(\beta\) is a rotation for the element, and \(\beta_{i}\) is the rotation for the \(i^{\text {th }}\) layer of the element. The \(\beta\) angle can be input using the BETA parameter on the \({ }^{*}\) MAT data but will be overridden for individual elements if *ELEMENT_SHELL_BETA (*ELEMENT_TSHELL_BETA) is used. The \(\beta_{i}\) angles are input using the ICOMP \(=1\) option of *SECTION_SHELL (*SECTION_TSHELL) or with *PART_COMPOSITE (*PART_COMPOSITE_TSHELL). If \(\beta\) or \(\beta_{i}\) is omitted, they are assumed to be zero.

All anisotropic shell materials have the BETA parameter on the *MAT card available for both \(\mathrm{AOPT}=0\) and \(\mathrm{AOPT}=3\), except for materials 91 and 92 which have it available (but called FANG instead of BETA) for AOPT \(=0,2\), and 3 .

All anisotropic shell materials allow an angle for each integration point through the thickness, \(\beta_{i}\), except for materials \(2,86,91,92,117,130,170,172\), and 194.

\section*{Illustration of AOPT: Figure M2-1}


AOPT \(=2.0\) (solid)


\section*{AOPT = 1.0 (solid only)}


AOPT = 2.0 (shell)


\section*{AOPT \(=3.0\)}


AOPT \(=4.0\) (solid only)



Figure M2-2. Flowchart showing how for each solid element LS-DYNA determines the vectors \(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\) from the input.


Figure M2-3. Flowchart for shells: (a) check for coordinate system ID; (b) process AOPT; (c) determine \(\beta\); and (d) for each layer determine \(\beta_{i}\).

\section*{*MAT_PLASTIC_KINEMATIC}

This is Material Type 3. This model is suited for modelling isotropic and kinematic hardening plasticity with the option of including rate effects. It is a very cost-effective model and is available for beam (Hughes-Liu and Truss), shell, and solid elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & BETA & \\
Type & A & F & F & F & F & F & F & \\
Default & none & none & none & none & none & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SRC & SRP & FS & VP & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.0 & 0.0 & \(10^{20}\) & 0.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E Young's modulus
PR Poisson's ratio
SIGY
ETAN
BETA
SRC fied (see *PART).

Mass density

Yield stress

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Tangent modulus; see Figure M3-1.
Hardening parameter, \(0<\beta^{\prime}<1\). See Remark 2.
Strain rate parameter, \(C\), for the Cowper Symonds strain rate model; see Remark 1. If zero, rate effects are not considered.


Figure M3-1. Elastic-plastic behavior with kinematic and isotropic hardening where \(l_{0}\) and \(l\) are undeformed and deformed lengths of uniaxial tension specimen. \(E_{t}\) is the slope of the bilinear stress strain curve.

\section*{VARIABLE}

SRP

FS Effective plastic strain for eroding elements
VP Formulation for rate effects:
EQ.O.O: scale yield stress (default)
EQ.1.0: viscoplastic formulation (recommended)

\section*{Remarks:}
1. Cowper Symonds Strain Rate Model. Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate. A fully viscoplastic formulation is optional which incorporates the Cowper and Symonds formulation within the yield surface. To ignore strain rate effects set both SRC and SRP to zero.
2. Hardening Parameter. Kinematic, isotropic, or a combination of kinematic and isotropic hardening may be specified by varying \(\beta^{\prime}\) between 0 and 1 . For \(\beta^{\prime}\) equal
to 0 and 1, respectively, kinematic and isotropic hardening are obtained as shown in Figure M3-1. For isotropic hardening, \(\beta^{\prime}=1\), Material Model 12, *MAT_ISOTROPIC_ELASTIC_PLASTIC, requires less storage and is more efficient. Whenever possible, Material 12 is recommended for solid elements, but for shell elements, it is less accurate and thus Material 12 is not recommended in this case.
3. History Variables. This material has the following extra history variables.
\begin{tabular}{|c|l|}
\hline History Variable \# & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Back stress component \(x x\) \\
2 & Back stress component \(y y\) \\
3 & Back stress component \(x y\) \\
4 & Back stress component \(y z\) \\
5 & Back stress component \(z x\) \\
\hline
\end{tabular}

\section*{*MAT_ELASTIC_PLASTIC_THERMAL}

This is Material Type 4. Temperature dependent material coefficients can be defined with this material. A maximum of eight temperatures with the corresponding data can be defined, but a minimum of two points is required. When this material type is used, it is necessary to define nodal temperatures by activating a coupled analysis or by using another option to define the temperatures, such as *LOAD_THERMAL_LOAD_CURVE, or *LOAD_THERMAL_VARIABLE.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & & & & \\
Type & A & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T1 & T2 & T3 & T4 & T5 & T6 & T7 & T8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E1 & E2 & E3 & E4 & E5 & E6 & E7 & E8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PR1 & PR2 & PR3 & PR4 & PR5 & PR6 & PR7 & PR8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGY1 & SIGY2 & SIGY3 & SIGY4 & SIGY5 & SIGY6 & SIGY7 & SIGY8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ETAN1 & ETAN2 & ETAN3 & ETAN4 & ETAN5 & ETAN6 & ETAN7 & ETAN8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
MID

RO
Ti

Ei
PR \(i\)
ALPHA \(i\)
SIGYi Corresponding yield stress at temperature \(\mathrm{T} i\)
ETAN \(i \quad\) Corresponding plastic hardening modulus at temperature \(\mathrm{T} i\)

\section*{Remarks:}
1. Material Model. The stress update for this material follows the standard approach for hypo-elastoplasticity, using the Jaumann rate for objectivity. The rate of Cauchy stress \(\sigma\) can be expressed as
\[
\dot{\sigma}=\mathbf{C}\left(\dot{\varepsilon}-\dot{\varepsilon}_{T}-\dot{\varepsilon}_{p}\right)+\dot{\mathbf{C}} \mathbf{C}^{-1} \sigma
\]
where \(\mathbf{C}\) is the temperature dependent isotropic elasticity tensor, \(\dot{\varepsilon}\) is the rate-ofdeformation, \(\dot{\varepsilon}_{T}\) is the thermal strain rate, and \(\dot{\varepsilon}_{p}\) is the plastic strain rate. The coefficient of thermal expansion is defined as the instantaneous value. Thus, the thermal strain rate becomes
\[
\dot{\varepsilon}_{T}=\alpha \dot{T} \mathbf{I}
\]
where \(\alpha\) is the temperature dependent thermal expansion coefficient, \(\dot{T}\) is the rate of temperature and \(\mathbf{I}\) is the identity tensor. Associated von Mises plasticity is adopted, resulting in
\[
\dot{\varepsilon}_{p}=\dot{\varepsilon}_{p} \frac{3 \mathbf{s}}{2 \bar{\sigma}}
\]
where \(\dot{\varepsilon}_{p}\) is the effective plastic strain rate, \(\mathbf{s}\) is the deviatoric stress tensor, and \(\bar{\sigma}\) is the von Mises effective stress. The last term accounts for stress changes due to change in stiffness with respect to temperature, using the total elastic strain defined as \(\varepsilon_{e}=\mathbf{C}^{-1} \sigma\). As a way to intuitively understand this contribution, the special case of small displacement elasticity neglecting everything but the temperature dependent elasticity parameters gives
\[
\dot{\boldsymbol{\sigma}}=\frac{d}{d t}(\mathbf{C} \boldsymbol{\varepsilon})
\]
showing that the stress may change without any change in strain.
2. Model Requirements and Restrictions. At least two temperatures and their corresponding material properties must be defined. The analysis will be terminated if a material temperature falls outside the range defined in the input. If a thermo-elastic material is considered, do not define SIGY and ETAN.
3. History Variables. This material has the following extra history history variables.
\begin{tabular}{|c|l|}
\hline History Variable \# & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Reference temperature \\
3 & Current temperature \\
\hline
\end{tabular}

\section*{*MAT_SOIL_AND_FOAM}

This is Material Type 5. It is a relatively simple material model for representing soil, concrete, or crushable foam. A table can be defined if thermal effects are considered in the pressure as a function of volumetric strain behavior.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & KUN & A0 & A1 & A2 & PC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VCR & REF & LCID & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS9 & EPS10 & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P9 & P10 & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
G

KUN

A0
A1
A2
PC
VCR

REF

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density

\section*{Shear modulus}

Bulk modulus for unloading used for \(\mathrm{VCR}=0.0\)
Yield function constant for plastic yield function below
Yield function constant for plastic yield function below
Yield function constant for plastic yield function below
Pressure cutoff for tensile fracture \((<0)\)
Volumetric crushing option:
EQ.0.0: on
EQ.1.0: loading and unloading paths are the same
Use reference geometry to initialize the pressure. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY. This option does not initialize the deviatoric stress state.

EQ.0.0: off
EQ.1.0: on

Load curve ID for compressive pressure (ordinate) as a function of volumetric strain (abscissa). If LCID is defined, then the curve is used instead of the input for EPSi and Pi. It makes no difference whether the values of volumetric strain in the curve are input as positive or negative since internally, a negative sign is applied to the absolute value of each abscissa entry. If LCID refers to a table, the response is extended to being temperature dependent.


Figure M5-1. Pressure as a function of volumetric strain curve for soil and crushable foam model. The volumetric strain is given by the natural logarithm of the relative volume, \(V\).

\section*{VARIABLE \\ EPS1, ...}

P1, P2, ... PN Pressures corresponding to volumetric strain values given on Cards 3 and 4.

\section*{Remarks:}
1. Variable Definitions. Pressure is positive in compression. Volumetric strain is given by the natural log of the relative volume and is negative in compression. Relative volume is a ratio of the current volume to the initial volume at the start of the calculation. The tabulated data should be given in order of increasing compression. If the pressure drops below the cutoff value specified, it is reset to that value. For a detailed description we refer to Kreig [1972].
2. Yield Strength. The deviatoric perfectly plastic yield function, \(\phi\), is described in terms of the second invariant \(J_{2}\),
\[
J_{2}=\frac{1}{2} s_{i j} s_{i j}
\]
pressure, \(p\), and constants \(a_{0}, a_{1}\), and \(a_{2}\) as:
\[
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right] .
\]

On the yield surface \(J_{2}=\frac{1}{3} \sigma_{y}^{2}\) where \(\sigma_{y}\) is the uniaxial yield stress, that is,
\[
\sigma_{y}=\left[3\left(a_{0}+a_{1} p+a_{2} p^{2}\right)\right]^{1 / 2} .
\]

There is no strain hardening on this surface.
To eliminate the pressure dependence of the yield strength, set:
\[
a_{1}=a_{2}=0 \quad \text { and } \quad a_{0}=\frac{1}{3} \sigma_{y}^{2} .
\]

This approach is useful when a von Mises type elastic-plastic model is desired for use with the tabulated volumetric data.
3. Equivalent Plastic Strain. The history variable labeled as "plastic strain" by LS-PrePost is actually plastic volumetric strain. Note that when VCR \(=1.0\), plastic volumetric strain is zero.

\section*{*MAT_VISCOELASTIC}

This is Material Type 6. This model is for the modeling of viscoelastic behavior for beams (Hughes-Liu), shells, and solids. Also see *MAT_GENERAL_VISCOELASTIC for a more general formulation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & BULK & G0 & GI & BETA & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density fied (see *PART).

Material identification. A unique number or label must be speci-

BULK Elastic bulk modulus.
LT.O.O: |BULK| is a load curve of bulk modulus as a function of temperature.

G0 Short-time shear modulus, \(G_{0}\); see the Remarks below.
LT.O.O: |G0| is a load curve of short-time shear modulus as a function of temperature.

GI Long-time (infinite) shear modulus, \(G_{\infty}\).
LT.O.O: |GI| is a load curve of long-time shear modulus as a function of temperature.

BETA Decay constant.
LT.O.O: |BETA| is a load curve of decay constant as a function of temperature.

\section*{Remarks:}

The shear relaxation behavior is described by [Hermann and Peterson, 1968]:
\[
G(t)=G_{\infty}+\left(G_{0}-G_{\infty}\right) \exp (-\beta t) .
\]

A Jaumann rate formulation is used:
\[
\stackrel{\nabla}{\sigma}_{\mathrm{ij}}^{\prime}=2 \int_{0}^{t} G(t-\tau) D_{i j}^{\prime}(\tau) d \tau
\]
where the prime denotes the deviatoric part of the stress rate, \(\stackrel{\rightharpoonup}{\sigma}_{i j}\), and the strain rate, \(D_{i j}\).

\section*{*MAT_BLATZ-KO_RUBBER}

This is Material Type 7. This one parameter material allows the modeling of nearly incompressible continuum rubber. The Poisson's ratio is fixed to 0.463 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & REF & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
G Shear modulus
REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details).

EQ.0.0: off
EQ.1.0: on

\section*{Remarks:}
1. Stress-Strain Relationship. The strain energy density potential for the BlatzKo rubber is
\[
W(\mathbf{C})=\frac{G}{2}\left[I_{1}-3+\frac{1}{\beta}\left(I_{3}^{-\beta}-1\right)\right]
\]
where \(G\) is the shear modulus, \(I_{1}\) and \(I_{3}\) are the first and third invariants of the right Cauchy-Green tensor \(\mathbf{C}=\mathbf{F}^{\mathrm{T}} \mathbf{F}\), and
\[
\beta=\frac{v}{1-2 v} .
\]

The second Piola-Kirchhoff stress is computed as
\[
\mathbf{S}=2 \frac{\partial W}{\partial \mathbf{C}}=G\left[\mathbf{I}-I_{3}^{-\beta} \mathbf{C}^{-1}\right]
\]
from which the Cauchy stress is obtained by a push-forward from the reference to current configuration divided by the relative volume \(J=\operatorname{det}(\mathbf{F})\),
\[
\sigma=\frac{1}{J} \mathbf{F S F}^{\mathrm{T}}=\frac{G}{J}\left[\mathbf{B}-I_{3}^{-\beta} \mathbf{I}\right] .
\]

Here we use \(\mathbf{B}=\mathbf{F F}^{\mathrm{T}}\) to denote the left Cauchy-Green tensor, and Poisson's ratio, \(v\), above is set internally to \(v=0.463\); also see Blatz and Ko [1962].
2. History Variables. For solids, the 9 history variables store the deformation gradient, whereas for shells, the gradient is stored in the slot for effective plastic strain along with the first 8 history variables (the \(9^{\text {th }}\) stores in internal flag). If a dynain file is created using INTERFACE_SPRINGBACK_LSDYNA, then NSHV should be set to 9 so that the *INITIAL_STRESS_SHELL cards have the correct deformation gradient from which the stresses are to be calculated.

\section*{*MAT_HIGH_EXPLOSIVE_BURN}

This is Material Type 8. It allows the modeling of the detonation of a high explosive. In addition, an equation of state must be defined. See Wilkins [1969] and Giroux [1973].
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & D & PCJ & BETA & K & G & SIGY \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
D Detonation velocity
PCJ Chapman-Jouget pressure
BETA Beta burn flag (see remarks below):
EQ.0.0: beta and programmed burn
EQ.1.0: beta burn only
EQ.2.0: programmed burn only
\(\mathrm{K} \quad\) Bulk modulus \((\mathrm{BETA}=2.0\) only \()\)
G \(\quad\) Shear modulus \((B E T A=2.0\) only \()\)
SIGY \(\quad \sigma_{y}\), yield stress \((B E T A=2.0\) only \()\)

\section*{Remarks:}

Burn fractions, \(F\), which multiply the equations of states for high explosives, control the release of chemical energy for simulating detonations. At any time, the pressure in a high explosive element is given by:
\[
p=F p_{\mathrm{eos}}(V, E),
\]
where \(p_{\text {eos }}\) is the pressure from the equation of state (either types 2,3 , or 14 ), \(V\) is the relative volume, and \(E\) is the internal energy density per unit initial volume.

In the initialization phase, a lighting time, \(t_{l}\), is computed for each element by dividing the distance from the detonation point to the center of the element by the detonation velocity, \(D\). If multiple detonation points are defined, the closest detonation point determines \(\mathrm{t}_{\mathrm{l}}\). The burn fraction \(F\) is taken as the maximum,
\[
F=\max \left(F_{1}, F_{2}\right)
\]
where
\[
\begin{aligned}
& F_{1}=\left\{\begin{array}{cc}
\frac{2\left(t-t_{l}\right) D A_{e_{\max }}}{3 v_{e}} & \text { if } t>t_{l} \\
0 & \text { if } t \leq t_{l}
\end{array}\right. \\
& F_{2}=\beta=\frac{1-V}{1-V_{C J}}
\end{aligned}
\]
where \(V_{C J}\) is the Chapman-Jouguet relative volume and \(t\) is current time. If \(F\) exceeds 1 , it is reset to 1 . This calculation of the burn fraction usually requires several time steps for \(F\) to reach unity, thereby spreading the burn front over several elements. After reaching unity, \(F\) is held constant. This burn fraction calculation is based on work by Wilkins [1964] and is also discussed by Giroux [1973].

If the beta burn option is used, \(\mathrm{BETA}=1.0\), any volumetric compression will cause detonation and
\[
F=F_{2} .
\]
\(F_{1}\) is not computed. BETA \(=1\) does not allow for the initialization of the lighting time.
If the programmed burn is used, BETA \(=2.0\), the undetonated high explosive material will behave as an elastic perfectly plastic material if the bulk modulus, shear modulus, and yield stress are defined. Therefore, with this option the explosive material can compress without causing detonation. The location and time of detonation is controlled by *INITIAL_DETONATION.

As an option, the high explosive material can behave as an elastic perfectly-plastic solid prior to detonation. In this case we update the stress tensor, to an elastic trial stress, * \(s_{i j}^{n+1}\),
\[
* s_{i j}^{n+1}=s_{i j}^{n}+s_{i p} \Omega_{p j}+s_{j p} \Omega_{p i}+2 G \dot{\varepsilon}^{\prime}{ }_{i j} d t
\]
where \(G\) is the shear modulus, and \(\dot{\varepsilon}^{\prime}{ }_{i j}\) is the deviatoric strain rate. The von Mises yield condition is given by:
\[
\phi=J_{2}-\frac{\sigma_{y}^{2}}{3}
\]
where the second stress invariant, \(J_{2}\), is defined in terms of the deviatoric stress components as
\[
J_{2}=\frac{1}{2} s_{i j} s_{i j}
\]
and the yield stress is \(\sigma_{y}\). If yielding has occurred, namely, \(\phi>0\), the deviatoric trial stress is scaled to obtain the final deviatoric stress at time \(n+1\) :
\[
s_{i j}^{n+1}=\frac{\sigma_{y}}{\sqrt{3 J_{2}}} * s_{i j}^{n+1}
\]

If \(\phi \leq 0\), then
\[
s_{i j}^{n+1}=* s_{i j}^{n+1}
\]

Before detonation, pressure is given by the expression
\[
p^{n+1}=\mathrm{K}\left(\frac{1}{V^{n+1}}-1\right)
\]
where \(K\) is the bulk modulus. Once the explosive material detonates:
\[
s_{i j}^{n+1}=0
\]
and the material behaves like a gas.

\section*{*MAT_NULL}

\section*{This is Material Type 9.}

In the case of solids and thick shells, this material allows equations of state to be considered without computing deviatoric stresses. Optionally, a viscosity can be defined. Also, erosion in tension and compression is possible.

Beams and shells that use this material type are completely bypassed in the element processing; however, the mass of the null beam or shell elements is computed and added to the nodal points which define the connectivity. The mass of null beams is ignored if the value of the density is less than \(10^{-11}\). The Young's modulus and Poisson's ratio are used only for setting the contact stiffness, and it is recommended that reasonable values be input. The variables PC, MU, TEROD, and CEROD do not apply to beams and shells. Historically, null beams and/or null shells have been used as an aid in modeling of contact, but this practice is now seldom needed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PC & MU & TEROD & CEROD & YM & PR \\
Type & A & F & F & F & F & F & F & F \\
Defaults & none & none & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
PC \(\quad\) Pressure cutoff \((\leq 0.0)\). See Remark 4.
MU Dynamic viscosity, \(\mu\) (optional). See Remark 1.
TEROD

CEROD

YM

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Relative volume. \(V / V_{0}\), for erosion in tension. Typically, use values greater than unity. If zero, erosion in tension is inactive.

Relative volume, \(V / V_{0}\), for erosion in compression. Typically, use values less than unity. If zero, erosion in compression is inactive.

Young's modulus (used for null beams and shells only)

VARIABLE
PR
Poisson's ratio (used for null beams and shells only)

\section*{Remarks:}

These remarks apply to solids and thick shells only.
1. Material Model. When used with solids or thick shells, this material must be used with an equation-of-state. Pressure cutoff is negative in tension. A (deviatoric) viscous stress of the form,
\[
\sigma_{i j}^{\prime}=2 \mu \dot{\varepsilon}_{i j}{ }_{i j},
\]
is computed for nonzero \(\mu\), where \(\dot{\varepsilon}^{\prime}{ }_{i j}\) is the deviatoric strain rate and \(\mu\) is the dynamic viscosity. Analyzing the dimensions of the above equation gives units of the components in SI of
\[
\left[\frac{N}{m^{2}}\right] \sim\left[\frac{N}{m^{2}} s\right]\left[\frac{1}{s}\right] .
\]

Therefore, \(\mu\) may have units of \([\mathrm{Pa} \times \mathrm{s}]\).
2. Hourglass Control. Null materials have no shear stiffness (except from viscosity) and hourglass control must be used with great care. In some applications, the default hourglass coefficient may lead to significant energy losses. In general, for fluids the hourglass coefficient QM should be small (in the range \(10^{-6}\) to \(10^{-4}\) ), and the hourglass type IHQ should be set to 1 (default).
3. Yield Strength. The Null material has no yield strength and behaves in a fluidlike manner.
4. Cut-off Pressure. The cut-off pressure, PC, must be defined to allow for a material to "numerically" cavitate. In other words, when a material undergoes dilatation above certain magnitude, it should no longer be able to resist this dilatation. Since dilatation stress or pressure is negative, setting the PC limit to a very small negative number would allow for the material to cavitate once the pressure in the material goes below this negative value.

\section*{*MAT_ELASTIC_PLASTIC_HYDRO_\{OPTION\}}

This is Material Type 10. This material allows the modeling of an elastic-plastic hydrodynamic material and requires an equation-of-state ( \({ }^{*}\) EOS).

Available options include:
<BLANK>
SPALL
STOCHASTIC
The keyword card can appear in three ways:
*MAT_ELASTIC_PLASTIC_HYDRO or MAT_010
*MAT_ELASTIC_PLASTIC_HYDRO_SPALL or MAT_010_SPALL
*MAT_ELASTIC_PLASTIC_HYDRO_STOCHASTIC or MAT_010_STOCHASTIC

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & G & SIGO & EH & PC & FS & CHARL \\
\hline
\end{tabular}

Card 2. This card is included if and only if the SPALL keyword option is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline A1 & A2 & SPALL & & & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS9 & EPS10 & EPS11 & EPS12 & EPS13 & EPS14 & EPS15 & EPS16 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ES9 & ES10 & ES11 & ES12 & ES13 & ES14 & ES15 & ES16 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & G & SIG0 & EH & PC & FS & CHARL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & 0.0 & 0.0 & \(-\infty\) & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Shear modulus
Yield stress; see Remark 2.
Plastic hardening modulus; see Remark 2.
Pressure cutoff ( \(\leq 0.0\) ). If zero, a cutoff of \(-\infty\) is assumed.
Effective plastic strain at which erosion occurs.
Characteristic element thickness for deletion. This applies to 2D solid elements that lie on a boundary of a part. If the boundary element thins down due to stretching or compression, and if it thins to a value less than CHARL, the element will be deleted. The primary application of this option is to predict the break-up of axisymmetric shaped charge jets.

Spall Card. Additional card for SPALL keyword option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A1 & A2 & SPALL & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

A1
A2 Quadratic pressure hardening coefficient
SPALL

\section*{DESCRIPTION}

Linear pressure hardening coefficient

Spall type (see Remark 3):

EQ.0.0: Default set to " 1.0 "
EQ.1.0: Tensile pressure is limited by PC, that is, \(p\) is always \(\geq\) PC.

EQ.2.0: If \(\sigma_{\max } \geq-\mathrm{PC}\) element spalls and tension, \(p<0\), is never allowed.

EQ.3.0: \(p<\) PC element spalls and tension, \(p<0\), is never allowed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & F & F & F & F & F & F & \(F\) & \(F\) \\
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS9 & EPS10 & EPS11 & EPS12 & EPS13 & EPS14 & EPS15 & EPS16 \\
Type & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

EPSi

\section*{DESCRIPTION}

Effective plastic strain (true). Define up to 16 values. Care must be taken that the full range of strains expected in the analysis is covered. Linear extrapolation is used if the strain values exceed the maximum input value. See Remark 2.


Figure M10-1. Effective stress as a function of effective plastic strain curve. See EPS and ES input.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES9 & ES10 & ES11 & ES12 & ES13 & ES14 & ES15 & ES16 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

ESi

\section*{DESCRIPTION}

Effective stress. Define up to 16 values. See Remark 2.

\section*{Remarks:}
1. Model Overview. This model is applicable to a wide range of materials, including those with pressure-dependent yield behavior. The use of 16 points in the yield stress as a function of effective plastic strain curve allows complex postyield hardening behavior to be accurately represented. In addition, the incorporation of an equation of state permits accurate modeling of a variety of different
materials. The spall model options permit incorporation of material failure, fracture, and disintegration effects under tensile loads.

The STOCHASTIC option allows spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.
2. Yield Stress and Plastic Hardening Modulus. If ES and EPS values are undefined, the yield stress and plastic hardening modulus are taken from SIG0 and EH. In this case, the bilinear stress-strain curve shown in M10-1 is obtained with hardening parameter, \(\beta=1\). The yield strength is calculated as
\[
\sigma_{y}=\sigma_{0}+E_{h} \bar{\varepsilon}^{p}+\left(a_{1}+p a_{2}\right) \max [p, 0] .
\]

The quantity \(E_{h}\) is the plastic hardening modulus defined in terms of Young's modulus, \(E\), and the tangent modulus, \(E_{t}\), as follows
\[
E_{h}=\frac{E_{t} E}{E-E_{t}} .
\]

The pressure, \(p\), is taken as positive in compression.
If ES and EPS are specified, a curve like that shown in Figure M10-1 may be defined. Effective stress is defined in terms of the deviatoric stress tensor, \(s_{i j}\), as:
\[
\bar{\sigma}=\left(\frac{3}{2} s_{i j} s_{i j}\right)^{1 / 2}
\]
and effective plastic strain by:
\[
\bar{\varepsilon}^{p}=\int_{0}^{t}\left(\frac{2}{3} D_{i j}^{p} D_{i j}^{p}\right)^{1 / 2} d t,
\]
where \(t\) denotes time and \(D_{i j}^{p}\) is the plastic component of the rate of deformation tensor. In this case the plastic hardening modulus on Card 1 is ignored and the yield stress is given as
\[
\sigma_{y}=f\left(\bar{\varepsilon}^{p}\right),
\]
where the value for \(f\left(\bar{\varepsilon}^{p}\right)\) is found by interpolating the data curve.
3. Spall Models. A choice of three spall models is offered to represent material splitting, cracking, and failure under tensile loads.
a) The pressure limit model, SPALL \(=1\), limits the hydrostatic tension to the specified value, \(p_{\text {cut }}\). If pressures more tensile than this limit are calculated, the pressure is reset to \(p_{\text {cut }}\). This option is not strictly a spall model, since the deviatoric stresses are unaffected by the pressure reaching the tensile cutoff, and the pressure cutoff value, \(p_{\text {cut }}\), remains unchanged throughout the analysis.
b) The maximum principal stress spall model, SPALL \(=2\), detects spall if the maximum principal stress, \(\sigma_{\max }\), exceeds the limiting value \(-p_{\text {cut }}\). Note that the negative sign is required because \(p_{\text {cut }}\) is measured positive in compression, while \(\sigma_{\max }\) is positive in tension. Once spall is detected with this model, the deviatoric stresses are reset to zero, and no hydrostatic tension \((p<0)\) is permitted. If tensile pressures are calculated, they are reset to 0 in the spalled material. Thus, the spalled material behaves as a rubble or incohesive material.
c) The hydrostatic tension spall model, \(\mathrm{SPALL}=3\), detects spall if the pressure becomes more tensile than the specified limit, \(p_{\text {cut }}\). Once spall is detected the deviatoric stresses are reset to zero, and nonzero values of pressure are required to be compressive (positive). If hydrostatic tension \((p<0)\) is subsequently calculated, the pressure is reset to 0 for that element.

\section*{*MAT_STEINBERG}

This is Material Type 11. This material is available for modeling materials deforming at very high strain rates ( \(>10^{5}\) per second) and can be used with solid elements. The yield strength is a function of temperature and pressure. An equation of state determines the pressure.

This model applies to a wide range of materials, including those with pressure-dependent yield behavior. In addition, the incorporation of an equation of state permits accurate modeling of a variety of different materials. The spall model options permit the incorporation of material failure, fracture, and disintegration effects under tensile loads.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G0 & SIG0 & BETA & N & GAMA & SIGM \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B & BP & H & F & A & TM0 & GAM0 & SA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PC & SPALL & RP & FLAG & MMN & MMX & EC0 & EC1 \\
Type & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EC2 & EC3 & EC4 & EC5 & EC6 & EC7 & EC8 & EC9 \\
Type & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
G0 Basic shear modulus. See Remark 2.
SIGO \(\quad \sigma_{o}\); see Remark 3 below.
BETA \(\quad \beta\); see Remark 3 below.
N
GAMA
SIGM \(\quad \sigma_{m}\); see Remark 3.
B \(\quad b\); see Remark 2.
BP \(\quad b^{\prime}\); see Remark 3.
H \(\quad h\); see Remarks 2 and 3 .
F \(\quad f\); see Remark 3.
A
TMO
GAMO \(\quad \gamma_{o}\); see Remark 2.
SA \(\quad a\); see Remark 2.
PC Pressure cutoff \(\left(\right.\) default \(\left.=-10^{30}\right)\). See Remark 5.
SPALL
Spall type (see Remark 5):
EQ.0.0: Default, set to " 2.0 "
EQ.1.0: \(p \geq\) PC
EQ.2.0: If \(\sigma_{\max } \geq-\mathrm{PC}\), element spalls, and tension, \(p<0\), is never allowed.

EQ.3.0: If \(p<\) PC element spalls, and tension, \(p<0\), is never allowed.
\(R P \quad R^{\prime}\). If \(R^{\prime} \neq 0.0, A\) is not defined. See Remark 2.

\section*{VARIABLE}

FLAG

MMN

MMX Optional \(\mu\) or \(\eta\) maximum value ( \(\mu_{\max }\) or \(\eta_{\max }\) ), depending on FLAG.

EC0, ..., EC9 Cold compression energy coefficients (optional). See Remark 2.

\section*{Remarks:}
1. References. Users who have an interest in this model are encouraged to study the paper by Steinberg and Guinan which provides the theoretical basis. Another useful reference is the KOVEC user's manual.
2. Shear Modulus. In terms of the foregoing input parameters, we define the shear modulus, \(G\), before the material melts as:
\[
G=G_{0}\left[1+b p V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime}}-300\right)\right] e^{\frac{-f E_{i}}{E_{m}-E_{i}}}
\]
where \(p\) is the pressure, \(V\) is the relative volume, \(E_{\mathcal{C}}\) (see Remark 4) is the cold compression energy, and \(E_{m}\) is the melting energy. \(E_{c}\) is given by:
\[
E_{c}(x)=\int_{0}^{x} p(X) d X-\frac{900 R^{\prime} \exp (a x)}{(1-x)^{\left(\gamma_{0}-a\right)}}
\]
with
\[
x=1-V .
\]
\(E_{m}\) is defined as:
\[
E_{m}(x)=E_{c}(x)+3 R^{\prime} T_{m}(x)
\]
\(E_{m}\) is in terms of the melting temperature \(T_{m}(x)\) :
\[
T_{m}(x)=\frac{T_{\mathrm{mo}} \exp (2 a x)}{V^{2\left(\gamma_{o}-a-1 / 3\right)}}
\]
and the melting temperature at \(\rho=\rho_{o}, T_{\mathrm{mo}}\).
In the above equations \(R^{\prime}\) is defined by
\[
R^{\prime}=\frac{R \rho}{A},
\]
where \(R\) is the gas constant and \(A\) is the atomic weight. If \(R^{\prime}\) is not defined, LSDYNA computes it with \(R\) in the cm -gram-microsecond system of units.
3. Yield Strength. The yield strength, \(\sigma_{y}\), is given by:
\[
\sigma_{y}=\sigma_{o}^{\prime}\left[1+b^{\prime} p V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime}}-300\right)\right]^{\frac{-f E_{i}}{E_{m}-E_{i}}}
\]
if \(E_{m}\) exceeds \(E_{i}\) (see Remark 2). Here, \(\sigma_{o}^{\prime}\) is:
\[
\sigma_{o}^{\prime}=\sigma_{o}\left[1+\beta\left(\gamma_{i}+\bar{\varepsilon}^{p}\right)\right]^{n}
\]
where \(\sigma_{o}\) is the initial yield stress and \(\gamma_{i}\) is the initial plastic strain. If the workhardened yield stress \(\sigma_{o}^{\prime}\) exceeds \(\sigma_{m}, \sigma_{o}^{\prime}\) is set equal to \(\sigma_{m}\). After the materials melt, \(\sigma_{y}\) and \(G\) are set to one half their initial value.
4. Cold Compression Energy. If the coefficients EC0, ..., EC9 are not defined above, LS-DYNA will fit the cold compression energy to a ten term polynomial expansion either as a function of \(\mu\) or \(\eta\) depending on field FLAG as:
\[
\begin{aligned}
& E_{c}\left(\eta^{i}\right)=\sum_{i=0}^{9} \mathrm{EC}_{i} \eta^{i} \\
& E_{c}\left(\mu^{i}\right)=\sum_{i=0}^{9} \mathrm{EC}_{i} \mu^{i}
\end{aligned}
\]
where \(\mathrm{EC}_{i}\) is the \(i^{\text {th }}\) coefficient and:
\[
\begin{aligned}
\eta & =\frac{\rho}{\rho_{o}} \\
\mu & =\frac{\rho}{\rho_{o}}-1
\end{aligned}
\]

A linear least squares method is used to perform the fit.
5. Spall Models. A choice of three spall models is offered to represent material splitting, cracking, and failure under tensile loads.
a) Pressure Limit Model. The pressure limit model, SPALL \(=1\), limits the hydrostatic tension to the specified value, \(p_{\text {cut }}\). If a pressure more tensile than this limit is calculated, the pressure is reset to \(p_{\text {cut }}\). This option is not strictly a spall model, since the deviatoric stresses are unaffected by the pressure reaching the tensile cutoff, and the pressure cutoff value, \(p_{\text {cut }}\), remains unchanged throughout the analysis.
b) Maximum Principal Stress Spall Model. The maximum principal stress spall model, SPALL \(=2\), detects spall if the maximum principal stress, \(\sigma_{\max }\), exceeds the limiting value \(-p_{\text {cut }}\). Note that the negative sign is required
because \(p_{\text {cut }}\) is measured positive in compression, while \(\sigma_{\max }\) is positive in tension. Once spall is detected with this model, the deviatoric stresses are reset to zero, and no hydrostatic tension \((p<0)\) is permitted. If tensile pressures are calculated, they are reset to 0 in the spalled material. Thus, the spalled material behaves as a rubble or incohesive material.
c) Hydrostatic Tension Spall Model. The hydrostatic tension spall model, SPALL \(=3\), detects spall if the pressure becomes more tensile than the specified limit, \(p_{\text {cut }}\). Once spall is detected the deviatoric stresses are reset to zero, and nonzero values of pressure are required to be compressive (positive). If hydrostatic tension \((p<0)\) is subsequently calculated, the pressure is reset to 0 for that element.

\section*{*MAT_STEINBERG_LUND}

This is Material Type 11. This material is a modification of the Steinberg model above to include the rate model of Steinberg and Lund [1989]. An equation of state determines the pressure.

The keyword cards can appear in two ways:
*MAT_STEINBERG_LUND or MAT_011_LUND

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & GO & SIGO & BETA & N & GAMA & SIGM \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B & BP & H & F & A & TMO & GAM0 & SA \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PC & SPALL & RP & FLAG & MMN & MMX & EC0 & EC1 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EC2 & EC3 & EC4 & EC5 & EC6 & EC7 & EC8 & EC9 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline UK & C1 & C2 & YP & YA & YM & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G0 & SIG0 & BETA & N & GAMA & SIGM \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
G0 Basic shear modulus
SIGO \(\quad \sigma_{o}\); see Remark 3 of *MAT_011.
BETA \(\quad \beta\); see Remark 3 of *MAT_011.
N n; see Remark 3 of *MAT_011.
GAMA \(\quad \gamma_{i}\), initial plastic strain; see Remark 3 of \({ }^{*}\) MAT_011.
SIGM \(\sigma_{m}\); see Remark 3 of \({ }^{*}\) MAT_011.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B & BP & H & F & A & TM0 & GAM0 & SA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{DESCRIPTION}

B
b; see Remark 2 of *MAT_011
BP \(\quad b^{\prime}\); see Remark 3 of *MAT_011.
H \(\quad h\); see Remarks 2 and 3 of *MAT_011.
F \(\quad\); see Remark 3 of *MAT_011.
A Atomic weight (if = 0.0, RP must be defined). See Remark 2 of *MAT_011.

TMO \(\quad T_{\text {mo }}\); see Remark 2 of *MAT_011.
GAMO \(\quad \gamma_{o}\); see Remark 2 of \({ }^{*}\) MAT_011.
SA \(\quad a\); see Remark 2 of \({ }^{*}\) MAT_011.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PC & SPALL & RP & FLAG & MMN & MMX & ECO & EC1 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EC2 & EC3 & EC4 & EC5 & EC6 & EC7 & EC8 & EC9 \\
Type & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

PC
SPALL

RP
FLAG

MMN Optional \(\mu\) or \(\eta\) minimum value ( \(\mu_{\min }\) or \(\eta_{\min }\) ), depending on FLAG.

MMX Optional \(\mu\) or \(\eta\) maximum value ( \(\mu_{\max }\) or \(\eta_{\max }\) ), depending on FLAG.

EC0, ..., EC9 Cold compression energy coefficients (optional). See Remark 2 of *MAT_011.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UK & C1 & C2 & YP & YA & YM & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

UK
C1
C2
YP
YA
YMAX Work hardening maximum for rate model

\section*{Remarks:}

This model is similar in theory to the *MAT_STEINBERG above but with the addition of rate effects. When rate effects are included, the yield stress is given by:
\[
\sigma_{y}=\left\{Y_{T}\left(\dot{\varepsilon}_{p}, T\right)+Y_{A} f\left(\varepsilon_{p}\right)\right\} \frac{G(p, T)}{G_{0}} .
\]

There are two imposed limits on the yield stress. The first condition is on the nonthermal yield stress:
\[
Y_{A} f\left(\varepsilon_{p}\right)=Y_{A}\left[1+\beta\left(\gamma_{i}+\varepsilon^{p}\right)\right]^{n} \leq Y_{\max }
\]
and comes from the limit of the first term in \(\sigma_{y}\) being small. In this case \(Y_{A} f\left(\varepsilon_{p}\right)\) reduces to \(\sigma_{0}^{\prime}\) from the *MAT_011 material model (see Remark 3 of *MAT_011). The second limit is on the thermal part:
\[
Y_{T} \leq Y_{P} .
\]

\section*{*MAT_ISOTROPIC_ELASTIC_PLASTIC}

This is Material Type 12. This is a very low cost isotropic plasticity model for three-dimensional solids. In the plane stress implementation for shell elements, a one-step radial return approach is used to scale the Cauchy stress tensor if the state of stress exceeds the yield surface. This approach to plasticity leads to inaccurate shell thickness updates and stresses after yielding. This is the only model in LS-DYNA for plane stress that does not default to an iterative approach.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & G & SIGY & ETAN & BULK & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{cll} 
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & & \begin{tabular}{l} 
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
RO & & Mass density \\
G & Shear modulus \\
SIGY & Yield stress \\
ETAN & Plastic hardening modulus \\
BULK & Bulk modulus, K
\end{tabular}

\section*{Remarks:}

The pressure is integrated in time from
\[
\dot{p}=-K \dot{\varepsilon}_{i i},
\]
where \(\dot{\varepsilon}_{i i}\) is the volumetric strain rate.

\section*{*MAT_ISOTROPIC_ELASTIC_FAILURE}

This is Material Type 13. This is a non-iterative plasticity with simple plastic strain failure model.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & SIGY & ETAN & BULK & & \\
Type & A & F & F & F & F & F & & \\
Default & none & none & none & none & 0.0 & none & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPF & PRF & REM & TREM & & & & \\
Type & F & F & F & F & & & & \\
Default & none & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
G
SIGY
ETAN Plastic hardening modulus
BULK Bulk modulus
EPF
PRF fied (see *PART).

Mass density
Shear modulus
Yield stress

Plastic failure strain
Failure pressure ( \(\leq 0.0\) )

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

\section*{VARIABLE}

REM

TREM

\section*{DESCRIPTION}

Element erosion option:
EQ.0.0: failed element eroded after failure.
NE.0.0: element is kept, no removal except by \(\Delta t\) below.
\(\Delta t\) for element removal:
EQ.0.0: \(\Delta t\) is not considered (default).
GT.0.0: element eroded if element time step size falls below \(\Delta t\).

\section*{Remarks:}

When the effective plastic strain reaches the failure strain or when the pressure reaches the failure pressure, the element loses its ability to carry tension and the deviatoric stresses are set to zero, causing the material to behave like a fluid. If \(\Delta t\) for element removal is defined, the element removal option is ignored.

The element erosion option based on \(\Delta t\) must be used cautiously with the contact options. Nodes to surface contact is recommended with all nodes of the eroded brick elements included in the node list. As the elements are eroded the mass remains and continues to interact with the reference surface.

\section*{*MAT_SOIL_AND_FOAM_FAILURE}

This is Material Type 14. The input for this model is the same as for *MATERIAL_SOIL_AND_FOAM (Type 5); however, when the pressure reaches the tensile failure pressure, the element loses its ability to carry tension. It should be used only in situations when soils and foams are confined within a structure or are otherwise confined by nodal boundary conditions.

\section*{*MAT_JOHNSON_COOK_\{OPTION\}}

This is Material Type 15. The Johnson/Cook strain and temperature sensitive plasticity is sometimes used for problems where the strain rates vary over a large range and adiabatic temperature increases due to plastic heating cause material softening. When used with solid elements, this model requires an equation-of-state. If thermal effects and damage are unimportant, we recommend the much less expensive *MAT_SIMPLIFIED_JOHNSON_COOK model. The simplified model can be used with beam elements.

Material type 15 is applicable to the high rate deformation of many materials including most metals. Unlike the Steinberg-Guinan model, the Johnson-Cook model remains valid down to lower strain rates and even into the quasistatic regime. Typical applications include explosive metal forming, ballistic penetration, and impact.

Available options include:
<BLANK>
STOCHASTIC
The STOCHASTIC option enables spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & G & E & PR & DTF & VP & RATEOP \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & B & N & C & M & TM & TR & EPS0 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CP & PC & SPALL & IT & D1 & D2 & D3 & D4 \\
\hline
\end{tabular}

Card 4a. This card is included for RATEOP \(=0.0\) or 2.0 or for \(\mathrm{VP}=0.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D5 & & EROD & EFMIN & NUMINT & & & \\
\hline
\end{tabular}

Card 4b. This card is included for RATEOP \(=1.0,3.0\), or 4.0.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D5 & C2/P/XNP & EROD & EFMIN & NUMINT & & & \\
\hline
\end{tabular}

Card 4c. This card is included for RATEOP \(=5.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D5 & D & EROD & EFMIN & NUMINT & K & EPS1 & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & G & E & PR & DTF & VP & RATEOP \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

RATEOP Form of strain rate term. RATEOP is ignored if VP \(=0\). See Re-

\section*{VARIABLE}

MID

RO Mass density
G

E
PR
DTF

VP fied (see *PART).

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Shear modulus. G and an equation-of-state are required for element types that use a 3D stress update, such as solids, 2D shell forms 13-15, and tshell forms 3,5 , and 7 . For other element types, G is ignored, and E and PR must be provided.

Young's Modulus (see note above pertaining to G)
Poisson's ratio (see note above pertaining to G)
Minimum time step size for automatic element deletion (shell elements). The element will be deleted when the solution time step size drops below DTF \(\times\) TSSFAC where TSSFAC is the time step scale factor defined by *CONTROL_TIMESTEP. See Remark 4.

Formulation for rate effects:
EQ.O.O: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation mark 5.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.0.0: Log-linear Johnson-Cook (default)
EQ.1.0: Log-quadratic Huh-Kang (2 parameters)
EQ.2.0: Exponential Allen-Rule-Jones
EQ.3.0: Exponential Cowper-Symonds (2 parameters)
EQ.4.0: Nonlinear rate coefficient (2 parameters)
EQ.5.0: Log-exponential Couque (4 parameters)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & N & C & M & TM & TR & EPS 0 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0.0 & 0.0 & 0.0 & none & none & none & none \\
\hline
\end{tabular}

\section*{VARIABLE}

A

B
N
C
M
TM
TR
EPS0

\section*{DESCRIPTION}

Constant \(A\) in the flow stress. See equations in Remark 1.
Constant \(B\) in the flow stress. See equations in Remark 1.
Constant \(n\) in the flow stress. See equations in Remark 1.
Constant \(C\) in the flow stress. See equations in Remarks 1 and 5.
Constant \(m\) in the flow stress. See equations in Remark 1.
Melt temperature
Room temperature
Quasi-static threshold strain rate (see Remark 1). Ideally, this value represents the highest strain rate for which no rate adjustment to the flow stress is needed and is input in units of [time] \({ }^{-1}\). For example, if strain rate effects on the flow stress first become apparent at strain rates greater than \(10^{-2} \mathrm{~s}^{-1}\), and the system of units for the model input is \(\{\mathrm{kg}, \mathrm{mm}, \mathrm{ms}\}\), then EPSO should be set to \(10^{-5}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP & PC & SPALL & IT & D1 & D2 & D3 & D4 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

CP

PC
SPALL

IT

D1 - D4 Failure parameters; see Remark 2. If D3 < 0.0, it will be converted to its absolute value.

This card is included for RATEOP \(=0.0\) or 2.0 or for \(\mathrm{VP}=0.0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D5 & & EROD & EFMIN & NUMINT & & & \\
Type & F & & F & F & I & & & \\
Default & 0.0 & & 0.0 & \(10^{-6}\) & 0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{D5}

EROD Erosion flag:
EQ.0.0: Element erosion allowed (default).
NE.0.0: Element does not erode; deviatoric stresses set to zero when element fails.

EFMIN Lower bound for calculated strain at fracture (see Remark 2)
NUMINT Number of through thickness integration points which must fail before the shell element is deleted. If zero, all integration points must fail (the default). Since nodal fiber rotations limit strains at active integration points, we do not recommend the default because elements undergoing large strain are often not deleted using this criterion. Better results may be obtained when NUMINT is set to 1 or a number less than one half of the number of through thickness points. For example, if four through thickness points are used, NUMINT should not exceed 2, even for fully integrated shells which have 16 integration points.

This card is included for RATEOP \(=1.0,3.0\), or 4.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D5 & C2/P/XNP & EROD & EFMIN & NUMINT & & & \\
Type & F & F & F & F & 1 & & & \\
Default & 0.0 & 0.0 & 0.0 & \(10^{-6}\) & 0 & & & \\
\hline
\end{tabular}

VARIABLE
D5
C2/P/XNP

EROD

EFMIN

NUMINT Number of through thickness integration points which must fail before the shell element is deleted. If zero, all integration points must fail (the default). Since nodal fiber rotations limit strains at active integration points, we do not recommend the default because elements undergoing large strain are often not deleted using this criterion. Better results may be obtained when NUMINT is set to 1 or a number less than one half of the number of through thickness points. For example, if four through thickness points are used, NUMINT should not exceed 2, even for fully integrated shells which have 16 integration points.

This card is included for RATEOP \(=5.0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D5 & D & EROD & EFMIN & NUMINT & K & EPS1 & \\
Type & F & F & F & F & I & \(F\) & \(F\) & \\
Default & 0.0 & 0.0 & 0.0 & \(10^{-6}\) & 0 & 0.0 & none & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline D5 & Failure parameter; see Remark 2. \\
\hline D & Strain rate parameter D for Couque term. See Remark 5. \\
\hline EROD & \begin{tabular}{l}
Erosion flag: \\
EQ.0.0: Element erosion allowed (default). \\
NE.0.0: Element does not erode; deviatoric stresses set to zero when element fails.
\end{tabular} \\
\hline EFMIN & Lower bound for calculated strain at fracture (see Remark 2) \\
\hline NUMINT & Number of through thickness integration points which must fail before the shell element is deleted. If zero, all integration points must fail (the default). Since nodal fiber rotations limit strains at active integration points, we do not recommend the default because elements undergoing large strain are often not deleted using this criterion. Better results may be obtained when NUMINT is set to 1 or a number less than one half of the number of through thickness points. For example, if four through thickness points are used, NUMINT should not exceed 2, even for fully integrated shells which have 16 integration points. \\
\hline K & Strain rate parameter for Couque term. See Remark 5. \\
\hline EPS1 & Reference strain rate for Couque term, characterizing the transition between the thermally activated regime and the viscous regime. Input in units of [time] \({ }^{-1}\). See Remark 5. \\
\hline
\end{tabular}

\section*{Remarks:}
1. Flow Stress. Johnson and Cook express the flow stress as
\[
\sigma_{y}=\left(A+B \bar{\varepsilon}^{p^{n}}\right)\left(1+C \ln \dot{\varepsilon}^{*}\right)\left(1-T^{* m}\right),
\]
where
\(A, B, C, n\), and \(m=\) input constants
\[
\begin{aligned}
& \bar{\varepsilon}^{p}=\text { effective plastic strain } \\
& \dot{\varepsilon}^{*} \\
& =\left\{\begin{array}{lll}
\frac{\dot{\bar{\varepsilon}}}{\mathrm{EPS} 0} & \text { for VP }=0 & \text { (normalized effective total strain rate) } \\
\frac{\dot{\varepsilon}^{p}}{\mathrm{EPS} 0} & \text { for VP }=1 & \text { (normalized effective plastic strain rate) }
\end{array}\right.
\end{aligned}
\]
\[
T^{*}=\text { homologous temperature }=\frac{T-T_{\mathrm{room}}}{T_{\mathrm{melt}}-T_{\mathrm{room}}}
\]

The quantity \(T-T_{\text {room }}\) is stored as extra history variable 5 . In the case of a me-chanical-only analysis, this is the adiabatic temperature increase calculated as
\[
T-T_{\text {room }}=\frac{\text { internal energy }}{\left(C_{p} \times \rho \times V o\right)}
\]
where
\[
\begin{aligned}
C_{p} \text { and } \rho & =\text { input constants } \\
V o & =\text { initial volume }
\end{aligned}
\]

In a coupled thermal/mechanical analysis, \(T-T_{\text {room }}\) includes heating/cooling from all sources, not just adiabatic heating from the internal energy.

Constants for a variety of materials are provided in Johnson and Cook [1983]. A fully viscoplastic formulation is optional (VP) which incorporates the rate equations within the yield surface. An additional cost is incurred, but the improvement in the results can be dramatic.

Due to nonlinearity in the dependence of flow stress on plastic strain, an accurate value of the flow stress requires iteration for the increment in plastic strain. However, by using a Taylor series expansion with linearization about the current time, we can solve for \(\sigma_{y}\) with sufficient accuracy to avoid iteration.
2. Strain at Fracture. The strain at fracture is given by
\[
\varepsilon^{f}=\max \left(\left[D_{1}+D_{2} \exp D_{3} \sigma^{*}\right]\left[1+D_{4} \ln \varepsilon^{*}\right]\left[1+D_{5} T^{*}\right], \text { EFMIN }\right),
\]
where \(\sigma^{*}\) is the ratio of pressure divided by effective stress
\[
\sigma^{*}=\frac{p}{\sigma_{\mathrm{eff}}}
\]

Fracture occurs when the damage parameter,
\[
D=\sum \frac{\Delta \bar{\varepsilon}^{p}}{\varepsilon^{f}},
\]
reaches the value of \(1 . D\) is stored as extra history variable 4 in shell elements and extra history variable 6 in solid elements.
3. Spall Models. A choice of three spall models is offered to represent material splitting, cracking, and failure under tensile loads:
a) Pressure Limit Model. The pressure limit model limits the minimum hydrostatic pressure to the specified value, \(p \geq p_{\min }\). If the calculated pressure is more tensile than this limit, the pressure is reset to \(p_{\min }\). This option is not strictly a spall model since the deviatoric stresses are unaffected by the
pressure reaching the tensile cutoff and the pressure cutoff value \(p_{\min }\) remains unchanged throughout the analysis.
b) Maximum Principal Stress Model. The maximum principal stress spall model detects spall if the maximum principal stress, \(\sigma_{\max }\), exceeds the limiting value \(\sigma_{p}\). Once spall in solids is detected with this model, the deviatoric stresses are reset to zero, and no hydrostatic tension is permitted. If tensile pressures are calculated, they are reset to 0 in the spalled material. Thus, the spalled material behaves as rubble.
c) Hydrostatic Tension Model. The hydrostatic tension spall model detects spall if the pressure becomes more tensile than the specified limit, \(p_{\text {min }}\). Once spall in solids is detected with this model, the deviatoric stresses are set to zero, and the pressure is required to be compressive. If hydrostatic tension is calculated, then the pressure is reset to 0 for that element.
4. Shell Element Deletion Based on Time Step. This material model also supports a shell element deletion criterion based on the maximum stable time step size for the element, \(\Delta t_{\max }\) (see DTF on Card 1). Generally, \(\Delta t_{\max }\) goes down as the element becomes more distorted. To assure stability of time integration, the global LS-DYNA time step is the minimum of the \(\Delta t_{\max }\) values calculated for all elements in the model. Using this option allows the selective deletion of elements whose time step, \(\Delta t_{\text {max }}\), has fallen below the specified minimum time step, \(\Delta t_{\text {crit }}\). Elements which are severely distorted often indicate that material has failed and supports little load, but these same elements may have very small time steps and, therefore, control the cost of the analysis. This option allows these highly distorted elements to be deleted from the calculation, and, therefore, the analysis can proceed at a larger time step, and, thus, at a reduced cost. Deleted elements do not carry any load and are deleted from all applicable slide surface definitions. Clearly, this option must be judiciously used to obtain accurate results at a minimum cost.
5. Optional Strain Rate Forms. The standard Johnson-Cook strain rate term is linear in the logarithm of the strain rate (see Remark 1):
\[
1+C \ln \dot{\varepsilon}^{*}
\]

You can replace this term by setting RATEOP \(>0\). These additional rate forms are currently available for solid and shell elements but only when the viscoplastic rate option is active \((\mathrm{VP}=1)\). If VP is set to zero, RATEOP is ignored.

The first additional available rate form enables some additional data fitting by using the quadratic form proposed by Huh \& Kang [2002]:
\[
1+C \ln \dot{\varepsilon}^{*}+C_{2}\left(\ln \dot{\varepsilon}^{*}\right)^{2}
\]

Four additional exponential forms are available, one due to Allen, Rule \& Jones [1997]:
\[
\left(\dot{\varepsilon}^{*}\right)^{C},
\]
the Cowper-Symonds-like [1958] form:
\[
1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{\frac{1}{P}}
\]
the nonlinear rate coefficient:
\[
1+C\left(\varepsilon_{\mathrm{eff}}^{p}\right)^{n^{\prime}} \ln \dot{\varepsilon}^{*} .
\]
and the Couque [2014] form,
\[
1+C \ln \dot{\varepsilon}^{*}+D\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{\mathrm{EPS} 1}\right)^{k}
\]

See Huh and Kang [2002], Allen, Rule, and Jones [1997], Cowper and Symonds [1958], and Couque [2014].
6. History Variables. The following extra history variables may be output to the d3plot file (see *DATABASE_EXTENT_BINARY).
\begin{tabular}{|c|l|l|}
\hline History Variable \# & \begin{tabular}{l} 
Description for Shell Ele- \\
ments
\end{tabular} & \begin{tabular}{c} 
Description for Solid Ele- \\
ments
\end{tabular} \\
\hline \hline 1 & \begin{tabular}{l} 
Failure value \\
Current pressure cutoff \\
3
\end{tabular} & \begin{tabular}{l} 
Damage parameter, \(D\) \\
4
\end{tabular} \\
\begin{tabular}{l} 
Temperature change, \\
\(T-T_{\text {room }}\)
\end{tabular} & \begin{tabular}{c} 
Temperature change, \\
\(T-T_{\text {room }}\)
\end{tabular} \\
6 & Failure strain & Damage parameter, \(D\) \\
\hline
\end{tabular}

\section*{*MAT_PSEUDO_TENSOR}

This is Material Type 16. This model has been used to analyze buried steel reinforced concrete structures subjected to impulsive loadings.

This model can be used in two major modes - a simple tabular pressure-dependent yield surface and a potentially complex model featuring two yield as a function of pressure functions with the means of migrating from one curve to the other. These modes are discussed in detail in the Remarks section. For both modes, load curve LCP is taken to be a strain rate multiplier for the yield strength. Note that this model must be used with equation-of-state type 8,9 or 11 .

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & G & PR & & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIGF & A0 & A1 & A2 & AOF & A1F & B1 & PER \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ER & PRR & SIGY & ETAN & LCP & LCR & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline X 1 & X 2 & X 3 & X 4 & X 5 & X 6 & X 7 & X 8 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline X9 & X10 & X11 & X12 & X13 & X14 & X15 & X16 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YS1 & YS2 & YS3 & YS4 & YS5 & YS6 & YS7 & YS8 \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YS9 & YS10 & YS11 & YS12 & YS13 & YS14 & YS15 & YS16 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & PR & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & none & none & & & & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
G Shear modulus
PR Poisson's ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGF & A0 & A1 & A2 & A0F & A1F & B1 & PER \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

SIGF
A0 Cohesion
A1
A2
Pressure hardening coefficient
A0F Cohesion for failed material
A1F

\section*{DESCRIPTION}

Pressure hardening coefficient

Tensile cutoff (maximum principal stress for failure)

\section*{VARIABLE}

B1
PER

\section*{DESCRIPTION}

Damage scaling factor (or exponent in Mode II.C)
Percent reinforcement
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ER & PRR & SIGY & ETAN & LCP & LCR & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & none & 0.0 & none & none & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

ER
Elastic modulus for reinforcement
PRR Poisson's ratio for reinforcement
SIGY Initial yield stress
ETAN Tangent modulus/plastic hardening modulus
LCP Load curve ID giving rate sensitivity for principal material; see *DEFINE_CURVE.

LCR Load curve ID giving rate sensitivity for reinforcement; see *DEFINE_CURVE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & X 1 & X 2 & X 3 & X 4 & X 5 & X 6 & X 7 & X 8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & X 9 & X 10 & X 11 & X 12 & X 13 & X 14 & X 15 & X 16 \\
Type & F & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Xn Effective plastic strain, damage, or pressure. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & YS1 & YS2 & YS3 & YS4 & YS5 & YS6 & YS7 & YS8 \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & YS9 & YS10 & YS11 & YS12 & YS13 & YS14 & YS15 & YS16 \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}

\section*{VARIABLE}

YSn

\section*{DESCRIPTION}

Yield stress (Mode I) or scale factor (Mode II.B or II.C)

\section*{Remarks:}
1. Response Mode I (Tabulated Yield Stress as a Function of Pressure). This model is well suited for implementing standard geologic models like the MohrCoulomb yield surface with a Tresca limit, as shown in Figure M16-1. Examples


Figure M16-1. Mohr-Coulomb surface with a Tresca Limit.
of converting conventional triaxial compression data to this type of model are found in Desai and Siriwardane, 1984. Note that under conventional triaxial compression conditions, the LS-DYNA input corresponds to an ordinate of \(\sigma_{1}-\) \(\sigma_{3}\) rather than the more widely used \(\left(\sigma_{1}-\sigma_{3}\right) / 2\), where \(\sigma_{1}\) is the maximum principal stress and \(\sigma_{3}\) is the minimum principal stress.

This material combined with equation-of-state type 9 (saturated) has been used very successfully to model ground shocks and soil-structure interactions at pressures up to 100 kbars (approximately \(1.5 \times 106 \mathrm{psi}\) ).

To invoke Mode I of this model, set \(a_{0}, a_{1}, a_{2}, b_{1}, a_{0 f}\), and \(a_{1 \mathrm{f}}\) to zero. The tabulated values of pressure should then be specified on Cards 4 and 5 , and the corresponding values of yield stress should be specified on Cards 6 and 7. The parameters relating to reinforcement properties, initial yield stress, and tangent modulus are not used in this response mode and should be set to zero.

Note that \(a_{1 \mathrm{f}}\) is reset internally to \(1 / 3\) even though it is input as zero; this defines a failed material curve of slope \(3 p\), where \(p\) denotes pressure (positive in compression). In this case the yield strength is taken from the tabulated yield as a function of pressure curve until the maximum principal stress ( \(\sigma_{1}\) ) in the element exceeds the tensile cutoff \(\sigma_{\text {cut }}\) (input as variable SIGF). When \(\sigma_{1}>\sigma_{\text {cut }}\) is detected, the yield strength is scaled back by a fraction of the distance between the two curves in each of the next 20 time steps so that after those 20 time steps, the yield strength is defined by the failure curve. The only way to inhibit this feature is to set \(\sigma_{\text {cut }}\) (SIGF) arbitrarily large.


Figure M16-2. Two-curve concrete model with damage and failure
2. Response Mode II (Two Curve Model with Damage and Failure). This approach uses two yield versus pressure curves of the form
\[
\sigma_{y}=a_{0}+\frac{p}{a_{1}+a_{2} p}
\]

The upper curve is best described as the maximum yield strength curve and the lower curve is the failed material curve. There are a variety of ways of moving between the two curves and each is discussed below.
a) Mode II.A (Simple Tensile Failure). To use this mode, define \(a_{0}, a_{1}, a_{2}, a_{0 f}\), and \(a_{1 f}\), set \(b_{1}\) to zero, and leave Cards 4 through 7 blank. In this case the yield strength is taken from the maximum yield curve until the maximum principal stress ( \(\sigma_{1}\) ) in the element exceeds the tensile cutoff ( \(\sigma_{\text {cut }}\) ). When \(\sigma_{1}>\) \(\sigma_{\text {cut }}\) is detected, the yield strength is scaled back by a fraction of the distance between the two curves in each of the next 20 time steps so that after those 20 time steps, the yield strength is defined by the failure curve.
b) Mode II.B (Tensile Failure plus Plastic Strain Scaling). Define \(a_{0}, a_{1}, a_{2}, a_{0 f}\), and \(a_{1 f}\), set \(b_{1}\) to zero, and use Cards 4 through 7 to define a scale factor, \(\eta\), (Cards 6 and 7) as a function of effective plastic strain (Cards 4 and 5). LSDYNA evaluates \(\eta\) at the current effective plastic strain and then calculates the yield stress as
\[
\sigma_{\text {yield }}=\sigma_{\text {failed }}+\eta\left(\sigma_{\max }-\sigma_{\text {failed }}\right),
\]
where \(\sigma_{\max }\) and \(\sigma_{\text {failed }}\) are found as shown in Figure M16-2. This yield strength is then subject to scaling for tensile failure as described above. This type of model describes a strain hardening or softening material, such as concrete.
c) Model II.C (Tensile Failure plus Damage Scaling). The change in yield stress as a function of plastic strain arises from the physical mechanisms such as internal cracking, and the extent of this cracking is affected by the hydrostatic pressure when the cracking occurs. This mechanism gives rise to the "confinement" effect on concrete behavior. To account for this phenomenon, a "damage" function was defined and incorporated. This damage function is given the form:
\[
\lambda=\int_{0}^{\varepsilon^{p}}\left(1+\frac{p}{\sigma_{\text {cut }}}\right)^{-b_{1}} d \varepsilon^{p} .
\]

To use this model, define \(a_{0}, a_{1}, a_{2}, a_{0 f}, a_{1 \mathrm{f}}\), and \(b_{1}\). Cards 4 through 7 now give \(\eta\) as a function of \(\lambda . \eta\) scales the yield stress as
\[
\sigma_{\text {yield }}=\sigma_{\text {failed }}+\eta\left(\sigma_{\max }-\sigma_{\text {failed }}\right)
\]
before applying any tensile failure criteria.
3. Mode II Concrete Model Options. Material Type 16 Mode II provides for the automatic internal generation of a simple "generic" model from concrete. If A0 is negative, then SIGF is assumed to be the unconfined concrete compressive strength, \(f_{c}^{\prime}\), and -A0 is assumed to be a conversion factor from LS-DYNA pressure units to psi. (For example, if the model stress units are MPa, A0 should be set to -145 .) In this case the parameter values generated internally are
\[
\begin{aligned}
f_{c}^{\prime} & =\text { SIGF } \\
\sigma_{\text {cut }} & =1.7\left(\frac{f_{c}^{\prime 2}}{-\mathrm{A} 0}\right)^{\frac{1}{3}} \\
a_{0} & =\frac{f_{c}^{\prime}}{4}
\end{aligned}
\]

Note that these \(a_{0 f}\) and \(a_{1 \mathrm{f}}\) defaults will be overridden by non-zero entries on Card 3. If plastic strain or damage scaling is desired, Cards 5 through 8 as well as \(b_{1}\) should be specified in the input. When \(a_{0}\) is input as a negative quantity, the equation-of-state can be given as 0 and a trilinear EOS Type 8 model will be automatically generated from the unconfined compressive strength and Poisson's ratio. The EOS 8 model is a simple pressure as a function of volumetric strain model with no internal energy terms, and should give reasonable results for pressures up to 5 kbar (approximately \(75,000 \mathrm{psi}\) ).
4. Mixture Model. A reinforcement fraction, \(f_{r}\), can be defined (indirectly as PER/100) along with properties of the reinforcement material. The bulk
modulus, shear modulus, and yield strength are then calculated from a simple mixture rule. For example, for the bulk modulus the rule gives:
\[
K=\left(1-f_{r}\right) K_{m}+f_{r} K_{r}
\]
where \(K_{m}\) and \(K_{r}\) are the bulk moduli for the geologic material and the reinforcement material, respectively. This feature should be used with caution. It gives an isotropic effect in the material instead of the true anisotropic material behavior. A reasonable approach would be to use the mixture elements only where the reinforcing exists and plain elements elsewhere. When the mixture model is being used, the strain rate multiplier for the principal material is taken from load curve N1 and the multiplier for the reinforcement is taken from load curve N2.
5. Suggested Parameters. The LLNL DYNA3D manual from 1991 [Whirley and Hallquist] suggests using the damage function (Mode II.C) in Material Type 16 with the following set of parameters:
\[
\begin{array}{lll}
a_{0}=\frac{f_{c}^{\prime}}{4} & a_{2}=\frac{1}{3 f_{c}^{\prime}} & a_{1 f}=1.5 \\
a_{1}=\frac{1}{3} & a_{0 f}=\frac{f_{c}^{\prime}}{10} & b_{1}=1.25
\end{array}
\]
and a damage table of:
\begin{tabular}{llllll} 
Card 4: & 0.0 & \(8.62 \mathrm{E}-06\) & \(2.15 \mathrm{E}-05\) & \(3.14 \mathrm{E}-05\) & \(3.95 \mathrm{E}-04\) \\
& \(5.17 \mathrm{E}-04\) & \(6.38 \mathrm{E}-04\) & \(7.98 \mathrm{E}-04\) & & \\
Card 5: & \(9.67 \mathrm{E}-04\) & \(1.41 \mathrm{E}-03\) & \(1.97 \mathrm{E}-03\) & \(2.59 \mathrm{E}-03\) & \(3.27 \mathrm{E}-03\) \\
& \(4.00 \mathrm{E}-03\) & \(4.79 \mathrm{E}-03\) & 0.909 & & \\
Card 6: & 0.309 & 0.543 & 0.840 & 0.975 & 1.000 \\
& 0.790 & 0.630 & 0.469 & & \\
& & & & & \\
Card 7: & 0.383 & 0.247 & 0.173 & 0.136 & 0.114 \\
& 0.086 & 0.056 & 0.0 & &
\end{tabular}

This set of parameters should give results consistent with Dilger, Koch, and Kowalczyk [1984] for plane concrete. It has been successfully used for reinforced structures where the reinforcing bars were modeled explicitly with embedded beam and shell elements. The model does not incorporate the major failure mechanism - separation of the concrete and reinforcement leading to catastrophic loss of confinement pressure. However, experience indicates that this physical behavior will occur when this model shows about \(4 \%\) strain.

\section*{*MAT_ORIENTED_CRACK}

This is Material Type 17. This material may be used to model brittle materials which fail due to large tensile stresses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FS & PRF \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & none & 0.0 \\
\hline
\end{tabular}

Crack Propagation Card. Optional card for crack propagation to adjacent elements (see remarks).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SOFT & CVELO & & & & & & \\
Type & F & F & & & & & & \\
Default & 1.0 & 0.0 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{c} 
VARIABLE \\
\hline MID \\
RO \\
E \\
SIGY \\
ETAN \\
FS \\
PRF
\end{tabular}

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus
Poisson's ratio
Yield stress
Plastic hardening modulus
Fracture stress
Failure or cutoff pressure ( \(\leq 0.0\) )

\section*{VARIABLE}

SOFT

\section*{DESCRIPTION}

Factor by which the fracture stress is reduced when a crack is coming from failed neighboring element. See remarks.

Crack propagation velocity. See remarks.

\section*{Remarks:}

This is an isotropic elastic-plastic material which includes a failure model with an oriented crack. The von Mises yield condition is given by:
\[
\phi=J_{2}-\frac{\sigma_{y}^{2}}{3}
\]
where the second stress invariant, \(J_{2}\), is defined in terms of the deviatoric stress components as
\[
J_{2}=\frac{1}{2} s_{i j} s_{i j}
\]
and the yield stress, \(\sigma_{y}\), is a function of the effective plastic strain, \(\varepsilon_{\text {eff }}^{p}\), and the plastic hardening modulus, \(E_{p}\) :
\[
\sigma_{y}=\sigma_{0}+E_{p} \varepsilon_{\mathrm{eff}}^{p}
\]

The effective plastic strain is defined as:
\[
\varepsilon_{\mathrm{eff}}^{p}=\int_{0}^{t} d \varepsilon_{\mathrm{eff}}^{p},
\]
where
\[
d \varepsilon_{\mathrm{eff}}^{p}=\sqrt{\frac{2}{3} d \varepsilon_{i j}^{p} d \varepsilon_{i j}^{p}}
\]
and the plastic tangent modulus is defined in terms of the input tangent modulus, \(E_{t}\), as
\[
E_{p}=\frac{E E_{t}}{E-E_{t}} .
\]

Pressure in this model is found from evaluating an equation of state. A pressure cutoff can be defined such that the pressure is not allowed to fall below the cutoff value.

The oriented crack fracture model is based on a maximum principal stress criterion. When the maximum principal stress exceeds the fracture stress, \(\sigma_{f}\), the element fails on a plane perpendicular to the direction of the maximum principal stress. The normal stress and the two shear stresses on that plane are then reduced to zero. This stress reduction is done according to a delay function that reduces the stresses gradually to zero over a small number of time steps. This delay function procedure is used to reduce the ringing


Figure M17-1. Thin structure (2 elements over thickness) with cracks and necessary element numbering.
that may otherwise be introduced into the system by the sudden fracture. The number of steps for stress reduction is 20 by default \((C V E L O=0.0)\) or it is internally computed if CVELO \(>0.0\) is given, that is:
\[
n_{\text {steps }}=\operatorname{int}\left[\frac{L_{e}}{\mathrm{CVELO} \times \Delta t}\right],
\]
where \(L_{e}\) is the characteristic element length and \(\Delta t\) is the time step size.
After a tensile fracture, the element will not support tensile stress on the fracture plane, but in compression will support both normal and shear stresses. The orientation of this fracture surface is tracked throughout the deformation and is updated to properly model finite deformation effects. If the maximum principal stress subsequently exceeds the fracture stress in another direction, the element fails isotropically. In this case the element completely loses its ability to support any shear stress or hydrostatic tension, and only compressive hydrostatic stress states are possible. Thus, once isotropic failure has occurred, the material behaves like a fluid.

This model is applicable to elastic or elastoplastic materials under significant tensile or shear loading when fracture is expected. Potential applications include brittle materials such as ceramics as well as porous materials such as concrete in cases where pressure hardening effects are not significant.

Crack propagation behavior to adjacent elements can be controlled using parameter SOFT for thin, shell-like structures (for example, only 2 or 3 solids over thickness). Additionally, LS-DYNA must know where the plane or solid element midplane is at each integration point for projection of crack plane on this element midplane. Therefore, element numbering must be as shown in Figure M17-1. Currently, only solid element type 1 is supported with that option.

\section*{*MAT_POWER_LAW_PLASTICITY}

This is Material Type 18. This is an isotropic plasticity model with rate effects which uses a power law hardening rule.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & K & N & SRC & SRP \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & none & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGY & VP & EPSF & & & & & \\
Type & F & F & F & & & & & \\
Default & 0.0 & 0.0 & 0.0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
K Strength coefficient
N Hardening exponent
SRC

SRP Strain rate parameter, \(P\). If zero, rate effects are ignored.
```

VARIABLE
SIGY
EPSF
VP Formulation for rate effects:
EQ.0.0: scale yield stress (default)
EQ.1.0: viscoplastic formulation

```

\section*{Remarks:}

Elastoplastic behavior with isotropic hardening is provided by this model. The yield stress, \(\sigma_{y}\), is a function of plastic strain and obeys the equation:
\[
\sigma_{y}=k \varepsilon^{n}=k\left(\varepsilon_{y p}+\bar{\varepsilon}^{p}\right)^{n},
\]
where \(\varepsilon_{y p}\) is the elastic strain to yield and \(\bar{\varepsilon}^{p}\) is the effective plastic strain (logarithmic). If SIGY is set to zero, the strain to yield is found by solving for the intersection of the linearly elastic loading equation with the strain hardening equation:
\[
\begin{aligned}
& \sigma=E \varepsilon \\
& \sigma=k \varepsilon^{n}
\end{aligned}
\]
which gives the elastic strain at yield as:
\[
\varepsilon_{y p}=\left(\frac{E}{k}\right)^{\left[\frac{1}{n-1}\right]} .
\]

If SIGY is nonzero and greater than 0.02 then:
\[
\varepsilon_{y p}=\left(\frac{\sigma_{y}}{k}\right)^{\left[\frac{1}{n}\right]}
\]

Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate. A fully viscoplastic formulation is optional which incorporates the Cowper and Symonds formulation within the yield surface. An additional cost is incurred but the improvement is results can be dramatic.

\section*{*MAT_STRAIN_RATE_DEPENDENT_PLASTICITY}

This is Material Type 19. A strain rate dependent material can be defined. For an alternative, see Material Type 24. A curve for the yield strength as a function of the effective strain rate must be defined. Optionally, Young's modulus and the tangent modulus can also be defined as a function of the effective strain rate. Also, optional failure of the material can be defined either by defining a von Mises stress at failure as a function of the effective strain rate (valid for solids/shells/thick shells) or by defining a minimum time step size (only for shells).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & VP & & & \\
Type & A & F & F & F & F & & & \\
Default & none & none & none & none & 0.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LC1 & ETAN & LC2 & LC3 & LC4 & TDEL & RDEF & \\
Type & F & F & F & F & F & F & F & \\
Default & none & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
VP Formulation for rate effects:
EQ.O.O: scale yield stress (default)
EQ.1.0: viscoplastic formulation

\section*{VARIABLE \\ LC1}

ETAN Tangent modulus, \(E_{t}\)
LC2 Optional load curve ID defining Young's modulus as a function of the effective strain rate (available only when VP \(=0\); not recommended).

LC3 Load curve ID defining tangent modulus as a function of the effective strain rate (optional)

LC4

TDEL Minimum time step size for automatic element deletion. Use for shells only.

RDEF Redefinition of failure curve:
EQ.1.0: effective plastic strain
EQ.2.0: maximum principal stress and absolute value of minimum principal stress
EQ.3.0: maximum principal stress (R5 of version 971)

\section*{Remarks:}
1. Yield Stress. In this model, a load curve is used to describe the yield strength \(\sigma_{0}\) as a function of effective strain rate \(\dot{\bar{\varepsilon}}\) where
\[
\dot{\bar{\varepsilon}}=\left(\frac{2}{3} \dot{\varepsilon}_{i j}^{\prime} \dot{\varepsilon}_{i j}^{\prime}\right)^{1 / 2}
\]
and the prime denotes the deviatoric component. The strain rate is available for post-processing as the first stored history variable. If the viscoplastic option is active, the plastic strain rate is output; otherwise, the effective strain rate defined above is output.

The yield stress is defined as
\[
\sigma_{y}=\sigma_{0}(\dot{\bar{\varepsilon}})+E_{p} \bar{\varepsilon}^{p}
\]
where \(\bar{\varepsilon}^{p}\) is the effective plastic strain and \(E_{p}\) is given in terms of Young's modulus and the tangent modulus by
\[
E_{p}=\frac{E E_{t}}{E-E_{t}} .
\]

Both the Young's modulus and the tangent modulus may optionally be made functions of strain rate by specifying a load curve ID giving their values as a function of strain rate. If these load curve IDs are input as 0 , then the constant values specified in the input are used.
2. Load Curves. Note that all load curves used to define quantities as a function of strain rate must have the same number of points at the same strain rate values. This requirement is used to allow vectorized interpolation to enhance the execution speed of this constitutive model.
3. Material Failure. This model also contains a simple mechanism for modeling material failure. This option is activated by specifying a load curve ID defining the effective stress at failure as a function of strain rate. For solid elements, once the effective stress exceeds the failure stress the element is deemed to have failed and is removed from the solution. For shell elements the entire shell element is deemed to have failed if all integration points through the thickness have an effective stress that exceeds the failure stress. After failure the shell element is removed from the solution.

In addition to the above failure criterion, this material model also supports a shell element deletion criterion based on the maximum stable time step size for the element, \(\Delta t_{\max }\). Generally, \(\Delta t_{\text {max }}\) goes down as the element becomes more distorted. To assure stability of time integration, the global LS-DYNA time step is the minimum of the \(\Delta t_{\max }\) values calculated for all elements in the model. Using this option allows the selective deletion of elements whose time step \(\Delta t_{\max }\) has fallen below the specified minimum time step, \(\Delta t_{\text {crit }}\). Elements which are severely distorted often indicate that material has failed and supports little load, but these same elements may have very small time steps and therefore control the cost of the analysis. This option allows these highly distorted elements to be deleted from the calculation, and, therefore, the analysis can proceed at a larger time step, and, thus, at a reduced cost. Deleted elements do not carry any load and are deleted from all applicable slide surface definitions. Clearly, this option must be judiciously used to obtain accurate results at a minimum cost.
4. Viscoplastic Formulation. A fully viscoplastic formulation is optional which incorporates the rate formulation within the yield surface. An additional cost is incurred but the improvement is results can be dramatic.

\section*{*MAT_RIGID}

This is Material Type 20. Parts made from this material are considered to belong to a rigid body (for each part ID). The coupling of a rigid body with MADYMO and CAL3D can also be defined using this material. Alternatively, a VDA surface can be attached as surface to model the geometry, such as for the tooling in metal forming applications. Optional global and local constraints on the mass center can be defined. A local consideration for output and user-defined airbag sensors may also optionally be chosen.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & N & COUPLE & M & \begin{tabular}{c} 
ALIAS or \\
RE
\end{tabular} \\
\hline
\end{tabular}

Card 2a. This card is included if \(\mathrm{CMO}=1.0\).
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline CM0 & CON1 & CON2 & & & & & \\
\hline
\end{tabular}

Card 2b. This card is included if \(\mathrm{CMO}=0.0\)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CMO & & & & & & & \\
\hline
\end{tabular}

Card 2c. This card is included if \(\mathrm{CMO}=-1.0\).
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline CMO & CON1 & CON2 & & & & & \\
\hline
\end{tabular}

Card 3. This card is must be included but may be left blank.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCO or A1 & A2 & A3 & V1 & V2 & V3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & N & COUPLE & M & \begin{tabular}{c} 
ALIAS or \\
RE
\end{tabular} \\
Type & A & F & F & F & F & F & F & \(\mathrm{C} / \mathrm{F}\) \\
Default & none & none & none & none & 0 & 0 & 0 & \begin{tabular}{c} 
opt / \\
none
\end{tabular} \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus. Reasonable values must be chosen for contact analysis (choice of penalty); see Remarks below.

PR Poisson's ratio. Reasonable values must be chosen for contact analysis (choice of penalty); see Remarks below.

MADYMO3D 5.4 coupling flag, \(n\) :
EQ.O: Use normal LS-DYNA rigid body updates.
GT.0: The rigid body is coupled to the MADYMO 5.4 ellipsoid number \(n\).

LT.O: The rigid body is coupled to MADYMO 5.4 plane number, \(|n|\).

COUPLE Coupling option if applicable:
EQ.-1: Attach VDA surface in ALIAS (defined in the eighth field) and automatically generate a mesh for viewing the surface in LS-PREPOST.

MADYMO 5.4 / CAL3D coupling option:
EQ.O: The undeformed geometry input to LS-DYNA corresponds to the local system for MADYMO 5.4 / CAL3D. The finite element mesh is input.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1: The undeformed geometry input to LS-DYNA corresponds to the global system for MADYMO 5.4 / CAL3D.

EQ.2: Generate a mesh for the ellipsoids and planes internally in LS-DYNA.

M

ALIAS \(\quad\) VDA surface alias name; see Appendix L.
RE MADYMO 6.0.1 External Reference Number

Global Constraints Card. This card is included if \(\mathrm{CMO}=1.0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CMO & CON1 & CON2 & & & & & \\
Type & F & 1 & 1 & & & & & \\
Default & 0.0 & 0 & 0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}
\(\mathrm{CMO} \quad\) Center of mass constraint option, CMO :
EQ.+1.0: Constraints applied in global directions
EQ.0.0: No constraints
EQ.-1.0: Constraints applied in local directions (SPC constraint)
CON1 Global translational constraint:
EQ.O: No constraints
EQ.1: Constrained \(x\) displacement
EQ.2: Constrained \(y\) displacement
EQ.3: Constrained \(z\) displacement

\section*{DESCRIPTION}

EQ.4: Constrained \(x\) and \(y\) displacements
EQ.5: Constrained \(y\) and \(z\) displacements
EQ.6: Constrained \(z\) and \(x\) displacements
EQ.7: Constrained \(x, y\), and \(z\) displacements
CON2
Global rotational constraint:
EQ.O: No constraints
EQ.1: Constrained \(x\) rotation
EQ.2: Constrained \(y\) rotation
EQ.3: Constrained \(z\) rotation
EQ.4: Constrained \(x\) and \(y\) rotations
EQ.5: Constrained \(y\) and \(z\) rotations
EQ.6: Constrained \(z\) and \(x\) rotations
EQ.7: Constrained \(x, y\), and \(z\) rotations

No Constraints Card. This card is included when \(\mathrm{CMO}=0.0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CMO & & & & & & & \\
Type & F & & & & & & & \\
Default & 0.0 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

CMO
Center of mass constraint option, CMO:
EQ.+1.0: Constraints applied in global directions
EQ.0.0: No constraints
EQ.-1.0: Constraints applied in local directions (SPC constraint)

Local Constraints Card. This card is included when \(\mathrm{CMO}=-1.0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CM0 & CON1 & CON2 & & & & & \\
Type & F & 1 & 1 & & & & & \\
Default & 0.0 & 0 & 0 & & & & & \\
\hline
\end{tabular}

VARIABLE
CMO

CON1

CON2

\section*{DESCRIPTION}

Center of mass constraint option, CMO:
EQ.+1.0: Constraints applied in global directions
EQ.0.0: No constraints
EQ.-1.0: Constraints applied in local directions (SPC constraint)
Local coordinate system ID. See *DEFINE_COORDINATE_OPTION. This coordinate system is fixed in time, unless rotation is prescribed with *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL (see Remark 5).

Local (SPC) constraint:
EQ.000000: No constraint
EQ.100000: Constrained \(x\) translation
EQ.010000: Constrained \(y\) translation
EQ.001000: Constrained \(z\) translation
EQ.000100: Constrained \(x\) rotation
EQ.000010: Constrained \(y\) rotation
EQ.000001: Constrained \(z\) rotation
To specify any combination of local constraints, add the number 1 into the corresponding column.

Optional for output (Must be included but may be left blank).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCO or A1 & A2 & A3 & V1 & V2 & V3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCO

A1-V3

\section*{DESCRIPTION}

Local coordinate system number for local output to rbdout. LCO also specifies the coordinate system used for *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL. Defaults to the principal coordinate system of the rigid body.

Alternative method for specifying local system below:
Define two vectors a and \(\mathbf{v}\), fixed to the rigid body which are used for output and the user defined airbag sensor subroutines. The output parameters are in the directions \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\) where the latter are given by the cross products \(\mathbf{c}=\mathbf{a} \times \mathbf{v}\) and \(\mathbf{b}=\) \(\mathbf{c} \times \mathbf{a}\). This input is optional.

\section*{Remarks:}
1. Rigid Material. The rigid material type 20 provides a convenient way of turning one or more parts comprised of beams, shells, or solid elements into a rigid body. Approximating a deformable body as rigid is a preferred modeling technique in many real world applications. For example, in sheet metal forming problems the tooling can properly and accurately be treated as rigid. In the design of restraint systems the occupant can, for the purposes of early design studies, also be treated as rigid. Elements which are rigid are bypassed in the element processing and no storage is allocated for storing history variables; consequently, the rigid material type is very cost efficient.
2. Parts. Two unique rigid part IDs may not share common nodes unless they are merged together using the rigid body merge option. A rigid body, however, may be made up of disjoint finite element meshes. LS-DYNA assumes this is the case since this is a common practice in setting up tooling meshes in forming problems.

All elements which reference a given part ID corresponding to the rigid material should be contiguous, but this is not a requirement. If two disjoint groups of elements on opposite sides of a model are modeled as rigid, separate part IDs should be created for each of the contiguous element groups if each group is to move independently. This requirement arises from the fact that LS-DYNA internally computes the six rigid body degrees-of-freedom for each rigid body (rigid material or set of merged materials), and if disjoint groups of rigid elements use the same part ID, the disjoint groups will move together as one rigid body.
3. Inertial Properties. Inertial properties for rigid materials may be defined in either of two ways. By default, the inertial properties are calculated from the geometry of the constituent elements of the rigid material and the density specified for the part ID. Alternatively, the inertial properties and initial velocities for a rigid body may be directly defined, and this overrides data calculated from the material property definition and nodal initial velocity definitions.
4. Contact and Material Constants. Young's modulus, E, and Poisson's ratio, v, are used for determining sliding interface parameters if the rigid body interacts in a contact definition. Realistic values for these constants should be defined since unrealistic values may contribute to numerical problems with contact.
5. Constraints. Constraint directions for rigid materials (CMO equal to +1 or -1 ) are fixed, that is, not updated, with time. To impose a constraint on a rigid body such that the constraint direction is updated as the rigid body rotates, use *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL. When CMO is equal to -1 and *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL is used, the local coordinate system CON1 is updated with time.

We strongly advise you not to apply nodal constraints, for instance, by *BOUNDARY_SPC_OPTION, to nodes of a rigid body as doing so may compromise the intended constraints in the case of an explicit simulation. Such SPCs will be skipped in an implicit simulation and a warning issued.

If the intended constraints are not with respect to the calculated center-of-mass of the rigid body, *CONSTRAINED_JOINT_OPTION may often be used to obtain the desired effect. This approach typically entails defining a second rigid body that is fully constrained and then defining a joint between the two rigid bodies. Another alternative for defining rigid body constraints that are not with respect to the calculated center-of-mass of the rigid body is to manually specify the initial center-of-mass location using *PART_INERTIA. When using *PART_INERTIA, a full set of mass properties must be specified. Note that the dynamic behavior of the rigid body, however, is affected by its mass properties.

To obtain reaction forces from constraints, see the SPC2BND flag of *CONTROL_OUTPUT.
6. Coupling with MADYMO. Only basic coupling is available for coupling with MADYMO 5.4.1. The coupling flags ( N and M ) must match with SYSTEM and ELLIPSOID/PLANE in the MADYMO input file and the coupling option (COUPLE) must be defined.

Both basic and extended coupling are available for coupling with MADYMO 6.0.1:
a) Basic Coupling. The external reference number (RE) must match the external reference number in the MADYMO XML input file. The coupling option (COUPLE) must be defined.
b) Extended Coupling. Under this option MADYMO will handle the contact between the MADYMO and LS-DYNA models. The external reference number (RE) and the coupling option (COUPLE) are not needed. All coupling surfaces that interface with the MADYMO models need to be defined in *CONTACT_COUPLING.

\section*{*MAT_ORTHOTROPIC_THERMAL_\{OPTION\}}

This is Material Type 21. It is a linearly elastic, orthotropic material with orthotropic thermal expansion. It is available for solids, shells, and thick shells.

Available options include:
<BLANK>
FAILURE
CURING

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAB & GBC & GCA & AA & AB & AC & AOPT & MACF \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
\hline
\end{tabular}

Card 5a. This card is included if and only if the keyword option FAILURE is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A1 & A11 & A2 & A5 & A55 & A4 & NIP & \\
\hline
\end{tabular}

Card 5 b.1. This card is included if and only if the keyword option CURING is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline K1 & K2 & C1 & C2 & M & N & R & \\
\hline
\end{tabular}

Card 5 b.2. This card is included if and only if the keyword option CURING is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCCHA & LCCHB & LCCHC & LCAA & LCAB & LCAC & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see \({ }^{*}\) PART).

Mass density
\(E_{a}\), Young's modulus in \(a\)-direction
\(E_{b}\), Young's modulus in b-direction
\(E_{c}\), Young's modulus in c-direction
\(v_{b a}\), Poisson's ratio, \(b a\)
PRCA
\(v_{c a}\), Poisson's ratio, \(c a\)
PRCB
\(v_{c b}\), Poisson's ratio, \(c b\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AA & AB & AC & AOPT & MACF \\
Type & F & F & F & F & F & \(F\) & \(F\) & 1 \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

GAB
\(G_{a b}\), Shear modulus, \(a b\)
GBC \(\quad G_{b c}\), Shear modulus, \(b c\)
GCA \(\quad G_{c a}\), Shear modulus, \(c a\)
AA \(\quad \alpha_{a}\), coefficient of thermal expansion in the \(a\)-direction

\section*{VARIABLE}

AB

AC \(\quad \alpha_{c}\), coefficient of thermal expansion in the \(c\)-direction
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

MACF

\section*{DESCRIPTION}

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4
A1, A2, A3 Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

REF

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) (shells and tshells only) and \(\mathrm{AOPT}=3\) (all element types). It may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, or *ELEMENT_SOLID_ORTHO.

Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details).

EQ.0.0: Off
EQ.1.0: On

Failure Card. This card is only included if the FAILURE keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A1 & A11 & A2 & A5 & A55 & A4 & NIP & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
A1, A11, A2
A5, A55, A4
NIP

\section*{DESCRIPTION}

Coefficients for the matrix dominated failure criterion
Coefficients for the fiber dominated failure criterion
Number of integration points that must fail in an element before an element fails and is deleted

Curing Card. This card is included if and only if the CURING keyword option is used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K1 & K2 & C1 & C2 & M & N & R & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

K1
K2 Parameter \(k_{2}\) for Kamal model
C1
C2 Parameter \(c_{2}\) for Kamal model
M \(\quad\) Exponent \(m\) for Kamal model
N Exponent \(n\) for Kamal model
R

\section*{DESCRIPTION}

Parameter \(c_{1}\) for Kamal model

Gas constant for Kamal model

Parameter \(k_{1}\) for Kamal model. For details see remarks below.

Curing Card. This card is included if and only if the CURING keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCCHA & LCCHB & LCCHC & LCAA & LCAB & LCAC & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCCHA

LCCHB Load curve for \(\gamma_{b}\), coefficient of chemical shrinkage in the \(b\)-direction. Input \(\gamma_{b}\) as function of state of cure \(\beta\).

LCCHC Load curve for \(\gamma_{c}\), coefficient of chemical shrinkage in the \(c\)-direction. Input \(\gamma_{c}\) as function of state of cure \(\beta\).

LCAA Load curve or table ID for \(\alpha_{a}\). If defined, parameter AA is ignored. If a load curve, then \(\alpha_{a}\) is a function of temperature. If a table ID, the \(\alpha_{a}\) is a function of the state of cure (table values) and temperature (see*DEFINE_TABLE).

LCAB Load curve ID for \(\alpha_{b}\). If defined parameter, AB is ignored. See LCAA for further details.

LCAC Load curve ID for \(\alpha_{c}\). If defined parameter, AC is ignored. See LCAA for further details.

\section*{Remarks:}

In the implementation for three-dimensional continua a total Lagrangian formulation is used. In this approach the material law that relates second Piola-Kirchhoff stress \(\mathbf{S}\) to the Green-St. Venant strain E is
\[
\mathbf{S}=\mathrm{C}: \mathbf{E}=\mathbf{T}^{\mathrm{T}} \mathbf{C}_{l} \mathbf{T}: \mathbf{E}
\]
where \(\mathbf{T}\) is the transformation matrix [Cook 1974].
\[
\mathbf{T}=\left[\begin{array}{cccccc}
l_{1}^{2} & m_{1}^{2} & n_{1}^{2} & l_{1} m_{1} & m_{1} n_{1} & n_{1} l_{1} \\
l_{2}^{2} & m_{2}^{2} & n_{2}^{2} & l_{2} m_{2} & m_{2} n_{2} & n_{2} l_{2} \\
l_{3}^{2} & m_{3}^{2} & m_{3}^{2} & l_{3} m_{3} & m_{3} n_{3} & n_{3} l_{3} \\
2 l_{1} l_{2} & 2 m_{1} m_{2} & 2 n_{1} n_{2} & \left(l_{1} m_{2}+l_{2} m_{1}\right) & \left(m_{1} n_{2}+m_{2} n_{1}\right) & \left(n_{1} l_{2}+n_{2} l_{1}\right) \\
2 l_{2} l_{3} & 2 m_{2} m_{3} & 2 n_{2} n_{3} & \left(l_{2} m_{3}+l_{3} m_{2}\right) & \left(m_{2} n_{3}+m_{3} n_{2}\right) & \left(n_{2} l_{3}+n_{3} l_{2}\right) \\
2 l_{3} l_{1} & 2 m_{3} m_{1} & 2 n_{3} n_{1} & \left(l_{3} m_{1}+l_{1} m_{3}\right) & \left(m_{3} n_{1}+m_{1} n_{3}\right) & \left(n_{3} l_{1}+n_{1} l_{3}\right)
\end{array}\right]
\]
\(l_{i}, m_{i}, n_{i}\) are the direction cosines
\[
x_{i}^{\prime}=l_{i} x_{1}+m_{i} x_{2}+n_{i} x_{3} \text { for } i=1,2,3
\]
and \(x_{i}^{\prime}\) denotes the material axes. The constitutive matrix \(\mathbf{C}_{l}\) is defined in terms of the material axes as
\[
\mathbf{C}_{l}^{-1}=\left[\begin{array}{cccccc}
\frac{1}{E_{11}} & -\frac{v_{21}}{E_{22}} & -\frac{v_{31}}{E_{33}} & 0 & 0 & 0 \\
-\frac{v_{12}}{E_{11}} & \frac{1}{E_{22}} & -\frac{v_{32}}{E_{33}} & 0 & 0 & 0 \\
-\frac{v_{13}}{E_{11}} & -\frac{v_{23}}{E_{22}} & \frac{1}{E_{33}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{12}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{23}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{31}}
\end{array}\right]
\]
where the subscripts denote the material axes, meaning
\[
v_{i j}=v_{x_{i}^{\prime} x_{j}^{\prime}} \quad \text { and } \quad E_{i i}=E_{x_{i}^{\prime}}
\]

Since \(\mathbf{C}_{l}\) is symmetric
\[
\frac{v_{12}}{E_{11}}=\frac{v_{21}}{E_{22}}, \ldots
\]

The vector of Green-St. Venant strain components is
\[
\mathbf{E}^{\mathrm{T}}=\left[E_{11}, E_{22}, E_{33}, E_{12}, E_{23}, E_{31}\right]
\]
which include the local thermal strains which are integrated in time:
\[
\begin{aligned}
& \varepsilon_{a a}^{n+1}=\varepsilon_{a a}^{n}+\alpha_{a}\left(T^{n+1}-T^{n}\right) \\
& \varepsilon_{b b}^{n+1}=\varepsilon_{b b}^{n}+\alpha_{b}\left(T^{n+1}-T^{n}\right) \\
& \varepsilon_{c c}^{n+1}=\varepsilon_{c c}^{n}+\alpha_{c}\left(T^{n+1}-T^{n}\right)
\end{aligned}
\]
where \(T\) is temperature. After computing \(S_{i j}\) we then obtain the Cauchy stress:
\[
\sigma_{i j}=\frac{\rho}{\rho_{0}} \frac{\partial x_{i}}{\partial X_{k}} \frac{\partial x_{j}}{\partial X_{l}} S_{k l}
\]

This model will predict realistic behavior for finite displacement and rotations as long as the strains are small.

In the implementation for shell elements, the stresses are integrated in time and are updated in the corotational coordinate system. In this procedure the local material axes are assumed to remain orthogonal in the deformed configuration. This assumption is valid if the strains remain small.

The failure models were derived by William Feng. The first one defines the matrix dominated failure mode,
\[
F_{m}=A_{1}\left(I_{1}-3\right)+A_{11}\left(I_{1}-3\right)^{2}+A_{2}\left(I_{2}-3\right)-1,
\]
and the second defines the fiber dominated failure mode,
\[
F_{f}=A_{5}\left(I_{5}-1\right)+A_{55}\left(I_{5}-1\right)^{2}+A_{4}\left(I_{4}-1\right)-1
\]

When either is greater than zero, the integration point fails, and the element is deleted after NIP integration points fail.

The coefficients \(A_{i}\) are defined in the input and the invariants \(I_{i}\) are the strain invariants
\[
\begin{aligned}
& I_{1}=\sum_{\alpha=1,3} C_{\alpha \alpha} \\
& I_{2}=\frac{1}{2}\left[I_{1}^{2}-\sum_{\alpha, \beta=1,3} C_{\alpha \beta}^{2}\right] \\
& I_{3}=\operatorname{det}(\mathbf{C}) \\
& I_{4}=\sum_{\alpha, \beta, \gamma=1,3} V_{\alpha} C_{\alpha \gamma} C_{\gamma \beta} V_{\beta} \\
& I_{5}=\sum_{\alpha, \beta=1,3} V_{\alpha} C_{\alpha \beta} V_{\beta}
\end{aligned}
\]
and \(\mathbf{C}\) is the Cauchy strain tensor and \(\mathbf{V}\) is the fiber direction in the undeformed state. By convention in this material model, the fiber direction is aligned with the \(a\) direction of the local orthotropic coordinate system.

The curing option implies that orthotropic chemical shrinkage is to be considered, resulting from a curing process in the material. The state of cure \(\beta\) is an internal material variable that follows the Kamal model
\[
\frac{d \beta}{d t}=\left(K_{1}+K_{2} \beta^{m}\right)(1-\beta)^{n} \quad \text { with } \quad K_{1}=k_{1} e^{-\frac{c_{1}}{R T}}, K_{2}=k_{2} e^{-\frac{c_{2}}{R T}}
\]

Chemical strains are introduced as:
\[
\begin{aligned}
& \varepsilon_{a a}^{n+1}=\varepsilon_{a a}^{n}+\gamma_{a}\left(\beta^{n+1}-\beta^{n}\right) \\
& \varepsilon_{b b}^{n+1}=\varepsilon_{b b}^{n}+\gamma_{b}\left(\beta^{n+1}-\beta^{n}\right) \\
& \varepsilon_{c c}^{n+1}=\varepsilon_{c c}^{n}+\gamma_{c}\left(\beta^{n+1}-\beta^{n}\right)
\end{aligned}
\]

The coefficients, \(\gamma_{a}, \gamma_{b}\), and \(\gamma_{c}\), can be defined as functions of the state of cure \(\beta\). Furthermore, the coefficients of thermal expansion, \(\alpha_{a}, \alpha_{b}\), and \(\alpha_{c}\), can also be defined as functions of the state of cure, \(\beta\), and the temperature, \(T\), if the curing option is used.

The current degree of cure as well as the chemical shrinkage in the different directions is output in the history variables. For solid elements it can be found at positions 30 to 33 and for shell elements at positions 22 to 25 .

\section*{*MAT_COMPOSITE_DAMAGE}

This is Material Type 22. With this model, an orthotropic material with optional brittle failure for composites can be defined following the suggestion of [Chang and Chang 1987a, 1987b]. Failure can be modeled with three criteria; see the LS-DYNA Theory Manual. By using the user defined integration rule (see *INTEGRATION_SHELL), the constitutive constants can vary through the shell thickness.

For all shells, except the DKT formulation, laminated shell theory can be activated to properly model the transverse shear deformation. Lamination theory is applied to correct for the assumption of a uniform constant shear strain through the thickness of the shell. For sandwich shells where the outer layers are much stiffer than the inner layers, the response will tend to be too stiff unless lamination theory is used. To turn on lamination theory, see *CONTROL_SHELL.

This material is available for shells, solids, thick shells, and SPH elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
Default & none \\
Remarks & & & & & & 3 & 3 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & KFAIL & AOPT & MACF & ATRACK & \\
Type & F & F & F & F & F & 1 & 1 & \\
Default & none & none & none & 0.0 & 0.0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SC & XT & YT & YC & ALPH & SN & SYZ & SZX \\
Type & F & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
EA
EB
EC
PRBA

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
\(E_{a}\), Young's modulus in \(a\)-direction
\(E_{b}\), Young's modulus in \(b\)-direction
\(E_{c}\), Young's modulus in c-direction
\(v_{b a}\), Poisson ratio, \(b a\)
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline PRCA & \(v_{c a}\), Poisson ratio, \(c a\) \\
\hline PRCB & \(v_{c b}\), Poisson ratio, \(c b\) \\
\hline GAB & \(G_{a b}\), Shear modulus, \(a b\) \\
\hline GBC & \(G_{b c}\), Shear modulus, \(b c\) \\
\hline GCA & \(G_{c a}\), Shear modulus, \(c a\) \\
\hline KFAIL & Bulk modulus of failed material. Necessary for compressive failure. \\
\hline \multirow[t]{5}{*}{AOPT} & Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details): \\
\hline & EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA. \\
\hline & EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only. \\
\hline & EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR \\
\hline & EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying \\
\hline
\end{tabular}

\section*{VARIABLE}

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

ATRACK Material \(a\)-axis tracking flag (shell elements only):
EQ.0: \(a\)-axis rotates with element (default).
EQ.1: \(a\)-axis also tracks deformation (see Remark 2).
XP, YP, ZP Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
A1, A2, A3 Components of vector a for \(\mathrm{AOPT}=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline BETA & Material angle in degrees for \(\mathrm{AOPT}=0\) (shells and tshells only) and \(\mathrm{AOPT}=3\). It may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, or *ELEMENT_SOLID_ORTHO. \\
\hline SC & Shear strength, \(a b\)-plane; see the LS-DYNA Theory Manual. \\
\hline XT & Longitudinal tensile strength, \(a\)-axis; see the LS-DYNA Theory Manual. \\
\hline YT & Transverse tensile strength, \(b\)-axis \\
\hline YC & Transverse compressive strength, \(b\)-axis (positive value) \\
\hline ALPH & Shear stress parameter for the nonlinear term in units of [stress \({ }^{-3}\) ]; see the LS-DYNA Theory Manual. \\
\hline SN & Normal tensile strength (solid elements only) \\
\hline SYZ & Transverse shear strength (solid elements only) \\
\hline SZX & Transverse shear strength (solid elements only) \\
\hline
\end{tabular}

\section*{Remarks:}
1. History data. The number of additional integration point variables for shells written to the d3plot database is specified using the *DATABASE_EXTENT_BINARY keyword on the NEIPS field. These additional history variables are enumerated below:
\begin{tabular}{|c|l|c|l|}
\hline History Variable \({ }^{4}\) & \multicolumn{1}{|c|}{ Description } & \multirow{3}{|c|}{ Value } & \begin{tabular}{c} 
LS-PrePost \\
History Variable
\end{tabular} \\
\hline \(\operatorname{ef}(i)\) & tensile fiber mode & \multirow{3}{|c|}{\begin{tabular}{c}
\(1-\) elastic \\
0
\end{tabular}} & \begin{tabular}{l} 
See table below \\
\hline \(\mathrm{cm}(i)\)
\end{tabular} \\
\hline ed \((i)\) & tensile matrix mode & \begin{tabular}{l} 
compressive matrix \\
mode
\end{tabular} & 2 \\
\hline
\end{tabular}

The following components are stored as element component 7 instead of the effective plastic strain. Note that ef \((i)\) for \(i=1,2,3\) is not retrievable.

\footnotetext{
\({ }^{4} i\) ranges over the shell integration points.
}
\begin{tabular}{|c|c|}
\hline Description & Integration point \\
\hline\(\frac{1}{\text { nip }} \sum_{i=1}^{\text {nip }} \operatorname{ef}(i)\) & 1 \\
\hline\(\frac{1}{\text { nip }} \sum_{i=1}^{\text {nip }} \mathrm{cm}(i)\) & 2 \\
\hline\(\frac{1}{\text { nip }} \sum_{i=1}^{\text {nip }} \mathrm{ed}(i)\) & 3 \\
\hline ef \((i)\) for \(i>3\) & \(i\) \\
\hline
\end{tabular}
2. The ATRACK field. The initial material directions are set using AOPT and the related data. By default, the material directions in shell elements are updated each cycle based on the rotation of the 1-2 edge, or else the rotation of all edges if the invariant node numbering option is set on *CONTROL_ACCURACY. When ATRACK \(=1\), an optional scheme is used in which the \(a\)-direction of the material tracks element deformation as well as rotation.

At the start of the calculation, a line is passed through each element center in the direction of the material \(a\)-axis. This line will intersect the edges of the element at two points. The referential coordinates of these two points are stored and then used throughout the calculation to locate these points in the deformed geometry. The material \(a\)-axis is assumed to be in the direction of the line that passes through both points. If ATRACK \(=0\), the layers of a layered composite will always rotate together. However, if ATRACK = 1, the layers can rotate independently which may be more accurate, particularly for shear deformation. This option is available only for shell elements.
3. Poisson's ratio. If \(\mathrm{EA}>\mathrm{EB}, \mathrm{PRBA}\) is the minor Poisson's ratio if \(\mathrm{EA}>\mathrm{EB}\), and the major Poisson's ratio will be equal to PRBA \(\times(E A / E B)\). If \(E B>E A\), then PRBA is the major Poisson's ratio. PRCA and PRCB are similarly defined. They are the minor Poisson's ratio if \(\mathrm{EA}>\mathrm{EC}\) or \(\mathrm{EB}>\mathrm{EC}\), and the major Poisson's ratio if the EC \(>\mathrm{EA}\) or \(\mathrm{EC}>\mathrm{EB}\).

Care should be taken when using material parameters from third party products regarding the directional indices \(a, b\) and \(c\), as they may differ from the definition used in LS-DYNA. For the direction indices used in LS-DYNA, see the remarks section of *MAT_002 / *MAT_OPTIONTROPIC_ELASTIC.

\section*{*MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC}

This is Material Type 23. It models an orthotropic elastic material with arbitrary temperature dependency. It is available for solids, shells, and thick shells.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & AOPT & REF & MACF & IHYPO & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 4.1. Define one set of constants on two cards using Cards 4.1 and 4.2 for each temperature point. Up to 48 points ( 96 cards) can be defined. The next keyword ("*") card terminates the input.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline \(\mathrm{EA} i\) & \(\mathrm{~EB} i\) & \(\mathrm{EC} i\) & PRBA \(i\) & PRCA \(i\) & PRCB \(i\) & & \\
\hline
\end{tabular}

Card 4.2. Define one set of constants on two cards using Cards 4.1 and 4.2 for each temperature point. Up to 48 points ( 96 cards) can be defined. The next keyword ("*") card terminates the input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{AA} i\) & \(\mathrm{AB} i\) & ACi & \(\mathrm{GAB} i\) & GBCi & \(\mathrm{GCA} i\) & \(\mathrm{~T} i\) & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & AOPT & REF & MACF & IHYPO & & \\
Type & A & F & F & F & I & F & & \\
\hline
\end{tabular}

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

REF

MACF

IHYPO

DESCRIPTION
Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see description of this keyword for more details).

EQ.0.0: Off
EQ.1.0: On
Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 3 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

Option to switch between two different elastic approaches (only available for solid elements):

EQ.0.0: Hyperelastic formulation, default
EQ.1.0: Hypoelastic formulation (allows stress initialization through *INITIAL_STRESS_SOLID)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4
Components of vector \(\mathbf{d}\) for AOPT \(=2\)
Material angle in degrees for AOPT \(=0\) (shells and tshells only) and AOPT = 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, or *ELEMENT_SOLID_ORTHO.

First Temperature Card. Define one set of constants on two cards using Cards 4.1 and 4.2 for each temperature point. Up to 48 points ( 96 cards) can be defined. The next keyword ("*") card terminates the input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EA \(i\) & EB \(i\) & EC \(i\) & PRBA \(i\) & PRCA \(i\) & PRCB \(i\) & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{Second Temperature Card}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\mathrm{AA} i\) & \(\mathrm{AB} i\) & \(\mathrm{AC} i\) & \(\mathrm{GAB} i\) & GBCi & \(\mathrm{GCA} i\) & \(\mathrm{~T} i\) & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

EA \(i\)
\(\mathrm{EB} i \quad E_{b}\), Young's modulus in \(b\)-direction at temperature \(\mathrm{T} i\)
ECi
PRBAi
PRCA \(i\)
PRCB \(i\)
AA \(i \quad \alpha_{a}\), coefficient of thermal expansion in \(a\)-direction at temperature \(\mathrm{T} i\)
\(\mathrm{AB} i \quad \alpha_{B}\) coefficient of thermal expansion in \(b\)-direction at temperature \(\mathrm{T} i\).
\(\mathrm{ACi} \quad \alpha_{c}\), coefficient of thermal expansion in \(c\)-direction at temperature Ti.

GABi \(\quad G_{a b}\), Shear modulus \(a b\) at temperature Ti.
GBC \(i \quad G_{b c}\), Shear modulus \(b c\) at temperature Ti.
GCA \(i \quad G_{c a}\), Shear modulus \(c a\) at temperature \(T i\).
Ti
\(E_{a}\), Young's modulus in \(a\)-direction at temperature \(\mathrm{T} i\)
\(E_{c}\), Young's modulus in c-direction at temperature \(\mathrm{T} i\)
\(v_{b a}\), Poisson's ratio \(b a\) at temperature \(\mathrm{T} i\)
\(v_{c a}\), Poisson's ratio \(c a\) at temperature \(\mathrm{T} i\)
\(v_{c b}\), Poisson's ratio \(c b\) at temperature \(\mathrm{T} i\)
\(i^{\text {th }}\) temperature

\section*{Remarks:}

In the implementation for three-dimensional continua a total Lagrangian formulation is used. In this approach the material law that relates second Piola-Kirchhoff stress \(\mathbf{S}\) to the Green-St. Venant strain E is
\[
\mathbf{S}=\mathbf{C}: \mathbf{E}=\mathbf{T}^{\mathrm{T}} \mathbf{C}_{l} \mathbf{T}: \mathbf{E}
\]
where \(\mathbf{T}\) is the transformation matrix [Cook 1974].
\[
\mathbf{T}=\left[\begin{array}{cccccc}
l_{1}^{2} & m_{1}^{2} & n_{1}^{2} & l_{1} m_{1} & m_{1} n_{1} & n_{1} l_{1} \\
l_{2}^{2} & m_{2}^{2} & n_{2}^{2} & l_{2} m_{2} & m_{2} n_{2} & n_{2} l_{2} \\
l_{3}^{2} & m_{3}^{2} & m_{3}^{2} & l_{3} m_{3} & m_{3} n_{3} & n_{3} l_{3} \\
2 l_{1} l_{2} & 2 m_{1} m_{2} & 2 n_{1} n_{2} & \left(l_{1} m_{2}+l_{2} m_{1}\right) & \left(m_{1} n_{2}+m_{2} n_{1}\right) & \left(n_{1} l_{2}+n_{2} l_{1}\right) \\
2 l_{2} l_{3} & 2 m_{2} m_{3} & 2 n_{2} n_{3} & \left(l_{2} m_{3}+l_{3} m_{2}\right) & \left(m_{2} n_{3}+m_{3} n_{2}\right) & \left(n_{2} l_{3}+n_{3} l_{2}\right) \\
2 l_{3} l_{1} & 2 m_{3} m_{1} & 2 n_{3} n_{1} & \left(l_{3} m_{1}+l_{1} m_{3}\right) & \left(m_{3} n_{1}+m_{1} n_{3}\right) & \left(n_{3} l_{1}+n_{1} l_{3}\right)
\end{array}\right]
\]
\(l_{i}, m_{i}, n_{i}\) are the direction cosines
\[
x_{i}^{\prime}=l_{i} x_{1}+m_{i} x_{2}+n_{i} x_{3} \text { for } i=1,2,3
\]
and \(x_{i}^{\prime}\) denotes the material axes. The temperature dependent constitutive matrix \(\mathbf{C}_{l}\) is defined in terms of the material axes as
\[
\mathbf{C}_{l}^{-1}=\left[\begin{array}{cccccc}
\frac{1}{E_{11}(T)} & -\frac{v_{21}(T)}{E_{22}(T)} & -\frac{v_{31}(T)}{E_{33}(T)} & 0 & 0 & 0 \\
-\frac{v_{12}(T)}{E_{11}(T)} & \frac{1}{E_{22}(T)} & -\frac{v_{32}(T)}{E_{33}(T)} & 0 & 0 & 0 \\
-\frac{v_{13}(T)}{E_{11}(T)} & -\frac{v_{23}(T)}{E_{22}(T)} & \frac{1}{E_{33}(T)} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{12}(T)} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{23}(T)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{31}(T)}
\end{array}\right]
\]
where the subscripts denote the material axes,
\[
v_{i j}=v_{x_{i}^{\prime} x_{j}^{\prime}} \quad \text { and } \quad E_{i i}=E_{x_{i}^{\prime}}
\]

Since \(\mathbf{C}_{l}\) is symmetric
\[
\frac{v_{12}}{E_{11}}=\frac{v_{21}}{E_{22}}, \ldots
\]

The vector of Green-St. Venant strain components is
\[
\mathbf{E}^{\mathrm{T}}=\left\lfloor E_{11}, E_{22}, E_{33}, E_{12}, E_{23}, E_{31}\right\rfloor
\]
which include the local thermal strains which are integrated in time:
\[
\begin{aligned}
& \varepsilon_{a a}^{n+1}=\varepsilon_{a a}^{n}+\alpha_{a}\left(T^{n+\frac{1}{2}}\right)\left[T^{n+1}-T^{n}\right] \\
& \varepsilon_{b b}^{n+1}=\varepsilon_{b b}^{n}+\alpha_{b}\left(T^{n+\frac{1}{2}}\right)\left[T^{n+1}-T^{n}\right] \\
& \varepsilon_{c c}^{n+1}=\varepsilon_{c c}^{n}+\alpha_{c}\left(T^{n+\frac{1}{2}}\right)\left[T^{n+1}-T^{n}\right]
\end{aligned}
\]
where \(T\) is temperature. After computing \(S_{i j}\) we then obtain the Cauchy stress:
\[
\sigma_{i j}=\frac{\rho}{\rho_{0}} \frac{\partial x_{i}}{\partial X_{k}} \frac{\partial x_{j}}{\partial X_{l}} S_{k l}
\]

This model will predict realistic behavior for finite displacement and rotations as long as the strains are small.

For shell elements, the stresses are integrated in time and are updated in the corotational coordinate system. In this procedure the local material axes are assumed to remain orthogonal in the deformed configuration. This assumption is valid if the strains remain small.

\section*{*MAT_PIECEWISE_LINEAR_PLASTICITY_\{OPTION\}}

Available options include:
<BLANK>
LOG_INTERPOLATION
STOCHASTIC
MIDFAIL
2D
This is Material Type 24. It is an elasto-plastic material with an arbitrary stress as a function of strain curve that can also have an arbitrary strain rate dependency (see Remarks below). Failure based on a plastic strain or a minimum time step size can be defined. For another model with a more comprehensive failure criteria see *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY. If considering laminated or sandwich shells with non-uniform material properties (this is defined through the user specified integration rule), the model, *MAT_LAYERED_LINEAR_PLASTICITY, is recommended. If solid elements are used and if the elastic strains before yielding are finite, the model, *MAT_FINITE_ELASTIC_STRAIN_PLASTICITY, treats the elastic strains using a hyperelastic formulation.

The LOG_INTERPOLATION keyword option interpolates the strain rates in a table LCSS with logarithmic interpolation.

The STOCHASTIC keyword option allows spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.

The MIDFAIL keyword option is available for thin shell elements and thick shell formulations which use thin shell material models. When included on the keyword line, this option causes failure to be checked only at the mid-plane of the element. If an element has an even number of layers, failure is checked in the two layers closest to the mid-plane.

The 2D keyword option is available only for shell elements. It invokes actual plane stress treatment, meaning transverse shear stresses are not part of the yield condition but updated elastically.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FAIL & TDEL \\
Type & A & F & F & F & F & \(F\) & \(F\) & \(F\) \\
Default & none & none & none & none & none & 0.0 & \(10^{21}\) & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & VP & & & \\
Type & F & F & I & I & F & & & \\
Default & 0.0 & 0.0 & 0 & 0 & 0.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}


Figure M24-1. Rate effects may be accounted for by defining a table of curves. If a table ID is specified, a curve ID is given for each strain rate; see *DEFINE_TABLE. Intermediate values are found by interpolating between curves. Effective plastic strain as a function of yield stress is expected. If the strain rate values fall out of range, extrapolation is not used; rather, either the first or last curve determines the yield stress depending on whether the rate is low or high, respectively.

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress; ignored if LCSS >0 except as described in Remark 1a.
ETAN Tangent modulus; ignored if LCSS \(>0\) is defined.
FAIL Failure flag:
LT.O.O: User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.0.0: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Effective plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL Minimum time step size for automatic element deletion
C Strain rate parameter, C; see Remarks 1 and 3.
P Strain rate parameter, \(p\); see Remark 1.
LCSS Load curve ID or Table ID
Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain. If defined, EPS1 - EPS8 and ES1 - ES8 are ignored. See Remark 7 for load curve rediscretization behavior.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that rate; see Figure M24-1. When the strain rate falls below the minimum value, the stress as a function of effective plastic strain curve for the lowest value of strain rate is used. Likewise, when the strain rate exceeds the maximum value the stress as a function of effective plastic strain curve for the highest value of strain rate is used. C, P, LCSR, EPS1 - EPS8, and ES1 - ES8 are ignored if a table ID is defined. Linear interpolation between the discrete strain rates is used by default; logarithmic interpolation is used when the LOG_INTERPOLATION option is invoked.

Logarithmically Defined Tables. Logarithmic interpolation between discrete strain rates is also assumed if the first value in the table is negative, in which case LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude. Note that this option works only when the lowest strain rate has value less than 1.0. For values greater than or equal to 1.0 , use the LOG_INTERPOLATION option. There is some additional computational cost associated with invoking logarithmic interpolation.

\section*{VARIABLE}

LCSR Load curve ID defining strain rate scaling effect on yield stress. If LCSR is negative, the load curve is evaluated using a binary search for the correct interval for the strain rate. The binary search is slower than the default incremental search, but in cases where large changes in the strain rate may occur over a single time step, it is more robust. This option is not necessary for the viscoplastic formulation.

Formulation for rate effects:
EQ.-1.0: Cowper-Symonds with effective deviatoric strain rate rather than total

EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation
EQ.3.0: Same as \(V P=0\), but with filtered effective total strain rates (see Remark 3)

EPS1-EPS8 Effective plastic strain values (optional). If used, at least 2 points should be defined. The first point must be zero corresponding to the initial yield stress. WARNING: If the first point is nonzero, the yield stress is extrapolated to determine the initial yield. If this option is used, SIGY and ETAN are ignored and may be input as zero.

ES1-ES8 Corresponding yield stress values to EPS1-EPS8

\section*{Remarks:}
1. Stress-Strain Behavior. The stress-strain behavior may be treated by a bilinear stress strain curve by defining the tangent modulus, ETAN. Alternately, a curve of effective stress as a function of effective plastic strain similar to that shown in Figure M10-1 may be defined by (EPS1, ES1) - (EPS8, ES8); however, a curve ID (LCSS) may be referenced instead if eight points are insufficient. The cost is roughly the same for either approach. Note that in the special case of uniaxial stress, true stress as a function of true plastic strain is equivalent to effective stress as a function effective plastic strain. The most general approach is to use the table definition (LCSS) discussed below.

Three options to account for strain rate effects are possible:
a) Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate. \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\). If VP \(=-1\), the deviatoric strain rates are used instead.

If the viscoplastic option is active \((\mathrm{VP}=1.0)\) and if SIGY is \(>0\) then the dynamic yield stress is computed from the sum of the static stress, \(\sigma_{y}^{s}\left(\varepsilon_{\text {eff }}^{p}\right)\), which is typically given by a load curve ID and the initial yield stress, SIGY, multiplied by the Cowper-Symonds rate term as follows:
\[
\sigma_{y}\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)=\sigma_{y}^{s}\left(\varepsilon_{\mathrm{eff}}^{p}\right)+\mathrm{SIGY} \times\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{\mathrm{C}}\right)^{1 / p}
\]

Here the plastic strain rate is used. With this latter approach similar results to *MAT_ANISOTROPIC_VISCOPLASTIC can be obtained. If SIGY = 0, the following equation is used instead where the static stress, \(\sigma_{y}^{s}\left(\varepsilon_{\text {eff }}^{p}\right)\), must be defined by a load curve:
\[
\sigma_{y}\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)=\sigma_{y}^{s}\left(\varepsilon_{\mathrm{eff}}^{p}\right)\left[1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p}\right] .
\]

This latter equation is always used if the viscoplastic option is off.
b) For complete generality a load curve (LCSR) to scale the yield stress may be input instead. In this curve the scale factor as a function of strain rate is defined.
c) If different stress as a function of strain curves can be provided for various strain rates, the option using the reference to a table (LCSS) can be used. Then the table input in *DEFINE_TABLE must be used; see Figure M24-1.
2. Viscoplastic Formulation. A fully viscoplastic formulation is optional (variable VP \(=1\) ) which incorporates the different options above within the yield surface. An additional cost is incurred over the simple scaling, but the improvement in results can be dramatic.
3. Filtered Strain Rates. With the option VP \(=3\) it is possible to use filtered strain rates. This means that the total strain rate is used as with VP \(=0\), but this can now be filtered with the help of field C (not Cowper-Symonds in this case) and the following exponential moving average equation:
\[
\dot{\varepsilon}_{n}^{\text {avg }}=\mathrm{C} \times \dot{\varepsilon}_{n-1}^{\mathrm{avg}}+(1-\mathrm{C}) \times \dot{\varepsilon}_{n}
\]

This might be helpful if a table LCSS with crossing yield curves is used.
4. Yield Stress Depending on History Variables. When VP \(=3\), the yield stress defined with LCSS can depend on up to seven history variables through a multidimensional table. These seven history variables are history variables 6 through 12 which you will have to set using *INITIAL_HISTORY_NODE or *INITIAL_STRESS_SOLID/SHELL and whose meanings are, therefore, determined by you. For instance, you can set the values of history variables 6, 9, and 10 for certain nodes and have the value of yield stress depend upon history variables 6,9 , and 10 . Note that these history variables are only initialized and do not evolve in time. See *DEFINE_TABLE_XD or *DEFINE_TABLE_COMPACT for more details.
5. Implicit Calculations. For implicit calculations with this material involving severe nonlinear hardening, the radial return method may result in inaccurate stress-strain response. Setting IACC \(=1\) on *CONTROL_ACCURACY activates a fully iterative plasticity algorithm, which will remedy this. This is not to be confused with the MITER flag on *CONTROL_SHELL which governs the treatment of the plane stress assumption for shell elements. If failure is applied with this option, incident failure will initiate damage, and the stress will continuously degrade to zero before erosion for a deformation of \(1 \%\) plastic strain. So for instance, if the failure strain is FAIL \(=0.05\), then the element is eroded when \(\bar{\varepsilon}^{p}=\) 0.06 and the material goes from intact to completely damaged between \(\bar{\varepsilon}^{p}=0.05\) and \(\bar{\varepsilon}^{p}=0.06\). The reason is to enhance implicit performance by maintaining continuity in the internal forces.
6. Failure Output. For a nonzero failure strain, *DEFINE_MATERIAL_HISTORIES can be used to output the failure indicator.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & Attributes & Description \\
\hline Instability & - - - & Failure indicator \(\varepsilon_{\text {eff }}^{p} / \varepsilon_{\text {fail }}^{p}\), see FAIL \\
\hline Plastic Strain Rate & - - - - & Effective plastic strain rate \(\dot{\varepsilon}_{\text {eff }}^{p}\) \\
\hline
\end{tabular}
7. LCSS Rediscretization. In the special case where LCSS is a *DEFINE_CURVE, LCSS is not rediscretized (see LCINT in *DEFINE_CURVE).

\section*{*MAT_GEOLOGIC_CAP_MODEL}

This is Material Type 25. This is an inviscid two-invariant geologic cap model. This material model can be used for geomechanical problems or for materials such as concrete; see references cited below.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & BULK & G & ALPHA & THETA & GAMMA & BETA \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R & D & W & X0 & C & N & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PLOT & FTYPE & VEC & TOFF & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
BULK Initial bulk modulus, \(K\)
G Initial shear modulus
ALPHA Failure envelope parameter, \(\alpha\)
THETA Failure envelope linear coefficient, \(\theta\)
GAMMA Failure envelope exponential coefficient, \(\gamma\)

VARIABLE
BETA

R

D

W

X0
C Kinematic hardening coefficient, \(\bar{c}\)
N

PLOT Save the following variable for plotting in LS-PrePost, where it will be labeled as "effective plastic strain:"

EQ.1: hardening parameter, \(\kappa\)
EQ.2: cap -J1 axis intercept, \(X(\kappa)\)
EQ.3: volumetric plastic strain \(\varepsilon_{v}^{p}\)
EQ.4: first stress invariant, \(J_{1}\)
EQ.5: second stress invariant, \(\sqrt{J_{2}}\)
EQ.6: not used
EQ.7: not used
EQ.8: response mode number
EQ.9: number of iterations
FTYPE Formulation flag:
EQ.1: soils (cap surface may contract)
EQ.2: concrete and rock (cap doesn't contract)
VEC Vectorization flag:
EQ.O: vectorized (fixed number of iterations)
EQ.1: fully iterative
If the vectorized solution is chosen, the stresses might be slightly off the yield surface; however, on vector computers a much more efficient solution is achieved.

TOFF Tension Cut Off, TOFF \(<0\) (positive in compression).


Figure M25-1. The yield surface of the two-invariant cap model in pressure \(\sqrt{J_{2 D}}-J_{1}\) space. Surface \(f_{1}\) is the failure envelope, \(f_{2}\) is the cap surface, and \(f_{3}\) is the tension cutoff.

\section*{Remarks:}

The implementation of an extended two-invariant cap model, suggested by Stojko [1990], is based on the formulations of Simo, et al. [1988, 1990] and Sandler and Rubin [1979]. In this model, the two-invariant cap theory is extended to include nonlinear kinematic hardening as suggested by Isenberg, Vaughan, and Sandler [1978]. A brief discussion of the extended cap model and its parameters is given below.

The cap model is formulated in terms of the invariants of the stress tensor. The square root of the second invariant of the deviatoric stress tensor, \(\sqrt{J_{2 D}}\) is found from the deviatoric stresses \(\mathbf{s}\) as
\[
\sqrt{J_{2 D}} \equiv \sqrt{\frac{1}{2} S_{i j} S_{i j}}
\]
and is the objective scalar measure of the distortional or shearing stress. The first invariant of the stress, \(J_{1}\), is the trace of the stress tensor.

The cap model consists of three surfaces in \(\sqrt{J_{2 D}}-J_{1}\) space, as shown in Figure M25-1 First, there is a failure envelope surface, denoted \(f_{1}\) in the figure. The functional form of \(f_{1}\) is
\[
f_{1}=\sqrt{J_{2 D}}-\min \left[F_{e}\left(J_{1}\right), T_{\text {mises }}\right]
\]
where \(F_{e}\) is given by
\[
F_{e}\left(J_{1}\right) \equiv \alpha-\gamma \exp \left(-\beta J_{1}\right)+\theta J_{1}
\]
and \(T_{\text {mises }} \equiv\left|X\left(\kappa_{n}\right)-L\left(\kappa_{n}\right)\right|\). This failure envelop surface is fixed in \(\sqrt{J_{2 D}}-J_{1}\) space, and therefore, does not harden unless kinematic hardening is present. Next, there is a cap surface, denoted \(f_{2}\) in the figure, with \(f_{2}\) given by
\[
f_{2}=\sqrt{J_{2 D}}-F_{c}\left(J_{1}, K\right)
\]
where \(F_{c}\) is defined by
\[
F_{c}\left(J_{1}, \kappa\right) \equiv \frac{1}{R} \sqrt{[X(\kappa)-L(\kappa)]^{2}-\left[J_{1}-L(\kappa)\right]^{2}},
\]
\(X(\kappa)\) is the intersection of the cap surface with the \(J_{1}\) axis
\[
X(\kappa)=\kappa+R F_{e}(\kappa),
\]
and \(L(\kappa)\) is defined by
\[
L(\kappa) \equiv\left\{\begin{array}{lll}
\kappa & \text { if } & \kappa>0 \\
0 & \text { if } & \kappa \leq 0
\end{array}\right.
\]

The hardening parameter \(\kappa\) is related to the plastic volume change \(\varepsilon_{v}^{p}\) through the hardening law
\[
\varepsilon_{v}^{p}=W\left\{1-\exp \left[-D\left(X(\kappa)-X_{0}\right)\right]\right\}
\]

Geometrically, \(\kappa\) is seen in the figure as the \(J_{1}\) coordinate of the intersection of the cap surface and the failure surface. Finally, there is the tension cutoff surface, denoted \(f_{3}\) in the figure. The function \(f_{3}\) is given by
\[
f_{3} \equiv T-J_{1}
\]
where \(T\) is the input material parameter which specifies the maximum hydrostatic tension sustainable by the material. The elastic domain in \(\sqrt{J_{2 D}}-J_{1}\) space is then bounded by the failure envelope surface above, the tension cutoff surface on the left, and the cap surface on the right.

An additive decomposition of the strain into elastic and plastic parts is assumed:
\[
\varepsilon=\varepsilon^{e}+\varepsilon^{p},
\]
where \(\varepsilon^{e}\) is the elastic strain and \(\varepsilon^{p}\) is the plastic strain. Stress is found from the elastic strain using Hooke's law,
\[
\sigma=\mathbf{C}\left(\varepsilon-\varepsilon^{p}\right),
\]
where \(\sigma\) is the stress and \(\mathbf{C}\) is the elastic constitutive tensor.

The yield condition may be written
\[
\begin{aligned}
f_{1}(s) & \leq 0 \\
f_{2}(s, \kappa) & \leq 0 \\
f_{3}(s) & \leq 0
\end{aligned}
\]
and the plastic consistency condition requires that
\[
\begin{aligned}
\dot{\lambda}_{k} f_{k} & =0 \\
k & =1,2,3 \\
\dot{\lambda}_{k} & \geq 0
\end{aligned}
\]
where \(\lambda_{k}\) is the plastic consistency parameter for surface \(k\). If \(f_{k}<0\) then, \(\dot{\lambda}_{k}=0\) and the response is elastic. If \(f_{k}>0\) then surface \(k\) is active and \(\dot{\lambda}_{k}\) is found from the requirement that \(\dot{f}_{k}=0\).

Associated plastic flow is assumed, so using Koiter's flow rule, the plastic strain rate is given as the sum of contribution from all of the active surfaces,
\[
\dot{\varepsilon}^{p}=\sum_{k=1}^{3} \dot{\lambda}_{k} \frac{\partial f_{k}}{\partial s} .
\]

One of the major advantages of the cap model over other classical pressure-dependent plasticity models is the ability to control the amount of dilatancy produced under shear loading. Dilatancy is produced under shear loading as a result of the yield surface having a positive slope in \(\sqrt{J_{2 D}}-J\) space, so the assumption of plastic flow in the direction normal to the yield surface produces a plastic strain rate vector that has a component in the volumetric (hydrostatic) direction (see Figure M25-1). In models such as the DruckerPrager and Mohr-Coulomb, this dilatancy continues as long as shear loads are applied, and in many cases produces far more dilatancy than is experimentally observed in material tests. In the cap model, when the failure surface is active, dilatancy is produced just as with the Drucker-Prager and Mohr-Coulumb models. However, the hardening law permits the cap surface to contract until the cap intersects the failure envelope at the stress point, and the cap remains at that point. The local normal to the yield surface is now vertical, and therefore the normality rule assures that no further plastic volumetric strain (dilatancy) is created. Adjustment of the parameters that control the rate of cap contractions permits experimentally observed amounts of dilatancy to be incorporated into the cap model, thus producing a constitutive law which better represents the physics to be modeled.

Another advantage of the cap model over other models such as the Drucker-Prager and Mohr-Coulomb is the ability to model plastic compaction. In these models all purely volumetric response is elastic. In the cap model, volumetric response is elastic until the stress point hits the cap surface. Therefore, plastic volumetric strain (compaction) is generated at a rate controlled by the hardening law. Thus, in addition to controlling the amount of dilatancy, the introduction of the cap surface adds another experimentally observed response characteristic of geological material into the model.

The inclusion of kinematic hardening results in hysteretic energy dissipation under cyclic loading conditions. Following the approach of Isenberg, et al. [1978] a nonlinear kinematic hardening law is used for the failure envelope surface when nonzero values of \(\bar{c}\) and \(N\) are specified. In this case, the failure envelope surface is replaced by a family of yield surfaces bounded by an initial yield surface and a limiting failure envelope surface.

Thus, the shape of the yield surfaces described above remains unchanged, but they may translate in a plane orthogonal to the \(J\) axis,

Translation of the yield surfaces is permitted through the introduction of a "back stress" tensor, \(\alpha\). The formulation including kinematic hardening is obtained by replacing the stress \(\sigma\) with the translated stress tensor \(\eta \equiv \sigma-\alpha\) in all of the above equations. The history tensor \(\alpha\) is assumed deviatoric and therefore has only 5 unique components. The evolution of the back stress tensor is governed by the nonlinear hardening law
\[
\alpha=\bar{c} \bar{F}(\sigma, \alpha) \dot{e}^{p}
\]
where \(\bar{c}\) is a constant, \(\bar{F}\) is a scalar function of \(\sigma\) and \(\alpha\) and \(\dot{e}^{p}\) is the rate of deviatoric plastic strain. The constant may be estimated from the slope of the shear stress - plastic shear strain curve at low levels of shear stress.

The function \(\bar{F}\) is defined as
\[
\bar{F} \equiv \max \left[0,1-\frac{(\sigma-\alpha) \alpha}{2 N F_{e}\left(J_{1}\right)}\right]
\]
where \(N\) is a constant defining the size of the yield surface. The value of \(N\) may be interpreted as the radial distant between the outside of the initial yield surface and the inside of the limit surface. In order for the limit surface of the kinematic hardening cap model to correspond with the failure envelope surface of the standard cap model, the scalar parameter \(\alpha\) must be replaced \(\alpha-N\) in the definition \(F_{e}\).

The cap model contains a number of parameters which must be chosen to represent a particular material and are generally based on experimental data. The parameters \(\alpha, \beta\), \(\theta\), and \(\gamma\) are usually evaluated by fitting a curve through failure data taken from a set of triaxial compression tests. The parameters \(W, D\), and \(X_{0}\) define the cap hardening law. The value \(W\) represents the void fraction of the uncompressed sample and \(D\) governs the slope of the initial loading curve in hydrostatic compression. The value of \(R\) is the ratio of major to minor axes of the quarter ellipse defining the cap surface. Additional details and guidelines for fitting the cap model to experimental data are found in Chen and Baladi [1985].

\section*{*MAT_HONEYCOMB}

This is Material Type 26. The major use of this material model is for honeycomb and foam materials with real anisotropic behavior. A nonlinear elastoplastic material behavior can be defined separately for all normal and shear stresses. These are considered to be fully uncoupled. See notes below. This material is available for solid elements and for thick shell formulations 3,5 , and 7 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & VF & MU & BULK \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & none & .05 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCA & LCB & LCC & LCS & LCAB & LCBC & LCCA & LCSR \\
Type & F & F & F & F & F & F & F & F \\
Default & none & LCA & LCA & LCA & LCS & LCS & LCS & optional \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EAAU & EBBU & ECCU & GABU & GBCU & GCAU & AOPT & MACF \\
Type & F & F & F & F & F & F & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & D3 & TSEF & SSEF & V1 & V2 & V3 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

RO Mass density.

PR
SIGY
VF
MU
BULK

LCA

LCB

LCC

LCS

E Young's modulus for compacted honeycomb material.

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Poisson's ratio for compacted honeycomb material.
Yield stress for fully compacted honeycomb.
Relative volume at which the honeycomb is fully compacted.
\(\mu\), material viscosity coefficient. The default, 0.05 , is recommended.
Bulk viscosity flag:
EQ.0.0: Bulk viscosity is not used. This is recommended.
EQ.1.0: Bulk viscosity is active and \(\mu=0\). This will give results identical to previous versions of LS-DYNA.

Load curve ID (see *DEFINE_CURVE) for \(\sigma_{a a}\) as a function of either relative volume or volumetric strain. See Remarks 1 and 3.

Load curve ID (see *DEFINE_CURVE) for \(\sigma_{b b}\) as a function of either relative volume or volumetric strain. By default, \(\mathrm{LCB}=\mathrm{LCA}\). See Remarks 1 and 3.

Load curve ID (see *DEFINE_CURVE) for \(\sigma_{c c}\) as a function of either relative volume or volumetric strain. By default, LCC = LCA. See Remarks 1 and 3.

Load curve ID (see *DEFINE_CURVE) for shear stress as a function of either relative volume or volumetric strain. By default, LCS = LCA. Each component of shear stress may have its own load curve. See Remarks 1 and 3.

\section*{VARIABLE}

LCAB

LCCA

LCSR

EAAU
EBBU
ECCU

GABU
GBCU
GCAU
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

\section*{VARIABLE}

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. BETA, if needed, is specified on *ELEMENT_SOLID_\{OPTION\}.

XP YP ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4.
A1 A2 A3 Components of vector a for \(\mathrm{AOPT}=2\).


Figure M26-1. Stress quantity versus volumetric strain. Note that the "yield stress" at a volumetric strain of zero is non-zero. In the load curve definition, see *DEFINE_CURVE, the "time" value is the volumetric strain and the "function" value is the yield stress.

\section*{VARIABLE}

D1 D2 D3
V1 V2 V3 Define components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4 .
TSEF Tensile strain at element failure (element will erode).
SSEF Shear strain at element failure (element will erode).

\section*{Remarks:}
1. Stress Load Curves. For efficiency it is strongly recommended that the load curves with IDs LCA, LCB, LCC, LCS, LCAB, LCBC, and LCCA contain exactly the same number of points with corresponding strain values on the abscissa. If this recommendation is followed the cost of the table lookup is insignificant. Conversely, the cost increases significantly if the abscissa strain values are not consistent between load curves.

The load curves define the magnitude of the average stress as the material changes density (relative volume); see Figure M26-1. There are two ways to define these curves, (1) as a function of relative volume, \(V\), or (2) as a function of volumetric strain defined as:
\[
\varepsilon_{V}=1-V .
\]

In the former case, the first value in the curve should correspond to a value of relative volume slightly less than the fully compacted value. In the latter, the first value in the curve should be less than or equal to zero, corresponding to tension, and increase to full compaction. Care should be taken when defining the curves so that extrapolated values do not lead to negative yield stresses.
2. Elastic/Shear Moduli during Compaction. The behavior before compaction is orthotropic where the components of the stress tensor are uncoupled, meaning an \(a\) component of strain will generate resistance in the local \(a\)-direction with no coupling to the local \(b\) and \(c\) directions. The elastic moduli vary, from their initial values to the fully compacted values at \(V_{f}\), linearly with the relative volume \(V\) :
\[
\begin{aligned}
E_{a a} & =E_{a a u}+\beta\left(E-E_{a a u}\right) \\
E_{b b} & =E_{b b u}+\beta\left(E-E_{b b u}\right) \\
E_{c c} & =E_{c c u}+\beta\left(E-E_{c c u}\right) \\
G_{a b} & =E_{a b u}+\beta\left(G-G_{a b u}\right) \\
G_{b c} & =E_{b c u}+\beta\left(G-G_{b c u}\right) \\
G_{c a} & =E_{c a u}+\beta\left(G-G_{c a u}\right)
\end{aligned}
\]
where
\[
\beta=\max \left[\min \left(\frac{1-V}{1-V_{f}}, 1\right), 0\right]
\]
and \(G\) is the elastic shear modulus for the fully compacted honeycomb material
\[
G=\frac{E}{2(1+v)} .
\]

The relative volume, \(V\), is defined as the ratio of the current volume to the initial volume. Typically, \(V=1\) at the beginning of a calculation. The viscosity coefficient \(\mu(\mathrm{MU})\) should be set to a small number (usually . \(02-.10\) is okay). Alternatively, the two bulk viscosity coefficients on the control cards should be set to very small numbers to prevent the development of spurious pressures that may lead to undesirable and confusing results. The latter is not recommended since spurious numerical noise may develop.
3. Stress Updates. At the beginning of the stress update each element's stresses and strain rates are transformed into the local element coordinate system. For the uncompacted material, the trial stress components are updated using the elastic interpolated moduli (see Remark 2) according to:
\[
\begin{aligned}
\sigma_{a a}^{n+1^{\text {trial }}} & =\sigma_{a a}^{n}+E_{a a} \Delta \varepsilon_{a a} \\
\sigma_{b b}^{n+1^{\text {trial }}} & =\sigma_{b b}^{n}+E_{b b} \Delta \varepsilon_{b b} \\
\sigma_{c c}^{n+1^{\text {trial }}} & =\sigma_{c c}^{n}+E_{c c} \Delta \varepsilon_{c c} \\
\sigma_{a b}^{n+1^{\text {trial }}} & =\sigma_{a b}^{n}+2 G_{a b} \Delta \varepsilon_{a b} \\
\sigma_{b c}^{n+1^{\text {trial }}} & =\sigma_{b c}^{n}+2 G_{b c} \Delta \varepsilon_{b c} \\
\sigma_{c a}^{n+1^{\text {trial }}} & =\sigma_{c a}^{n}+2 G_{c a} \Delta \varepsilon_{c a}
\end{aligned}
\]

Each component of the updated stresses is then independently checked to ensure that they do not exceed the permissible values determined from the load curves; for example, if
\[
\left|\sigma_{i j}^{n+1^{\text {trial }}}\right|>\lambda \sigma_{i j}(V)
\]
then
\[
\sigma_{i j}^{n+1}=\sigma_{i j}(V) \frac{\lambda \sigma_{i j}^{n+1^{\text {trial }}}}{\left|\lambda \sigma_{i j}^{n+t^{\text {trial }}}\right|} .
\]

The stress components are found using the curves defined on Card 2. The parameter \(\lambda\) is either unity or a value taken from the load curve number, LCSR, that defines \(\lambda\) as a function of strain-rate. Strain-rate is defined here as the Euclidean norm of the deviatoric strain-rate tensor.

For fully compacted material it is assumed that the material behavior is elasticperfectly plastic and the stress components updated according to:
\[
s_{i j}^{\text {trial }}=s_{i j}^{n}+2 G \Delta \varepsilon_{i j}^{d e v}{ }^{n+1 / 2},
\]
where the deviatoric strain increment is defined as
\[
\Delta \varepsilon_{i j}^{\mathrm{dev}}=\Delta \varepsilon_{i j}-\frac{1}{3} \Delta \varepsilon_{k k} \delta_{i j}
\]

Now a check is made to see if the yield stress for the fully compacted material is exceeded by comparing the effective trial stress,
\[
s_{\mathrm{eff}}^{\text {trial }}=\left(\frac{3}{2} s_{i j}^{\text {trial }} s_{i j}^{\text {trial }}\right)^{1 / 2},
\]
to the defined yield stress, SIGY. If the effective trial stress exceeds the yield stress the stress components are simply scaled back to the yield surface
\[
s_{i j}^{n+1}=\frac{\sigma_{y}}{s_{\mathrm{eff}}^{\text {trial }}} s_{i j}^{\text {trial }}
\]

Now the pressure is updated using the elastic bulk modulus, \(K\),
\[
p^{n+1}=p^{n}-K \Delta \varepsilon_{k k}^{n+1 / 2}
\]
where
\[
K=\frac{E}{3(1-2 v)}
\]
to obtain the final value for the Cauchy stress
\[
\sigma_{i j}^{n+1}=s_{i j}^{n+1}-p^{n+1} \delta_{i j} .
\]

After completing the stress the stresses are transformed back to the global configuration.
4. Failure. For *CONSTRAINED_TIED_NODES_WITH_FAILURE, the failure is based on the volume strain instead to the plastic strain.

\section*{*MAT_MOONEY-RIVLIN_RUBBER}

This is Material Type 27. A two-parametric material model for rubber can be defined.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & A & B & REF & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}

Least Squares Card. If the values on Card 2 are nonzero, then a least squares fit is computed from the uniaxial data provided by the curve LCID. In this case \(A\) and \(B\) are ignored. If the A and B fields on Card 1 are left blank, then the fields on Card 2 must be nonzero.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LCID & & & & \\
Type & F & F & F & I & & & & \\
\hline
\end{tabular}
\begin{tabular}{cl} 
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } RO & \begin{tabular}{l} 
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
MR & \begin{tabular}{l} 
Mass density \\
smaller values may not work. Setting to 0.5 for solid elements with \\
implicit analysis activates a U-P formulation. See Remark 3 for de- \\
tails.
\end{tabular} \\
B & \begin{tabular}{l} 
Constant; see literature and remarks below. This field is ignored if \\
the fields on Card 2 are nonzero.
\end{tabular} \\
REF & \begin{tabular}{l} 
Constant; see literature and remarks below. This field is ignored if \\
the fields on Card 2 are nonzero.
\end{tabular} \\
\begin{tabular}{l} 
Use reference geometry to initialize the stress tensor. The reference \\
geometry is defined by the keyword: *INITIAL_FOAM_REFER- \\
ENCE_GEOMETRY.
\end{tabular}
\end{tabular}


Figure M27-1. Uniaxial specimen for experimental data

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.0.0: Off
EQ.1.0: On

SGL Specimen gauge length \(l_{0}\); see Figure M27-1.
SW Specimen width; see Figure M27-1.

ST
LCID

Specimen thickness; see Figure M27-1.
Curve ID, see *DEFINE_CURVE, giving the force versus actual change \(\Delta L\) in the gauge length. See Remark 2. See also Figure M27-2 for an alternative definition. LS-DYNA computes a least squares fit from this data. A and B are ignored if this field is defined.

\section*{Remarks:}
1. Strain energy density function. The strain energy density function is defined as:
\[
W=A(I-3)+B(I I-3)+C\left(I I I^{-2}-1\right)+D(I I I-1)^{2}
\]
where


Figure M27-2 The stress as a function of strain curve can be used instead of the force as a function of the change in the gauge length by setting the gauge length, thickness, and width to unity (1.0) and defining the engineering strain in place of the change in gauge length and the nominal (engineering) stress in place of the force. *MAT_077_O is a better alternative for fitting data resembling the curve above. *MAT_027 will provide a poor fit to a curve that exhibits a strong upturn in slope as strains become large.
\[
\begin{aligned}
& C=0.5 A+B \\
& D=\frac{A(5 v-2)+B(11 v-5)}{2(1-2 v)}
\end{aligned}
\]

Here, \(A\) and \(B\) are constants, \(v\) is the Poisson's ratio, \(2(A+B)\) is the shear modulus of linear elasticity, and \(I, I I\), and III are the principal invariants of the right Cauchy-Green tensor, C. Recall that \(\mathbf{C}=\mathbf{F}^{T} \mathbf{F}\) where \(\mathbf{F}=\nabla_{\mathbf{X}} \mathbf{x}\) is the deformation gradient, \(\mathbf{x}\) is the current configuration, and \(\mathbf{X}\) is the reference configuration.
2. Experimental data for the material. The load curve definition that provides the uniaxial data should give the change in gauge length, \(\Delta L\), versus the corresponding force. In compression, both the force and the change in gauge length must be specified as negative values. In tension, the force and change in gauge length should be input as positive values. The principal stretch ratio in the uniaxial direction, \(\lambda_{1}\), is then given by
\[
\lambda_{1}=\frac{L_{0}+\Delta L}{L_{0}}
\]
with \(L_{0}\) being the initial length and \(L\) being the actual length.
Alternatively, the stress as a function of strain curve can also be input by setting the gauge length, thickness, and width to unity (1.0) and defining the
engineering strain in place of the change in gauge length and the nominal (engineering) stress in place of the force; see Figure M27-1.

LS-DYNA performs a least square fit to the experimental data during the initialization phase. The d3hsp file provides a comparison between the fit and the actual. We recommend visually checking to make sure it is acceptable. d3hsp also contains the coefficients \(A\) and \(B\). We also advise examining the material model with the material driver (see Appendix K).
3. Incompressible material. If the material is incompressible with a Poisson ratio of exactly 0.5 , LS-DYNA uses a mixed finite element method of displacementpressure ( \(U-P\) ) type to avoid volumetric locking. Note that this formulation is only available for solid elements with implicit analysis. With this formulation, we enforce the incompressibility constraint, \(J=1\), with \(J=\operatorname{det}(F)\), strongly using a Lagrange multiplier technique. In the absence of inertial and external forces, this amounts to seeking a stationary point to the Lagrangian
\[
L(\mathbf{u}, \lambda)=\int W(\mathbf{C})+\lambda(J-1) d \mathbf{x}
\]
where \(\mathbf{u}=\mathbf{x}-\mathbf{X}\) is the displacement, and \(\lambda\) is a pressure-like Lagrange multiplier for the constraint. The stiffness matrix resulting from the \(U-P\) formulation is a saddle-point type (i.e., indefinite), and may therefore require special consideration regarding the choice of linear solver and stiffness reformation limit.
4. Output to effective plastic strain location in d3plot. The history variable labeled as "effective plastic strain" in LS-PrePost is internal energy density in the case of *MAT_MOONEY-RIVLIN_RUBBER.

\section*{*MAT_RESULTANT_PLASTICITY}

This is Material Type 28. It defines resultant formulation for beam and shell elements including elasto-plastic behavior. This model is available for the Belytschko-Schwer beam, the \(\mathrm{C}^{0}\) triangular shell, the Belytschko-Tsay shell, and the fully integrated type 16 shell. For beams, the treatment is elastic-perfectly plastic, but for shell elements isotropic hardening is approximately modeled. For a detailed description we refer to the LS-DYNA Theory Manual. Since the stresses are not computed in the resultant formulation, the stresses output to the binary databases for the resultant elements are zero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & & \\
Type & A & F & F & F & F & F & & \\
Default & none & none & none & none & none & 0.0 & & \\
VARIABLE
\end{tabular}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Plastic hardening modulus (for shells only)

\section*{*MAT_FORCE_LIMITED}

This is Material Type 29. It is a force limited resultant formulation. With this material model, for the Belytschko-Schwer beam only, plastic hinge forming at the ends of a beam can be modeled using curve definitions. Optionally, collapse can also be modeled. See also *MAT_139.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & DF & IAFLC & YTFLAG & ASOFT \\
Type & A & F & F & F & F & I & F & F \\
Default & none & none & none & none & 0.0 & 0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M1 & M2 & M3 & M4 & M5 & M6 & M7 & M8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LC1 & LC2 & LC3 & LC4 & LC5 & LC6 & LC7 & LC8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPS1 & SFS1 & LPS2 & SFS2 & YMS1 & YMS2 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0 & 1.0 & LPS1 & 1.0 & \(10^{20}\) & YMS1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPT1 & SFT1 & LPT2 & SFT2 & YMT1 & YMT2 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0 & 1.0 & LPT1 & 1.0 & \(10^{20}\) & YMT1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPR & SFR & YMR & & & & & \\
Type & F & F & F & & & & & \\
Default & 0 & 1.0 & \(10^{20}\) & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

E

PR

DF

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus
Poisson's ratio
Damping factor; see Remark 2. A proper control for the timestep must be maintained by the user.

VARIABLE
IAFLC

YTFLAG

ASOFT

M1, M2,
..., M8

LC1, LC2,

LPS1

SFS1

LPS2

SFS2

YMS1

YMS2

LPT1

\section*{DESCRIPTION}

Axial force load curve option:
EQ.0: axial load curves are force as a function of strain.
EQ.1: axial load curves are force as a function of change in length.

Flag to allow beam to yield in tension:
EQ.0.0: beam does not yield in tension.
EQ.1.0: beam can yield in tension.
Axial elastic softening factor applied once hinge has formed. When a hinge has formed the stiffness is reduced by this factor. If zero, this factor is ignored.

Applied end moment for force as a function of (strain/change in length) curve. At least one must be defined. A maximum of 8 moments can be defined. The values should be in ascending order.

Load curve ID (see *DEFINE_CURVE) defining axial force (collapse load) as a function of strain/change in length (see AOPT) for the corresponding applied end moment. Define the same number as end moments. Each curve must contain the same number of points.

Load curve ID for plastic moment as a function of rotation about the \(s\)-axis at node 1 . If zero, this load curve is ignored.

Scale factor for plastic moment as a function of rotation curve about the \(s\)-axis at node 1. Default \(=1.0\).

Load curve ID for plastic moment as a function of rotation about the \(s\)-axis at node 2. Default: LPS1.

Scale factor for plastic moment as a function of rotation curve about the \(s\)-axis at node 2. Default: SFS1.

Yield moment about the \(s\)-axis at node 1 for interaction calculations (default set to \(10^{20}\) to prevent interaction).

Yield moment about \(s\)-axis at node 2 for interaction calculations (default set to YMS1).

Load curve ID for plastic moment as a function of rotation about the \(t\)-axis at node 1 . If zero, this load curve is ignored.
VARIABLESFT1Scale factor for plastic moment as a function of rotation curve aboutthe \(t\)-axis at node 1. Default \(=1.0\).
LPT2 Load curve ID for plastic moment as a function of rotation about the \(t\)-axis at node 2. Default: LPT1.
SFT2
Scale factor for plastic moment as a function of rotation curve about the \(t\)-axis at node 2. Default: SFT1.
YMT1 Yield moment about the \(t\)-axis at node 1 for interaction calculations (default set to \(10^{20}\) to prevent interactions)
YMT2 Yield moment about the \(t\)-axis at node 2 for interaction calculations (default set to YMT1)
LPR Load curve ID for plastic torsional moment as a function of rotation. If zero, this load curve is ignored.
SFR Scale factor for plastic torsional moment as a function of rotation (default = 1.0).
YMR Torsional yield moment for interaction calculations (default set to \(10^{20}\) to prevent interaction)

\section*{Remarks:}
1. Load Curves. This material model is available for the Belytschko resultant beam element only. Plastic hinges form at the ends of the beam when the moment reaches the plastic moment. The moment as a function rotation relationship is specified by the user in the form of a load curve and scale factor. The points of the load curve are (plastic rotation in radians, plastic moment). Both quantities should be positive for all points, with the first point being (0.0, initial plastic moment). Within this constraint any form of characteristic may be used, including flat or falling curves. Different load curves and scale factors may be specified at each node and about each of the local \(s\) and \(t\) axes.

Axial collapse occurs when the compressive axial load reaches the collapse load. Collapse load as a function of collapse deflection is specified in the form of a load curve. The points of the load curve are either (true strain, collapse force) or (change in length, collapse force). Both quantities should be entered as positive for all points and will be interpreted as compressive. The first point should be (0.0, initial collapse load).

The collapse load may vary with end moment as well as with deflections. In this case several load-deflection curves are defined, each corresponding to a different end moment. Each load curve should have the same number of points and the same deflection values. The end moment is defined as the average of the absolute moments at each end of the beam and is always positive.
2. Damping. Stiffness-proportional damping may be added using the damping factor \(\lambda\). This is defined as follows:
\[
\lambda=\frac{2 \times \xi}{\omega}
\]
where \(\xi\) is the damping factor at the reference frequency \(\omega\) (in radians per second). For example if \(1 \%\) damping at 2 Hz is required
\[
\lambda=\frac{2 \times 0.01}{2 \pi \times 2}=0.001592
\]

If damping is used, a small timestep may be required. LS-DYNA does not check this, so to avoid instability it may be necessary to control the timestep using a load curve. As a guide, the timestep required for any given element is multiplied by \(0.3 L / c \lambda\) when damping is present \((L=\) element length, \(c=\) sound speed).
3. Moment Interaction. Plastic hinges can form due to the combined action of moments about the three axes. This facility is activated only when yield moments are defined in the material input. A hinge forms when the following condition is first satisfied:
\[
\left(\frac{M_{r}}{M_{\mathrm{r} \text { yield }}}\right)^{2}+\left(\frac{M_{s}}{M_{\mathrm{s} \text { yield }}}\right)^{2}+\left(\frac{M_{t}}{M_{\mathrm{t} \text { yield }}}\right)^{2} \geq 1
\]
where
\[
\begin{aligned}
& M_{r}, M_{s}, M_{t}=\text { current moment } \\
& M_{r \text { yield }}
\end{aligned} M_{s \text { yield }}, M_{t \text { yield }}=\text { yield moment }
\]

Note that scale factors for hinge behavior defined in the input will also be applied to the yield moments: for example, \(M_{s_{\text {yield }}}\) in the above formula is given by the input yield moment about the local axis times the input scale factor for the local \(s\) axis. For strain-softening characteristics, the yield moment should generally be set equal to the initial peak of the moment-rotation load curve.

On forming a hinge, upper limit moments are set. These are given by
\[
M_{r_{\text {upper }}}=\max \left(M_{r}, \frac{M_{r_{\text {yield }}}}{2}\right)
\]
and similar conditions hold for \(M_{s_{\text {upper }}}\) and \(M_{t_{\text {upper }}}\).


Strain (or change in length; see IAFLC)
Figure M29-1. The force magnitude is limited by the applied end moment. For an intermediate value of the end moment LS-DYNA interpolates between the curves to determine the allowable force value.

Thereafter, the plastic moments will be given by
\[
M_{r_{p}}=\min \left(M_{r_{\text {upper }}} M_{r_{\text {curve }}}\right)
\]
where \(M_{r_{p}}\) is the current plastic moment and \(M_{r_{\text {curve }}}\) is the moment from the load curve at the current rotation scaled by the scale factor. \(M_{s p}\) and \(M_{t_{p}}\) satisfy similar conditions.

The effect of this is to provide an upper limit to the moment that can be generated; it represents the softening effect of local buckling at a hinge site. Thus if a member is bent about is local \(s\)-axis it will then be weaker in torsion and about its local \(t\)-axis. For moment-softening curves, the effect is to trim off the initial
peak (although if the curves subsequently harden, the final hardening will also be trimmed off).

It is not possible to make the plastic moment vary with axial load.

\section*{*MAT_SHAPE_MEMORY}

This is Material Type 30. This material model describes the superelastic response present in shape-memory alloys (SMA), that is, the peculiar material ability to undergo large deformations with a full recovery in loading-unloading cycles (see Figure M30-1). The material response is always characterized by a hysteresis loop. See the references by Auricchio, Taylor and Lubliner [1997] and Auricchio and Taylor [1997]. This model is available for shells, solids, and Hughes-Liu beam elements. The model supports von Mises isotropic plasticity with an arbitrary effective stress as a function of effective plastic strain curve.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & LCSS & & & \\
Type & A & F & F & F & I & & & \\
Default & none & none & none & none & 0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIG_ASS & SIG_ASF & SIG_SAS & SIG_SAF & EPSL & ALPHA & YMRT & \\
Type & F & F & F & F & F & F & F & \\
Default & none & none & none & none & none & 0.0 & 0.0 & \\
\hline
\end{tabular}

Optional Load Curve Card (starting with R7.1). Load curves for mechanically induced phase transitions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID_AS & LCID_SA & & & & & & \\
Type & 1 & 1 & & & & & & \\
Default & none & none & & & & & & \\
\hline
\end{tabular}


Figure M30-1. Superelastic Behavior for a Shape Memory Material
\begin{tabular}{cl} 
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
MID & \begin{tabular}{l} 
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
E & \begin{tabular}{l} 
Mass density
\end{tabular} \\
PR & \begin{tabular}{l} 
Poung's modulus
\end{tabular} \\
& \begin{tabular}{l} 
The absolute value of LCSS is a load curve ID for effective stress as \\
a function of effective plastic strain (this load curve is optional). \\
The first data point, at zero plastic strain, indicates the initial yield \\
stress.
\end{tabular} \\
& \begin{tabular}{l} 
For a negative value of LCSS, negative values of SIG_ASS, SIG_- \\
ASF, SIG_SAS, SIG_SAF will indicate dependence on plastic strain; \\
see below.
\end{tabular} \\
SIG_ASS & \begin{tabular}{l} 
Starting value for the forward phase transformation (conversion of \\
austenite into martensite) in the case of a uniaxial tensile state of
\end{tabular}
\end{tabular}

\section*{VARIABLE}

SIG_ASF

SIG_SAS

SIG_SAF Final value for the reverse phase transformation (conversion of martensite into austenite) in the case of a uniaxial tensile state of stress.

LT.O.O: -SIG_SAF is a load curve ID specifying the reverse value as a function of temperature. If LCSS is also negative, SIG_SAF is either a load curve specifying the final value as a function of effective plastic strain or a table of such load curves for different temperatures.

EPSL Recoverable strain or maximum residual strain. It is a measure of the maximum deformation obtainable for all the martensite in one direction.

ALPHA Parameter measuring the difference between material responses in tension and compression (set alpha \(=0\) for no difference). Also, see the following remarks.

\section*{DESCRIPTION}

Young's modulus for the martensite if it is different from the modulus for the austenite. Defaults to the austenite modulus if it is set to zero.

Load curve ID or table ID for the forward phase change (conversion of austenite into martensite).
1. When LCID_AS is a load curve ID the curve is taken to be effective stress as a function of martensite fraction (ranging from 0 to 1 ).
2. When LCID_AS is a table ID the table defines for each phase transition rate (derivative of martensite fraction) a load curve ID specifying the stress as a function of martensite fraction for that phase transition rate.

The stress as a function of martensite fraction curve for the lowest value of the phase transition rate is used if the phase transition rate falls below the minimum value. Likewise, the stress as a function of martensite fraction curve for the highest value of phase transition rate is used if the phase transition rate exceeds the maximum value.
3. The values of SIG_ASS and SIG_ASF are overwritten when this option is used.

Load curve ID or table ID for reverse phase change (conversion of martensite into austenite).
1. When LCID_SA is a load curve ID, the curve is taken to be effective stress as a function of martensite fraction (ranging from 0 to 1 ).
2. When \(L C I D \_S A\) is a table \(I D\), the table defines for each phase transition rate (derivative of martensite fraction) a load curve ID specifying the stress as a function of martensite fraction for that phase transition rate.

The stress as a function of martensite fraction curve for the lowest value of the phase transition rate is used if the phase transition rate falls below the minimum value. Likewise, the stress as a function of martensite fraction curve for the highest value of phase transition rate is used if phase transition rate exceeds the maximum value.


Figure M30-2. Complete loading-unloading test in tension and compression.

\section*{VARIABLE}

DESCRIPTION
3. The values of SIG_ASS and SIG_ASF are overwritten when this option is used.

\section*{Remarks:}

The material parameter alpha, \(-1<\alpha<1\), measures the difference between material responses in tension and compression. In particular, it is possible to relate the parameter \(\alpha\) to the initial stress value of the austenite into martensite conversion from the expression
\[
\alpha=\sqrt{\frac{2}{3}}\left(\frac{-\sigma_{s}^{A S,-}-\sigma_{s}^{A S,+}}{-\sigma_{s}^{A S,-}+\sigma_{s}^{A S,+}}\right),
\]
where \(\sigma_{s}^{A S,+}>0\) and \(\sigma_{s}^{A S,-}<0\) are the values in tension and compression, respectively. From the input parameters \(\alpha\) and \(\sigma_{s}^{A S,+}\), the stress in compression is then
\[
\sigma_{s}^{A S,-}=\frac{\alpha+1}{\alpha-1} \sigma_{s}^{A S,+} .
\]

In Figure M30-2, we show the uniaxial Cauchy stress versus the logarithmic strain plot obtained from a simple test problem. The investigated problem is the complete loadingunloading test in tension and compression. We set the material properties to:
\begin{tabular}{|c|c|c|c|}
\hline Property & Value & Property & Value \\
\hline \hline E & 60000 MPa & SIG_SAF & 200 MPa \\
PR & 0.3 & EPSL & 0.07 \\
SIG_ASS & 520 MPa & ALPHA & 0.12 \\
SIG_ASF & 600 MPa & YMRT & 50000 MPa \\
SIG_SAS & 300 MPa & & \\
\hline
\end{tabular}

\section*{*MAT_FRAZER_NASH_RUBBER_MODEL}

This is Material Type 31. This model defines rubber from uniaxial test data. It is a modified form of the hyperelastic constitutive law first described in Kenchington [1988]. See Remarks below.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & C100 & C 200 & C 300 & C 400 & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C110 & C210 & C010 & C020 & EXIT & EMAX & EMIN & REF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LCID & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
PR
C100 \(\quad C_{100}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks.

C200 \(\quad C_{200}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline C300 & \(C_{300}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline C400 & \(C_{400}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline C110 & \(C_{110}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline C210 & \(C_{210}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline C010 & \(C_{010}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline C 020 & \(C_{020}\), constant in strain energy functional. If a least squares fit is being used, set this constant to 1.0 if the term it belongs to in the strain energy functional is to be included. See Remarks. \\
\hline \multirow[t]{3}{*}{EXIT} & Exit option (only in explicit analysis): \\
\hline & EQ.1.0: Stop if strain limits are exceeded (recommended) \\
\hline & NE.1.0: Continue if strain limits are exceeded. The curve is then extrapolated. \\
\hline EMAX & Maximum strain limit, (Green-St, Venant Strain). \\
\hline EMIN & Minimum strain limit, (Green-St, Venant Strain). \\
\hline \multirow[t]{3}{*}{REF} & Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details). \\
\hline & EQ.0.0: Off, \\
\hline & EQ.1.0: On. \\
\hline SGL & Specimen gauge length; see Figure M27-1. \\
\hline SW & Specimen width; see Figure M27-1. \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID Load curve ID (see DEFINE_CURVE) giving the force as a function of actual change in gauge length. See also Figure M27-2 for an alternative definition.

\section*{Remarks:}

The constants can be defined directly, or a least squares fit can be performed if the uniaxial data (SGL, SW, ST and LCID) is available. If a least squares fit is chosen, then the terms to be included in the energy functional are flagged by setting their corresponding coefficients to unity. If all coefficients are zero, the default is to use only the terms involving \(I_{1}\) and \(I_{2} . C_{100}\) defaults to unity if the least square fit is used.

The strain energy functional \(U\) is defined in terms of the input constants as
\[
U=C_{100} I_{1}+C_{200} I_{1}^{2}+C_{300} I_{1}^{3}+C_{400} I_{1}^{4}+C_{110} I_{1} I_{2}+C_{210} I_{1}^{2} I_{2}+C_{010} I_{2}+C_{020} I_{2}^{2}+f(J)
\]
where the invariants \(I_{1}, I_{2}\) and \(J\) can be expressed in terms of the deformation gradient matrix, \(\mathbf{F}\), and the right stretch tensor, \(\mathbf{C}=\mathbf{F}^{T} \mathbf{F}\) :
\[
\begin{aligned}
J & =\operatorname{det} \mathbf{F} \\
I_{1} & =\operatorname{tr}(\mathbf{C})-3 \\
I_{2} & =\frac{1}{2}\left(\operatorname{tr}(\mathbf{C})^{2}-\operatorname{tr}\left(\mathbf{C}^{2}\right)\right)-3 .
\end{aligned}
\]

The dependence on the third invariant is given as
\[
f(J)=\frac{2 C_{100}(v-4)+4 C_{010}(11 v-5)}{1-2 v}\left(\frac{J^{2}}{2}-\ln J\right)+\frac{1}{2}\left(C_{100}+2 C_{010}\right) \frac{1}{J^{4}}
\]
where \(v\) is the Poisson's ratio. The first term on the right-hand side of this expression should be interpreted as the constitutive law for the pressure while the second is necessary for providing zero stress at the reference configuration.

The derivative of \(U\) with respect to \(\mathbf{C}\) gives the \(2^{\text {nd }}\) Piola-Kirchhoff stress \(\mathbf{S}\) as
\[
\mathbf{S}=2 \frac{\partial U}{\partial \mathbf{C}}
\]
and the Cauchy stress \(\sigma\) is then given by
\[
\boldsymbol{\sigma}=\frac{1}{J} \mathbf{F S F}^{T} .
\]

The load curve definition that provides the uniaxial data should give the change in gauge length, \(\Delta L\), and the corresponding force. In compression both the force and the change in gauge length must be specified as negative values. In tension the force and change in
gauge length should be input as positive values. The principal stretch ratio in the uniaxial direction, \(\lambda_{1}\), is then given by
\[
\lambda_{1}=\frac{L_{o}+\Delta L}{L_{o}}
\]

Alternatively, the stress as a function of strain curve can also be input by setting the gauge length, thickness, and width to unity and defining the engineering strain in place of the change in gauge length and the nominal (engineering) stress in place of the force; see Figure M27-2 The least square fit to the experimental data is performed during the initialization phase, and a comparison between the fit and the actual input is provided in the printed file. It is a good idea to visually check the fit to make sure it is acceptable. The coefficients \(C_{100}\) through \(C_{020}\) are also printed in the output file.

\section*{*MAT_LAMINATED_GLASS}

This is Material Type 32. With this material model, a layered glass including polymeric layers can be modeled. Failure of the glass part is possible. See notes below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EG & PRG & SYG & ETG & EFG & EP \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRP & SYP & ETP & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

Integration Point Cards. Up to four of this card (specifying up to 32 values) may be input. This input is terminated by the next keyword ("*") card.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & F1 & F2 & F3 & F4 & F5 & F6 & F7 & F8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{cll} 
VARIABLE & & DESCRIPTION \\
\cline { 1 - 1 } MID & & \begin{tabular}{l} 
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
EG & & Mass density \\
PRG & Young's modulus for glass \\
SYG & Poisson's ratio for glass \\
ETG & Yield stress for glass
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline EFG & Plastic strain at failure for glass \\
\hline EP & Young's modulus for polymer \\
\hline PRP & Poisson's ratio for polymer \\
\hline SYP & Yield stress for polymer \\
\hline ETP & Plastic hardening modulus for polymer \\
\hline \multirow[t]{4}{*}{F1, ..., FN} & Integration point material: \\
\hline & EQ.0.0: glass (default) \\
\hline & EQ.1.0: polymer \\
\hline & A user-defined integration rule must be specified; see *INTEGRATION_SHELL. See Remarks below. \\
\hline
\end{tabular}

\section*{Remarks:}

Isotropic hardening for both materials is assumed. The material to which the glass is bonded is assumed to stretch plastically without failure. A user defined integration rule specifies the thickness of the layers making up the glass. Fi defines whether the integration point is glass (0.0) or polymer (1.0). The material definition, Fi, must be given for the same number of integration points (NIPTS) as specified in the rule. A maximum of 32 layers is allowed.

If the recommended user defined rule is not defined, the default integration rules are used. The location of the integration points in the default rules are defined in the *SECTION_SHELL keyword description.

\section*{*MAT_BARLAT_ANISOTROPIC_PLASTICITY}

This is Material Type 33. This model was developed by Barlat, Lege, and Brem [1991] for modeling anisotropic material behavior in forming processes. The finite element implementation of this model is described in detail by Chung and Shah [1992] and is used here. It is based on a six parameter model, which is ideally suited for 3D continuum problems (see remarks below). For sheet forming problems, we recommend material 36 which is based on a 3-parameter model.

This material is available for shell, thick shell, and solid elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & K & E0 & N & M \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & C & F & G & H & LCID & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & BETA & MACF & & & & & \\
Type & F & F & I & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E
PR
K
E0
N
M
A
B
C \(\quad c\), anisotropy coefficient in Barlat's Model
F \(\quad f\), anisotropy coefficient in Barlat's Model
G \(\quad g\), anisotropy coefficient in Barlat's Model
H \(\quad h\), anisotropy coefficient in Barlat's Model
LCID Option load curve ID defining effective stress as a function of effective plastic strain. If nonzero, this curve will be used to define the yield stress. The load curve is implemented for solid elements only.

AOPT

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus, \(E\)
Poisson's ratio, \(v\)
\(k\), strength coefficient (see remarks below)
\(\varepsilon_{0}\), strain corresponding to the initial yield (see remarks below)
\(n\), hardening exponent for yield strength
m, flow potential exponent in Barlat's Model
a, anisotropy coefficient in Barlat's Model
\(b\), anisotropy coefficient in Barlat's Model

\section*{DESCRIPTION}

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

BETA Material angle in degrees for \(\mathrm{AOPT}=1\) (shells only) and \(\mathrm{AOPT}=3\), may be overridden on the element card, see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, or *ELEMENT_SOLID_ORTHO.

\section*{VARIABLE}

MACF

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4
A1, A2, A3 Components of vector a for AOPT \(=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{Remarks:}

The yield function \(\Phi\) is defined as:
\[
\Phi=\left|S_{1}-S_{2}\right|^{m}+\left|S_{2}-S_{3}\right|^{m}+\left|S_{3}-S_{1}\right|^{m}=2 \bar{\sigma}^{m}
\]
where \(\bar{\sigma}\) is the effective stress and \(S_{i=1,2,3}\) are the principal values of the symmetric matrix \(S_{\alpha \beta}\),
\[
\begin{array}{ll}
S_{x x}=\left[c\left(\sigma_{x x}-\sigma_{y y}\right)-b\left(\sigma_{z z}-\sigma_{x x}\right)\right] / 3, & S_{y z}=f \sigma_{y z} \\
S_{y y}=\left[a\left(\sigma_{y y}-\sigma_{z z}\right)-c\left(\sigma_{x x}-\sigma_{y y}\right)\right] / 3, & S_{z x}=g \sigma_{z x} \\
S_{z z}=\left[b\left(\sigma_{z z}-\sigma_{x x}\right)-a\left(\sigma_{y y}-\sigma_{z z}\right)\right] / 3, & S_{x y}=h \sigma_{x y}
\end{array}
\]

The material constants \(a, b, c, f, g\) and \(h\) represent anisotropic properties. When
\[
a=b=c=f=g=h=1,
\]
the material is isotropic and the yield surface reduces to the Tresca yield surface for \(m=\) 1 and von Mises yield surface for \(m=2\) or 4 .

For face centered cubic (FCC) materials \(m=8\) is recommended and for body centered cubic (BCC) materials \(m=6\) is used. The yield strength of the material is
\[
\sigma_{y}=k\left(\varepsilon^{p}+\varepsilon_{0}\right)^{n}
\]
where \(\varepsilon_{0}\) is the strain corresponding to the initial yield stress and \(\varepsilon^{p}\) is the plastic strain.

\section*{*MAT_BARLAT_YLD96}

This is Material Type 33. This model was developed by Barlat, Maeda, Chung, Yanagawa, Brem, Hayashida, Lege, Matsui, Murtha, Hattori, Becker, and Makosey [1997] for modeling anisotropic material behavior in forming processes in particular for aluminum alloys. This model is available for shell elements only.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & E & PR & K & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EO & N & ESRO & M & HARD & A & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C1 & C2 & C3 & C4 & AX & AY & AZO & AZ1 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & BETA & & & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & K & & & \\
Type & A & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus, \(E\)
PR Poisson's ratio, \(v\)
K \(\quad k\), strength coefficient or \(a\) in Voce (see remarks below)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E0 & N & ESR0 & M & HARD & A & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

E0
\(\mathrm{N} \quad n\), hardening exponent for yield strength or \(c\) in Voce
ESR0
M \(\quad m\), exponent for strain rate effects
HARD
Hardening option:
LT.O.O: Absolute value defines the load curve ID
EQ.1.0: Power law
EQ.2.0: Voce
A Flow potential exponent
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & AX & AY & AZO & AZ1 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

C1
C2 \(\quad c_{2}\), see remarks below
C3 \(\quad c_{3}\), see remarks below
C4 \(\quad c_{4}\), see remarks below
AX \(\quad a_{x}\), see remarks below
AY \(\quad a_{y}\), see remarks below
AZ0 \(\quad a_{z_{0}}\), see remarks below
AZ1 \(a_{z_{1}}\), see remarks below
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & BETA & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option:
EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by

\section*{VARIABLE}

\section*{DESCRIPTION}
offsetting the material axes by an angle, BETA, from a line determined by taking the cross product of the vector \(\mathbf{v}\) with the normal to the plane of the element

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

BETA
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{Remarks:}

The yield stress \(\sigma_{y}\) is defined three ways. The first, the Swift equation, is given in terms of the input constants as:
\[
\sigma_{y}=k\left(\varepsilon_{0}+\varepsilon^{p}\right)^{n}\left(\frac{\dot{\varepsilon}}{\varepsilon_{S R 0}}\right)^{m} .
\]

The second, the Voce equation, is defined as:
\[
\sigma_{y}=a-b e^{-c \varepsilon^{p}}
\]

The third option is to give a load curve ID that defines the yield stress as a function of effective plastic strain.

The yield function \(\Phi\) is defined as:
\[
\Phi=\alpha_{1}\left|s_{1}-s_{2}\right|^{a}+\alpha_{2}\left|s_{2}-s_{3}\right|^{a}+\alpha_{3}\left|s_{3}-s_{1}\right|^{a}=2 \sigma_{y}^{a},
\]

Here \(s_{i}\) is a principle component of the deviatoric stress tensor. In vector notation:
\[
\mathbf{s}=\mathbf{L} \sigma
\]
where \(\mathbf{L}\) is given as
\[
\mathbf{L}=\left[\begin{array}{cccc}
\frac{c_{2}+c_{3}}{3} & \frac{-c_{3}}{3} & \frac{-c_{2}}{3} & 0 \\
\frac{-c_{3}}{3} & \frac{c_{3}+c_{1}}{3} & \frac{-c_{1}}{3} & 0 \\
\frac{-c_{2}}{3} & \frac{-c_{1}}{3} & \frac{c_{1}+c_{2}}{3} & 0 \\
0 & 0 & 0 & c_{4}
\end{array}\right]
\]

A coordinate transformation relates the material frame to the principle directions of \(\mathbf{s}\) is used to obtain the \(\alpha_{k}\) coefficients consistent with the rotated principle axes:
\[
\begin{aligned}
& \alpha_{k}=\alpha_{x} p_{1 k}^{2}+\alpha_{y} p_{2 k}^{2}+\alpha_{z} p_{3 k}^{2} \\
& \alpha_{z}=\alpha_{z 0} \cos ^{2}(2 \beta)+\alpha_{z 1} \sin ^{2}(2 \beta)
\end{aligned}
\]
where \(p_{i j}\) are components of the transformation matrix. The angle \(\beta\) defines a measure of the rotation between the frame of the principal value of \(\mathbf{s}\) and the principal anisotropy axes.

\section*{*MAT_FABRIC}

This is Material Type 34. This material is especially developed for airbag materials. The fabric model is a variation on the layered orthotropic composite model of material 22 and is valid for 3 and 4 node membrane elements only.

In addition to being a constitutive model, this model also invokes a special membrane element formulation which is more suited to the deformation experienced by fabrics under large deformation. For thin fabrics, buckling can result in an inability to support compressive stresses; thus a flag is included for this option. A linearly elastic liner is also included which can be used to reduce the tendency for these elements to be crushed when the no-compression option is invoked. In LS-DYNA versions after 931 the isotropic elastic option is available.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & & PRBA & PRAB & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAB & & & CSE & EL & PRL & LRATIO & DAMP \\
\hline
\end{tabular}

Card 3a. This card is included if \(0<\mathrm{X} 0<1\) (see Card 5).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & X2 & X3 & ELA & LNRC & FORM & FVOPT & TSRFAC \\
\hline
\end{tabular}

Card 3b. This card is included if \(\mathrm{X0}=0\) or \(\mathrm{X} 0=-1\) (see Card 5 ) and FVOPT \(<7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
\hline
\end{tabular}

Card 3c. This card is included if \(X 0=0\) or \(X 0=-1\) (see Card 5) and FVOPT \(\geq 7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
\hline
\end{tabular}

Card 3d. This card is included if \(\mathrm{X0}=1\) (see Card 5) and FVOPT \(<7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
\hline
\end{tabular}

Card 3 e . This card is included if \(\mathrm{X0}=1\) (see Card 5 ) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
\hline
\end{tabular}

Card 4. This card is included if FVOPT \(<0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline L & R & C 1 & C 2 & C 3 & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & RGBRTH & AOREF & A1 & A2 & A3 & X0 & X1 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & & & & BETA \\
ISREFG \\
\hline
\end{tabular}

Card 7. This card is included if \(\operatorname{FORM}=4,14\), or -14 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCA & LCB & LCAB & LCUA & LCUB & LCUAB & RL & \\
\hline
\end{tabular}

Card 8. This card is included if \(\mathrm{FORM}=-14\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCAA & LCBB & \(H\) & DT & & ECOAT & SCOAT & TCOAT \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & & PRBA & PRAB & \\
Type & A & F & F & F & & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EA Young's modulus - longitudinal direction. For an isotropic elastic fabric material, only EA and PRBA are defined; they are used as the isotropic Young's modulus and Poisson's ratio, respectively. The input for the fiber directions and liner should be input as zero for the isotropic elastic fabric.

EB Young's modulus - transverse direction, set to zero for isotropic elastic material.

\title{
VARIABLE \\ PRBA \\ \(v_{b a}\), Minor Poisson's ratio ba direction
}

PRAB \(\quad v_{a b}\), Major Poisson's ratio \(a b\) direction (see Remark 15)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & & & CSE & EL & PRL & LRATIO & DAMP \\
Type & F & & & F & F & F & F & F \\
Remarks & & & & 1 & 4 & 4 & 4 & \\
\hline
\end{tabular}

\section*{VARIABLE}

GAB

CSE Compressive stress elimination option (see Remark 1):
EQ.0.0: Do not eliminate compressive stresses (default).
EQ.1.0: Eliminate compressive stresses. This option does not apply to the liner.

EL Young's modulus for elastic liner (required if LRATIO >0)
PRL Poisson's ratio for elastic liner (required if LRATIO >0)
LRATIO A non-zero value activates the elastic liner and defines the ratio of liner thickness to total fabric thickness (optional).

DAMP Rayleigh damping coefficient. A 0.05 coefficient is recommended corresponding to \(5 \%\) of critical damping. Sometimes larger values are necessary.

This card is included if and only if \(0<\mathrm{X} 0<1\) (see Card 5).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & X2 & X3 & ELA & LNRC & FORM & FVOPT & TSRFAC \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

X2 Coefficient of the porosity from the equation in Anagonye and Wang [1999]

X3 Coefficient of the porosity equation of Anagonye and Wang [1999]
ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.0.0: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

LNRC Flag to turn off compression in liner until the reference geometry is reached, that is, the fabric element becomes tensile (see Remark 4):

EQ.0.0: Off
EQ.1.0: On
EQ.2.0: Liner's resistance force follows the strain restoration factor, TSRFAC.

Flag to modify membrane formulation for fabric material:

\section*{VARIABLE}

EQ.0.0: Default. Least costly and very reliable.
EQ.1.0: Invariant local membrane coordinate system
EQ.2.0: Green-Lagrange strain formulation
EQ.3.0: Large strain with nonorthogonal material angles. See Remark 5.

EQ.4.0: Large strain with nonorthogonal material angles and nonlinear stress strain behavior. Define optional load curve IDs on optional card.
EQ.12.0: Enhanced version of formulation 2. See Remark 11.
EQ.13.0: Enhanced version of formulation 3. See Remark 11.
EQ.14.0: Enhanced version of formulation 4. See Remark 11.
EQ.-14.0: Same as formulation 14 but invokes reading of Card 8. See Remark 14.

EQ.24.0: Enhanced version of formulation 14. See Remark 11.

FVOPT Fabric venting option (see Remark 9).
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.

\section*{VARIABLE}

EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.

LT.O: \(\mid\) FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16.

Note: See Remark 17 for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

TSRFAC Strain restoration factor (see Remark 10):
LT.0: |TSRFAC| is the ID of a curve defining TSRFAC as a function of time.

GT. 0 and LT.1: TSRFAC applied from time 0.
GT.1: TSRFAC is the ID of a curve that defines TSRFAC as a function of time using an alternate method ( \(n o t\) available for FORM \(=0\) or 1 ).

This card is included if \(\mathrm{X} 0=0\) or \(\mathrm{X}=-1\) and \(\mathrm{FVOPT}<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
Type & F & F & F & F & F & F & F & F \\
Remarks & & 2 & 2 & 3 & 4 & 11 & 9 & 10 \\
\hline
\end{tabular}

VARIABLE
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description). Also, please refer to Remark 5 for additional information specific to fiber directions for fabrics:

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the element normal by an angle BETA

\section*{DESCRIPTION}

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.

FLC Optional porous leakage flow coefficient. (See theory manual.)
GE.O: Porous leakage flow coefficient.
LT.0: \(|\mathrm{FLC}|\) is interpreted as a load curve ID defining FLC as a function of time.

FAC Optional characteristic fabric parameter. (See theory manual.)
GE.0: Characteristic fabric parameter
LT.O: \(|\mathrm{FAC}|\) is interpreted as a load curve ID defining FAC as a function of absolute pressure.

ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.O.O: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

LNRC Flag to turn off compression in liner until the reference geometry is reached, that is, the fabric element becomes tensile:

EQ.0.0: Off
EQ.1.0: On

FORM Flag to modify membrane formulation for fabric material:
EQ.0.0: Default. Least costly and very reliable.
EQ.1.0: Invariant local membrane coordinate system
EQ.2.0: Green-Lagrange strain formulation

\section*{VARIABLE}

FVOPT Fabric venting option.
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.
EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

LT.O: |FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16.

Note: See Remark 17 for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

TSRFAC Strain restoration factor:
LT.O:
|TSRFAC| is the ID of a curve defining TSRFAC as a function of time.

\section*{DESCRIPTION}

GT. 0 and LT.1: TSRFAC applied from time 0.
GE.1: TSRFAC is the ID of a curve that defines TSRFAC as a function of time using an alternate method (not available for FORM \(=0\) or 1 ).

This card is included if and only if \(\mathrm{X} 0=0\) or \(\mathrm{X} 0=-1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
Type & F & F & F & F & F & F & F & F \\
Remarks & & 2 & 2 & 3 & 4 & 11 & 9 & 10 \\
\hline
\end{tabular}

VARIABLE
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description). Also, please refer to Remark 5 for additional information specific to fiber directions for fabrics:

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the element normal by an angle BETA

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.

FLC Optional porous leakage flow coefficient. (See theory manual.) GE.0: Porous leakage flow coefficient

VARIABLE

FAC Optional characteristic fabric parameter. (See theory manual.)
GE.0: Characteristic fabric parameter
LT.0: \(|\mathrm{FAC}|\) is interpreted as a load curve ID giving leakage volume flux rate as a function of absolute pressure. The volume flux (per area) rate (per time) has the dimensions of
\[
\begin{aligned}
d\left(\text { vol }_{\text {flux }}\right) / \mathrm{dt} & \approx[\text { length }]^{3} /\left([\text { length }]^{2}[\text { time }]\right) \\
& \approx[\text { length }] /[\text { time }],
\end{aligned}
\]
equivalent to relative porous gas speed.
ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.0.0: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

LNRC Flag to turn off compression in liner until the reference geometry is reached, that is, the fabric element becomes tensile:

EQ.0.0: Off
EQ.1.0: On

FORM Flag to modify membrane formulation for fabric material:
EQ.0.0: Default. Least costly and very reliable.
EQ.1.0: Invariant local membrane coordinate system
EQ.2.0: Green-Lagrange strain formulation
EQ.3.0: Large strain with nonorthogonal material angles. See Remark 5.

EQ.4.0: Large strain with nonorthogonal material angles and nonlinear stress strain behavior. Define optional load curve IDs on optional card.
EQ.12.0: Enhanced version of formulation 2. See Remark 11.
EQ.13.0: Enhanced version of formulation 3. See Remark 11.
EQ.14.0: Enhanced version of formulation 4. See Remark 11.

\section*{DESCRIPTION}

EQ.-14.0: Same as formulation 14 but invokes reading of Card 8. See Remark 14.

EQ.24.0: Enhanced version of formulation 14. See Remark 11.

FVOPT Fabric venting option:
EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.
EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.

Note: See Remark 17 for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

TSRFAC Strain restoration factor:
LT.O: |TSRFAC| is the ID of a curve defining TSRFAC as a function of time.

GT. 0 and LT.1: TSRFAC applied from time 0.
GE.1: \(\quad\) TSRFAC is the ID of a curve that defines TSRFAC as a function of time using an alternate method (not available for FORM = 0 or 1 ).

ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.O.O: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

This card is included if \(\mathrm{X} 0=1\) and \(\mathrm{FVOPT}<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
Type & F & F & F & F & F & F & F & F \\
Remarks & & 2 & 2 & 3 & 4 & 11 & 9 & 10 \\
\hline
\end{tabular}

VARIABLE
AOPT

FLC Optional porous leakage flow coefficient. (See theory manual.)
GE.0: Porous leakage flow coefficient.
LT.0: \(|\mathrm{FLC}|\) is interpreted as a load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\). See notes below.

FAC Optional characteristic fabric parameter. (See theory manual.) GE.0: Characteristic fabric parameter

\section*{DESCRIPTION}

LT.O: \(|\mathrm{FAC}|\) is interpreted as a load curve defining FAC as a function of the pressure ratio \(r_{p}=P_{\mathrm{ai} r} / P_{\mathrm{bag}}\). See Remark 2 below.

ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.O.O: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

LNRC Flag to turn off compression in liner until the reference geometry is reached, that is, the fabric element becomes tensile:

EQ.0.0: Off
EQ.1.0: On

FORM
Flag to modify membrane formulation for fabric material:
EQ.0.0: Default. Least costly and very reliable.
EQ.1.0: Invariant local membrane coordinate system
EQ.2.0: Green-Lagrange strain formulation
EQ.3.0: Large strain with nonorthogonal material angles. See Remark 5.

EQ.4.0: Large strain with nonorthogonal material angles and nonlinear stress strain behavior. Define optional load curve IDs on optional card.
EQ.12.0: Enhanced version of formulation 2. See Remark 11.
EQ.13.0: Enhanced version of formulation 3. See Remark 11.
EQ.14.0: Enhanced version of formulation 4. See Remark 11.
EQ.-14.0: Same as formulation 14 but invokes reading of Card 8. See Remark 14.

EQ.24.0: Enhanced version of formulation 14. See Remark 11.

FVOPT Fabric venting option.
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is

\section*{VARIABLE}

TSRFAC

\section*{DESCRIPTION}
considered.
EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

EQ.6: Leakage formulas based on flow through a porous media are

LT.0: |FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16.

Note: See Remark 17 for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

Strain restoration factor:
LT.0: |TSRFAC| is the ID of a curve defining TSRFAC as a function of time.

GT. 0 and LT.1: TSRFAC applied from time 0.
GE.1: \(\quad\) TSRFAC is the ID of a curve that defines TSRFAC as a function of time using an alternate method (not available for \(\mathrm{FORM}=0\) or 1 ).

This card is included if \(\mathrm{X} 0=1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3e & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & FLC & FAC & ELA & LNRC & FORM & FVOPT & TSRFAC \\
Type & F & F & F & F & F & F & F & F \\
Remarks & & 2 & 2 & 3 & 4 & 11 & 9 & 10 \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description). Also, please refer to Remark 5 for

\author{
VARIABLE
}

\section*{DESCRIPTION}
additional information specific to fiber directions for fabrics:
EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the element normal by an angle BETA

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

FLC Optional porous leakage flow coefficient. (See theory manual.)
GE.0: Porous leakage flow coefficient.
LT.0: \(|\mathrm{FLC}|\) is interpreted as a load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\). See notes below.

FAC Optional characteristic fabric parameter. (See theory manual.)
GE.0: Characteristic fabric parameter
LT.O: |FAC| is interpreted as a load curve defining leakage volume flux rate versus the pressure ratio defined as \(r_{p}=\) \(P_{\text {air }} / P_{\text {bag. }}\). See Remark 2 below. The volume flux (per area) rate (per time) has the unit of
\[
\begin{aligned}
d\left(\operatorname{vol}_{\mathrm{flux}}\right) / \mathrm{dt} & \approx[\text { length }]^{3} /\left([\text { length }]^{2}[\text { time }]\right) \\
& \approx[\text { length }] /[\text { time }],
\end{aligned}
\]
equivalent to relative porous gas speed.
ELA Effective leakage area for blocked fabric, ELA (see Remark 3):
LT.0.0: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\)

VARIABLE

LNRC Flag to turn off compression in liner until the reference geometry is reached, that is, the fabric element becomes tensile:

EQ.0.0: Off
EQ.1.0: On

FORM

FVOPT Fabric venting option.
EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Abso-
lute pressure is used in the porous-velocity-versus-presload curve [Lian, 2000]. Blockage is not considered. Abso-
lute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.
EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC in the *MAT_FABRIC card.

Note: See Remark 17 for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

\section*{DESCRIPTION}
of the blocked fabric is leaking gas.

Flag to modify membrane formulation for fabric material:
EQ.0.0: Default. Least costly and very reliable.
EQ.1.0: Invariant local membrane coordinate system
EQ.2.0: Green-Lagrange strain formulation
EQ.3.0: Large strain with nonorthogonal material angles. See Remark 5.
EQ.4.0: Large strain with nonorthogonal material angles and nonlinear stress strain behavior. Define optional load curve IDs on optional card.

EQ.12.0: Enhanced version of formulation 2. See Remark 11.
EQ.13.0: Enhanced version of formulation 3. See Remark 11.
EQ.14.0: Enhanced version of formulation 4. See Remark 11.
EQ.-14.0: Same as formulation 14 but invokes reading of Card 8. See Remark 14.

EQ.24.0: Enhanced version of formulation 14. See Remark 11.

Strain restoration factor:

\section*{VARIABLE}

\section*{DESCRIPTION}

LT.0:
|TSRFAC| is the ID of a curve defining TSRFAC as a function of time.

GT. 0 and LT.1: TSRFAC applied from time 0.
GE.1: \(\quad\) TSRFAC is the ID of a curve that defines TSRFAC as a function of time using an alternate method (not available for FORM = 0 or 1).

Additional card for FVOPT < 0 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & L & R & C1 & C2 & C3 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

VARIABLE
L Dimension of unit cell (length)
\(\mathrm{R} \quad\) Radius of yarn (length)
C1 Pressure coefficient (dependent on unit system)
C2 Pressure exponent
C3 Strain coefficient
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & RGBRTH & AOREF & A1 & A2 & A3 & X0 & X1 \\
Type & & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
RGBRTH

\section*{DESCRIPTION}

Material dependent birth time of airbag reference geometry. Nonzero RGBRTH overwrites the birth time defined in the *AIRBAG_REFERENCE_GEOMETRY_BIRTH keyword. RGBRTH also applies to reference geometry defined by *AIRBAG_SHELL_REFERENCE_GEOMETRY.

\section*{VARIABLE}

A0REF

\section*{DESCRIPTION}

Calculation option of initial area, \(A_{0}\), used for airbag porosity leakage calculation.

EQ.0.: Default. Use the initial geometry defined in *NODE.
EQ.1.: Use the reference geometry defined in *AIRBAG_REFERENCE_GEOMETRY or *AIRBAG_SHELL_REFERENCE_GEOMETRY.
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector \(\mathbf{a}\) for \(\mathrm{AOPT}=2\)
X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area: \(A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)\)

XO.EQ.-1: Compressing seal vent option. The leakage area is evaluated as \(A_{\text {leak }}=\max \left(A_{\text {current }}-A_{0}, 0\right)\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & & & & BETA & ISREFG \\
Type & F & F & F & & & & F & 1 \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

V1, V2, V3
BETA Material angle in degrees for AOPT = 0 and 3, may be overridden on the element card, see *ELEMENT_SHELL_BETA.

ISREFG Initialize stress by *AIRBAG_REFERENCE_GEOMETRY. This option applies only to FORM \(=12\). Note that *MAT_FABRIC cannot be initialized using a dynain file because *INITIAL_STRESS_SHELL is not applicable to *MAT_FABRIC.

EQ.0.0: Default. Not active.
EQ.1.0: Active

Additional card for \(\mathrm{FORM}=4,14,-14\), or 24 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCA & LCB & LCAB & LCUA & LCUB & LCUAB & RL & \\
Type & I & । & 1 & । & I & I & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCA

LCB Load curve or table ID. Load curve ID defines the stress as a function of uniaxial strain along the \(b\)-axis fiber. Table ID defines for each strain rate a load curve representing stress as a function of uniaxial strain along the \(b\)-axis fiber. The load curve is available for FORM \(=4,14,-14\), and 24 while the table is allowed only for FORM \(=-14\). If zero, EB is used. For FORM \(=14,-14\), and 24 , this curve can be defined in both tension and compression; see Remark 6 below.

LCAB Load curve ID for shear stress as a function of shear strain in the abplane. If zero, GAB is used.

LCUA Unload/reload curve ID for stress as a function of strain along the \(a\)-axis fiber. If zero, LCA is used.

LCUB Unload/reload curve ID for stress as a function of strain along the \(b\)-axis fiber. If zero, LCB is used.

LCUAB Unload/reload curve ID for shear stress as a function of shear strain in the \(a b\)-plane. If zero, LCAB is used.

RL Optional reloading parameter for FORM \(=14\) and 24. Values between 0.0 (reloading on unloading curve-default) and 1.0 (reloading on a minimum linear slope between unloading curve and loading curve) are possible.

Additional card for FORM =-14.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCAA & LCBB & H & DT & & ECOAT & SCOAT & TCOAT \\
Type & I & I & F & F & & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

LCAA

LCBB

H Normalized hysteresis parameter between 0 and 1
DT Strain rate averaging option:
EQ.0.0: Strain rate is evaluated using a running average
LT.0.0: Strain rate is evaluated using average of last 11 time steps
GT.0.0: Strain rate is averaged over the last DT time units

ECOAT Young's modulus of coat material; see Remark 14.
SCOAT Yield stress of coat material; see Remark 14.
TCOAT Thickness of coat material, may be positive or negative; see Remark 14.

\section*{Remarks:}
1. The compressive stress elimination option for airbag wrinkling. Setting CSE \(=1\) switches off compressive stress in the fabric, thereby eliminating wrinkles. Without this "no compression" option, the geometry of the bag's wrinkles controls the amount of mesh refinement. In eliminating the wrinkles, this feature reduces the number of elements needed to attain an accurate solution.

The no compression option can allow elements to collapse to a line which can lead to elements becoming tangled. The elastic liner option is one way to add some stiffness in compression to prevent this, see Remark 4. Alternatively, when using fabric formulations \(14,-14\), or 24 (see FORM) tangling can be reduced by defining stress/strain curves that include negative strain and stress values. See Remark 6.
2. Porosity. The parameters FLC and FAC are optional for the Wang-Nefske and Hybrid inflation models. It is possible for the airbag to be constructed of multiple fabrics having different values for porosity and permeability. Typically, FLC and FAC must be determined experimentally and their variations in time or with pressure are optional to allow for maximum flexibility.
3. Effects of airbag-structure interaction on porosity. To calculate the leakage of gas through the fabric it is necessary to accurately determine the leakage area. The dynamics of the airbag may cause the leakage area to change during the course of the simulation. In particular, the deformation may change the leakage area, but the leakage area may also decrease when the contact between the airbag and the structure blocks the flow. LS-DYNA can check the interaction of the bag with the structure and split the areas into regions that are blocked and unblocked depending on whether the regions are in or not in contact, respectively. Blockage effects may be controlled with the ELA field.
4. Elastic liner. An optional elastic liner can be defined using EL, PRL and LRATIO. The liner is an isotropic layer that acts in both tension and compression. However, setting, LNRC to 1.0 eliminates compressive stress in the liner until both principle stresses are tensile. The compressive stress elimination option, CSE =1, has no influence on the liner behavior.
5. Fiber axes. For formulations 0,1 , and 2 , (see FORM) the \(a\)-axis and \(b\)-axis fiber directions are assumed to be orthogonal and are completely defined by the material axes option, \(\mathrm{AOPT}=0,2\), or 3 . For \(\mathrm{FORM}=3,4,13\), or 14 , the fiber directions are not assumed to be orthogonal and must be specified using the ICOMP = 1 option on *SECTION_SHELL. Offset angles should be input into the B1 and B2 fields used normally for integration points 1 and 2 . The \(a\)-axis and \(b\)-axis directions will then be offset from the \(a\)-axis direction as determined by the material axis option, \(\mathrm{AOPT}=0,2\), or 3 .

When reference geometry is defined, the material axes are computed using coordinates from the reference geometry. The material axes are determined by computing the angle between the element system and the material direction.
6. Stress as a function of strain curves. For formulations (see FORM) 4, 14, -14, and 24, \(2^{\text {nd }}\) Piola-Kirchhoff stress as a function of Green's strain curves may be defined for \(a\)-axis, \(b\)-axis, and shear stresses for loading and also for unloading and reloading. Alternatively, the \(a\)-axis and \(b\)-axis curves can be input using
engineering stress as a function of strain by setting DATYP \(=-2\) on *DEFINE_CURVE.

Additionally, for formulations \(14,-14\), and 24 , the uniaxial loading curves LCA and LCB may be defined for negative values of strain and stress, that is, a straightforward extension of the curves into the compressive region. This is available for modeling the compressive stresses resulting from tight folding of airbags.

The \(a\)-axis and \(b\)-axis stress follow the curves for the entire defined strain region and if compressive behavior is desired the user should preferably make sure the curve covers all strains of interest. For strains below the first point on the curve, the curve is extrapolated using the stiffness from the constant values, EA or EB.

Shear stress/strain behavior is assumed symmetric and curves should be defined for positive strain only. However, formulations 14, -14 , and 24 allow the extending of the curves in the negative strain region to model asymmetric behavior. The asymmetric option cannot be used with a shear stress unload curve. If a load curve is omitted, the stress is calculated from the appropriate constant modulus, EA, EB, or GAB.
7. Yield behavior. When formulations 4, 14, -14, and 24 (see FORM) are used with loading and unloading curves the initial yield strain is set equal to the strain of the first point in the load curve having a stress greater than zero. When the current strain exceeds the yield strain, the stress follows the load curve and the yield strain is updated to the current strain. When unloading occurs, the unload/reload curve is shifted along the \(x\)-axis until it intersects the load curve at the current yield strain and then the stress is calculated from the shifted curve. When using unloading curves, compressive stress elimination should be active to prevent the fibers from developing compressive stress during unloading when the strain remains tensile. To use this option, the unload curve should have a nonnegative second derivate so that the curve will shift right as the yield stress increases. In fact, if a shift to the left would be needed, the unload curves is not used and unloading will follow the load curve instead.

If LCUA, LCUB, or LCUAB are input with negative curve ID values, then unloading is handled differently. Instead of shifting the unload curve along the \(x\) axis, the curve is stretched in both the \(x\)-direction and \(y\)-direction such that the first point remains anchored at \((0,0)\) and the initial intersection point of the curves is moved to the current yield point. This option guarantees the stress remains tensile while the strain is tensile, so compressive stress elimination is not necessary. To use this option the unload curve should have an initial slope less steep than the load curve and should steepen such that it intersects the load curve at some positive strain value.
8. Shear unload-reload, fabric formulation, and LS-DYNA version. With release 6.0.0 of version 971, LS-DYNA changed the way that unload/reload curves for shear stress-strain relations are interpreted. Let \(f\) be the shear stress unloadreload curve LCUAB. Then,
\[
\sigma_{a b}=c_{2} f\left(c_{1} \varepsilon_{a b}\right)
\]
where the scale factors \(c_{1}\) and \(c_{2}\) depend on the fabric form (see FORM) and version of LS-DYNA.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Fabric form } & \multicolumn{2}{|c|}{4} & \multicolumn{2}{c|}{14 and -14 } & \multicolumn{2}{c|}{24} \\
\cline { 2 - 8 } & \(c_{1}\) & \(c_{2}\) & \(c_{1}\) & \(c_{2}\) & \(c_{1}\) & \(c_{2}\) \\
\hline LS971 R5.1.0 and earlier & 2 & 1 & 2 & 1 & - & - \\
\hline LS971 R6.0.0 to R7.0 & 2 & 1 & 1 & 2 & - & - \\
\hline LS-DYNA R7.1 and later & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline
\end{tabular}

When switching fabric forms or versions, the curve scale factors SFA and SFO on *DEFINE_CURVE can be used to offset this behavior.
9. Per material venting option. The FVOPT flag allows an airbag fabric venting equation to be assigned to a material. The anticipated use for this option is to allow a vent to be defined using FVOPT = 1 or 2 for one material and fabric leakage to be defined for using FVOPT \(=3,4,5\), or 6 for other materials. In order to use FVOPT, a venting option must first be defined for the airbag using the OPT parameter on *AIRBAG_WANG_NEFSKE or *AIRBAG_HYBRID. If OPT = 0, then FVOPT is ignored. If OPT is defined and FVOPT is omitted, then FVOPT is set equal to OPT.
10. TSRFAC option to restore element strains. Airbags that use a reference geometry will typically have nonzero strains at the start of the calculation. To prevent such initial strains from prematurely opening an airbag, initial strains are stored and subtracted from the measured strain throughout the calculation.
\[
\sigma=f\left(\varepsilon-\varepsilon_{\text {initial }}\right)
\]
- Fabric formulations 2,3 , and 4 (see FORM) subtract off only the initial tensile strains so these forms are typically used with CSE \(=1\) and LNRC \(=1\).
- Fabric formulations \(12,13,14,-14\), and 24 subtract off the total initial strains, so these forms may be used with CSE \(=0\) or 1 and \(\operatorname{LNRC}=0\) or 1 . A side effect of this strain modification is that airbags may not achieve the correct volume when they open. Therefore, the TSRFAC option is implemented to
reduce the stored initial strain values over time thereby restoring the total stain which drives the airbag towards the correct volume.

During each cycle, the stored initial strains are scaled by (1.0 - TSRFAC). A small value on the order of 0.0001 is typically sufficient to restore the strains in a few milliseconds of simulation time.
\[
\sigma=f\left(\varepsilon-\varepsilon_{\text {adjustment }}\right)
\]

The adjustment to restore initial strain is then,
\[
\varepsilon_{\text {adjustment }}=\varepsilon_{\text {initial }} \prod_{i}[1-\text { TSFRAC }] .
\]
a) Time Dependent TSRFAC. When TSRFAC \(<0\), |TSRFAC| becomes the ID of a curve that defines TSRFAC as a function of time. To delay the effect of TSRFAC, the curve ordinate value should be initially zero and should ramp up to a small number to restore the strain at an appropriate time during the simulation. The adjustment to restore initial strain is then,
\[
\varepsilon_{\text {adjustment }}\left(t_{i}\right)=\varepsilon_{\text {initial }} \prod_{i}\left[1-\operatorname{TSFRAC}\left(t_{i}\right)\right] .
\]

To prevent airbags from opening prematurely, it is recommended to use the load curve option of TSRFAC to delay the strain restoration until the airbag is partially opened due to pressure loading.
b) Alternate Time Dependent TSRFAC. For fabric formulations 2 and higher, a second curve option is invoked by setting TSRFAC \(\geq 1\) where TSRFAC is again the ID of a curve that defines TSRFAC as a function of time. Like the first curve option, the stored initial strain values are scaled by ( 1.0 - TSRFAC), but the modified initial strains are not saved, so the effect of TSRFAC does not accumulate. In this case the adjustment to eliminate initial strain
\[
\varepsilon_{\text {adjustment }}\left(t_{i}\right)=\left[1-\operatorname{TSFRAC}\left(t_{i}\right)\right] \varepsilon_{\text {initial }} .
\]

Therefore, the curve should ramp up from zero to one to fully restore the strain. This option gives the user better control of the rate of restoring the strain as it is a function of time rather than solution time step.
11. Enhancements to the material formulations. Material formulations (see FORM) 12, 13, and 14 are enhanced versions of formulations 2,3 , and 4 , respectively. The most notable difference in their behavior is apparent when a reference geometry is used for the fabric. As discussed in Remark 10, the strain is modified to prevent initial strains from prematurely opening an airbag at the start of a calculation.

Formulations 2, 3, and 4 subtract the initial tensile strains, while the enhanced formulations subtract the total initial strains. Therefore, the enhanced


Figure M34-1.
formulations can be used without setting CSE \(=1\) and \(\mathrm{LNRC}=1\) since compressive stress cutoff is not needed to prevent initial airbag movement. Formulations 2,3 , and 4 need compressive stress cutoff when used with a reference geometry or they can generate compressive stress at the start of a calculation. Available for formulation 12 only, the ISREFG parameter activates an option to calculate the initial stress by using a reference geometry.

Material formulation 24 is an enhanced version of formulation 14 implementing a correction for Poisson's effects when stress as a function of strain curves are input for the \(a\)-fiber or \(b\)-fiber. Also, for formulation 24, the outputted stress and strain in the elout or d3plot database files is engineering stress and strain rather than the \(2^{\text {nd }}\) Piola Kirchoff and Green's strain used by formulations other than 0 and 1.
12. Noise reduction for the strain rate measure. If tables are used, then the strain rate measure is the time derivative of the Green-Lagrange strain in the direction of interest. To suppress noise, the strain rate is averaged according to the value of DT. If DT \(>0\), it is recommended to use a large enough value to suppress the noise, while being small enough to not lose important information in the signal.
13. Hysteresis. The hysteresis parameter \(H\) defines the fraction of dissipated energy during a load cycle in terms of the maximum possible dissipated energy. Referring to the Figure M34-1,
\[
H \approx \frac{A_{1}}{A_{1}+A_{2}} .
\]
14. Coating feature for additional rotational resistance. It is possible to model coating of the fabric using a sheet of elastic-ideal-plastic material where the Young's modulus, yield stress, and thickness is specified for the coat material. This coating feature adds rotational resistance to the fabric for more realistic behavior of coated fabrics. To read these properties set FORM \(=-14\), which adds an extra card containing the three fields ECOAT, SCOAT and TCOAT, corresponding to the three coat material properties mentioned above. The coating model includes transverse shear stiffness to avoid nonphysical zig-zagging. To adjust this stiffness, set SHRF on *SECTION_SHELL.

The thickness, TCOAT, applies to both sides of the fabric. The coat material for a certain fabric element deforms along with this and all elements connected to this element, which is how the rotations are "captured." Note that unless TCOAT is set to a negative value, the coating will add to the membrane stiffness. For negative values of TCOAT the thickness is set to |TCOAT| and the membrane contribution from the coating is suppressed. For this feature to work, the fabric parts must not include any T-intersections, and all of the surface normal vectors of connected fabric elements must point in the same direction. This option increases the computational complexity of this material.
15. Poisson's ratios. Fabric forms \(12,13,14,-14\), and 24 allow input of both the minor Poisson's ratio, \(v_{b a}\), and the major Poisson's ratio, \(v_{a b}\). This allows asymmetric Poisson's behavior to be modelled. If the major Poisson's ratio is left blank or input as zero, then it will be calculated using \(v_{a b}=v_{b a} \frac{E_{a}}{E_{b}}\).
16. St. Venant-Wantzel leakage. If a negative value for the fabric venting option FVOPT is used (only -1 and -2 are supported), the mass flux through a fabric membrane is calculated according St.Venant-Wantzel by
\[
\dot{m}=A_{\mathrm{eff}} \Psi \sqrt{2 p_{i} \rho_{i}}
\]
where \(p_{i}\) describes the internal pressure, \(\rho_{i}\) is the density of the outlet gas, and the effluence function \(\psi\) depends on the character of the flow, the adiabatic exponent \(\kappa\) and the pressure difference between the inside ( \(p_{i}\) ) and the outside ( \(p_{a}\) ) of the membrane. For subsonic flow it is formulated as:
\[
\Psi=\sqrt{\frac{\kappa}{\kappa-1}\left[\left(\frac{p_{a}}{p_{i}}\right)^{\frac{2}{\kappa}}-\left(\frac{p_{a}}{p_{i}}\right)^{\frac{\kappa+1}{\kappa}}\right]}
\]
and for sonic or critical flow as:
\[
\Psi=\sqrt{\frac{\kappa}{2}\left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}}}
\]

The effective venting area of the membrane is determined according to M . Schlenger:
\[
A_{\mathrm{eff}}=\frac{A_{0}}{L^{2}}\left[\left(C_{1} \Delta p^{C_{2}}-C_{3}\right)(L-2 r)^{2}+C_{3}\left(L \lambda_{1}-\frac{2 r}{\sqrt{\lambda_{2}}}\right)\left(L \lambda_{2}-\frac{2 r}{\sqrt{\lambda_{1}}}\right)\right] \sin \left(\alpha_{12}\right)
\]
where \(\lambda_{i}\) is the stretch in fiber direction \(i\) and \(\alpha_{12}\) is the angle between the fibers. The initial membrane area is equal to \(A_{0} . r\) and \(L\) represent the radius of the fabric fiber and the edge length of the fabric set, respectively. The coefficients, \(L, r, C_{1}, C_{2}\), and \(C_{3}\), must be defined on additional Card 4 . This option is supported for *AIRBAG_WANG_NESFKE, *AIRBAG_HYBRID, and *AIRBAG_PARTICLE. No additional input in *AIRBAG cards is needed. All FORM options are supported, whereas \(\alpha_{12}\) can only be different from 90 degree for FORM \(=3,4,13\), or 14 .
17. CPM (*AIRBAG_PARTICLE) bags. Only FVOPT \(=-1,-2,7\), and 8 are supported for CPM bags. If FVOPT \(=0\) is used, it defaults to \(\mathrm{FVOPT}=8\). For FVOPT \(=-1\) and -2, FLC is active and can be either a scalar or a curve defining the porous leakage flow coefficient as a function of time. The FAC coefficient, however, is inactive as the porous leakage velocity is computed using the formula specified in Remark 16 from the coefficient defined in Card 4. Note that for uniform pressure airbags (*AIRBAG_HYBRID_...) both the FLC and FAC coefficients are active.

\section*{*MAT_FABRIC_MAP}

This is Material Type 34 in which the stress response is given exclusively by tables, or maps, and where some obsolete features in *MAT_FABRIC have been deliberately excluded to allow for a clean input and better overview of the model. The response can be made temperature dependent.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & PXX & PYY & SXY & DAMP & TH & T0 \\
\hline
\end{tabular}

Card 1.1. Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline T 1 & T 2 & T 3 & T 4 & T 5 & T 6 & T 7 & T 8 \\
\hline
\end{tabular}

Card 1.2. Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PXX1 & PXX2 & PXX3 & PXX4 & PXX5 & PXX6 & PXX7 & PXX8 \\
\hline
\end{tabular}

Card 1.3. Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PYY1 & PYY2 & PYY3 & PYY4 & PYY5 & PYY6 & PYY7 & PYY8 \\
\hline
\end{tabular}

Card 1.4. Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SXY1 & SXY2 & SXY3 & SXY4 & SXY5 & SXY6 & SXY7 & SXY8 \\
\hline
\end{tabular}

Card 2a. Include this card if \(0<\mathrm{X} 0<1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FVOPT & X0 & X1 & X2 & X3 & ELA & & \\
\hline
\end{tabular}

Card 2b. Include this card if \(\mathrm{X} 0=0\) or \(\mathrm{X} 0=-1\) and FVOPT \(<7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
\hline
\end{tabular}

Card 2c. Include this card if \(X 0=0\) or \(X 0=-1\) and \(F V O P T \geq 7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
\hline
\end{tabular}

Card 2d. Include this card if X0 \(=1\) and \(\mathrm{FVOPT}<7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
\hline
\end{tabular}

Card 2 e . Include this card if \(\mathrm{X} 0=1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ISREFG & CSE & SRFAC & BULKC & JACC & FXX & FYY & DT \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & ECOAT & SCOAT & TCOAT & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PXX & PYY & SXY & DAMP & TH & T0 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density

TH

PXX Table giving engineering local XX-stress as function of engineering local \(X X\)-strain and \(Y Y\)-strain

PYY Table giving engineering local \(Y Y\)-stress as function of engineering local \(Y Y\)-strain and \(X X\)-strain

SXY Curve giving local 2 \({ }^{\text {nd }}\) Piola-Kirchhoff \(X Y\)-stress as function of local Green \(X Y\)-strain.

DAMP Damping coefficient for numerical stability

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Table giving hysteresis factor \(0 \leq H<1\) as function of engineering local \(X X\)-strain and \(Y Y\)-strain:

\section*{DESCRIPTION}

GT.0.0: TH is table ID.
LE.0.O: -TH is used as constant value for hysteresis factor.

Flag to indicate temperature dependence and temperature corresponding to tables PXX, PYY, and SXY:

EQ.0.0: Do not consider temperature dependence for this model (default).

GT.0.0: Consider temperature dependence considered. T0 gives the temperature corresponding to tables PXX, PYY, and SXY. LS-DYNA expects Cards 1.1 through 1.4 to provide additional positive temperatures that correspond to similar tables. T0 represents a typical work temperature. It may be anywhere inside or outside the range between T1 - T8 defined in Card 1.1, but it cannot be equal to any of those individual values. Note that we are assuming that no matter the units the relevant temperatures are positive.

Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T1 & T2 & T3 & T4 & T5 & T6 & T7 & T8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

Ti

\section*{DESCRIPTION}

Temperature values for which the tables and curves specified in Cards 1.2-1.4 apply. Temperature values must be increasing and positive, meaning \(\mathrm{T} 1>0, \mathrm{~T} 2>\mathrm{T} 1, \mathrm{~T} 3>\mathrm{T} 2\), etc. If needing fewer than 8 temperature points, then set the first unused temperature value to zero. T0 may not take any of the positive Ti values but will be properly inserted into the range so that all positive temperatures defined are in increasing order.

Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PXX1 & PXX2 & PXX3 & PXX4 & PXX5 & PXX6 & PXX7 & PXX8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

PXXi

\section*{DESCRIPTION}

Table giving engineering local XX-stress as a function of engineering local \(X X\)-strain and \(Y Y\)-strain for temperature \(\mathrm{T} i\).

Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PYY1 & PYY2 & PYY3 & PYY4 & PYY5 & PYY6 & PYY7 & PYY8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

PYYi
Table giving engineering local \(Y Y\)-stress as a function of engineering local \(Y Y\)-strain and \(X X\)-strain for temperature \(T i\).

Include this card if \(\mathrm{T} 0>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1.4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SXY1 & SXY2 & SXY3 & SXY4 & SXY5 & SXY6 & SXY7 & SXY8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
SXYi

\section*{DESCRIPTION}

Curve giving local \(2^{\text {nd }}\) Piola-Kirchhoff \(X Y\)-stress as function of local Green \(X Y\)-strain for temperature \(\mathrm{T} i\).

This card is included if \(0<\mathrm{X} 0<1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FVOPT & X0 & X1 & X2 & X3 & ELA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FVOPT Fabric venting option (see *MAT_FABRIC):
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.
EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

LT.O: |FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16 of \({ }^{*}\) MAT_FABRIC.

Note: See Remark 17 of *MAT_FABRIC for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

VARIABLE
X0, X1

X2

X3
ELA Effective leakage area for blocked fabric, ELA (see Remark 3 of *MAT_FABRIC):

LT.O.O: |ELA| is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of 10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

This card is included if and only if \(\mathrm{X} 0=0\) or \(\mathrm{X} 0=-1\) and \(\mathrm{FVOPT}<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FVOPT

\section*{DESCRIPTION}

Fabric venting option (see *MAT_FABRIC):
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.
EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

\section*{DESCRIPTION}

EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

LT.0: |FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16 of *MAT_FABRIC.

Note: See Remark 17 of *MAT_FABRIC for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area: \(A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)\); see \({ }^{*} \mathrm{MAT}_{-}\) FABRIC.

X0.EQ.-1: Compressing seal vent option. The leakage area is evaluated as \(A_{\text {leak }}=\max \left(A_{\text {current }}-A_{0}, 0\right)\).

FLC Optional porous leakage flow coefficient. (See theory manual.)
GE.0.0: Porous leakage flow coefficient.
LT.0.0: \(|\mathrm{FLC}|\) is a load curve ID defining FLC as a function of time.

FAC Optional characteristic fabric parameter. (See theory manual.)
GE.0.0: Characteristic fabric parameter
LT.0.0: \(\mid \mathrm{FAC\mid}\) is a load curve ID defining FAC as a function of absolute pressure.

ELA Effective leakage area for blocked fabric, ELA (see Remark 3 of *MAT_FABRIC):

LT.0.0: \(|\mathrm{ELA}|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

This card is included if and only if \(\mathrm{X} 0=0\) or \(\mathrm{X} 0=-1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FVOPT Fabric venting option (see *MAT_FABRIC):
EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

Note: See Remark 17 of *MAT_FABRIC for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area: \(A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)\); see *MAT_FABRIC.

X0.EQ.-1: Compressing seal vent option. The leakage area is evaluated as \(A_{\text {leak }}=\max \left(A_{\text {current }}-A_{0}, 0\right)\).

FLC Optional porous leakage flow coefficient. (See theory manual.)
GE.0.0: Porous leakage flow coefficient
LT.O.O: |FLC| is a load curve ID defining FLC as a function of time.

FAC Optional characteristic fabric parameter. (See theory manual.) GE.O.O: Characteristic fabric parameter
LT.O.O: |FAC| is a load curve ID giving leakage volume flux rate as a function of absolute pressure. The volume flux (per area) rate (per time) has the dimensions of

\section*{DESCRIPTION}
\[
\begin{aligned}
d\left(\mathrm{vol}_{\mathrm{flux}}\right) / \mathrm{dtt} & \approx[\text { length }]^{3} /\left([\text { length }]^{2}[\text { time }]\right) \\
& \approx[\text { length }] /[\text { time }]
\end{aligned}
\]
equivalent to relative porous gas speed.

ELA Effective leakage area for blocked fabric, ELA (see Remark 3 of *MAT_FABRIC):

LT.0.0: \(|E L A|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

This card is included if and only if X0 \(=1\) and FVOPT \(<7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
FVOPT

\section*{DESCRIPTION}

Fabric venting option (see *MAT_FABRIC):
EQ.1: Wang-Nefske formulas for venting through an orifice are used. Blockage is not considered.

EQ.2: Wang-Nefske formulas for venting through an orifice are used. Blockage of venting area due to contact is considered.

EQ.3: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage is not considered.

EQ.4: Leakage formulas of Graefe, Krummheuer, and Siejak [1990] are used. Blockage of venting area due to contact is considered.

EQ.5: Leakage formulas based on flow through a porous media are used. Blockage is not considered.

EQ.6: Leakage formulas based on flow through a porous media are used. Blockage of venting area due to contact is considered.

\section*{DESCRIPTION}

LT.O: |FVOPT| defines the same fabric venting options as above, but a new formula for the leakage area is used to replace the element area. See Remark 16 of *MAT_FABRIC.

Note: See Remark 17 of *MAT_FABRIC for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

X0, X1 Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area: \(A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)\); see *MAT_FABRIC.

FLC Optional porous leakage flow coefficient. (See theory manual and *MAT_FABRIC.)

GE.0.0: Porous leakage flow coefficient.
LT.0.0: \(|\mathrm{FLC}|\) is interpreted as a load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\).

FAC Optional characteristic fabric parameter. (See theory manual and *MAT_FABRIC.)

GE.0.0: Characteristic fabric parameter
LT.O.O: \(|\mathrm{FAC}|\) is interpreted as a load curve defining FAC as a function of the pressure ratio \(r_{p}=P_{\mathrm{ai} r} / P_{\mathrm{bag}}\).

ELA Effective leakage area for blocked fabric, ELA (see Remark 3 of *MAT_FABRIC):

LT.0.0: \(|\mathrm{ELA}|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that no leakage occurs. A value of .10 would assume that \(10 \%\) of the blocked fabric is leaking gas.

This card is included if and only if \(\mathrm{X} 0=1\) and \(\mathrm{FVOPT} \geq 7\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2e & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FVOPT & X0 & X1 & FLC & FAC & ELA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FVOPT

X0, X1

FLC

FAC

ELA

\section*{DESCRIPTION}

Fabric venting option (see *MAT_FABRIC):
EQ.7: Leakage is based on gas volume outflow versus pressure load curve [Lian, 2000]. Blockage is not considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.
EQ.8: Leakage is based on gas volume outflow versus pressure load curve [Lian 2000]. Blockage of venting or porous area due to contact is considered. Absolute pressure is used in the porous-velocity-versus-pressure load curve, given as FAC.

Note: See Remark 17 of *MAT_FABRIC for FVOPT option for CPM (*AIRBAG_PARTICLE) bags.

Coefficients of Anagonye and Wang [1999] porosity equation for the leakage area: \(A_{\text {leak }}=A_{0}\left(X_{0}+X_{1} r_{s}+X_{2} r_{p}+X_{3} r_{s} r_{p}\right)\); see \({ }^{*} \mathrm{MAT}_{-}\) FABRIC.

Optional porous leakage flow coefficient. (See theory manual.)
GE.0: Porous leakage flow coefficient.
LT.0: |FLC| is interpreted as a load curve ID defining FLC as a function of the stretching ratio defined as \(r_{s}=A / A_{0}\).

Optional characteristic fabric parameter. (See theory manual.)
GE.0: Characteristic fabric parameter
LT.0: |FAC| is interpreted as a load curve defining leakage volume flux rate versus the pressure ratio defined as \(r_{p}=\) \(P_{\text {air }} / P_{\text {bag. }}\). The volume flux (per area) rate (per time) has the unit of
\[
\begin{aligned}
d\left(\text { vol }_{\text {flux }}\right) / \mathrm{dt} & \approx[\text { length }]^{3} /\left([\text { length }]^{2}[\text { time }]\right) \\
& \approx[\text { length }] /[\text { time }],
\end{aligned}
\]
equivalent to relative porous gas speed.
Effective leakage area for blocked fabric, ELA (see Remark 3 of *MAT_FABRIC):

LT.0.0: \(|\mathrm{ELA}|\) is the load curve ID of the curve defining ELA as a function of time. The default value of zero assumes that

\section*{DESCRIPTION}
no leakage occurs. A value of 10 would assume that \(10 \%\) of the blocked fabric is leaking gas.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ISREFG & CSE & SRFAC & BULKC & JACC & FXX & FYY & DT \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
ISREFG

\section*{DESCRIPTION}

Initial stress by reference geometry:
EQ.0.0: Not active
EQ.1.0: Active

Compressive stress elimination option:
EQ.O.O: Do not eliminate compressive stresses.
EQ.1.0: Eliminate compressive stresses.
SRFAC Load curve ID for smooth stress initialization when using a reference geometry

BULKC
Bulk modulus for fabric compaction
JACC Jacobian for the onset of fabric compaction
FXX Load curve giving scale factor of uniaxial stress in first material direction as function of engineering strain rate

FYY Load curve giving scale factor of uniaxial stress in second material direction as function of engineering strain rate

DT
CSE

Time window for smoothing strain rates used for FXX and FYY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & ECOAT & SCOAT & TCOAT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

VARIABLE
AOPT

ECOAT Young's modulus of coat material to include bending properties. This together with the following two parameters (SCOAT and TCOAT) encompass the same coating/bending feature as in *MAT_FABRIC. Please refer to these manual pages and associated remarks.

SCOAT Yield stress of coat material, see *MAT_FABRIC.
TCOAT Thickness of coat material, may be positive or negative, see *MAT_FABRIC.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
A1, A2, A3

DESCRIPTION
Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

Material angle in degrees for AOPT \(=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}
1. Material Model. This material model invokes a special membrane element formulation regardless of the element choice. It is an anisotropic hyperelastic model, where the \(2^{\text {nd }}\) Piola-Kirchhoff stress \(\mathbf{S}\) is a function of the Green-Lagrange strain \(E\) and possibly its history and temperature. Due to anisotropy, this strain is transformed to obtain the strains in each of the fiber directions, \(E_{X X}\) and \(E_{Y Y}\), together with the shear strain, \(E_{X Y}\). The associated stress components in the local system are given as functions of the strain components and temperature
\[
\begin{aligned}
& S_{X X}=\gamma S_{X X}\left(E_{X X}, E_{Y Y}, T\right) \vartheta \\
& S_{Y Y}=\gamma S_{Y Y}\left(E_{Y Y}, E_{X X}, T\right) \vartheta \\
& S_{X Y}=\gamma S_{X Y}\left(E_{X Y}, T\right) \vartheta
\end{aligned}
\]

The factor \(\gamma\) is used for dissipative effects and is described in more detail in Remark 5. For \(\mathrm{TH}=0, \gamma=1\). The function \(\vartheta\) represents a strain rate scale factor (see Remark 7); for FXX \(=\) FYY \(=0\), this factor is 1 . While the input curve SXY
directly gives the shear relation, the tabular input of the fiber stress components PXX and PYY is for the sake of convenience. PXX and PYY give the engineering stress as a function of engineering strain and optionally temperature, that is,
\[
\begin{aligned}
& P_{X X}=P_{X X}\left(e_{X X}, e_{Y Y}, T\right) \\
& P_{Y Y}=P_{Y Y}\left(e_{Y Y}, e_{X X}, T\right)
\end{aligned}
\]

Because of this, the following conversion formulae are used between stresses and strains
\[
\begin{aligned}
& e=\sqrt{1+2 E}-1 \\
& S=\frac{P}{1+e}
\end{aligned}
\]
which are applied in each of the two fiber directions.
2. Temperature Dependence. We apply temperature dependence through input tables and curves for up to 9 different temperature values (see T0 and Cards 1.1 through 1.4). Whenever the temperature in an element is between two defined temperature values, interpolation of the values for the two temperature points gives the resulting value. If the temperature in an element falls below the smallest temperature defined or above the largest temperature defined, the resulting value is not extrapolated, but the first and last defined table/curve is used, respectively. Note that LS-DYNA inserts T0 and its associated data at the appropriate location so that all temperature values are internally in increasing order. For determing dissipation in the material, we use the properties at temperature T0.
3. Compressive Stress Elimination. Compressive stress elimination is optional through the CSE parameter, and when activated the principal components of the \(2^{\text {nd }}\) Piola-Kirchhoff stress is restricted to positive values.
4. Reference Geometry and Smooth Stress Initialization. If a reference geometry is used, then SRFAC is the curve ID for a function \(\alpha(t)\) that should increase from zero to unity during a short time span. During this time span, the GreenLagrange strain used in the formulae in Remark 1 above is substituted with
\[
\tilde{\mathbf{E}}=\mathbf{E}-[1-\alpha(t)] \mathbf{E}_{0},
\]
where \(\mathbf{E}_{0}\) is the strain at time zero. This is done in order to smoothly initialize the stress resulting from using a reference geometry different from the geometry at time zero.
5. Dissipative Effects. The factor \(\gamma\) is a function of the strain history and is initially set to unity. It specifically depends on the internal work, \(\epsilon\), given by the stress power
\[
\dot{\epsilon}=\mathbf{S}: \dot{\mathrm{E}} .
\]



Figure M34M-1. Cyclic loading model for hysteresis model \(H\)
The evolution of \(\gamma\) is related to the stress power since it increases on loading and decreases on unloading. As a result, it introduces dissipation. The exact mathematical formula is too complicated to reveal, but basically the function looks like
\[
\gamma= \begin{cases}1-H\left(\bar{e}_{X X}, \bar{e}_{Y Y}\right)+H\left(\bar{e}_{X X}, \bar{e}_{Y Y}\right) \exp [\beta(\epsilon-\bar{\epsilon})] & \dot{\epsilon}<0 \\ 1-H\left(\bar{e}_{X X}, \bar{e}_{Y Y}\right) \exp [-\beta(\epsilon-\underline{\epsilon})] & \dot{\epsilon} \geq 0\end{cases}
\]

Here \(\bar{\epsilon}\) is the maximum attained internal work up to this point in time, \(\bar{e}_{X X}\) and \(\bar{e}_{Y Y}\) are the engineering strain values associated with value. \(H\left(\bar{e}_{X X}, \bar{e}_{Y Y}\right)\) is the hysteresis factor specified through input parameter TH; it may or may not depend on the strains. \(\beta\) is a decay constant that depends on \(\bar{e}_{X X}\) and \(\bar{e}_{Y Y}\), and \(\underline{\epsilon}\) is the minimum attained internal work at any point in time after \(\bar{\epsilon}\) was attained. In other words, on unloading, \(\gamma\) will exponentially decay to \(1-H\), and on loading it will exponentially grow to 1 and always be restricted by the lower and upper bounds, \(1-H<\gamma \leq 1\). This formulation requires inputting a proper hysteresis factor \(H\). With reference to a general loading/unloading cycle illustrated in Figure M34M-1, the relation \(1-H=\epsilon_{u} / \epsilon_{l}\) should hold with proper input. LS-DYNA uses the properties at the work temperature T0 for this dissipative treatment.
6. Packing of Yarn in Compression. To account for the packing of yarns in compression, a compaction effect is modeled by adding a term to the strain energy function of the form
\[
W_{c}=K_{c} J\left\{\ln \left(\frac{J}{J_{c}}\right)-1\right\}, \text { for } J \leq J_{c} .
\]

Here \(K_{c}(\) BULKC \()\) is a physical bulk modulus, \(J=\operatorname{det}(\mathbf{F})\) is the jacobian of the deformation and \(J_{\mathcal{c}}\) (JACC) is the critical jacobian for when the effect commences. \(\mathbf{F}\) is the deformation gradient. This contributes to the pressure with a term
\[
p=K_{c} \ln \left(\frac{J_{c}}{J}\right), \text { for } J \leq J_{c}
\]
and thus prevents membrane elements from collapsing or inverting when subjected to compressive loads. The bulk modulus \(K_{c}\) should be selected with the
slopes in the stress map tables in mind, presumably some order of magnitude(s) smaller.
7. Strain Rate Scale Factor. As an option, the local membrane stress can be scaled based on the engineering strain rates via the function \(\vartheta=\vartheta(\dot{e}, \mathbf{S})\). We set
\[
\dot{e}=\max \left(\frac{\dot{\epsilon}}{\|\mathbf{F S}\|}, 0\right)
\]
to be the equivalent engineering strain rate in the direction of loading and define
\[
\vartheta(\dot{e}, S)=\frac{F_{X X}(\dot{e})\left|S_{X X}\right|+F_{Y Y}(\dot{e})\left|S_{Y Y}\right|+2\left|S_{X Y}\right|}{\left|S_{X X}\right|+\left|S_{Y Y}\right|+2\left|S_{X Y}\right|}
\]
meaning that the strain rate scale factor defaults to the user input data FXX and FYY for uniaxial loading in the two material directions, respectively. Note that we only consider strain rate scaling in loading and not in unloading, and furthermore that the strain rates used in evaluating the curves are pre-filtered using the time window DT to avoid excessive numerical noise. It is, therefore, recommended to set DT to a time corresponding to at least hundred time steps or so.

\section*{*MAT_PLASTIC_GREEN-NAGHDI_RATE}

This is Material Type 35. It is similar to model 3 but uses the Green-Naghdi Rate formulation rather than the Jaumann rate for the stress update. For some cases this might be helpful. This model also has a strain rate dependency following the Cowper-Symonds model. It is available for solid, thick shell (formulations 3, 5,and 7), and SPH elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & & & \\
Type & A & F & F & F & & & & \\
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGY & ETAN & SRC & SRP & BETA & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

E
PR
SIGY
ETAN Plastic hardening modulus
SRC Strain rate parameter, C
SRP Strain rate parameter, \(p\)
BETA Hardening parameter, \(0<\beta^{\prime}<1\)

\section*{*MAT_3-PARAMETER_BARLAT_\{OPTION\}}

This is Material Type 36. This model was developed by Barlat and Lian [1989] for modeling sheets with anisotropic materials under plane stress conditions. Lankford parameters may be used to define the anisotropy. This particular development is due to Barlat and Lian [1989]. *MAT_FLD_3-PARAMETER_BARLAT is a version of this material model that includes a flow limit diagram failure option.

Available options include:
<BLANK>
NLP
The NLP option estimates failure using the Formability Index (F.I.), which accounts for the non-linear strain paths seen in metal forming applications (see the Remarks). The NLP field in Card 4b must be defined when using this option. The NLP option is also available for *MAT_037, *MAT_125, and *MAT_226.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & HR & P1 & P2 & ITER \\
\hline
\end{tabular}

Card 2a. This card is included if \(\mathrm{PB}=0\) (see Card 4a/4b).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & R00 & R45 & R90 & LCID & E0 & SPI & P3 \\
\hline
\end{tabular}

Card 2 b . This card is included if \(\mathrm{PB}>0\). (see Card \(4 \mathrm{a} / 4 \mathrm{~b}\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(M\) & \(A B\) & \(C B\) & \(H B\) & LCID & E0 & SPI & P3 \\
\hline
\end{tabular}

Card 3. This card is included if \(\mathrm{M}<0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CRC1 & CRA1 & CRC2 & CRA2 & CRC3 & CRA3 & CRC4 & CRA4 \\
\hline
\end{tabular}

Card 4a. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & C & P & VLCID & & PB & HTA & HTB \\
\hline
\end{tabular}

Card 4b. This card is included if the keyword option is NLP.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & C & \(P\) & VLCID & & PB & NLP & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & HTC & HTD \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & HTFLAG \\
\hline
\end{tabular}

Card 7. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline USRFAIL & LCBI & LCSH & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & HR & P1 & P2 & ITER \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

PR Poisson's ratio, \(v\)

\section*{VARIABLE}

MID

RO
E

HR

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus, \(E\)
GT.0.0: constant value
LT.O.O: load curve ID \(=|\mathrm{E}|\), which defines Young's Modulus as a function of plastic strain. See Remarks.

Hardening rule:
EQ.1.0: linear (default)
EQ.2.0: exponential (Swift)
EQ.3.0: load curve or table with strain rate effects
EQ.4.0: exponential (Voce)
EQ.5.0: exponential (Gosh)

\section*{VARIABLE}

ITER

\section*{DESCRIPTION}

EQ.6.0: exponential (Hocket-Sherby)
EQ.7.0: load curves in three directions
EQ.8.0: table with temperature dependence
EQ.9.0: three-dimensional table with temperature and strain rate dependence

EQ.10.0: table with pre-strain dependence. See Remarks.

Material parameter:
HR.EQ.1.0: tangent modulus
HR.EQ.2.0: \(k\), strength coefficient for Swift exponential hardening

HR.EQ.4.0: \(a\), coefficient for Voce exponential hardening
HR.EQ.5.0: \(k\), strength coefficient for Gosh exponential hardening

HR.EQ.6.0: \(a\), coefficient for Hocket-Sherby exponential hardening

HR.EQ.7.0: load curve ID for hardening in the \(45^{\circ}\)-direction. See Remarks.

Material parameter:
HR.EQ.1.0: yield stress
HR.EQ.2.0: \(n\), exponent for Swift exponential hardening
HR.EQ.4.0: \(c\), coefficient for Voce exponential hardening
HR.EQ.5.0: \(n\), exponent for Gosh exponential hardening
HR.EQ.6.0: \(c\), coefficient for Hocket-Sherby exponential hardening

HR.EQ.7.0: load curve ID for hardening in the \(90^{\circ}\)-direction. See Remarks.

Iteration flag for speed:
EQ.0.0: fully iterative
EQ.1.0: fixed at three iterations
Generally, ITER \(=0\) is recommended. ITER \(=1\), however, is somewhat faster and may give acceptable results in most problems.

Lankford Parameters Card. This card is included if \(\mathrm{PB}=0\) (see Card \(4 \mathrm{a} / 4 \mathrm{~b}\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M & R00 & R45 & R90 & LCID & E0 & SPI & P3 \\
Type & F & F & F & F & I & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

M

R00

R45

R90

LCID

E0

Load curve/table ID for hardening in the \(0^{\circ}\)-direction. See Remarks.

Material parameter:
HR.EQ.2.0: \(\varepsilon_{0}\) for determining initial yield stress for Swift exponential hardening \((\) default \(=0.0)\)
HR.EQ.4.0: \(b\), coefficient for Voce exponential hardening
HR.EQ.5.0: \(\varepsilon_{0}\) for determining initial yield stress for Gosh exponential hardening \((\) default \(=0.0)\)

HR.EQ.6.0: \(b\), coefficient for Hocket-Sherby exponential hardening

Case I: If \(\mathrm{HR}=2.0\) and E 0 is zero, then \(\varepsilon_{0}\) is determined by:
EQ.0.0: \(\quad \varepsilon_{0}=\left(\frac{E}{k}\right)^{[1 /(n-1)]}\), default
LE.0.02: \(\varepsilon_{0}=\) SPI
GT.0.02: \(\varepsilon_{0}=\left(\frac{\mathrm{SPI}}{k}\right)^{[1 / n]}\)
Case II: If \(\mathrm{HR}=5.0\), then the strain at plastic yield is determined by an iterative procedure based on the same principles as for \(\mathrm{HR}=2.0\).

Material parameter:
HR.EQ.5.0: \(p\), parameter for Gosh exponential hardening
HR.EQ.6.0: \(n\), exponent for Hocket-Sherby exponential hardening

BARLAT89 Parameters Card. This card is included if PB \(>0\) (see Card \(4 \mathrm{a} / 4 \mathrm{~b}\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M & AB & CB & HB & LCID & E 0 & SPI & P 3 \\
Type & F & F & F & F & I & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

M
\(\mathrm{AB} \quad a\), Barlat89 parameter
CB c, Barlat89 parameter
HB \(\quad h\), Barlat89 parameter
LCID Load curve/table ID for hardening in the \(0^{\circ}\)-direction. See Remarks.

\section*{VARIABLE}

E0

SPI

P3 Material parameter:
HR.EQ.5.0: \(p\), parameter for Gosh exponential hardening
HR.EQ.6.0: \(n\), exponent for Hocket-Sherby exponential hardening

Define the following card if and only if \(\mathrm{M}<0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CRC1 & CRA1 & CRC2 & CRA2 & CRC3 & CRA3 & CRC4 & CRA4 \\
Type & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

CRCn
Chaboche-Rousselier hardening parameters; see Remarks.
CRAn Chaboche-Rousselier hardening parameters; see Remarks.

This card is included if the keyword option is not used (<BLANK \(>\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & C & P & VLCID & & PB & HTA & HTB \\
Type & F & F & F & I & & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: locally orthotropic with material axes determined by element nodes 1, 2 , and 4 , as with *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by an angle BETA.

EQ.2.0: globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector, \(\mathbf{v}\), with the element normal.

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available with the R3 release of Version 971 and later.

C \(\quad C\) in Cowper-Symonds strain rate model
\(\mathrm{P} \quad p\) in Cowper-Symonds strain rate model. Set P to zero for no strain rate effects.

VLCID Volume correction curve ID defining the relative volume change (change in volume relative to the initial volume) as a function of the effective plastic strain. This is only used when nonzero. See Remarks.
\(\mathrm{PB} \quad\) Barlat89 parameter, \(p\). If \(\mathrm{PB}>0\), parameters \(\mathrm{AB}, \mathrm{CB}\), and HB are read instead of R00, R45, and R90. See Remarks below.

\section*{VARIABLE}

HTA

HTB

\section*{DESCRIPTION}

Load curve/Table ID for postforming parameter \(a\) in heat treatment

Load curve/Table ID for postforming parameter \(b\) in heat treatment

This card is included if the keyword option is NLP.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & C & P & VLCID & & PB & NLP & \\
Type & F & F & F & I & & F & I & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by an angle BETA.
EQ.2.0: globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector, \(\mathbf{v}\), with the element normal.

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available with the R3 release of Version 971 and later.

C \(\quad C\) in Cowper-Symonds strain rate model
P \(\quad p\) in Cowper-Symonds strain rate model. Set P to zero for no strain rate effects.

\section*{VARIABLE \\ VLCID}

PB Barlat89 parameter, \(p\). If \(\mathrm{PB}>0\), parameters \(\mathrm{AB}, \mathrm{CB}\), and HB are read instead of R00, R45, and R90. See Remarks below.

NLP ID of a load curve of the Forming Limit Diagram (FLD) under linear strain paths. In the load curve, abscissas represent minor strains while ordinates represent major strains. Define only when option NLP is used. See Remarks.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & HTC & HTD \\
Type & & & & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

A1, A2, A3

HTC Load curve/table ID for postforming parameter \(c\) in heat treatment
HTD Load curve/table ID for postforming parameter \(d\) in heat treatment

\section*{DESCRIPTION}

Components of vector a for AOPT \(=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & HTFLAG \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
\begin{tabular}{cl} 
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } BETA & \begin{tabular}{l} 
Material angle in degrees for AOPT = 0 and 3. It may be overridden \\
on the element card; see *ELEMENT_SHELL_BETA.
\end{tabular} \\
Heat treatment flag (see Remarks): \\
EQ.0: preforming stage \\
EQ.1: heat treatment stage \\
EQ.2: postforming stage
\end{tabular}

Optional card.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & USRFAlL & LCBI & LCSH & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

USRFAIL

\section*{DESCRIPTION}

User defined failure flag:
EQ.O: no user subroutine is called.
EQ.1: user subroutine matusr_24 in dyn21.f is called.
LCBI
HR.EQ.7: load curve defining biaxial stress as a function of biaxial strain for hardening rule; see discussion in the formulation section below for a definition.

HR.NE.7: ignored
LCSH

HR.EQ.7: load curve defining shear stress as a function of shear strain for hardening; see discussion in the formulation section below for a definition.
HR.NE.7: ignored

\section*{Formulation:}

The effective plastic strain used in this model is defined to be plastic work equivalent. A consequence of this is that for parameters defined as functions of effective plastic strain, the rolling (00) direction should be used as reference direction. For instance, the hardening curve for \(\mathrm{HR}=3\) is the stress as function of strain for uniaxial tension in the rolling
direction, VLCID curve should give the relative volume change as function of strain for uniaxial tension in the rolling direction and load curve given by \(-E\) should give the Young's modulus as function of strain for uniaxial tension in the rolling direction. Optionally, the curve can be substituted for a table defining hardening as function of plastic strain rate \((\mathrm{HR}=3)\), temperature \((\mathrm{HR}=8)\), or pre-strain \((\mathrm{HR}=10)\).

Exceptions from the rule above are curves defined as functions of plastic strain in the \(45^{\circ}\) and \(90^{\circ}\) directions, i.e., \(P 1\) and \(P 2\) for \(H R=7\) and negative R45 or R90, see Fleischer et.al. [2007]. The hardening curves are here defined as measured stress as function of measured plastic strain for uniaxial tension in the direction of interest, i.e., as determined from experimental testing using a standard procedure. The optional biaxial and shear hardening curves require some further elaboration, as we assume that a biaxial or shear test reveals that the true stress tensor in the material system expressed as
\[
\sigma=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \pm \sigma
\end{array}\right), \quad \sigma \geq 0
\]
is a function of the (plastic) strain tensor
\[
\varepsilon=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \pm \varepsilon_{2}
\end{array}\right), \quad \varepsilon_{1} \geq 0, \quad \varepsilon_{2} \geq 0
\]

The input hardening curves are \(\sigma\) as function of \(\varepsilon_{1}+\varepsilon_{2}\). The \(\pm\) sign above distinguishes between the biaxial ( + ) and the shear ( - ) cases. Moreover, the curves defining the \(R-\) values are as function of the measured plastic strain for uniaxial tension in the direction of interest. These curves are transformed internally to be used with the effective stress and strain properties in the actual model. The effective plastic strain does not coincide with the plastic strain components in other directions than the rolling direction and may be somewhat confusing to the user. Therefore the von Mises work equivalent plastic strain is output as history variable \#2 if \(\mathrm{HR}=7\) or if any of the R-values is defined as function of the plastic strain.

The \(R\)-values in curves are defined as the ratio of instantaneous width change to instantaneous thickness change. That is, assume that the width \(W\) and thickness \(T\) are measured as function of strain. Then the corresponding \(R\)-values is given by:
\[
R=\frac{\frac{d W}{d \varepsilon} / W}{\frac{d T}{d \varepsilon} / T}
\]

The anisotropic yield criterion \(\Phi\) for plane stress is defined as:
\[
\Phi=a\left|K_{1}+K_{2}\right|^{m}+a\left|K_{1}-K_{2}\right|^{m}+c\left|2 K_{2}\right|^{m}=2 \sigma_{Y}^{m}
\]
where \(\sigma_{Y}\) is the yield stress and \(K_{i=1,2}\) are given by:
\[
K_{1}=\frac{\sigma_{x}+h \sigma_{y}}{2}
\]
\[
K_{2}=\sqrt{\left(\frac{\sigma_{x}-h \sigma_{y}}{2}\right)^{2}+p^{2} \tau_{x y}^{2}}
\]

If \(\mathrm{PB}=0\), the anisotropic material constants \(a, c, h\) and \(p\) are obtained through \(R_{00}, R_{45}\) and \(R_{90}\) :
\[
\begin{aligned}
& a=2-2 \sqrt{\left(\frac{R_{00}}{1+R_{00}}\right)\left(\frac{R_{90}}{1+R_{90}}\right)} \\
& c=2-a \\
& h=\sqrt{\left(\frac{R_{00}}{1+R_{00}}\right)\left(\frac{1+R_{90}}{R_{90}}\right)}
\end{aligned}
\]

The anisotropy parameter \(p\) is calculated implicitly. According to Barlat and Lian the \(R\) value, width to thickness strain ratio, for any angle \(\phi\) can be calculated from:
\[
R_{\phi}=\frac{2 m \sigma_{Y}^{m}}{\left(\frac{\partial \Phi}{\partial \sigma_{x}}+\frac{\partial \Phi}{\partial \sigma_{y}}\right) \sigma_{\phi}}-1
\]
where \(\sigma_{\phi}\) is the uniaxial tension in the \(\phi\) direction. This expression can be used to iteratively calculate the value of \(p\). Let \(\phi=45\) and define a function \(g\) as:
\[
g(p)=\frac{2 m \sigma_{Y}^{m}}{\left(\frac{\partial \Phi}{\partial \sigma_{x}}+\frac{\partial \Phi}{\partial \sigma_{y}}\right) \sigma_{\phi}}-1-R_{45}
\]

An iterative search is used to find the value of \(p\). If \(\mathrm{PB}>0\), material parameters \(a(\mathrm{AB})\), \(c(\mathrm{CB}), h(\mathrm{HB})\), and \(p(\mathrm{~PB})\) are used directly.

The effective stress, given as
\[
\sigma_{\mathrm{eff}}=\left\{\frac{1}{2}\left(a\left|K_{1}+K_{2}\right|^{m}+a\left|K_{1}-K_{2}\right|^{m}+c\left|2 K_{2}\right|^{m}\right)\right\}^{1 / m}
\]
can be output to the D3plot database through *DEFINE_MATERIAL_HISTORIES.
\begin{tabular}{|lllll|}
\hline \hline & \multirow{2}{*}{ *DEFINE_MATERIAL_HISTORIES Properties } \\
Label & \multicolumn{2}{c|}{ Attributes } & Description \\
\hline \hline Effective Stress & - & - & - & - \\
Effective stress \(\sigma_{\text {eff }}\), see above \\
\hline
\end{tabular}

For face centered cubic (FCC) materials \(m=8\) is recommended and for body centered cubic (BCC) materials \(m=6\) may be used. The yield strength of the material can be expressed in terms of \(k\) and \(n\) :
\[
\sigma_{y}=k \varepsilon^{n}=k\left(\varepsilon_{y p}+\bar{\varepsilon}^{p}\right)^{n}
\]
where \(\varepsilon_{y p}\) is the elastic strain to yield and \(\bar{\varepsilon}^{p}\) is the effective plastic strain (logarithmic). If SIGY is set to zero, the strain to yield if found by solving for the intersection of the linearly elastic loading equation with the strain hardening equation:
\[
\begin{aligned}
& \sigma=E \varepsilon \\
& \sigma=k \varepsilon^{n}
\end{aligned}
\]
which gives the elastic strain at yield as:
\[
\varepsilon_{y p}=\left(\frac{E}{k}\right)^{\frac{1}{n-1}}
\]

If SIGY yield is nonzero and greater than 0.02 then:
\[
\varepsilon_{y p}=\left(\frac{\sigma_{y}}{k}\right)^{\frac{1}{n}}
\]

The other available hardening models include the Voce equation given by:
\[
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=a-b e^{-c \varepsilon_{p}},
\]
the Gosh equation given by:
\[
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}-p,
\]
and finally the Hocket-Sherby equation given by:
\[
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=a-b e^{-c \varepsilon_{p}^{n}}
\]

For the Gosh hardening law, the interpretation of the variable SPI is the same, i.e., if set to zero the strain at yield is determined implicitly from the intersection of the strain hardening equation with the linear elastic equation.

To include strain rate effects in the model we multiply the yield stress by a factor depending on the effective plastic strain rate. We use the Cowper-Symonds' model; hence the yield stress can be written as:
\[
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}\right)=\sigma_{\mathrm{Y}}^{S}\left(\varepsilon_{p}\right)\left\{1+\left(\frac{\dot{\varepsilon}_{p}}{C}\right)^{1 / p}\right\}
\]
where \(\sigma_{\mathrm{Y}}^{S}\) denotes the static yield stress, \(C\) and \(p\) are material parameters, and \(\dot{\varepsilon}_{p}\) is the effective plastic strain rate. With HR.EQ. 3 strain rate effects can be defined using a table, in which each load curve in the table defines the yield stress as function of plastic strain for a given strain rate. In contrast to material 24, when the strain rate is larger than that of any curve in the table, the table is extrapolated in the strain rate direction to find the appropriate yield stress.

A kinematic hardening model is implemented following the works of Chaboche and Roussilier. A back stress \(\alpha\) is introduced such that the effective stress is computed as:
\[
\sigma_{\mathrm{eff}}=\sigma_{\mathrm{eff}}\left(\sigma_{11}-2 \alpha_{11}-\alpha_{22}, \sigma_{22}-2 \alpha_{22}-\alpha_{11}, \sigma_{12}-\alpha_{12}\right)
\]

The back stress is the sum of up to four terms according to:
\[
\alpha_{i j}=\sum_{k=1}^{4} \alpha_{i j}^{k}
\]
and the evolution of each back stress component is as follows:
\[
\delta \alpha_{i j}^{k}=C_{k}\left(a_{k} \frac{s_{i j}-\alpha_{i j}}{\sigma_{\mathrm{eff}}}-\alpha_{i j}^{k}\right) \delta \varepsilon_{p}
\]
where \(C_{k}\) and \(a_{k}\) are material parameters, \(s_{i j}\) is the deviatoric stress tensor, \(\sigma_{\text {eff }}\) is the effective stress and \(\varepsilon_{p}\) is the effective plastic strain. The yield condition is for this case modified according to
\[
\begin{aligned}
f\left(\sigma, \alpha, \varepsilon_{p}\right)=\sigma_{\mathrm{eff}}\left(\sigma_{11}-2 \alpha_{11}-\alpha_{22}, \sigma_{22}\right. & \left.-2 \alpha_{22}-\alpha_{11}, \sigma_{12}-\alpha_{12}\right) \\
& -\left\{\sigma_{Y}^{t}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}, 0\right)-\sum_{k=1}^{4} a_{k}\left[1-\exp \left(-C_{k} \varepsilon_{p}\right]\right\} \leq 0\right.
\end{aligned}
\]
in order to get the expected stress strain response for uniaxial stress. The calculated effective stress is stored in history variable \#7.

With hardening rule \(H R=10\), the flow curves in a table definition can be based on different pre-strain values. Hence flow curves can have varying shapes as defined in the corresponding table. For example, the plastic strain distribution as obtained in a first step of a two-stage procedure is initialized in the next stage with *INITIAL_STRESS_SHELL and corresponding values for EPS. With HR \(=10\) this pre-strain is initially transferred to history variable \#9 and all stresses and other history variables are set to zero assuming that the part was subjected to an annealing phase. With EPS now stored on history variable \#9 the table lookup for the actual yield value may now be used to interpolate on differently shaped flow curves.

\section*{A failure criterion for nonlinear strain paths (NLP) in sheet metal forming:}

When the option NLP is used, a necking failure criterion is activated to account for the non-linear strain path effect in sheet metal forming. Based on the traditional Forming Limit Diagram (FLD) for the linear strain path, the Formability Index (F.I.) is calculated for every element in the model throughout the simulation duration. The entire F.I. time history for every element is stored in history variable \#1 in d3plot files, accessible from Post/History menu in LS-PrePost v4.0. In addition to the F.I. output, other useful information stored in other history variables can be found as follows,
1. Formability Index: \#1
2. Strain ratio (in-plane minor strain increment/major strain increment): \#2
3. Effective strain from the planar isotropic assumption: \#3

To enable the output of these history variables to the d3plot files, NEIPS on the *DATABASE_EXTENT_BINARY card must be set to at least 3. The history variables can also be plotted on the formed sheet blank as a color contour map, accessible from Post/FriComp/Misc menu. The index value starts from 0.0, with the onset of necking failure when it reaches 1.0. The F.I. is calculated based on critical effect strain method, as explained in manual pages in *MAT_037. The theoretical background based on two papers can also be found in manual pages in *MAT_037.

When d3plot files are used to plot the history variable \#1 (the F.I.) in color contour, the value in the Max pull-down menu in Post/FriComp needs to be set to Min, meaning that the necking failure occurs only when all integration points through the thickness have reached the critical value of 1.0 (refer to Tharrett and Stoughton's paper in 2003 SAE 2003-01-1157). It is also suggested to set the variable "MAXINT" in *DATABASE_EXTENT_BINARY to the same value as the variable "NIP" in *SECTION_SHELL. In addition, the value in the Avg pull-down menu in Post/FriRang needs to be set to None. The strain path history (major vs. minor strain) of each element can be plotted with the radial dial button Strain Path in Post/FLD.

An example of a partial input for the material is provided below, where the FLD for the linear strain path is defined by the variable NLP with load curve ID 211, where abscissas represent minor strains and ordinates represent major strains.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{*MAT_3-PARAMETER_BARLAT_NLP} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \$ & MID & RO & E & PR & HR & P1 & P2 & ITER \\
\hline & 1 & 2.890E-09 & 6.900 E 04 & 0.330 & 3.000 & & & \\
\hline \multirow[t]{2}{*}{\$} & M & R00 & R45 & R90 & LCID & E0 & SPI & P3 \\
\hline & 8.000 & 0.800 & 0.600 & 0.550 & 99 & & & \\
\hline \multirow[t]{2}{*}{\$} & AOPT & C & P & VLCID & & & NLP & \\
\hline & \multicolumn{3}{|l|}{2.000} & & & & 211 & \\
\hline \multirow[t]{2}{*}{\$} & & & & A1 & A2 & A3 & & \\
\hline & & & & 0.000 & 1.000 & 0.000 & & \\
\hline \$ & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{```
$ Hardening Curve
*DEFINE_CURVE
    99
```}} \\
\hline & & & & & & & & \\
\hline \multicolumn{4}{|c|}{0.000} & 130.000 & & & & \\
\hline \multicolumn{4}{|c|}{0.002} & 134.400 & & & & \\
\hline \multicolumn{4}{|c|}{0.006} & 143.000 & & & & \\
\hline \multicolumn{4}{|c|}{0.010} & 151.300 & & & & \\
\hline \multicolumn{4}{|c|}{0.014} & 159.300 & & & & \\
\hline \multicolumn{9}{|c|}{!} \\
\hline \multicolumn{4}{|c|}{0.900} & 365.000 & & & & \\
\hline \multicolumn{4}{|c|}{1.000} & 365.000 & & & & \\
\hline \multicolumn{9}{|l|}{\$ FLD Definition} \\
\hline \multicolumn{9}{|l|}{*DEFINE_CURVE} \\
\hline \multicolumn{9}{|l|}{211} \\
\hline \multicolumn{4}{|c|}{-0.2} & 0.325 & & & & \\
\hline \multicolumn{4}{|c|}{-0.1054} & 0.2955 & & & & \\
\hline \multicolumn{4}{|c|}{-0.0513} & 0.2585 & & & & \\
\hline \multicolumn{4}{|c|}{0.0000} & 0.2054 & & & & \\
\hline \multicolumn{4}{|c|}{0.0488} & 0.2240 & & & & \\
\hline \multicolumn{4}{|c|}{0.0953} & 0.2396 & & & & \\
\hline \multicolumn{4}{|c|}{0.1398} & 0.2523 & & & & \\
\hline
\end{tabular}

Shown in Figures M36-1, M36-2 and M36-3, predictions and validations of forming limit curves (FLC) of various nonlinear strain paths on a single shell element was done using this new option, for an Aluminum alloy with \(R_{00}=0.8, R_{45}=0.6\) and \(R_{90}=0.55\) and the yield at 130.0 MPa . In each case, the element is further strained in three different paths (uniaxial stress - U.A., plane strain - P.S., and equi-biaxial strain - E.B.) separately, following a pre-straining in uniaxial, plane strain and equi-biaxial strain state, respectively. The forming limits are determined at the end of the secondary straining for each path, when the F.I. has reached the value of 1.0. It is seen that the predicted FLCs (dashed curves) in case of the nonlinear strain paths are totally different from the FLCs under the linear strain paths. It is noted that the current predicted FLCs under nonlinear strain path are obtained by connecting the ends of the three distinctive strain paths. More detailed FLCs can be obtained by straining the elements in more paths between U.A. and P.S. and between P.S. and E.B. In Figure M36-4, time-history plots of F.I., strain ratio and effective strain are shown for uniaxial pre-strain followed by equi-biaxial strain path on the same single element.

Typically, to assess sheet formability, F.I. contour of the entire part should be plotted. Based on the contour plot, non-linear strain path and the F.I. time history of a few elements in the area of concern can be plotted for further study. These plots are similar to those shown in manual pages of *MAT_037.

\section*{Smoothing of the strain ratio \(\beta\) :}
*CONTROL_FORMING_STRAIN_RATIO_SMOOTH applies a smoothing algorithm to reduce output noise level of the strain ratio \(\beta\) (in-plane minor strain increment/major strain increment) which is used to calculate the Formability Index.

\section*{Support of non-integer flow potential exponent \(m\) :}

Starting in Dev139482, non-integer value of the exponent \(m\) is supported for the option NLP.

\section*{Heat treatment with variable HTFLAG:}

Heat treatment for increasing the formability of prestrained aluminum sheets can be simulated through the use of HTFLAG, where the intention is to run a forming simulation in steps involving preforming, springback, heat treatment and postforming. In each step the history is transferred to the next via the use of dynain (see *INTERFACE_SPRINGBACK). The first two steps are performed with HTFLAG \(=0\) according to standard procedures, resulting in a plastic strain field \(\varepsilon_{p}^{0}\) corresponding to the prestrain. The heat treatment step is performed using HTFLAG \(=1\) in a coupled thermomechanical
simulation, where the blank is heated. The coupling between thermal and mechanical is only that the maximum temperature \(T^{0}\) is stored as a history variable in the material model, this corresponding to the heat treatment temperature. Here it is important to export all history variables to the dynein file for the postforming step. In the final postforming step, HTFLAG \(=2\), the yield stress is then augmented by the Hocket-Sherby like term:
\[
\Delta \sigma=b-(b-a) \exp \left[-c\left(\varepsilon_{p}-\varepsilon_{p}^{0}\right)^{d}\right]
\]
where \(a, b, c\) and \(d\) are given as tables as functions of the heat treatment temperature \(T^{0}\) and prestrain \(\varepsilon_{p}^{0}\). That is, in the table definitions each load curve corresponds to a given prestrain and the load curve value is with respect to the heat treatment temperature,
\[
a=a\left(T^{0}, \varepsilon_{p}^{0}\right) \quad b=b\left(T^{0}, \varepsilon_{p}^{0}\right) \quad c=c\left(T^{0}, \varepsilon_{p}^{0}\right) \quad d=d\left(T^{0}, \varepsilon_{p}^{0}\right)
\]

The effect of heat treatment is that the material strength decreases but hardening increases, thus typically:
\[
a \leq 0 \quad b \geq a \quad c>0 \quad d>0
\]

\section*{Revision information:}

The option NLP is available starting in Dev 95576 in explicit dynamic analysis, and in SMP and MPP.
1. Smoothing of \(\beta\) is available starting in Revision 109781.
2. Dev139482: non-integer value of the exponent \(m\) is supported for the option NLP.

Figure M36-1. Nonlinear FLD prediction with uniaxial pre-straining.

Figure M36-2. Nonlinear FLD prediction with plane strain pre-straining.

Figure M36-3. Nonlinear FLD prediction with equi-biaxial pre-straining.

Figure M36-4. Time-history plots of the three history variables.

\section*{*MAT_EXTENDED_3-PARAMETER_BARLAT}

This is Material Type 36E. This model is an extension to the standard 3-parameter Barlat model and allows for different hardening curves and R-values in different directions, see Fleischer et.al. [2007]. The directions in this context are the three uniaxial directions (0, 45 and 90 degrees) and optionally biaxial and shear.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCH00 & LCH45 & LCH90 & LCHBI & LCHSH & HOSF & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCR00 & LCR45 & LCR90 & LCRBI & LCRSH & M & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density.
E Young's modulus, \(E\).
PR
LCH \(X X \quad\) Load curve/table defining uniaxial stress vs. uniaxial strain and strain rate in the given direction (\(X X\) is either \(00,45,90\)). The exact definition is discussed in the Remarks below. LCH00 must be defined, the other defaults to LCH00 if not defined.

LCHBI Load curve/table defining biaxial stress vs. biaxial strain and strain rate, see discussion in the Remarks below for a definition. If not defined this is determined from LCH 00 and the initial R -values to yield a response close to the standard 3-parameter Barlat model.

LCHSH Load curve/table defining shear stress vs. shear strain and strain rate, see discussion in the Remarks below for a definition. If not defined this is ignored to yield a response close to the standard 3parameter Barlat model.

HOSF Hosford option for enhancing convexity of yield surface, set to 1 to activate.

LCR \(X X \quad\) Load curve defining standard R -value vs. uniaxial strain in the given direction (\(X X\) is either \(00,45,90\)). The exact definition is discussed in the Remarks below. Default is a constant R-value of 1.0, a negative input will result in a constant R -value of -LCRXX.

\section*{VARIABLE}

LCRBI

LCRSH

M
AOPT

XP, YP, ZP
A1, A2, A3
V1, V2, V3
D1, D2, D3
BETA Material angle in degrees for AOPT \(=0\) and 3, may be overridden on the element card, see *ELEMENT_SHELL_BETA.

\section*{Formulation:}

The standard 3-parameter Barlat model incorporates plastic anisotropy in a fairly moderate sense, allowing for the specification of R-values in three different directions, together with a stress level in the reference direction (termed rolling or 0 degree direction), but not more than that. To allow for a more accurate representation of a more severe anisotropic material, like in rolled aluminium sheet components, one could migrate to the Barlat YLD2000 model (material 133 in LS-DYNA) which also allows for specifying stress levels in the two remaining directions as well as stress and strain data at an arbitrary point on the yield surface. The properties of extruded aluminium however, are such that neither of these two material models are sufficient to describe its extreme anisotropy. One particular observation from experiments is that anisotropy evolves with deformation, a feature that is not captured in any of the material models discussed so far. The present extended version of material 36 was therefore developed in an attempt to fill this void in the LS-DYNA material library. In short, this material allows for R-values and stress levels in the three directions, together with similar data in biaxial and shear directions. And, these properties are functions of the effective plastic strain so as to allow for deformation induced anisotropy. The following is an explanation of its parameters.

The hardening curves or tables LCH00, LCH45 and LCH90 are here defined as measured stress as function of measured plastic strain (and potentially rate) for uniaxial tension in the direction of interest, i.e., as determined from experimental testing using a standard procedure. The optional biaxial and shear hardening curves LCHBI and LCHSH require some further elaboration, as we assume that a biaxial or shear test reveals that the true stress tensor in the material system expressed as
\[
\sigma=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \pm \sigma
\end{array}\right), \quad \sigma \geq 0
\]
is a function of the (plastic) strain tensor
\[
\varepsilon=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \pm \varepsilon_{2}
\end{array}\right), \quad \varepsilon_{1} \geq 0, \quad \varepsilon_{2} \geq 0
\]

The input hardening curves are \(\sigma\) as function of \(\varepsilon_{1}+\varepsilon_{2}\). The \(\pm\) sign above distinguishes between the biaxial \((+)\) and the shear \((-)\) cases.

Moreover, the curves LCR00, LCR45 and LCR90 defining the R values are as function of the measured plastic strain for uniaxial tension in the direction of interest. The R-values in themselves are defined as the ratio of instantaneous width change to instantaneous thickness change. That is, assume that the width W and thickness T are measured as function of strain. Then the corresponding R-value is given by:
\[
R_{\varphi}=\frac{\frac{d W}{d \varepsilon} / W}{\frac{d T}{d \varepsilon} / T}
\]

These curves are transformed internally to be used with the effective stress and strain properties in the actual model. The effective plastic strain does not coincide with the plastic strain components in other directions than the rolling direction and may be somewhat confusing to the user. Therefore the von Mises work equivalent plastic strain is output as history variable \#2. As for hardening, the optional biaxial and shear R-value curves LCRBI and LCRSH are defined in a special way for which we return to the local plastic strain tensor \(\varepsilon\) as defined above. The biaxial and shear R-values are defined as
\[
R_{b / s}=\frac{\dot{\varepsilon}_{1}}{\dot{\varepsilon}_{2}}
\]
and again the curves are \(R_{b / s}\) as function of \(\varepsilon_{1}+\varepsilon_{2}\). Note here that the suffix \(b\) assumes loading biaxially and \(s\) assumes loading in shear, so the R -values to be defined are always positive.

The option HOSF \(=0\) is equivalent to the standard Barlat model with \(\mathrm{HR}=7\) whose yield function can be expressed by the potential \(\Phi\) as given in the remarks for *MAT_3-PARAMETER_BARLAT. The HOSF = 1 allows for a "Hosford-based" effective stress in the yield function instead of using the Barlat-based effective stress. If the material and principal axes are coincident, the plastic potential \(\Phi\) for \(\mathrm{HOSF}=1\) can be written as
\[
\Phi(\sigma)=\frac{1}{2}\left(\left|\sigma_{1}\right|^{m}+\left|\sigma_{2}\right|^{m}+\left|\sigma_{1}-\sigma_{2}\right|^{m}\right)-\sigma_{y}^{m}
\]

The main difference is that the Barlat-based effective stress contains the orthotropic parameters \(a, c, h\) and \(p\) in the yield function meanwhile the Hosford-based effective stress does not contain any information about the anisotropy. For HOSF \(=1\), the information about direction dependent yielding is directly obtained from the hardening curves LCH00, LCH45 and LCH90. For materials exhibiting very dissimilar \(R\)-values in the different material directions (e.g. typical aluminum extrusion), HOSF \(=0\) might (but does not necessarily) lead to concave yield surfaces which, in turn, might lead to numerical instabilities under certain circumstances. HOSF \(=1\) tends to reduce this effect.

More information on the theoretical and numerical foundations of HOSF \(=1\) can be found on the paper by Andrade, Borrvall, DuBois and Feucht, A Hosford-based orthotropic plasticity model in LS-DYNA (2019).

\section*{*MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC_\{OPTION\}}

This is Material Type 37. This model is for simulating sheet forming processes with an anisotropic material. This model only considers transverse anisotropy. Optionally, a load curve can specify an arbitrary dependency of stress and effective plastic strain. This plasticity model is fully iterative and is available only for shell elements.

Available options include:

\author{
<BLANK> \\ ECHANGE \\ NLP_FAILURE \\ NLP2
}

The ECHANGE option allows the Young's Modulus to change during the simulation. See Remark 4.

The NLP_FAILURE option estimates failure using the Formability Index (F.I.) which accounts for the nonlinear strain paths common in metal forming applications (see Remarks 5 and 7). The option NLP is also available for *MAT_036, *MAT_125, and *MAT_226. A related keyword is *CONTROL_FORMING_STRAIN_RATIO_SMOOTH, which applies a smoothing algorithm to reduce the noise level of the strain ratio \(\beta\) (in-plane minor strain increment/major strain increment) when calculating the F.I.

The NLP_FAILURE option uses effective plastic strain to calculate the onset of necking, whichassumes the necking happens in an instant. However, necking may occur over a longer duration. We developed the keyword option NLP2 to address this issue. NLP2 calculates the damage during forming and accumulates it to predict the sheet metal failure. History variable \#1 when output to d3plot gives this accumulated damage.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & ETAN & \(R\) & HLCID \\
\hline
\end{tabular}

Card 2a. Include this card for the ECHANGE keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline IDSCALE & EA & COE & & & & & \\
\hline
\end{tabular}

Card 2b. Include this card for the NLP_FAILURE keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & ICFLD & & STRAINLT & & \\
\hline
\end{tabular}

Card 2c. Include this card for the NLP2 keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & ICFLD & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & R & HLCID \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Plastic hardening modulus. When this value is negative, normal stresses (either from contact or applied pressure) are considered and *LOAD_SURFACE_STRESS must be used to capture the stresses. This feature is applicable to both shell element types 2 and 16. It is found in some cases this inclusion can improve accuracy.

The negative local \(z\)-stresses caused by the contact pressure can be viewed from d3plot files.

R Anisotropic parameter \(\bar{r}\), also commonly called r -bar, in sheet metal forming literature. Its interpretation is given in Remark 1.

GT.O: Standard formulation
LT.0: The anisotropic parameter is set to \(|R|\). When \(R\) is set to a negative value the algorithm is modified for better stability in sheet thickness or thinning for sheet metal forming involving high strength steels or in cases when the simulation time is long. This feature is available to both element formulations 2 and 16. See Remark 2 and Figure M37-1.

\section*{VARIABLE}

HLCID

\section*{DESCRIPTION}

Load curve ID expressing effective yield stress as a function of effective plastic strain in uniaxial tension.

ECHANGE Card. Additional card included if the using the ECHANGE keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IDSCALE & EA & COE & & & & & \\
Type & I & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

IDSCALE

EA, COE Coefficients defining the Young's modulus with respect to the effective plastic strain, EA is \(E^{A}\) and COE is \(\zeta\). If IDSCALE is defined, these two parameters are not necessary. See Remark 4.

NLP_FAILURE Card. Additional card included if using the NLP_FAILURE keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & ICFLD & & STRAINLT & & \\
Type & & & & F & & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

ICFLD

STRAINLT Critical strain value at which strain averaging is activated. See Remark 8.

NLP2 Card. Additional card included if using NLP2 keyword option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & ICFLD & & & & \\
Type & & & & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

ICFLD

\section*{DESCRIPTION}

ID of a load curve of the Forming Limit Diagram (FLD) under linear strain paths (see Remark 6). In the load curve, abscissas represent minor strains while ordinates represent major strains.

\section*{Remarks:}
1. Formulation. Consider Cartesian reference axes which are parallel to the three symmetry planes of anisotropic behavior. Then, the yield function suggested by Hill [1948] can be written as:
\[
\begin{gathered}
F\left(\sigma_{22}-\sigma_{33}\right)^{2}+G\left(\sigma_{33}-\sigma_{11}\right)^{2}+H\left(\sigma_{11}-\sigma_{22}\right)^{2}+2 L \sigma_{23}^{2}+2 M \sigma_{31}^{2}+2 N \sigma_{12}^{2}-1 \\
\quad=0
\end{gathered}
\]
where \(\sigma_{y 1}, \sigma_{y 2}\), and \(\sigma_{y 3}\) are the tensile yield stresses and \(\sigma_{y 12}, \sigma_{y 23}\), and \(\sigma_{y 31}\) are the shear yield stresses. The constants \(F, G, H, L, M\), and \(N\) are related to the yield stress by:
\[
\begin{aligned}
& 2 F=\frac{1}{\sigma_{y 2}^{2}}+\frac{1}{\sigma_{y 3}^{2}}-\frac{1}{\sigma_{y 1}^{2}} \\
& \begin{array}{c}
2 G=\frac{1}{\sigma_{y 3}^{2}}+\frac{1}{\sigma_{y 1}^{2}}-\frac{1}{\sigma_{y 2}^{2}} \\
2 H=\frac{1}{\sigma_{y 1}^{2}}+\frac{1}{\sigma_{y 2}^{2}}-\frac{1}{\sigma_{y 3}^{2}} \\
2 L=\frac{1}{\sigma_{y 23}^{2}} \\
2 M=\frac{1}{\sigma_{y 31}^{2}} \\
2 N=\frac{1}{\sigma_{y 12}^{2}}
\end{array}
\end{aligned}
\]

The isotropic case of von Mises plasticity can be recovered by setting:
\[
F=G=H=\frac{1}{2 \sigma_{y}^{2}}
\]
and
\[
L=M=N=\frac{3}{2 \sigma_{y}^{2}}
\]

For the particular case of transverse anisotropy, where properties do not vary in the \(x_{1}-x_{2}\) plane, the following relations hold:
\[
\begin{aligned}
2 F & =2 G=\frac{1}{\sigma_{y 3}^{2}} \\
2 H & =\frac{2}{\sigma_{y}^{2}}-\frac{1}{\sigma_{y 3}^{2}} \\
N & =\frac{2}{\sigma_{y}^{2}}-\frac{1}{2 \sigma_{y 3}^{2}}
\end{aligned}
\]
where it has been assumed that \(\sigma_{y 1}=\sigma_{y 2}=\sigma_{y}\).
Letting \(K=\sigma_{y} / \sigma_{y 3}\), the yield criteria can be written as:
\[
F(\sigma)=\sigma_{e}=\sigma_{y},
\]
where
\[
\begin{aligned}
F(\sigma) \equiv\left[\sigma_{11}^{2}\right. & +\sigma_{22}^{2}+K^{2} \sigma_{33}^{2}-K^{2} \sigma_{33}\left(\sigma_{11}+\sigma_{22}\right)-\left(2-K^{2}\right) \sigma_{11} \sigma_{22} \\
& \left.+2 L \sigma_{y}^{2}\left(\sigma_{23}^{2}+\sigma_{31}^{2}\right)+2\left(2-\frac{1}{2} K^{2}\right) \sigma_{12}^{2}\right]^{1 / 2} .
\end{aligned}
\]

The rate of plastic strain is assumed to be normal to the yield surface so \(\dot{\varepsilon}_{i j}^{p}\) is found from:
\[
\dot{\varepsilon}_{i j}^{p}=\lambda \frac{\partial F}{\partial \sigma_{i j}} .
\]

Now consider the case of plane stress, where \(\sigma_{33}=0\). Also, define the anisotropy input parameter, \(R\), as the ratio of the in-plane plastic strain rate to the out-of-plane plastic strain rate,
\[
R=\frac{\dot{\varepsilon}_{22}^{p}}{\dot{\varepsilon}_{33}^{p}} .
\]

It then follows that
\[
R=\frac{2}{K^{2}}-1 .
\]

Using the plane stress assumption and the definition of \(R\), the yield function may now be written as:

Time=0.010271, \#nodes=4594, \#elem=4349
Contours of \% Thickness Reduction based on current z-strain \(\min =0.0093799\), at elem\#42249
\(\max =22.1816\), at elem\#39875

With negative \(R\)-value

Time=0.010271, \#nodes=4594, \#elem=4349
Contours of \% Thickness Reduction based on current z-strain \(\min =0.0597092\), at elem\#39814 \(\max =21.2252\), at elem\#40457

\section*{Thinning \%}

Figure M37-1. Thinning contour comparison.
\[
F(\sigma)=\left[\sigma_{11}^{2}+\sigma_{22}^{2}-\frac{2 R}{R+1} \sigma_{11} \sigma_{22}+2 \frac{2 R+1}{R+1} \sigma_{12}^{2}\right]^{1 / 2}
\]
2. Anisotropic Parameter R. When the \(R\) value is set to a negative value, it stabilizes the sheet thickness or thinning in sheet metal forming for some high strength types of steel or in cases where the simulation time is long. In Figure M37-1, a comparison of thinning contours is shown on a U-channel forming (one-half model) using negative and positive \(R\) values. Maximum thinning on the draw wall is slight higher in the negative \(R\) case than that in the positive \(R\) case.
3. Comparison to other Material Models. This model and other plasticity models for shell elements, such as *MAT_PIECEWISE_LINEAR_PLASTICITY, differ in several ways. First, the yield function for plane stress does not include the transverse shear stress components which are updated elastically. Secondly, this model is always fully iterative. Consequently, when comparing results for the isotropic case where \(R=1.0\) with other isotropic model, differences in the results are expected, even though they are usually insignificant.
4. ECHANGE. In the original implementation, we assume that the Young's modulus is constant. However, some researchers have found that the Young's modulus decreases with respect to the increase of effective plastic strain. To accommodate this observation, we added the keyword option ECHANGE.

We implemented two methods for defining the change of Young's modulus. For the first method, you specify a load curve to define the scale factor of the Young's modulus with respect to the effective plastic strain. The value of this scale factor

Figure M37-2. Calculation of F.I. based on critical equivalent strain method.
should decrease from 1.0 to 0.0 with the increase of effective plastic strain. The second method uses a function as proposed by Yoshida [2003]:
\[
E=E^{0}-\left(E^{0}-E^{A}\right)[1-\exp (-\zeta \bar{\varepsilon})] .
\]
5. Nonlinear Strain Paths. When the keyword option NLP_FAILURE is used, a necking failure criterion independent of strain path changes is activated. In sheet metal forming, as strain path history (plotted on in-plane major and minor strain space) of an element becomes non-linear, the position and shape of a traditional strain-based Forming Limit Diagram (FLD) changes. This option provides a simple formability index (F.I.) which remains invariant regardless of the presence of the non-linear strain paths in the model and can be used to identify if the element has reached its necking limit.

Formability index (F.I) is calculated, as illustrated in Figure M37-2, for every element in the sheet blank throughout the simulation duration. The value of F.I. is 0.0 for virgin material and reaches maximum of 1.0 when the material fails. The theoretical background can be found in two papers: 1) T.B. Stoughton, X. Zhu, "Review of Theoretical Models of the Strain-Based FLD and their Relevance to the Stress-Based FLD, International Journal of Plasticity", V. 20, Issues 8-9, P. 1463-1486, 2003; and 2) Danielle Zeng, Xinhai Zhu, Laurent B. Chappuis, Z. Cedric Xia, "A Path Independent Forming Limited Criterion for Sheet Metal Forming Simulations", 2008 SAE Proceedings, Detroit MI, April, 2008.
6. ICFLD. The load curve input for ICFLD follows keyword format in *DEFINE_CURVE, with abscissas as minor strains and ordinates as major strains.

ICFLD can also be specified using the *DEFINE_CURVE_FLC keyword where the sheet metal thickness and strain hardening value are used. Detailed usage information can be found in the manual entry for *DEFINE_CURVE_FLC.
7. Formability Index Output. The formability index is output as a history variable \#1 in d3plot files. In addition to the F.I. values, starting in Revision 95599, the strain ratio \(\beta\) and effective plastic strain \(\bar{\varepsilon}\) are written to the d3plot database as history variables \#2 and \#3, respectively provided NEIPS on the second field of the first card of *DATABASE_EXTENT_BINARY is set to at least 3 . The contour map of history variables can be plotted in LS-PrePost, accessible in Post/FriComp, under Misc, and by Element, under Post/History. It is suggested that variable MAXINT in *DATABASE_EXTENT_BINARY be set to the same value of as the NIP field for the *SECTION_SHELL keyword.
8. STRAINLT. By setting the STRAINLT field, strains (and strain ratios) can be averaged to reduce noise, which, in turn, affect the calculation of the formability index. The strain STRAINLT causes the formability index calculation to use only time averaged strains. Reasonable STRAINLT values range from \(5 \times 10^{-3}\) to \(10^{-2}\).

\section*{*MAT_BLATZ-KO_FOAM}

This is Material Type 38. This model is for the definition of rubber like foams of polyurethane. It is a simple one-parameter model with a fixed Poisson's ratio of .25 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & REF & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
G Shear modulus
REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: off
EQ.1.0: on

\section*{Remarks:}

The strain energy functional for the compressible foam model is given by
\[
W=\frac{G}{2}\left(\frac{\mathrm{II}}{\mathrm{III}}+2 \sqrt{\mathrm{III}}-5\right) .
\]

Blatz and Ko [1962] suggested this form for a 47 percent volume polyurethane foam rubber with a Poisson's ratio of 0.25 . In terms of the strain invariants, I, II, and III, the second Piola-Kirchhoff stresses are given as
\[
S^{i j}=G\left[\left(I \delta_{i j}-C_{i j}\right) \frac{1}{\mathrm{III}}+\left(\sqrt{\mathrm{III}}-\frac{\mathrm{II}}{\mathrm{III}}\right) C_{i j}^{-1}\right],
\]
where \(C_{i j}\) is the right Cauchy-Green strain tensor. This stress measure is transformed to the Cauchy stress, \(\sigma_{i j}\), according to the relationship
\[
\sigma^{i j}=\mathrm{III}^{-1 / 2} F_{i k} F_{j l} S_{l k}
\]
where \(F_{i j}\) is the deformation gradient tensor.

\section*{*MAT_FLD_TRANSVERSELY_ANISOTROPIC}

This is Material Type 39. This model is for simulating sheet forming processes with anisotropic material. Only transverse anisotropy can be considered. Optionally, an arbitrary dependency of stress and effective plastic strain can be defined using a load curve. A Forming Limit Diagram (FLD) can be defined using a curve and is used to compute the maximum strain ratio which can be plotted in LS-PrePost. This plasticity model is fully iterative and is available only for shell elements. Also see the Remarks below.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & R & HLCID \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCFLD & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Plastic hardening modulus; see Remarks for MAT 37.
R Anisotropic hardening parameter; see Remarks for MAT 37.
HLCID Load curve ID defining effective stress as a function of effective plastic strain. The yield stress and hardening modulus are ignored with this option.

Plane Strain

Figure M39-1. Forming limit diagram.

\section*{VARIABLE}

LCFLD

\section*{DESCRIPTION}

Load curve ID defining the Forming Limit Diagram. Minor strains in percent are defined as abscissa values and major strains in percent are defined as ordinate values. The forming limit diagram is shown in Figure M39-1. In defining the curve list pairs of minor and major strains starting with the left most point and ending with the right most point; see *DEFINE_CURVE.

\section*{Remarks:}

See material model 37 for the theoretical basis. The first history variable is the maximum strain ratio:
\[
\frac{\varepsilon_{\text {major }_{\text {workpiece }}}}{\varepsilon_{\text {major }_{\text {fld }}}}
\]
corresponding to \(\varepsilon_{\text {minor }}\) workpiece .

\section*{*MAT_NONLINEAR_ORTHOTROPIC}

This is Material Type 40. This model allows the definition of an orthotropic nonlinear elastic material based on a finite strain formulation with the initial geometry as the reference. Failure is optional with two failure criteria available. Optionally, stiffness proportional damping can be defined. In the stress initialization phase, temperatures can be varied to impose the initial stresses. This model is only available for shell elements, solid elements, and thick shell formulations 3,5 , and 7 .

WARNING: We do not recommend using this model at this time since it can be unstable especially if the stress-strain curves increase in stiffness with increasing strain.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & DT & TRAMP & ALPHA & & \\
Type & F & F & F & F & F & F & & \\
Default & none & none & none & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDA & LCIDB & EFAIL & DTFAIL & CDAMP & AOPT & MACF & ATRACK \\
Type & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) & 1 & 1 \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

Optional Card 6 (Applies to solid elements only)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDC & LCIDAB & LCIDBC & LCIDCA & & & & \\
Type & F & F & F & F & & & & \\
Default & optional & optional & optional & optional & & & & \\
\hline
\end{tabular}

\section*{VARIABLE \\ RO}

MID Material identification. A unique number or label must be specified (see *PART).

Mass density.

\section*{DESCRIPTION}

EA
EB
EC
PRBA
PRCA
PRCB
GAB
GBC
GCA
DT

TRAMP
ALPHA
LCIDA

LCIDB Optional load curve ID defining the nominal stress versus strain along \(b\)-axis. Strain is defined as \(\lambda_{b}-1\) where \(\lambda_{b}\) is the stretch ratio along the \(b\)-axis.

EFAIL \(\quad\) Failure strain, \(\lambda-1\).
DTFAIL Time step for automatic element erosion
CDAMP Damping coefficient.
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of

\section*{VARIABLE}

\section*{DESCRIPTION}
the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation

ATRACK Material \(a\)-axis tracking flag (shell elements only)
EQ.0: \(a\)-axis rotates with element (default)
EQ.1: \(a\)-axis also tracks deformation

XP, YP, ZP \(\quad\) Define coordinates of point \(p\) for AOPT \(=1\) and 4.
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\left(a_{1}, a_{2}, a_{3}\right)\) define components of vector a for \(\mathrm{AOPT}=2\).
D1, D2, D3 \(\quad\left(d_{1}, d_{2}, d_{3}\right)\) define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).
\(\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3 \quad\left(v_{1}, v_{2}, v_{3}\right)\) define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4 .
BETA

LCIDC Load curve ID defining the nominal stress versus strain along caxis. Strain is defined as \(\lambda_{c}-1\) where \(\lambda_{c}\) is the stretch ratio along the \(c\)-axis.

LCIDAB Load curve ID defining the nominal \(a b\) shear stress versus \(a b\)-strain in the \(a b\)-plane. Strain is defined as the \(\sin \left(\gamma_{a b}\right)\) where \(\gamma_{a b}\) is the shear angle.

LCIDBC Load curve ID defining the nominal \(b c\) shear stress versus \(b c\)-strain in the \(b c\)-plane. Strain is defined as the \(\sin \left(\gamma_{b c}\right)\) where \(\gamma_{b c}\) is the shear angle.

LCIDCA Load curve ID defining the nominal ca shear stress versus \(c a\)-strain in the \(c a\)-plane. Strain is defined as the \(\sin \left(\gamma_{c a}\right)\) where \(\gamma_{c a}\) is the shear angle.

\section*{Remarks:}
1. The ATRACK field. The initial material directions are set using AOPT and the related data. By default, the material directions in shell elements are updated each cycle based on the rotation of the 1-2 edge, or else the rotation of all edges if the invariant node numbering option is set on *CONTROL_ACCURACY. When ATRACK=1, an optional scheme is used in which the \(a\)-direction of the material tracks element deformation as well as rotation. For more information, see Remark 2 of *MAT_COMPOSITE_DAMAGE.
2. Computing stresses. The stress versus stretch curves LCIDA, LCIDB, LCIDC, LCIDAB, LCIDBC, and LCIDCA are only used to obtain the slope (stiffness) to fill up the \(|\mathrm{C}|\) matrix and are not used directly to compute the stresses. The stresses are computed using the \(|\mathrm{C}|\) matrix and the Green-St Venant strain tensor.

\section*{*MAT_USER_DEFINED_MATERIAL_MODELS}

These are Material Types 41-50. The user must provide a material subroutine. See also Appendix A. This keyword input is used to define material properties for the subroutine. Isotropic, anisotropic, thermal, and hyperelastic material models with failure can be handled.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & MT & LMC & NHV & IORTHO & IBULK & IG \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IVECT & IFAIL & ITHERM & IHYPER & IEOS & LMCA & EXT & EPSHV \\
\hline
\end{tabular}

Card 3. Include this card if IORTHO = 1 or 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & MACF & XP & YP & ZP & A1 & A2 & A3 \\
\hline
\end{tabular}

Card 4. Include this card if IORTHO \(=1\) or 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & IEVTS \\
\hline
\end{tabular}

Card 5. Include as many instantiations of this card as required to define LMC fields.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
\hline
\end{tabular}

Card 6. Include as many instantiations of this card as required to define LMCA fields.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & MT & LMC & NHV & IORTHO & IBULK & IG \\
Type & A & F & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Material identification. A unique number or label must be specified (see *PART).

RO Mass density
MT User material type (41-50 inclusive). A number between 41 and 50 must be chosen. If \(\mathrm{MT}<0\), subroutine rwumat in dyn21.f is called, where the material parameter reading can be modified.

WARNING: If two or more materials in an input deck share the same MT value, those materials must have the same values of other variables on Cards 1 and 2 except for MID and RO.

LMC Length of material constant array which is equal to the number of material constants to be input. See Remark 2.

NHV Number of history variables to be stored; see Appendix A. When the model is to be used with an equation of state, NHV must be increased by 4 to allocate the storage required by the equation of state.

IORTHO/
ISPOT

IBULK Address of bulk modulus in material constants array; see Appendix A.

IG
Orthotropic/spot weld thinning flag:
EQ.0: If the material is not orthotropic and is not used with spot weld thinning

EQ.1: If the material is orthotropic
EQ.2: If material is used with spot weld thinning
EQ.3: If material is orthotropic and used with spot weld thinning

Address of shear modulus in material constants array; see Appen- dix A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IVECT & IFAIL & ITHERM & IHYPER & IEOS & LMCA & EXT & EPSHV \\
Type & । & । & 1 & 1 & । & 1 & 1 & 1 \\
\hline
\end{tabular}

VARIABLE
IVECT

IFAIL Failure flag.
EQ.0: No failure
EQ.1: Allows failure of shell and solid elements
LT.O: |IFAIL| is the address of NUMINT in the material constants array. NUMINT is defined as the number of failed integration points that will trigger element deletion. This option applies only to shell and solid elements (release 5 of version 971).

ITHERM Temperature flag:
EQ.0: Off
EQ.1: On. Compute element temperature.
IHYPER Deformation gradient flag (see Appendix A):
EQ.0: Do not compute deformation gradient.
EQ.-1: Same as 1, except if IORTHO = 1 or 3, the deformation gradient is in the global coordinate system.
EQ.-10: Same as -1 , except that this will enforce full integration for elements \(-1,-2\) and 2.

EQ.1: Compute deformation gradient for bricks and shells. If IORTHO = 1 or 3 , the deformation gradient is in the local coordinate system instead of the global coordinate system.

EQ.10: Same as 1, except that this will enforce full integration for elements \(-1,-2\) and 2.

\section*{VARIABLE}

IEOS

LMCA

EPSHV

EXT Flag to call external user material routines from other codes. See the file dyn21extumat.F for documentation.

\section*{DESCRIPTION}

EQ.3: Compute deformation gradient for shells from the nodal coordinates in the global coordinate system.

Equation of state flag:
EQ.0: Off
EQ.1: On

Length of additional material constant array

Indicates which history variable is used to store effective plastic strain (if used). EPSHV is used in conjunction with EXT \(\neq 0\) to facilitate post-processing.

Orthotropic Card 1. Additional card for IORTHO \(=1\) or 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & MACF & XP & YP & ZP & A1 & A2 & A3 \\
Type & F & I & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see *MAT_002 for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then, for shells only, rotated about the shell element normal by an angle BETA

EQ.1.0: Locally orthotropic with material axes determined by a point in space and the global location of the element center; this is the \(a\)-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

\section*{VARIABLE}

MACF Material axes change flag for brick elements for quick changes:
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\)
EQ.3: Switch material axes \(a\) and \(c\)
EQ.4: Switch material axes \(b\) and \(c\)
\(\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad\) Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector \(\mathbf{a}\) for \(\mathrm{AOPT}=2\)

Orthotropic Card 2. Additional card for IORTHO \(=1\) or 3 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & IEVTS \\
Type & F & F & F & F & F & F & F & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{VARIABLE}

BETA

IEVTS

\section*{DESCRIPTION}

Material angle in degrees for \(\mathrm{AOPT}=0\) (shells only) and \(\mathrm{AOPT}=3\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO.

Address of \(E_{a}\) for orthotropic material with thick shell formulation 5 (see Remark 4)

Define LMC material parameters using 8 parameters per card. See Remark 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Define LMCA material parameters using 8 parameters per card.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

First material parameter.
P2 Second material parameter.
P3 Third material parameter.
P4 Fourth material parameter.

PLMC \(\quad \mathrm{LMC}^{\text {th }}\) material parameter.

\section*{Remarks:}
1. Cohesive Elements. Material models for the cohesive element (solid element type 19) uses the first two material parameters to set flags in the element formulation.
a) P1. The P1 field controls how the density is used to calculate the mass when determining the tractions at mid-surface (tractions are calculated on a surface midway between the surfaces defined by nodes 1-2-3-4 and 5-6-7-8). If P1 is set to 1.0 , then the density is per unit area of the mid-surface instead of per unit volume. Note that the cohesive element formulation permits the element to have zero or negative volume.
b) P2. The second parameter, P2, specifies the number of integration points (one to four) that are required to fail for the element to fail. If it is zero, the element will not fail regardless of IFAIL. The recommended value for P2 is 1 .
c) Other Parameters. The cohesive element only uses MID, RO, MT, LMC, NHV, IFAIL and IVECT in addition to the material parameters.
d) Appendix R. See Appendix \(R\) for the specifics of the umat subroutine requirements for the cohesive element.
2. Material Constants. If IORTHO \(=0, \mathrm{LMC}\) must be \(\leq 48\). If IORTHO \(=1, \mathrm{LMC}\) must be \(\leq 40\). If more material constants are needed, LMCA may be used to create an additional material constant array. There is no limit on the size of LMCA.
3. Spot weld thinning. If the user-defined material is used for beam or brick element spot welds that are tied to shell elements, and SPOTHIN \(>0\) on *CONTROL_CONTACT, then spot weld thinning will be done for those shells if IS\(\mathrm{POT}=2\). Otherwise, it will not be done.
4. Thick Shell Formulation 5. IEVTS is optional and is used only by thick shell formulation 5. It points to the position of \(E_{a}\) in the material constants array. Following \(E_{a}\), the next 5 material constants must be \(E_{b}, E_{c}, v_{b a}, v_{c a}\), and \(v_{c b}\). This data enables thick shell formulation 5 to calculate an accurate thickness strain, otherwise the thickness strain will be based on the elastic constants pointed to by IBULK and IG.

\section*{*MAT_BAMMAN}

This is Material Type 51. It allows the modeling of temperature and rate dependent plasticity with a fairly complex model that has many input parameters [Bammann 1989].
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & T & HC & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C9 & C10 & C 11 & C 12 & C 13 & C 14 & C 15 & C 16 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C17 & C18 & A1 & A2 & A4 & A5 & A6 & KAPPA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E Young's modulus (psi)

\section*{VARIABLE}

\section*{PR}

T
HC
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
A1
A2
A4

\section*{DESCRIPTION}

Poisson's ratio
Initial temperature (\({ }^{\circ} \mathrm{R}\), degrees Rankine)
Heat generation coefficient \(\left({ }^{\circ} \mathrm{R} / \mathrm{psi}\right)\)
psi
\({ }^{\circ} \mathrm{R}\)
psi
\({ }^{\circ} \mathrm{R}\)
\(\mathrm{s}^{-1}\)
\({ }^{\circ} \mathrm{R}\)
1/psi
\({ }^{\circ} \mathrm{R}\)
psi
\({ }^{\circ} \mathrm{R}\)
1/psi-s
\({ }^{\circ} \mathrm{R}\)
1/psi
\({ }^{\circ} \mathrm{R}\)
psi
\({ }^{\circ} \mathrm{R}\)
1/psi-s
\(\alpha_{1}\), initial value of internal state variable 1
\(\alpha_{2}\), initial value of internal state variable 2. Note: \(\alpha_{3}=-\left(\alpha_{1}+\alpha_{2}\right)\)
\(\alpha_{4}\), initial value of internal state variable 3

\section*{VARIABLE}

A5

A6

KAPPA \(\quad \kappa\), initial value of internal state variable 6

Unit Conversion Table
\begin{tabular}{|c|c|c|}
\hline \(\sec \times \mathrm{psi} \times{ }^{\circ} \mathrm{R}\) & \(\sec \times \mathrm{MPa} \times{ }^{\circ} \mathrm{R}\) & \(\sec \times \mathrm{MPA} \times{ }^{\circ} \mathrm{K}\) \\
\hline \(\mathrm{C}_{1}\) & \(\times 1 / 145\) & \(\times 1 / 145\) \\
\hline \(\mathrm{C}_{2}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{3}\) & \(\times 1 / 145\) & \(\times 1 / 145\) \\
\hline \(\mathrm{C}_{4}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{5}\) & - & - \\
\hline \(\mathrm{C}_{6}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{7}\) & \(\times 145\) & \(\times 145\) \\
\hline \(\mathrm{C}_{8}\) & - & \(\times 5 / 9\) \\
\hline C9 & \(\times 1 / 145\) & \(\times 1 / 145\) \\
\hline \(\mathrm{C}_{10}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{11}\) & \(\times 145\) & \(\times 145\) \\
\hline \(\mathrm{C}_{12}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{13}\) & \(\times 145\) & \(\times 145\) \\
\hline \(\mathrm{C}_{14}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{15}\) & \(\times 1 / 145\) & \(\times 1 / 145\) \\
\hline \(\mathrm{C}_{16}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C}_{17}\) & \(\times 145\) & \(\times 145\) \\
\hline \(\mathrm{C}_{18}\) & - & \(\times 5 / 9\) \\
\hline \(\mathrm{C} 0=\mathrm{HC}\) & \(\times 145\) & \(\times(145)(5 / 9)\) \\
\hline E & \(\times 1 / 145\) & \(\times 1 / 145\) \\
\hline \(v\) & - & - \\
\hline T & - & \(\times 5 / 9\) \\
\hline
\end{tabular}

\section*{Remarks:}

The kinematics associated with the model are discussed in references [Hill 1948, Bammann and Aifantis 1987, Bammann 1989]. The description below is taken nearly verbatim from Bammann [1989].

With the assumption of linear elasticity, we can write:
\[
\stackrel{o}{\sigma}=\lambda \operatorname{tr}\left(\mathbf{D}^{e}\right) \mathbf{1}+2 \mu \mathbf{D}^{e},
\]
where the Cauchy stress \(\sigma\) is convected with the elastic spin \(\mathbf{W}^{e}\) as,
\[
\stackrel{o}{\sigma}=\dot{\boldsymbol{\sigma}}-\mathbf{W}^{e} \boldsymbol{\sigma}+\boldsymbol{\sigma} \mathbf{W}^{e} .
\]

This is equivalent to writing the constitutive model with respect to a set of directors whose direction is defined by the plastic deformation [Bammann and Aifantis 1987, Bammann and Johnson 1987]. Decomposing both the skew symmetric and symmetric parts of the velocity gradient into elastic and plastic parts, we write for the elastic stretching \(\mathbf{D}^{e}\) and the elastic spin \(\mathbf{W}^{e}\),
\[
\mathbf{D}^{e}=\mathbf{D}-\mathbf{D}^{p}-\mathbf{D}^{t h}, \quad \mathbf{W}^{e}=\mathbf{W}=\mathbf{W}^{p}
\]

Within this structure it is now necessary to prescribe an equation for the plastic spin \(\mathbf{W}^{p}\) in addition to the normally prescribed flow rule for \(\mathbf{D}^{p}\) and the stretching due to the thermal expansion \(\mathrm{D}^{\text {th }}\). As proposed, we assume a flow rule of the form,
\[
\mathbf{D}^{p}=f(T) \sinh \left[\frac{|\xi|-\kappa-Y(T)}{V(T)}\right] \frac{\xi^{\prime}}{\left|\xi^{\prime}\right|} .
\]
where \(T\) is the temperature, \(\kappa\) is the scalar hardening variable, and \(\xi^{\prime}\) is the difference between the deviatoric Cauchy stress \(\sigma^{\prime}\) and the tensor variable \(\alpha^{\prime}\),
\[
\xi^{\prime}=\sigma^{\prime}-\alpha^{\prime}
\]
and \(f(T), Y(T)\), and \(V(T)\) are scalar functions whose specific dependence upon the temperature is given below. Assuming isotropic thermal expansion and introducing the expansion coefficient \(\dot{A}\), the thermal stretching can be written,
\[
\mathbf{D}^{t h}=\dot{A} \dot{T} \mathbf{1}
\]

The evolution of the internal variables \(\alpha\) and \(\kappa\) are prescribed in a hardening minus recovery format as,
\[
\begin{aligned}
& \stackrel{o}{\alpha}=h(T) \mathbf{D}^{p}-\left[r_{d}(T)\left|\mathbf{D}^{p}\right|+r_{s}(T)\right]|\boldsymbol{\alpha}| \boldsymbol{\alpha} \\
& \dot{\boldsymbol{\kappa}}=H(T) \mathbf{D}^{p}-\left[R_{d}(T)\left|\mathbf{D}^{p}\right|+R_{s}(T)\right] \boldsymbol{\kappa}^{2}
\end{aligned}
\]
where \(h\) and \(H\) are the hardening moduli, \(r_{s}(T)\) and \(R_{s}(T)\) are scalar functions describing the diffusion controlled 'static' or 'thermal' recovery, and \(r_{d}(T)\) and \(R_{d}(T)\) are the functions describing dynamic recovery.

If we assume that \(\mathbf{W}^{p}=0\), we recover the Jaumann stress rate which results in the prediction of an oscillatory shear stress response in simple shear when coupled with a Prager kinematic hardening assumption [Johnson and Bammann 1984]. Alternatively, we can choose,
\[
\mathbf{W}^{p}=\mathbf{R}^{T} \mathbf{U} \mathbf{U}^{-1} \mathbf{R},
\]
which recovers the Green-Naghdi rate of Cauchy stress and has been shown to be equivalent to Mandel's isoclinic state [Bammann and Aifantis 1987]. The model employing this
rate allows a reasonable prediction of directional softening for some materials, but in general under-predicts the softening and does not accurately predict the axial stresses which occur in the torsion of the thin walled tube.

The final equation necessary to complete our description of high strain rate deformation is one which allows us to compute the temperature change during the deformation. In the absence of a coupled thermo-mechanical finite element code we assume adiabatic temperature change and follow the empirical assumption that \(90-95 \%\) of the plastic work is dissipated as heat. Hence,
\[
\dot{T}=\frac{.9}{\rho C_{v}}\left(\sigma \cdot \mathbf{D}^{p}\right)
\]
where \(\rho\) is the density of the material and \(C_{v}\) is the specific heat.
In terms of the input parameters, the functions defined above become:
\[
\begin{aligned}
V(T) & =\mathrm{C} 1 \exp (-\mathrm{C} 2 / T) & r_{s}(T) & =\mathrm{C} 11 \exp (-\mathrm{C} 12 / T) \\
Y(T) & =\mathrm{C} 3 \exp (\mathrm{C} 4 / T) & R_{d}(T) & =\mathrm{C} 13 \exp (-\mathrm{C} 14 / T) \\
f(T) & =\mathrm{C} 5 \exp (-\mathrm{C} 6 / T) & H(T) & =\mathrm{C} 15 \exp (\mathrm{C} 16 / T) \\
r_{d}(T) & =\mathrm{C} 7 \exp (-\mathrm{C} 8 / T) & R_{s}(T) & =\mathrm{C} 17 \exp (-\mathrm{C} 18 / T) \\
h(T) & =\mathrm{C} 9 \exp (\mathrm{C} 10 / T) & &
\end{aligned}
\]
and the heat generation coefficient is
\[
\mathrm{HC}=\frac{0.9}{\rho C_{v}}
\]

\section*{*MAT_BAMMAN_DAMAGE}

This is Material Type 52. This is an extension of model 51 which includes the modeling of damage. See Bamman et al. [1990].
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & T & HC & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C9 & C10 & C 11 & C 12 & C 13 & C 14 & C 15 & C 16 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C17 & C18 & A1 & A2 & A3 & A4 & A5 & A6 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & N & D0 & FS & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline C17 & 1/psi-s \\
\hline C18 & \({ }^{\circ} \mathrm{R}\) \\
\hline A1 & \(\alpha_{1}\), initial value of internal state variable 1 \\
\hline A2 & \(\alpha_{2}\), initial value of internal state variable 2 \\
\hline A3 & \(\alpha_{3}\), initial value of internal state variable 3 \\
\hline A4 & \(\alpha_{4}\), initial value of internal state variable 4 \\
\hline A5 & \(\alpha_{5}\), initial value of internal state variable 5 \\
\hline A6 & \(\alpha_{6}\), initial value of internal state variable 6 \\
\hline N & Exponent in damage evolution \\
\hline D0 & Initial damage (porosity) \\
\hline FS & Failure strain for erosion \\
\hline
\end{tabular}

\section*{Remarks:}

The evolution of the damage parameter, \(\phi\) is defined by Bammann et al. [1990]
\[
\dot{\phi}=\beta\left[\frac{1}{(1-\phi)^{N}}-(1-\phi)\right]^{\left|D^{p}\right|}
\]
in which
\[
\beta=\sinh \left[\frac{2(2 N-1) p}{(2 N-1) \bar{\sigma}}\right],
\]
where \(p\) is the pressure and \(\bar{\sigma}\) is the effective stress.

\section*{*MAT_CLOSED_CELL_FOAM}

This is Material Type 53. This material models low density, closed cell polyurethane foam. It is for simulating impact limiters in automotive applications. The effect of the confined air pressure is included with the air being treated as an ideal gas. The general behavior is isotropic with uncoupled components of the stress tensor.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & A & B & C & P0 & PH \\
Type & A & F & F & F & F & F & F & F \\
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAMMA0 & LCID & & & & & & \\
Type & F & I & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
A \(\quad a\), factor for yield stress definition; see Remarks below.
B \(\quad b\), factor for yield stress definition; see Remarks below.
C \(\quad c\), factor for yield stress definition; see Remarks below.
P0 Initial foam pressure, \(p_{0}\)

PHI Ratio of foam to polymer density, \(\phi\)
GAMMA0
LCID Optional load curve defining the von Mises yield stress as a function of \(-\gamma\). If the load curve ID is given, the yield stress is taken from the curve and the constants \(a, b\), and \(c\) are not needed. The

\section*{VARIABLE}

\section*{DESCRIPTION}
load curve is defined in the positive quadrant, that is, positive values of \(\gamma\) are defined as negative values on the abscissa.

\section*{Remarks:}

A rigid, low density, closed cell, polyurethane foam model developed at Sandia Laboratories [Neilsen, Morgan and Krieg 1987] has been recently implemented for modeling impact limiters in automotive applications. A number of such foams were tested at Sandia and reasonable fits to the experimental data were obtained.

In some respects this model is similar to the crushable honeycomb model type 26 in that the components of the stress tensor are uncoupled until full volumetric compaction is achieved. However, unlike the honeycomb model this material possesses no directionality but includes the effects of confined air pressure in its overall response characteristics.
\[
\sigma_{i j}=\sigma_{i j}^{\mathrm{sk}}-\delta_{i j} \sigma^{\mathrm{air}}
\]
where \(\sigma_{i j}^{\text {sk }}\) is the skeletal stress and \(\sigma^{\text {air }}\) is the air pressure. \(\sigma^{\text {air }}\) is computed from the equation:
\[
\sigma^{\mathrm{air}}=-\frac{p_{0} \gamma}{1+\gamma-\phi}
\]
where \(p_{0}\) is the initial foam pressure, usually taken as the atmospheric pressure, and \(\gamma\) defines the volumetric strain
\[
\gamma=V-1+\gamma_{0}
\]

Here, \(V\) is the relative volume, defined as the ratio of the current volume to the initial volume, and \(\gamma_{0}\) is the initial volumetric strain, which is typically zero. The yield condition is applied to the principal skeletal stresses, which are updated independently of the air pressure. We first obtain the skeletal stresses:
\[
\sigma_{i j}^{\mathrm{sk}}=\sigma_{i j}+\sigma_{i j} \sigma^{\text {air }}
\]
and compute the trial stress, \(\sigma_{i j}^{\text {skt }}\)
\[
\sigma_{i j}^{\mathrm{skt}}=\sigma_{i j}^{\mathrm{sk}}+E \dot{\varepsilon}_{i j} \Delta t
\]
where \(E\) is Young's modulus. Since Poisson's ratio is zero, the update of each stress component is uncoupled and \(2 G=E\) where \(G\) is the shear modulus. The yield condition is applied to the principal skeletal stresses such that, if the magnitude of a principal trial stress component, \(\sigma_{i}^{\text {skt }}\), exceeds the yield stress, \(\sigma_{y}\), then
\[
\sigma_{i}^{\mathrm{sk}}=\min \left(\sigma_{y},\left|\sigma_{i}^{\mathrm{skt}}\right|\right) \frac{\sigma_{i}^{\mathrm{skt}}}{\mid \sigma_{i}^{\mathrm{skt} \mid}}
\]

The yield stress is defined by
\[
\sigma_{y}=a+b(1+c \gamma),
\]
where \(a, b\), and \(c\) are user defined input constants and \(\gamma\) is the volumetric strain as defined above. After scaling the principal stresses they are transformed back into the global system and the final stress state is computed
\[
\sigma_{i j}=\sigma_{i j}^{\mathrm{sk}}-\delta_{i j} \sigma^{\mathrm{air}}
\]

\section*{*MAT_ENHANCED_COMPOSITE_DAMAGE}

These are Material Types 54-55 which are enhanced versions of the composite model material type 22. Arbitrary orthotropic materials, such as unidirectional layers in composite shell structures, can be defined. Optionally, various types of failure can be specified following either the suggestions of [Chang and Chang 1987b] or [Tsai and Wu 1971]. In addition, special measures are taken for failure under compression. See [Matzenmiller and Schweizerhof 1991].

By using the user defined integration rule, see *INTEGRATION_SHELL, the constitutive constants can vary through the shell thickness. For all shells, except the DKT formulation, laminated shell theory can be activated to properly model the transverse shear deformation. Lamination theory is applied to correct for the assumption of a uniform constant shear strain through the thickness of the shell.

For sandwich shells where the outer layers are much stiffer than the inner layers, the response will tend to be too stiff unless lamination theory is used. To turn on lamination theory, see *CONTROL_SHELL. A damage model for transverse shear strain to model interlaminar shear failure is available. The definition of minimum stress limits is available for thin/thick shells and solids.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAB & GBC & GCA & (KF) & AOPT & \(2 W A Y ~\) & TI & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & MANGLE & \\
\hline
\end{tabular}

Card 4a. Include this card if the material is *MAT_054 and DFAILT \(\neq 0.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & DFAILM & DFAILS \\
\hline
\end{tabular}

Card 4b. Include this card if Card 4a is not included, meaning, the material is *MAT_055 , or the material is *MAT_054 with DFAILT \(=0.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & & \\
\hline
\end{tabular}

Card 5a. Include this card if the material is *MAT_054.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TFAIL & ALPH & SOFT & FBRT & YCFAC & DFAILT & DFAILC & EFS \\
\hline
\end{tabular}

Card 5b. Include this card if the material is *MAT_055.
\begin{tabular}{|c|c|c|c|l|l|l|l|}
\hline TFAIL & ALPH & SOFT & FBRT & & & & \\
\hline
\end{tabular}

Card 6a. Include this card if the 2WAY flag is 0.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X C\) & \(X T\) & \(Y C\) & YT & SC & CRIT & BETA & \\
\hline
\end{tabular}

Card 6b. Include this card if the 2WAY flag is 1.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X C\) & XT & YC & YT & SC & CRIT & BETA & \\
\hline
\end{tabular}

Card 7. Only include this card for *MAT_054 (CRIT = 54).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PFL & EPSF & EPSR & TSMD & SOFT2 & & & \\
\hline
\end{tabular}

Card 8a. Only include this card for *MAT_054 (CRIT \(=54\)) and \(2 \mathrm{WAY}=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS & NCYRED & SOFTG & \\
\hline
\end{tabular}

Card 8b. Only include this card for *MAT_054 (CRIT = 54) and 2WAY = 1.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS & NCYRED & SOFTG & \\
\hline
\end{tabular}

Card 9. Only include this card for *MAT_054 (CRIT = 54).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCXC & LCXT & LCYC & LCYT & LCSC & DT & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
Remarks & & & & & & 6 & 6 & 6 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EA \(\quad E_{a}\), Young's modulus - longitudinal direction
EB \(\quad E_{b}\), Young's modulus - transverse direction
EC \(\quad E_{c}\), Young's modulus - normal direction
PRBA \(\quad v_{b a}\), Poisson's ratio \(b a\)
PRCA \(\quad v_{c a}\), Poisson's ratio \(c a\)
PRCB \(\quad v_{c b}\), Poisson's ratio \(c b\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & (KF) & AOPT & 2 WAY & TI & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

GAB
\(G_{a b}\), shear modulus \(a b\)
GBC \(\quad G_{b c}\), shear modulus \(b c\)
GCA
\(G_{c a}\), shear modulus \(c a\)
Bulk modulus of failed material (not used)
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then, for shells only, rotated about the shell element normal by an angle MANGLE.

EQ.1.0: Locally orthotropic with material axes determined by a point in space and the global location of the element center; this is the \(a\)-direction. This option is for solid

\section*{VARIABLE}

\section*{DESCRIPTION}
elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle (MANGLE) from a line in the plane of the element defined by the cross product of the vector, \(\mathbf{v}\), with the element normal.

EQ.4.0: Locally orthotropic in cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(p\), which define the centerline axis. This option is for solid elements only.

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

Flag to turn on 2-way fiber action:
EQ.0.0: Standard unidirectional behavior, meaning fibers run only in the \(a\)-direction

EQ.1.0: 2-way fiber behavior, meaning fibers run in both the \(a\) and \(b\)-directions. The meaning of the fields DFAILT, DFAILC, YC, YT, SLIMT2 and SLIMC2 are altered if this flag is set. This option is only available for *MAT_054 using thin shells.

Flag to turn on transversal isotropic behavior for *MAT_054 solid elements.

EQ.0.0: Standard unidirectional behavior
EQ.1.0: Transversal isotropic behavior (see Remark 5)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MANGLE & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}
\(\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4
A1, A2, A3
MANGLE

\section*{DESCRIPTION}

Components of vector a for AOPT \(=2\)
Material angle in degrees for AOPT \(=0\) (shells only) and \(\mathrm{AOPT}=3\). MANGLE may be overridden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO.

This card is included if the material is *MAT_054 and DFAILT (see Card 5a) is nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & DFAILM & DFAILS \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
DFAILM

\section*{DESCRIPTION}

Define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\).
Define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).
Maximum strain for matrix straining in tension or compression (active only for *MAT_054 and only if DFAILT > 0). The layer in the element is completely removed after the maximum strain in the matrix direction is reached. The input value is always positive.

DFAILS Maximum tensorial shear strain (active only for *MAT_054 and only if DFAILT \(>0\)). The layer in the element is completely removed after the maximum shear strain is reached. The input value is always positive.

This card is included if Card 4 a is not included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\).
D1, D2, D3
Define components of vector \(\mathbf{d}\) for \(A O P T=2\).

This card is included if the material is *MAT_054.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TFAIL & ALPH & SOFT & FBRT & YCFAC & DFAILT & DFAILC & EFS \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
TFAIL

ALPH Shear stress parameter for the nonlinear term; see *MAT_022.
SOFT Softening reduction factor for material strength in crashfront elements (default \(=1.0\)). TFAIL must be greater than zero to activate
this option. Crashfront elements are elements that are direct neighments (default \(=1.0\)). TFAIL must be greater than zero to activate
this option. Crashfront elements are elements that are direct neighbors of failed (deleted) elements. See Remark 2.

FBRT Softening for fiber tensile strength:
EQ.0.0: Tensile strength \(=X T\)
GT.0.0: Tensile strength \(=X T\), reduced to \(\mathrm{XT} \times\) FBRT after failure has occurred in compressive matrix mode
Time step size criteria for element deletion:
LE.0.0:
No element deletion by time step size. The crashfront algorithm only works if TFAIL is set to a value greater than zero.

GT.O.O.and.LE.O.1: Element is deleted when its time step is smaller than the given value.
GT.0.1: Element is deleted when the quotient of the actual time step and the original time step drops below the given value. ure has occurred in compressive matrix mode
YCFAC Reduction factor for compressive fiber strength after matrix compressive failure. The compressive strength in the fiber direction after compressive matrix failure is reduced to:
\[
X_{c}=\mathrm{YCFAC} \times Y_{c}, \quad(\text { default: } \mathrm{YCFAC}=2.0)
\]

DFAILT

DFAILC

DESCRIPTION
Maximum strain for fiber tension (*MAT_054 only). A value of 1 is \(100 \%\) tensile strain. The layer in the element is completely removed after the maximum tensile strain in the fiber direction is reached. If a nonzero value is given for DFAILT (recommended), a nonzero, negative value must also be provided for DFAILC.

If the 2-way fiber flag is set, then DFAILT is the fiber tensile failure strain in the \(a\) and \(b\) directions.

Maximum strain for fiber compression. A value of -1 is \(100 \%\) compression strain. The layer in the element is completely removed after the maximum compressive strain in the fiber direction is reached. The input value should be negative and is required if DFAILT > 0 .

If the 2-way fiber flag is set, then DFAILC is the fiber compressive failure strain in the \(a\) and \(b\) directions.

Effective failure strain

This card is included if the material is *MAT_055.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TFAIL & ALPH & SOFT & FBRT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

TFAIL
Time step size criteria for element deletion:
LE.O.O: No element deletion by time step size. The crashfront algorithm only works if TFAIL is set to a value greater than zero.

GT.O.O.and.LE.O.1: Element is deleted when its time step is smaller than the given value.

GT.0.1: Element is deleted when the quotient of the actual time step and the original time step drops below the given value.

ALPH \(\quad\) Shear stress parameter for the nonlinear term; see *MAT_022.

\section*{VARIABLE}

SOFT

FBRT

\section*{DESCRIPTION}

Softening reduction factor for material strength in crashfront elements (default = 1.0). TFAIL must be greater than zero to activate this option. Crashfront elements are elements that are direct neighbors of failed (deleted) elements.

Softening for fiber tensile strength:
EQ.0.0: Tensile strength \(=X T\)
GT.0.0: Tensile strength \(=\mathrm{XT}\), reduced to \(\mathrm{XT} \times\) FBRT after failure has occurred in compressive matrix mode

This card is included if \(2 \mathrm{WAY}=0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC & XT & YC & YT & SC & CRIT & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

XC

XT
YC

YT Transverse tensile strength, \(b\)-axis. See Material Formulation below.

SC Shear strength, \(a b\)-plane. See the Material Formulation below.
CRIT Failure criterion (material number):
EQ.54.0: Chang-Chang criterion for matrix failure (as *MAT_022) (default),

EQ.55.0: Tsai-Wu criterion for matrix failure.

VARIABLE
BETA

DESCRIPTION
Weighting factor for shear term in tensile fiber mode. \(0.0 \leq\) BETA \(\leq 1.0\).

This card is included if \(2 \mathrm{WAY}=1\) (CRIT must be 54 in this case).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC & XT & YC & YT & SC & CRIT & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

XC

XT Longitudinal tensile strength; see Material Formulation below.
YC Fiber compressive failure stress in the \(b\)-direction. See Material Formulation below.

YT Fiber tensile failure stress in the \(b\)-direction. See Material Formulation below.

SC Shear strength, \(a b\)-plane. See the Material Formulation below.
CRIT Failure criterion (material number):
EQ.54.0: Chang-Change criterion for matrix failure (as *MAT_022) (default),

EQ.55.0: Tsai-Wu criterion for matrix failure.
BETA Weighting factor for shear term in tensile fiber mode. \(0.0 \leq\) BETA \(\leq 1.0\).

Optional Card 7 (only for CRIT = 54). This card is included for *MAT_054 only.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PFL & EPSF & EPSR & TSMD & SOFT2 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PFL

\section*{DESCRIPTION}

Percentage of layers which must fail before crashfront is initiated (thin and thick shells only). For example, if \(\mid\) PFL \(\mid=80.0\), then \(80 \%\) of the layers must fail before strengths are reduced in neighboring elements. Default: all layers must fail. The sign of PFL determines how many in-plane integration points must fail for a single layer to fail:

GT.0.0: A single layer fails if 1 in-plane IP fail.
LT.O.O: A single layer fails if 4 in -plane IPs fail.
EPSF Damage initiation transverse shear strain
EPSR Final rupture transverse shear strain
LT.O.O: |EPSR| is final rupture transverse shear strain. In addition, the element erodes if transverse shear damage reaches TSMD.

TSMD \(\quad\) Transverse shear maximum damage (default \(=0.90\))
SOFT2 Optional "orthogonal" softening reduction factor for material strength in crashfront elements (default = 1.0). See Remark 2 (thin and thick shells only).

Optional Card 8 (only for CRIT = 54). This card is included for *MAT_054 only and \(2 \mathrm{WAY}=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS & NCYRED & SOFTG & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
SLIMT1

SLIMC1

SLIMT2 Factor to determine the minimum stress limit after stress maximum (matrix tension). Similar to *MAT_058.

SLIMC2 Factor to determine the minimum stress limit after stress maximum (matrix compression). Similar to *MAT_058.

SLIMS Factor to determine the minimum stress limit after stress maximum (shear). Similar to *MAT_058.

NCYRED Number of cycles for stress reduction from maximum to minimum for DFAILT \(>0\).

SOFTG Softening reduction factor for transverse shear moduli GBC and GCA in crashfront elements (thin and thick shells). Default =1.0.

Optional Card 8 (only for CRIT = 54). This card is included for *MAT_054 only and \(2 \mathrm{WAY}=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS & NCYRED & SOFTG & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

SLIMT1

SLIMC1

SLIMT2

SLIMC2 Factor to determine the minimum stress limit after compressive failure stress is reached in the \(b\) fiber direction

\section*{VARIABLE}

SLIMS

NCYRED

\section*{DESCRIPTION}

Factor to determine the minimum stress limit after stress maximum (shear). Similar to \({ }^{*}\) MAT_058.

Number of cycles for stress reduction from maximum to minimum for DFAILT \(>0\).

Softening reduction factor for transverse shear moduli GBC and GCA in crashfront elements (thin and thick shells). Default \(=1.0\).

Optional Card 9 (only for CRIT = 54). This card is included for *MAT_054 only.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCXC & LCXT & LCYC & LCYT & LCSC & DT & & \\
Type & I & I & 1 & 1 & I & F & & \\
\hline
\end{tabular}

\section*{VARIABLE \\ DESCRIPTION \\ LCXC \\ LCXT Load curve ID for XT as a function strain rate (XT is ignored with this option) \\ LCYC Load curve ID for YC as a function of strain rate (YC is ignored with this option) \\ LCYT Load curve ID for YT as a function of strain rate (YT is ignored with this option) \\ LCSC Load curve ID for SC as a function of strain rate (SC is ignored with this option) \\ DT Strain rate averaging option: \\ EQ.O.O: Strain rate is evaluated using a running average. \\ LT.O.O: Strain rate is evaluated using an average of the last 11 time steps.}

GT.O.O: Strain rate is averaged over the last DT time units.

\section*{Material Formulation:}

\section*{*MAT_054 Failure Criteria}

The Chang-Chang (*MAT_054) criteria is given as follows:
1. For the tensile fiber mode,
\[
\begin{gathered}
\sigma_{a a}>0 \Rightarrow e_{f}^{2}=\left(\frac{\sigma_{a a}}{X_{t}}\right)^{2}+\beta\left(\frac{\sigma_{a b}}{S_{c}}\right)^{2}-1, \quad e_{f}^{2} \geq 0 \Rightarrow \text { failed } \\
e_{f}^{2}<0 \Rightarrow \text { elastic } \\
E_{a}=E_{b}=G_{a b}=v_{b a}=v_{a b}=0
\end{gathered}
\]
2. For the compressive fiber mode,
\[
\begin{gathered}
\sigma_{a a}<0 \Rightarrow e_{c}^{2}=\left(\frac{\sigma_{a a}}{X_{c}}\right)^{2}-1, \quad \begin{array}{l}
e_{c}^{2} \geq 0 \Rightarrow \text { failed } \\
e_{c}^{2}<0 \Rightarrow \text { elastic } \\
E_{a}=v_{b a}=v_{a b}=0
\end{array}
\end{gathered}
\]
3. For the tensile matrix mode,
\[
\begin{gathered}
\sigma_{b b}>0 \Rightarrow e_{m}^{2}=\left(\frac{\sigma_{b b}}{Y_{t}}\right)^{2}+\left(\frac{\sigma_{a b}}{S_{c}}\right)^{2}-1, \quad \begin{array}{l}
e_{m}^{2} \geq 0 \Rightarrow \text { failed } \\
e_{m}^{2}<0 \Rightarrow \text { elastic } \\
E_{b}=v_{b a}=0 \Rightarrow G_{a b}=0
\end{array}
\end{gathered}
\]
4. For the compressive matrix mode,
\[
\begin{gathered}
\sigma_{b b}<0 \Rightarrow e_{d}^{2}=\left(\frac{\sigma_{b b}}{2 S_{c}}\right)^{2}+\left[\left(\frac{Y_{c}}{2 S_{c}}\right)^{2}-1\right] \frac{\sigma_{b b}}{Y_{c}}+\left(\frac{\sigma_{a b}}{S_{c}}\right)^{2}-1, \\
e_{b} \geq 0 \Rightarrow \text { failed } \\
e_{b a}^{2}<0 \Rightarrow \text { elastic } \\
X_{c}=2 Y_{c}, \text { for } 50 \% \text { fiber volume }
\end{gathered}
\]

For \(\beta=1\) we get the original criterion of Hashin [1980] in the tensile fiber mode. For \(\beta=\) 0 we get the maximum stress criterion which is found to compare better to experiments.

\section*{*MAT_054 with 2-Way Fiber Flag Failure Criteria}

If the 2-way fiber flag is set, then the failure criteria for tensile and compressive fiber failure in the local \(x\)-direction are unchanged. For the local \(y\)-direction, the same failure criteria as for the \(x\)-direction fibers are used.
1. For the tensile fiber mode in the local \(y\)-direction,
\[
\sigma_{b b}>0 \Rightarrow e_{f}^{2}=\left(\frac{\sigma_{b b}}{Y_{t}}\right)^{2}+\beta\left(\frac{\sigma_{a b}}{S_{c}}\right)-1, \quad \begin{array}{ll}
e_{f}^{2} \geq 0 \Rightarrow \text { failed } \\
e_{f}^{2}<0 \Rightarrow \text { elastic }
\end{array}
\]
2. For the compressive fiber mode in the local \(y\)-direction,
\[
\sigma_{b b}<0 \Rightarrow e_{c}^{2}=\left(\frac{\sigma_{b b}}{Y_{c}}\right)^{2}-1, \quad \begin{aligned}
& e_{c}^{2} \geq 0 \Rightarrow \text { failed } \\
& e_{c}^{2}<0 \Rightarrow \text { elastic }
\end{aligned}
\]
3. For 2 WAY the matrix only fails in shear,
\[
e_{m}^{2}=\left(\frac{\sigma_{a b}}{S_{c}}\right)^{2}-1, \quad \begin{aligned}
& e_{m}^{2} \geq 0 \Rightarrow \text { failed } \\
& e_{m}^{2}<0 \Rightarrow \text { elastic }
\end{aligned}
\]

\section*{*MAT_055 Failure Criteria}

For the Tsai-Wu (*MAT_055) criteria, the tensile and compressive fiber modes are treated the same as in the Chang-Chang criteria. The failure criterion for the tensile and compressive matrix mode is given as:
\[
e_{m / d}^{2}=\frac{\sigma_{b b}^{2}}{Y_{c} Y_{t}}+\left(\frac{\sigma_{a b}}{S_{c}}\right)^{2}+\frac{\left(Y_{c}-Y_{t}\right) \sigma_{b b}}{Y_{c} Y_{t}}-1, \quad \begin{array}{ll}
e_{m / d}^{2} \geq 0 \Rightarrow \text { failed } \\
e_{m / d}^{2}<0 \Rightarrow \text { elastic }
\end{array}
\]

\section*{Remarks:}
1. Integration point failure. In *MAT_054, failure can occur in any of four different ways:
- If DFAILT is zero, failure occurs if the Chang-Chang failure criterion is satisfied in the tensile fiber mode.
- If DFAILT is greater than zero, failure occurs if:
- the fiber strain is greater than DFAILT or less than DFAILC
- if absolute value of matrix strain is greater than DFAILM
- if absolute value of tensorial shear strain is greater than DFAILS
- If EFS is greater than zero, failure occurs if the effective strain is greater than EFS.
- If TFAIL is greater than zero, failure occurs according to the element timestep as described in the definition of TFAIL above.

In *MAT_055, an integration point is deleted (all stresses go to zero) only if the tensile stress at that point reaches XT. Other strengths, XC, YT, YC, SC serve to cap stresses but do not delete the integration point.

When failure has occurred in all the composite layers (through-thickness integration points), the element is deleted. For bricks, the element is deleted after one integration point has met the failure criteria.

Figure M54-1. Direction dependent softening

Figure M54-2. Linear Damage for transverse shear behavior
2. Crashfront elements and strength reduction. Elements which share nodes with a deleted element become "crashfront" elements and can have their strengths reduced by using the SOFT parameter with TFAIL greater than zero. An earlier initiation of crashfront elements is possible by using parameter PFL.

An optional direction dependent strength reduction can be invoked by setting \(0<\) SOFT2 \(<1\). Then, SOFT equals a strength reduction factor for fiber parallel failure and SOFT2 equals a strength reduction factor for fiber orthogonal failure. Linear interpolation is used for angles in between. See Figure M54-1.
3. Transverse shear strain damage model. In an optional damage model for transverse shear strain, out-of-plane stiffness (GBC and GCA) can linearly decrease to model interlaminar shear failure. Damage starts when effective transverse shear strain
\[
\varepsilon_{56}^{\mathrm{eff}}=\sqrt{\varepsilon_{y z}^{2}+\varepsilon_{z x}^{2}}
\]
reaches EPSF. Final rupture occurs when effective transverse shear strain reaches EPSR. A maximum damage of TSMD \((0.0<\) TSMD \(<0.99)\) cannot be exceeded. See Figure M54-2.
4. Failure/damage status. The status in each layer (integration point) and element can be plotted using additional integration point history variables. NEIPH and NEIPS on *DATABASE_EXTENT_BINARY sets the number of additional integration point history variables output for solids and shells, respectively. The number of additional integration point history variables for shells and solids written to the LS-DYNA database is input by the *DATABASE_EXTENT_BINARY definition as variable. For Models 54 and 55 these additional history variables are tabulated below (\(i=\) integration point):

Table M54-1. Additional history variables for *MAT_054
\begin{tabular}{|c|c|c|c|}
\hline History Variable \# & Description for shells and thick shell types 1, 2, and 6 & Description for solids and thick shell types 3,5 , and 7 & Value \\
\hline 1 & Tensile fiber failure mode, ef \((i)\) & Tensile fiber failure mode, ef \((i)\) & 1: elastic 0 : failed \\
\hline 2 & Compressive fiber failure mode, ec (\(i\)) & Compressive fiber failure mode, ec (\(i\)) & 1: elastic 0 : failed \\
\hline 3 & Tensile (shear for 2WAY) matrix mode, em(i) & Tensile (shear for 2WAY) matrix mode, em(\(i\)) & \begin{tabular}{l}
1: elastic \\
0 : failed
\end{tabular} \\
\hline 4 & Compressive matrix mode, ed (i) & Compressive matrix mode, ed (i) & 1: elastic 0 : failed \\
\hline 5 & Total failure & Total failure & \begin{tabular}{l}
1: elastic \\
0 : failed
\end{tabular} \\
\hline 6 & Damage parameter (SOFT) & Damage parameter (SOFT) & \begin{tabular}{l}
-1: element intact \\
\(10^{-8}\) : element in crashfront \\
1: element failed
\end{tabular} \\
\hline
\end{tabular}
\(8 \cos (\alpha)\), where \(\alpha\) is the inplane angle between the material coordinate system and the element coordinate system
\(9 \sin \alpha\)
10 Local strain in the \(a\)-direction
11 Local strain in the \(b\)-direction
12 Local shear strain (ab-plane)
\begin{tabular}{lll}
\begin{tabular}{l}
History \\
Variable \#
\end{tabular} & \begin{tabular}{l}
Description for shells and \\
thick shell types 1, 2, and 6
\end{tabular} & \begin{tabular}{l}
Description for solids and \\
thick shell types 3, 5, and 7
\end{tabular} \\
\hline 16 & Transverse shear damage & Local strain in the \(b\)-direction \\
17 & & Local shear strain (ab-plane) \\
\hline
\end{tabular}

Table M54-2. Additional history variables for *MAT_055
\begin{tabular}{|c|c|c|}
\hline History Variable \# & Description for shells and thick shell types 1, 2, and 6 & Value \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{Tensile fiber failure mode, ef (\(i\))} & 1: elastic \\
\hline & & 0: failed \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{Compressive fiber failure mode, \(e c(i)\)} & 1: elastic \\
\hline & & 0 : failed \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{Tensile matrix mode, \(e m(i)\)} & 1: elastic \\
\hline & & 0 : failed \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{Compressive matrix mode, \(e d(i)\)} & 1: elastic \\
\hline & & 0: failed \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{Total failure} & 1: elastic \\
\hline & & 0 : failed \\
\hline \multirow[t]{3}{*}{6} & \multirow[t]{3}{*}{Damage parameter (SOFT)} & -1: element intact \\
\hline & & \(10^{-8}\) : element in crashfront \\
\hline & & 1: element failed \\
\hline \multirow[t]{4}{*}{8} & \multirow[t]{4}{*}{\(\cos (\alpha)\), where \(\alpha\) is the in-plane angle between the material coordinate system and the element coordinate system} & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 9 & \(\sin (\alpha)\) & \\
\hline
\end{tabular}

The three element history variables in the table below represent the fraction of elastic (non-failed) integration points in tensile fiber, compressive fiber, and tensile matrix failure modes. They are labeled as "effective plastic strain" by LSPrePost for integration points 1, 2, and 3. In the table \(i\) indexes the integration points in the element and nip is the number of integration points in the element.
\begin{tabular}{cc}
Description & Integration Point \\
\hline\(\frac{1}{\text { nip } \sum_{i=1}^{\text {nip }} \operatorname{ef}(i)}\) & 1 \\
\hline
\end{tabular}
Description Integration Point
\(\frac{1}{\text { nip }} \sum_{i=1}^{\text {nip }} \mathrm{ec}(i) \quad 2\)
\[
\frac{1}{\mathrm{nip}} \sum_{i=1}^{\text {nip }} \mathrm{em}(i)
\]

3
5. TI flag. This applies only to transversal isotropic behavior for *MAT_054 solid elements. The behavior in the bc-plane is assumed to be isotropic, thus the elastic constants EC, PRCA and GCA are ignored and set according to the given values EA, EB, PRAB, and GAB. Damage in transverse shear (EPSF, EPSR, TSMD, SOFTG) is ignored. The failure criterion is evaluated by replacing \(\sigma_{\mathrm{bb}}\) and \(\sigma_{\mathrm{ab}}\) with the corresponding stresses \(\sigma_{11}\) and \(\sigma_{\mathrm{a} 1}\) in a principal stress frame rotated around the local \(a\)-axis. The principal axes 1 and 2 in the \(b c\)-plane are chosen such that \(\left|\sigma_{11}\right| \geq\left|\sigma_{22}\right|\) is fulfilled.
6. Material parameters. PRBA is the minor Poisson's ratio if EA>EB, and the major Poisson's ratio will be equal to PRBA*(EA/EB). If EB \(>E A\), then PRBA is the major Poisson's ratio. PRCA and PRCB are similarly defined. They are the minor Poisson's ratio if EA > EC or EB > EC, and the major Poisson's ratio if the EC \(>\mathrm{EA}\) or \(\mathrm{EC}>\mathrm{EB}\).

Care should be taken when using material parameters from third party products regarding the directional indices \(a, b\) and \(c\), as they may differ from the definition used in LS-DYNA. For the direction indices used in LS-DYNA see Material Directions in *MAT_002/*MAT_OPTIONTROPIC_ELASTIC.

\section*{*MAT_LOW_DENSITY_FOAM}

This is Material Type 57 for modeling highly compressible low density foams. Its main applications are for seat cushions and padding on the Side Impact Dummies (SID). Optionally, a tension cut-off failure can be defined. A table can be defined if thermal effects are considered in the nominal stress as a function of strain behavior. Also, see the remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & LCID & TC & HU & BETA & DAMP \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & \(10^{20}\) & 1. & none & 0.05 \\
Remarks & & & & & & 3 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SHAPE & FAIL & BVFLAG & ED & BETA1 & KCON & REF & \\
Type & F & F & F & F & F & F & F & \\
Default & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
Remarks & 3 & & 2 & 5 & 5 & 6 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus used in tension. For implicit problems E is set to the initial slope of load curve LCID.

LCID Load curve ID (see *DEFINE_CURVE) or table ID defining the nominal stress as a function of nominal strain. If a table is used, a

\section*{DESCRIPTION}
family of curves is defined each corresponding to a discrete temperature; see *DEFINE_TABLE.

TC Cut-off for the nominal tensile stress, \(\tau_{i}\).
\(\mathrm{HU} \quad\) Hysteretic unloading factor between 0.0 and 1.0 (default \(=1.0\), that is, no energy dissipation); see also Figure M57-1.

BETA
DAMP

SHAPE Shape factor for unloading. Active for nonzero values of the hysteretic unloading factor. Values less than one reduces the energy dissipation and greater than one increases dissipation; see also Figure M57-1.

FAIL Failure option after cutoff stress is reached:
EQ.0.0: tensile stress remains at cut-off value.
EQ.1.0: tensile stress is reset to zero.

BVFLAG Bulk viscosity activation flag:
EQ.0.0: no bulk viscosity (recommended)
EQ.1.0: bulk viscosity active
ED Optional Young's relaxation modulus, \(E_{d}\), for rate effects.
BETA
KCON Stiffness coefficient for contact interface stiffness. If undefined the maximum slope in the stress as a function of strain curve is used. When the maximum slope is taken for the contact, the time step size for this material is reduced for stability. In some cases, \(\Delta t\) may

Figure M57-1. Behavior of the low density urethane foam model

\section*{VARIABLE}

\section*{DESCRIPTION}
be significantly smaller, so defining a reasonable stiffness is recommended.

REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

\author{
EQ.0.0: Off \\ EQ.1.0: On
}

\section*{Material Formulation:}

The compressive behavior is illustrated in Figure M57-1 where hysteresis upon unloading is shown. This behavior under uniaxial loading is assumed not to significantly couple in the transverse directions. In tension the material behaves in a linear fashion until tearing occurs. Although our implementation may be somewhat unusual, it was motivated by Storakers [1986].

The model uses tabulated input data for the loading curve where the nominal stresses are defined as a function of the elongations, \(\varepsilon_{i}\), which are defined in terms of the principal stretches, \(\lambda_{i}\), as:
\[
\varepsilon_{i}=\lambda_{i}-1
\]

The negative of the principal elongations (negative of principal engineering strains) are stored in an arbitrary order as extra history variables 16,17 , and 18 if \(\mathrm{ED}=0\) and as extra history variables 28, 29, and 30 if ED > 0. (See NEIPH in *DATABASE_EXTENT_BINARY for output of extra history variables.) The stretch ratios are found by solving for the eigenvalues of the left stretch tensor, \(V_{i j}\), which is obtained using a polar decomposition of the deformation gradient matrix, \(F_{i j}\). Recall that,
\[
F_{i j}=R_{i k} U_{k j}=V_{i k} R_{k j}
\]

The update of \(V_{i j}\) follows the numerically stable approach of Taylor and Flanagan [1989]. After solving for the principal stretches, we compute the elongations and, if the elongations are compressive, the corresponding values of the nominal stresses, \(\tau_{i}\) are interpolated. If the elongations are tensile, the nominal stresses are given by
\[
\tau_{i}=E \varepsilon_{i}
\]
and the Cauchy stresses in the principal system become
\[
\sigma_{i}=\frac{\tau_{i}}{\lambda_{j} \lambda_{k}}
\]

The stresses can now be transformed back into the global system for the nodal force calculations.

\section*{Remarks:}
1. Decay constant and hysteretic unloading. When hysteretic unloading is used the reloading will follow the unloading curve if the decay constant, \(\beta\), is set to zero. If \(\beta\) is nonzero the decay to the original loading curve is governed by the expression:
\[
1-e^{-\beta t}
\]
2. Bulk viscosity. The bulk viscosity, which generates a rate dependent pressure, may cause an unexpected volumetric response and, consequently, it is optional with this model.
3. Hysteretic unloading factor. The hysteretic unloading factor results in the unloading curve to lie beneath the loading curve as shown in Figure M57-1 This unloading provides energy dissipation which is reasonable in certain kinds of foam.
4. Output. Note that since this material has no effective plastic strain, the internal energy per initial volume is written into the output databases.
5. Rate effects. Rate effects are accounted for through linear viscoelasticity by a convolution integral of the form
\[
\sigma_{i j}^{r}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l}(t-\tau)\) is the relaxation function. The stress tensor, \(\sigma_{i j}^{r}\), augments the stresses determined from the foam, \(\sigma_{i j}^{f}\); consequently, the final stress, \(\sigma_{i j}\), is taken as the summation of the two contributions:
\[
\sigma_{i j}=\sigma_{i j}^{f}+\sigma_{i j}^{r}
\]

Since we wish to include only simple rate effects, the relaxation function is represented by one term from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta_{m} t}
\]
given by,
\[
g(t)=E_{d} e^{-\beta_{1} t} .
\]

This model is effectively a Maxwell fluid which consists of a damper and spring in series. We characterize this in the input by a Young's modulus, \(E_{d}\), and decay constant, \(\beta_{1}\). The formulation is performed in the local system of principal stretches where only the principal values of stress are computed and triaxial coupling is avoided. Consequently, the one-dimensional nature of this foam material is unaffected by this addition of rate effects. The addition of rate effects necessitates twelve additional history variables per integration point. The cost and memory overhead of this model comes primarily from the need to "remember" the local system of principal stretches.
6. Time step size. The time step size is based on the current density and the maximum of the instantaneous loading slope, \(E\), and KCON. If KCON is undefined, the maximum slope in the loading curve is used instead.

\section*{*MAT_LAMINATED_COMPOSITE_FABRIC_\{OPTION\}}

Available options include:
SOLID
Without the keyword option, this model supports shell elements and thick shell elements with ELFORM = 1, 2, or 6 . The SOLID option allows the model to work for solid elements and thick shell elements with ELFORM \(=3,5\), or 7 .

This is Material Type 58. Depending on the type of failure surface, this material can model composite materials with unidirectional layers, complete laminates, and woven fabrics. We implemented this model for shell, thick shell, and solid elements. Shell elements and thick shell elements with ELFORM \(=1,2\), or 6 require no keyword option, while solid elements and thick shell elements with ELFORM \(=3,5\), or 7 require the SOLID keyword option.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & TAU1 & GAMMA1 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GAB & GBC & GCA & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & TSIZE & ERODS & SOFT & FS & EPSF & EPSR & TSMD \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & PRCA & PRCB \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & LCDFAIL \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline E11C & E11T & E22C & E22T & GMS & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X C\) & \(X T\) & \(Y C\) & YT & SC & & & \\
\hline
\end{tabular}

Card 8.1. This card is required for the SOLID keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline E33C & E33T & GMS23 & GMS31 & & & & \\
\hline
\end{tabular}

Card 8.2. This card is required for the SOLID keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline ZC & ZT & SC23 & SC31 & & & & \\
\hline
\end{tabular}

Card 8.3. This card is required for the SOLID keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SLIMT3 & SLIMC3 & SLIMS23 & SLIMS31 & TAU2 & GAMMA2 & TAU3 & GAMMA3 \\
\hline
\end{tabular}

Card 9. This card is optional. (shells and solids)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCXC & LCXT & LCYC & LCYT & LCSC & LCTAU & LCGAM & DT \\
\hline
\end{tabular}

Card 10. This card is optional. (shells and solids)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCE11C & LCE11T & LCE22C & LCE22T & LCGMS & LCEFS & & \\
\hline
\end{tabular}

Card 11. This card is optional. (solids only!)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCZC & LCZT & LCSC23 & LCSC31 & LCTAU2 & LCGAM2 & LCTAU3 & LCGAM3 \\
\hline
\end{tabular}

Card 12. This card is optional. (solids only!)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCE33C & LCE33T & LCGMS23 & LCGMS31 & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EA & EB & EC & PRBA & TAU1 & GAMMA1 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density

\section*{DESCRIPTION}

EA

EB

EC \(\quad E_{c}\), Young's modulus - normal direction (used only by thick shells and solids). See Remark 6.

GT.0.0: \(E_{c}\), Young's modulus - normal direction
LT.0.0: Load Curve ID or Table ID \(=(-\mathrm{EC})\) (solids only). See

\section*{VARIABLE}

\section*{DESCRIPTION}

\section*{Remark 8.}

Load Curve. When -EC is equal to a load curve ID, it is taken as defining the uniaxial elastic stress as a function of strain behavior in the transverse direction. Negative data points correspond to compression, and positive values to tension.

Tabular Data. When -EC corresponds to a table ID, it specifies a load curve ID for each strain rate value. The load curves give the uniaxial elastic stress as a function of strain behavior in the transverse direction.

Logarithmically Defined Tables. Suppose the first uniaxial elastic stress as a function of strain curve in the table corresponds to a negative strain rate. In that case, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all stress-strain curves.

PRBA \(\quad v_{b a}\), Poisson's ratio \(b a\)
TAU1 \(\quad \tau_{1}\), stress limit of the first slightly nonlinear part of the shear stress as a function of shear strain curve. The values \(\tau_{1}\) and \(\gamma_{1}\) help define a shear stress as a function of shear strain curve. Input these values if you set FS to -1 (see Card 3).

GAMMA1 \(\quad \gamma_{1}\), strain limit of the first slightly nonlinear part of the shear stress as a function of engineering shear strain curve
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

GAB
GT.0.0: \(G_{a b}\), shear modulus in the \(a b\)-direction
LT.O.O: Load Curve ID or Table ID \(=(-G A B)\)
Load Curve. When -GAB is equal to a load curve ID, it is taken as defining the elastic shear stress as a function of shear strain behavior in the \(a b\)-direction.

Tabular Data. When -GAB corresponds to a table ID, it defines a load curve ID for each strain rate value. The load curves give the elastic shear stress as a function of shear strain behavior in the \(a b\)-direction.

Logarithmically Defined Tables. If the first elastic shear stress as a function of shear strain curve in the table corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all shear stress-shear strain curves.

GBC

GCA

GT.0.0: \(G_{b c}\), shear modulus in the \(c b\)-direction
LT.O.O: Load Curve ID or Table ID \(=(-G B C)\) (solids only)
Load Curve. When -GBC is equal to a load curve ID, it is taken as defining the elastic shear stress as a function of shear strain behavior in the \(b c\)-direction.

Tabular Data. When -GBC corresponds to a table ID, it defines a load curve ID for each strain rate value. The load curves give the elastic shear stress as a function of shear strain behavior in the \(b c\)-direction.

Logarithmically Defined Tables. If the first elastic shear stress as a function of shear strain curve in the table corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all shear stress-shear strain curves.

GT.0.0: \(G_{c a}\), shear modulus in the \(c a\)-direction
LT.0.0: Load Curve ID or Table ID = (-GCA) (solids only)
Load Curve. When -GCA is equal to a load curve ID, it is taken as defining the elastic shear stress as a function of shear strain behavior in the ca-direction.

Tabular Data. When -GCA refers to a table ID, it defines a load curve ID for each strain rate value. The load curves give the elastic shear stress as a function of shear strain behavior in the \(c a\)-direction.

Logarithmically Defined Tables. If the first elastic shear stress as a function of shear strain curve in the table corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value

Transverse shear stiffness

Figure M58-1. Linear Damage for Transverse Shear Behavior

\section*{VARIABLE}

SLIMT1

SLIMC1

SLIMC2

SLIMS

SLIMT2 Factor to determine the minimum stress limit after stress maximum (matrix tension)

DESCRIPTION
is used for all shear stress-shear strain curves.

Factor to determine the minimum stress limit after stress maximum (fiber tension)

Factor to determine the minimum stress limit after stress maximum (fiber compression)

Factor to determine the minimum stress limit after stress maximum (matrix compression)

Factor to determine the minimum stress limit after stress maximum (shear)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & TSIZE & ERODS & SOFT & FS & EPSF & EPSR & TSMD \\
Type & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors a and \(\mathbf{d}\) input below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element (see Figure M2-1). The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then an angle BETA, which you set in the element's keyword input or the input for this keyword, rotates \(\mathbf{a}\) and \(\mathbf{b}\) about \(\mathbf{c}\).
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: \(\mid\) AOPT \(\mid\) is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

TSIZE Time step for automatic element deletion
ERODS Maximum effective strain for element layer failure. A value of unity would equal \(100 \%\) strain (see Remark 1).

GT.O.O: Fails when effective strain calculated assuming the material is volume preserving exceeds ERODS (old way)

VARIABLE

SOFT

FS

DESCRIPTION
LT.O.O: Fails when effective strain calculated from the full strain tensor exceeds |ERODS|

Softening reduction factor for strength in the crashfront (see Remark 3)

Failure surface type (see Remarks 4 and 5):
EQ.1.0: Smooth failure surface with a quadratic criterion for both the fiber (a) and transverse (b) directions. This option can be used with complete laminates and fabrics.
EQ.0.0: Smooth failure surface in the transverse (b) direction with a limiting value in the fiber (a) direction. This model is appropriate for unidirectional (UD) layered composites only.

EQ.-1.0: Faceted failure surface. When the strength values are reached, damage evolves in tension and compression for the fiber and transverse direction. Shear behavior is also considered. This option can be used with complete laminates and fabrics.

EPSF Damage initiation transverse shear strain
EPSR Final rupture transverse shear strain
TSMD \(\quad\) Transverse shear maximum damage; default \(=0.90\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & PRCA & PRCB \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
XP, YP, ZP

PRCA
PRCB

A1, A2, A3 Components of vector a for \(\mathrm{AOPT}=2\)
\(v_{c a}\) Poisson's ratio \(c a(\) default \(=\) PRBA \()\)

\section*{DESCRIPTION}

Coordinates of point \(p\) for AOPT \(=1\) and 4
\(v_{c b}\), Poisson's ratio \(c b\) (default \(=\) PRBA)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & LCDFAIL \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2 V3
D1, D2, D3
BETA

LCDFAIL Load curve ID, which defines orientation-dependent failure strains. The ordinate values in the load curve define the various failure strains in the following order:
1. EF_11T: tensile failure strain in longitudinal \(a\)-direction
2. EF_11C: compressive failure strain in longitudinal \(a\)-direction
3. EF_22T: tensile failure strain in transverse \(b\)-direction
4. EF_22C: compressive failure strain in transverse \(b\)-direction
5. EF_12: in-plane shear failure strain in \(a b\)-plane
6. EF_33T: tensile failure strain in transverse \(c\)-direction
7. EF_33C: compressive failure strain in transverse \(c\)-direction
8. EF_23: out-of-plane shear failure strain in \(b c\)-plane
9. EF_31: out-of-plane shear failure strain in ca-plane

\section*{VARIABLE}

DESCRIPTION
Thus, the load curve to define these values must have either five (shells) or nine (solids) entries in its definition. You may input a load curve with nine entries for shells, but LS-DYNA ignores the last four entries. The ignored abscissa values need to be ascending, such as 1.0, 2.0, ..., 9.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11C & E11T & E22C & E22T & GMS & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

E11C Strain at longitudinal compressive strength, \(a\)-axis (positive)
E11T Strain at longitudinal tensile strength, \(a\)-axis
E22C Strain at transverse compressive strength, \(b\)-axis
E22T Strain at transverse tensile strength, \(b\)-axis
GMS Engineering shear strain at shear strength, ab-plane
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC & XT & YC & YT & SC & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XC
XT Longitudinal tensile strength; see Remark 2.
YC Transverse compressive strength, \(b\)-axis (positive value); see Remark 2.

YT Transverse tensile strength, \(b\)-axis; see Remark 2.

\section*{DESCRIPTION}

SC
Shear strength, ab-plane; see below Remark 2.

Card 8.1 for SOLID Keyword Option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E33C & E33T & GMS23 & GMS31 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

E33C Strain at transverse compressive strength, \(c\)-axis.
E33T Strain at transverse tensile strength, \(c\)-axis.
GMS23 Engineering shear strain at shear strength, bc-plane.
GMS31 Engineering shear strain at shear strength, ca-plane.

Card 8.2 for SOLID Keyword Option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ZC & ZT & SC23 & SC31 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

ZC
ZT Transverse tensile strength, \(c\)-axis.
SC23 Shear strength, bc-plane.
SC31

\section*{DESCRIPTION}

Shear strength, ca-plane.

Transverse compressive strength, \(c\)-axis (positive value).

Card 8.3 for SOLID Keyword Option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SLIMT3 & SLIMC3 & SLIMS23 & SLIMS31 & TAU2 & GAMMA2 & TAU3 & GAMMA3 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

SLIMT3

SLIMC3

SLIMS23

SLIMS31

TAU2

GAMMA2

TAU3

GAMMA3

\section*{DESCRIPTION}

Factor to determine the minimum stress limit after stress maximum (matrix tension, \(c\)-axis).

Factor to determine the minimum stress limit after stress maximum (matrix compression, \(c\)-axis).

Factor to determine the minimum stress limit after stress maximum (shear, \(b c\)-plane).

Factor to determine the minimum stress limit after stress maximum (shear, ca-plane).
\(\tau_{2}\), stress limit of the first slightly nonlinear part of the shear stress as a function of shear strain curve. The values \(\tau_{2}\) and \(\gamma_{2}\) are used to define a shear stress as a function of shear strain curve. Input these values if \(\mathrm{FS}=-1\) (see Card 3). These values are for the \(b c\) plane.
\(\gamma_{2}\), strain limit of the first slightly nonlinear part of the shear stress as a function of engineering shear strain curve (\(b c\)-plane).
\(\tau_{3}\), stress limit of the first slightly nonlinear part of the shear stress as a function of shear strain curve. The values \(\tau_{3}\) and \(\gamma_{3}\) help define a shear stress as a function of shear strain curve. Input these values if FS \(=-1\) on Card 3 (ca-plane).
\(\gamma_{3}\), strain limit of the first slightly nonlinear part of the shear stress as a function of engineering shear strain curve (\(b c\)-plane).

First Optional Strain Rate Dependence Card. (shells and solids)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCXC & LCXT & LCYC & LCYT & LCSC & LCTAU & LCGAM & DT \\
Type & । & । & । & । & । & I & । & F \\
\hline
\end{tabular}

\section*{VARIABLE}

LCXC

LCXT Load curve ID defining longitudinal tensile strength XT as a function of strain rate (XT is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

LCYC Load curve ID defining transverse compressive strength YC as a function of strain rate (YC is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

LCYT Load curve ID defining transverse tensile strength YT as a function of strain rate (YT is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

LCSC Load curve ID defining shear strength SC as a function of strain rate (SC is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

LCTAU Load curve ID defining TAU1 as a function of strain rate (TAU1 is ignored with this option). This value is only used for \(\mathrm{FS}=-1\). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

VARIABLE
LCGAM

DT

DESCRIPTION
Load curve ID defining GAMMA1 as a function of strain rate (GAMMA1 is ignored with this option). This value is only used for \(\mathrm{FS}=-1\). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

Strain rate averaging option:
EQ.0.0: Strain rate is evaluated using a running average.
LT.O.O: Strain rate is evaluated using the average over the last 11 time steps.

GT.0.0: Strain rate is averaged over the last DT time units.

Second Optional Strain Rate Dependence Card. (shells and solids)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCE11C & LCE11T & LCE22C & LCE22T & LCGMS & LCEFS & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCE11C

LCE11T

LCE22C Load curve ID defining E22C as a function of strain rate (E22C is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

LCE22T Load curve ID defining E22T as a function of strain rate (E22T is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

\section*{VARIABLE}

LCGMS

LCEFS

\section*{DESCRIPTION}

Load curve ID defining GMS as a function of strain rate (GMS is ignored with this option). If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

Load curve ID defining ERODS as a function of strain rate (ERODS is ignored with this option). LS-DYNA uses the full strain tensor to compute the equivalent strain. If the first strain rate value in the curve is negative, LS-DYNA assumes that you input all the strain rate values as the natural logarithm of the strain rate.

\section*{Third Optional Strain Rate Dependence Card. (solid only!)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCZC & LCZT & LCSC23 & LCSC31 & LCTAU2 & LCGAM2 & LCTAU3 & LCGAM3 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

LCZC

LCZT Load curve ID defining transverse tensile strength ZT as a function of strain rate (ZT is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

LCSC23 Load curve ID defining shear strength SC23 as a function of strain rate (SC23 is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

Load curve ID defining shear strength SC31 as a function of strain rate (SC31 is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

LCTAU2 Load curve ID defining TAU2 as a function of strain rate (TAU2 is ignored with this option). This value is only used for \(F S=-1\). If the

VARIABLE

LCGAM2 Load curve ID defining GAMMA2 as a function of strain rate (GAMMA2 is ignored with this option). This value is only used for \(\mathrm{FS}=-1\). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

LCTAU3 Load curve ID defining TAU3 as a function of strain rate (TAU3 is ignored with this option). This value is only used for \(\mathrm{FS}=-1\). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

Load curve ID defining GAMMA3 as a function of strain rate (GAMMA3 is ignored with this option). This value is only used for \(\mathrm{FS}=-1\). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

\section*{Fourth Optional Strain Rate Dependence Card. (solids only!)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCE33C & LCE33T & LCGMS23 & LCGMS31 & & & & \\
Type & 1 & 1 & 1 & 1 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCE33C

LCE33T

\section*{DESCRIPTION}

Load curve ID defining E33C as a function of strain rate (E33C is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

Load curve ID defining E33T as a function of strain rate (E33T is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

\section*{VARIABLE}

LCGMS23

LCGMS31

\section*{DESCRIPTION}

Load curve ID defining GMS23 as a function of strain rate (GMS23 is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

Load curve ID defining GMS31 as a function of strain rate (GMS31 is ignored with this option). If the first strain rate value in the curve is negative, all the strain rate values are assumed to be given as the natural logarithm of the strain rate.

\section*{Remarks:}
1. Failure of an Element Layer. ERODS, the maximum effective strain, controls the failure of an element layer. The maximum value of ERODS, 1 , is \(100 \%\) straining. The layer in the element is completely removed after the maximum effective strain (compression/tension including shear) is reached.
2. Stress Limits. The stress limits are factors used to limit the stress in the softening part to a given value,
\[
\sigma_{\min }=\mathrm{SLIM} x x \times \text { strength } .
\]

Thus, the damage value is slightly modified to achieve elastoplastic-like behavior with the threshold stress. The SLIM \(x x\) fields may range between 0.0 and 1.0. With a factor of 1.0 , the stress remains at a maximum value identical to the strength, similar to ideal elastoplastic behavior. A small value for SLIMTx is often reasonable for tensile failure; however, SLIMCx = 1.0 is preferred for compression. This is also valid for the corresponding shear value.

If SLIM \(x x\) is smaller than 1.0, then localization can be observed depending on the total behavior of the layer. If intentionally using SLIM \(x x<1.0\), we generally recommend avoiding a drop to zero and setting the value to something between 0.05 and 0.10 . Then elastoplastic behavior is achieved in the limit, which often leads to fewer numerical problems. The defaults for SLIM \(x x\) are \(10^{-8}\).
3. Crashfront. To start the crashfront algorithm, input a value for TSIZE. Note that the time step size, with element elimination after the actual time step, becomes smaller than TSIZE.
4. Damage. The damage parameters can be written to the post-processing database for each integration point as the first three additional element variables and can be visualized.

Figure M58-2. Stress-strain diagram for shear

Material models with FS \(=1\) or FS = -1 are better for complete laminates and fabrics, as all directions are treated similarly.

For \(\mathrm{FS}=1\), the model assumes an interaction between the normal and shear stresses for damage evolution in the \(a\) and \(b\)-directions. The shear damage is always the maximum damage value from the criterion in the \(a\) or \(b\)-direction.

For FS \(=-1\), we assume that the damage evolution is independent of any of the other stresses. The elastic material parameters and the complete structure provide the only coupling. In the tensile and compression directions, as well as in the \(b\)-direction, the material can have different failure surfaces. The damage values monotonically increase. Thus, a load reversal from tension to compression, or compression to tension, does not reduce damage.
5. Shear Failure of Fabrics. For fabric materials, we can assume a nonlinear stress-strain curve for the shear part for failure surface \(\mathrm{FS}=-1\), as given below. This is not possible for other values of FS.

Three points define the curve as shown in Figure M58-2:
a) the origin \((0,0)\) is assumed,
b) the limit of the first slightly nonlinear part (must be input), stress (TAU1) and strain (GAMMA1), and
c) the shear strength at failure and shear strain at failure.

In addition, a stress limiter can be used to keep the stress constant using the SLIMS field. This value must be positive and less than or equal to 1.0. It leads to elastoplastic behavior for the shear part. The default is \(10^{-8}\), assuming almost brittle failure once the strength limit SC is reached.
6. EC. The EC field is ignored when thin shells use this material model. When used with thick shell elements of form 1,2 , or 6 , a positive EC value will be used to evaluate a thickness stress. If EC is set to zero or a negative number, then the minimum of EA and EB is used for the thickness stress calculation.
7. Strain Rate. LS-DYNA uses the smoothed, direction-appropriate strain rate for any property specified to be strain-rate-dependent. For example, LS-DYNA uses strain rate in the \(a\)-direction when assessing properties in the \(a\)-direction. LSDYNA, however, uses the effective strain rate when determining the rate-dependence of ERODS for load curve LCEFS.
8. EA / EB / EC < 0.0. If a load curve specifies the uniaxial elastic stress as a function of strain behavior, the range of the strain space (abscissa values) must span from at least 5\% negative (compressive) to \(5 \%\) positive (tensile) strain.

\section*{*MAT_COMPOSITE_FAILURE_OPTION_MODEL}

This is Material Type 59.
Available options include:
SHELL
SOLID
SPH
depending on the element type the material is to be used with; see *PART. An equation of state (\({ }^{*}\) EOS) is optional for SPH elements and is invoked by setting EOSID to a nonzero value in *PART. If an equation of state is used, only the deviatoric stresses are calculated by the material model and the pressure is calculated by the equation of state.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GAB & GBC & GCA & KF & AOPT & MACF & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & \(Y P\) & \(Z P\) & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 5a.1. This card is included if the SHELL keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TSIZE & ALP & SOFT & FBRT & SR & SF & & \\
\hline
\end{tabular}

Card 5a.2. This card is included if the SHELL keyword option is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X C\) & XT & YC & YT & SC & & & \\
\hline
\end{tabular}

Card 5b.1. This card is included if either the SOLID or SPH keyword option is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SBA & SCA & SCB & XXC & YYC & ZZC & & \\
\hline
\end{tabular}

Card 5b.2. This card is included if either the SOLID or SPH keyword option is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline XXT & YYT & ZZT & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definition:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIABL & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline \multicolumn{2}{|l|}{MID} & \multicolumn{7}{|l|}{Material identification. A unique number or label must be specified (see *PART).} \\
\hline \multicolumn{2}{|l|}{RO} & \multicolumn{7}{|l|}{Density} \\
\hline \multicolumn{2}{|l|}{EA} & \multicolumn{7}{|l|}{\(E_{a}\), Young's modulus - longitudinal direction} \\
\hline \multicolumn{2}{|l|}{EB} & \multicolumn{7}{|l|}{\(E_{b}\), Young's modulus - transverse direction} \\
\hline \multicolumn{2}{|l|}{EC} & \multicolumn{7}{|l|}{\(E_{c}\), Young's modulus - normal direction} \\
\hline \multicolumn{2}{|l|}{PRBA} & \multicolumn{7}{|l|}{\(v_{b a}\), Poisson's ratio ba} \\
\hline \multicolumn{2}{|l|}{PRCA} & \multicolumn{7}{|l|}{\(v_{c a}\), Poisson's ratio ca} \\
\hline \multicolumn{2}{|l|}{PRCB} & \multicolumn{7}{|l|}{\(v_{c b}\), Poisson's ratio \(c b\)} \\
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & KF & AOPT & MACF & & \\
\hline Type & F & F & F & F & F & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

GAB
\(G_{a b}\), shear modulus
GBC
\(G_{b c}\), shear modulus

\section*{VARIABLE \\ GCA}

KF \(\quad\) Bulk modulus of failed material
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

MACF

\section*{DESCRIPTION}

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

XP YP ZP \(\quad\) Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
A1 A2 A3 Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1 V2 V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
D1 D2 D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

Material angle in degrees for AOPT \(=0\) (shells only) and \(\mathrm{AOPT}=3\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA or *ELEMENT_SOLID_ORTHO.

Card 5 for SHELL Keyword Option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5a.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TSIZE & ALP & SOFT & FBRT & SR & SF & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
TSIZE
ALP Nonlinear shear stress parameter
SOFT Softening reduction factor for material strength in crashfront elements

FBRT Softening of fiber tensile strength
SR \(\quad s_{r}\), reduction factor \((\) default \(=0.447)\)
SF \(\quad s_{f}\), softening factor \((\) default \(=0.0)\)

Card 6 for SHELL Keyword Option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5a.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC & XT & YC & YT & SC & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XC

\section*{DESCRIPTION}

Longitudinal compressive strength, \(a\)-axis (positive value)

\section*{VARIABLE}

XT
YC
YT
SC

\section*{DESCRIPTION}

Longitudinal tensile strength, \(a\)-axis
Transverse compressive strength, \(b\)-axis (positive value)
Transverse tensile strength, \(b\)-axis
Shear strength, \(a b\)-plane:
GT.0.0: Faceted failure surface theory
LT.0.0: Ellipsoidal failure surface theory

Card 5 for SPH and SOLID Keyword Options.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SBA & SCA & SCB & XXC & YYC & ZZC & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

SBA
In plane shear strength
SCA Transverse shear strength
SCB Transverse shear strength
XXC Longitudinal compressive strength \(a\)-axis (positive value)
YYC Transverse compressive strength \(b\)-axis (positive value)
ZZC \(\quad\) Normal compressive strength \(c\)-axis (positive value)

Card 6 for SPH and SOLID Keyword Options.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XXT & YYT & ZZT & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

XXT Longitudinal tensile strength \(a\)-axis
YYT Transverse tensile strength \(b\)-axis
ZZT \(\quad\) Normal tensile strength \(c\)-axis

\section*{*MAT_ELASTIC_WITH_VISCOSITY}

This is Material Type 60 which was developed to simulate forming of glass products (such as car windshields) at high temperatures. Deformation is by viscous flow, but elastic deformations can also be large. The material model, in which the viscosity may vary with temperature, is suitable for treating a wide range of viscous flow problems and is implemented for brick and shell elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & V0 & A & B & C & LCID & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PR1 & PR2 & PR3 & PR4 & PR5 & PR6 & PR7 & PR8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T1 & T2 & T3 & T4 & T5 & T6 & T7 & T8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & V4 & V5 & V6 & V7 & V8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E1 & E2 & E3 & E4 & E5 & E6 & E7 & E8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density

LCID

T1, T2,
..., TN
PR1, PR2,
...,PRN
V1, V2,
..., VN
E1, E2,
..., EN

V0 Temperature independent dynamic viscosity coefficient, \(V_{0}\). If defined, the temperature dependent viscosity defined below is skipped; see type i and ii definitions for viscosity below.

A Dynamic viscosity coefficient; see type i and ii definitions below.
B Dynamic viscosity coefficient; see type i and ii definitions below.
C Dynamic viscosity coefficient; see type i and ii definitions below.

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Load curve (see *DEFINE_CURVE) defining viscosity as a function of temperature; see type iii. (Optional.)

Temperatures, \(T_{i}\), define up to 8 values

Poisson's ratios for the temperatures \(T_{i}\)

Corresponding dynamic viscosity coefficients (define only one if not varying with temperature)

Corresponding Young's moduli coefficients (define only one if not varying with temperature)

\section*{DESCRIPTION}

ALPHA1,... Corresponding thermal expansion coefficients ALPHAN.

\section*{Remarks:}

Volumetric behavior is treated as linear elastic. The deviatoric strain rate is considered to be the sum of elastic and viscous strain rates:
\[
\dot{\varepsilon}_{\text {total }}^{\prime}=\dot{\varepsilon}_{\text {elastic }}^{\prime}+\dot{\varepsilon}_{\text {viscous }}^{\prime}=\frac{\dot{\sigma}^{\prime}}{2 G}+\frac{\sigma^{\prime}}{2 v}
\]
where \(G\) is the elastic shear modulus, \(v\) is the viscosity coefficient, and bold indicates a tensor. The stress increment over one timestep \(d t\) is
\[
d \sigma^{\prime}=2 G \dot{\varepsilon}_{\text {total }} d t-\frac{G}{v} d t \sigma^{\prime} .
\]

The stress before the update is used for \(\sigma^{\prime}\). For shell elements the through-thickness strain rate is calculated as follows:
\[
d \sigma_{33}=0=K\left(\dot{\varepsilon}_{11}+\dot{\varepsilon}_{22}+\dot{\varepsilon}_{33}\right) d t+2 G \dot{\varepsilon}_{33}^{\prime} d t-\frac{G}{v} d t \sigma_{33}^{\prime}
\]
where the subscript 33 denotes the through-thickness direction and \(K\) is the elastic bulk modulus. This leads to:
\[
\begin{aligned}
\dot{\varepsilon}_{33} & =-a\left(\dot{\varepsilon}_{11}+\dot{\varepsilon}_{22}\right)+b p \\
a & =\frac{\left(K-\frac{2}{3} G\right)}{\left(K+\frac{4}{3} G\right)} \\
b & =\frac{G d t}{v\left(K+\frac{4}{3} G\right)}
\end{aligned}
\]
in which \(p\) is the pressure defined as the negative of the hydrostatic stress.
The variation of viscosity with temperature can be defined in any one of the 3 ways.
i) Constant, \(V=V_{0}\). Do not define constants, A, B, and C, or the piecewise curve (leave Card 4 blank).
ii) \(\quad V=V_{0} \times 10^{\left(\frac{A}{T-B}+C\right)}\)
iii) Piecewise curve: define the variation of viscosity with temperature.

NOTE: Viscosity is inactive during dynamic relaxation.

\section*{*MAT_ELASTIC_WITH_VISCOSITY_CURVE}

This is Material Type 60 which was developed to simulate the forming of glass products (such as car windshields) at high temperatures. Deformation is by viscous flow, but elastic deformations can also be large. The material model, in which the viscosity may vary with temperature, is suitable for treating a wide range of viscous flow problems and is implemented for brick and shell elements. Load curves are used to represent the temperature dependence of Poisson's ratio, Young's modulus, the coefficient of expansion, and the viscosity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & V0 & A & B & C & LCID & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PR_LC & YM_LC & A_LC & V_LC & V_LOG & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{c}
VARIABLE \\
\hline MID \\
RO \\
V0
\end{tabular}

A Dynamic viscosity coefficient; see type i and ii definitions below.
B Dynamic viscosity coefficient; see type i and ii definitions below.
C Dynamic viscosity coefficient; see type i and ii definitions below.
LCID Load curve (see *DEFINE_CURVE) defining factor on dynamic viscosity as a function of temperature; see type iii. (Optional).
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline PR_LC & Load curve (see *DEFINE_CURVE) defining Poisson's ratio as a function of temperature. \\
\hline YM_LC & Load curve (see *DEFINE_CURVE) defining Young's modulus as a function of temperature. \\
\hline A_LC & Load curve (see *DEFINE_CURVE) defining the coefficient of thermal expansion as a function of temperature. \\
\hline \multirow[t]{3}{*}{V_LC} & Load curve (see *DEFINE_CURVE) or table for defining the dynamic viscosity \\
\hline & GT.0: Load curve ID for defining dynamic viscosity as a function of temperature \\
\hline & LT.O: |V_LC| is table ID giving dynamic viscosity as a function of shear strain rate and temperature. The dynamic viscosity as a function of temperature curves are indexed by the shear strain rate. \\
\hline \multirow[t]{2}{*}{V_LOG} & Flag for the form of V_LC: \\
\hline & EQ.1.0: The value specified in V_LC is the natural logarithm of the viscosity, \(\ln V\). The value interpolated from the curve is then exponentiated to obtain the viscosity. The logarithmic form is useful if the value of the viscosity changes by orders of magnitude over the temperature range of the data. \\
\hline
\end{tabular}

EQ.O.O: The value specified in V_LC is the viscosity.

\section*{Remarks:}

Volumetric behavior is treated as linear elastic. The deviatoric strain rate is considered to be the sum of elastic and viscous strain rates:
\[
\dot{\varepsilon}_{\text {total }}^{\prime}=\dot{\varepsilon}_{\text {elastic }}^{\prime}+\dot{\varepsilon}_{\text {viscous }}^{\prime}=\frac{\dot{\sigma}^{\prime}}{2 G}+\frac{\sigma^{\prime}}{2 v}
\]
where \(G\) is the elastic shear modulus, \(v\) is the viscosity coefficient, and bold indicates a tensor. The stress increment over one timestep \(d t\) is
\[
d \sigma^{\prime}=2 G \dot{\varepsilon}_{\text {total }}^{\prime} d t-\frac{G}{v} d t \sigma^{\prime}
\]

The stress before the update is used for \(\sigma^{\prime}\). For shell elements the through-thickness strain rate is calculated as follows.
\[
d \sigma_{33}=0=K\left(\dot{\varepsilon}_{11}+\dot{\varepsilon}_{22}+\dot{\varepsilon}_{33}\right) d t+2 G \dot{\varepsilon}_{33}^{\prime} d t-\frac{G}{v} d t \sigma_{33}^{\prime}
\]
where the subscript 33 denotes the through-thickness direction and \(K\) is the elastic bulk modulus. This leads to:
\[
\begin{gathered}
\dot{\varepsilon}_{33}=-a\left(\dot{\varepsilon}_{11}+\dot{\varepsilon}_{22}\right)+b p \\
a=\frac{\left(K-\frac{2}{3} G\right)}{\left(K+\frac{4}{3} G\right)} \\
b=\frac{G d t}{v\left(K+\frac{4}{3} G\right)}
\end{gathered}
\]
in which \(p\) is the pressure defined as the negative of the hydrostatic stress.
The variation of viscosity with temperature can be defined in any one of the 3 ways:
i) Constant, \(V=V_{0}\). Do not define constants, A, B, and C, or the curve, V_LC.
ii) \(\quad V=V_{0} \times 10^{\left(\frac{A}{T-B}+C\right)}\)
iii) Piecewise curve: define the variation of viscosity with temperature.

NOTE: Viscosity is inactive during dynamic relaxation.

\section*{*MAT_KELVIN-MAXWELL_VISCOELASTIC}

This is Material Type 61. This material is a classical Kelvin-Maxwell model for modeling viscoelastic bodies, such as foams. This model is valid for solid elements only. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & BULK & G0 & GI & DC & FO & S0 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

MID

RO Mass density
BULK Bulk modulus (elastic)
G0 Short-time shear modulus, \(G_{0}\)
GI Long-time (infinite) shear modulus, \(G_{\infty}\)
DC Constant depending on formulation:
FO.EQ.0.0: Maxwell decay constant
FO.EQ.1.0: Kelvin relaxation constant

FO
Formulation option:
EQ.0.0: Maxwell
EQ.1.0: Kelvin
SO Strain (logarithmic) output option to control what is written as component 7 to the d3plot database. (LS-PrePost always blindly labels this component as effective plastic strain.) The maximum values are updated for each element each time step:

EQ.0.0: Maximum principal strain that occurs during the calculation

EQ.1.0: Maximum magnitude of the principal strain values that occurs during the calculation
EQ.2.0: Maximum effective strain that occurs during the calculation

\section*{Remarks:}

The shear relaxation behavior is described for the Maxwell model by:
\[
G(t)=G+\left(G_{0}-G_{\infty}\right) e^{-\beta t}
\]

A Jaumann rate formulation is used
\[
\stackrel{\nabla}{\sigma}_{\mathrm{ij}}^{\prime}=2 \int_{0}^{t} G(t-\tau) D_{i j}^{\prime}(\tau) d t,
\]
where the prime denotes the deviatoric part of the stress rate, \(\stackrel{\nabla}{\sigma}_{i j}\), and the strain rate \(D_{i j}\). For the Kelvin model the stress evolution equation is defined as:
\[
\dot{s}_{i j}+\frac{1}{\tau} s_{i j}=\left(1+\delta_{i j}\right) G_{0} \dot{e}_{i j}+\left(1+\delta_{i j}\right) \frac{G_{\infty}}{\tau} \dot{e}_{i j}
\]

The strain data as written to the LS-DYNA database may be used to predict damage; see [Bandak 1991].

\section*{*MAT_VISCOUS_FOAM}

This is Material Type 62. It was written to represent the Confor Foam on the ribs of EuroSID side impact dummy. It is only valid for solid elements, mainly under compressive loading.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E1 & N1 & V2 & E2 & N2 & PR \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \\
\begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
E1 & Mass density \\
N1 & Initial Young's modulus, \(E_{1}\) \\
V2 & Exponent in power law for Young's modulus, \(n_{1}\) \\
E2 & Elastic modulus for viscosity, \(E_{2} ;\) see Remarks below. \\
N2 & Exponent in power law for viscosity, \(n_{2}\) \\
PR & Poisson's ratio, \(v\)
\end{tabular}

\section*{Remarks:}

The model consists of a nonlinear elastic stiffness in parallel with a viscous damper. The elastic stiffness is intended to limit total crush while the viscosity absorbs energy. The stiffness \(E_{2}\) exists to prevent timestep problems. It is used for time step calculations as long as \(E_{1}^{t}\) is smaller than \(E_{2}\). It has to be carefully chosen to take into account the stiffening effects of the viscosity. Both \(E_{1}\) and \(V_{2}\) are nonlinear with crush as follows:
\[
\begin{aligned}
& E_{1}^{t}=E_{1}\left(V^{-n_{1}}\right) \\
& V_{2}^{t}=V_{2}|1-V|^{n_{2}}
\end{aligned}
\]

Here, \(V\) is the relative volume defined by the ratio of the current to initial volume. Viscosity generates a shear stress given by
\[
\tau=V_{2} \dot{\gamma} .
\]
\(\dot{\gamma}\) is the engineering shear strain rate.
Table showing typical values (units of \(\mathrm{N}, \mathrm{mm}, \mathrm{s}\)):
\begin{tabular}{|c|c|}
\hline Variable & Value \\
\hline \hline E1 & 0.0036 \\
N1 & 4.0 \\
V2 & 0.0015 \\
E2 & 100.0 \\
N2 & 0.2 \\
PR & 0.05 \\
\hline
\end{tabular}

\section*{*MAT_CRUSHABLE_FOAM}

This is Material Type 63. This material type models crushable foam with optional damping and tension cutoff. Unloading is fully elastic. The model treats tension as elastic-perfectly-plastic at the tension cut-off value. A modified version of this model, *MAT_MODIFIED_CRUSHABLE_FOAM, includes strain rate effects.

Setting MODEL \(=1\) or 2 on Card 1 invokes alternative formulations for modeling crushable foam. They both incorporate an elliptical yield surface in \(p-q\) space and include independent definitions of elastic and plastic Poisson's ratio. They also both support rate dependence. See Remarks 2 and 3 for further details.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & LCID & TSC & DAMP & MODEL \\
Type & A & F & F & F & F & F & F & I \\
Default & none & none & none & none & none & 0.0 & 0.10 & 0 \\
\hline
\end{tabular}

Optional card.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRP & K & RFILTF & BVFLAG & SRCRT & ESCAL & KT & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
E Young's modulus. For MODEL \(=0\), E may affect contact stiffness but otherwise is not used. The final slope of the curve LCID determines the elastic stiffness for loading and unloading. The time step calculation also uses this slope. For MODEL \(=1\) or 2, the material law uses E as the Young's modulus.

\section*{VARIABLE}

PR
LCID

TSC

DAMP

PRP

K

RFILTF

MODEL Choice of material model formulation:
EQ.0: Original approach (default),
EQ.1: Elliptical yield surface in \(p-q\) space with symmetric tensioncompression behavior (isotropic hardening),
EQ.2: Elliptical yield surface in \(p-q\) space with asymmetric ten-sion-compression behavior (volumetric hardening).

\section*{DESCRIPTION}
(Elastic) Poisson's ratio
MODEL.EQ.0: Load curve ID defining yield stress as a function of volumetric strain, \(\gamma\) (see Figure M63-1).
MODEL.GE.1: Load curve, table ID, or 3D table ID. If specifying a load curve ID, the load curve defines uniaxial yield stress under compression, \(\sigma_{c}\), as a function of equivalent plastic strain. If specifying a table ID, each strain rate references a load curve ID that gives uniaxial yield stress as a function of equivalent plastic strain. If specifying a 3D table ID, uniaxial yield stress is given as a function of history variable \#8 (3D table), strain rate (table), and equivalent plastic strain (curve).

Tensile stress cutoff (only for MODEL \(=0\)). A nonzero, positive value is strongly recommended for realistic behavior.

Rate sensitivity via damping coefficient (. \(05<\) recommended value \(<.50\)). Only available for MODEL \(=0\).

Plastic Poisson's ratio (only for MODEL = 1 or 2). PRP determines the yield potential, that is, the plastic flow direction. It ranges from -1 to 0.5.

Ratio of \(\sigma_{c}^{0}\), initial uniaxial yield stress, to \(p_{c}^{0}\), initial hydrostatic yield stress under compression (only for MODEL \(=1\) or 2). K determines the shape of the yield ellipse.

Rate filtering parameter for MODEL \(=1\) or \(2(0.0 \leq\) RFILTF \(<1.0)\) :
EQ.0.0: Plastic strain rates are used if LCID is a table (default).
GT.0.0: Filtered total strain rates are used if LCID is a table. See Remark 2.

\section*{VARIABLE}

BVFLAG

SRCRT

ESCAL

KT Ratio of \(p_{t}\), absolute yield stress in hydrostatic tension, to \(p_{c}^{0}\), initial yield stress in hydrostatic compression (only for MODEL \(=2\)). KT defines the shift of the yield ellipse in the direction of the \(p\)-axis. With \(\mathrm{KT}=1\), the initial yield ellipse is symmetric (with respect to the \(q\)-axis), but it always becomes unsymmetric through hardening.

Figure M63-1. Behavior of strain rate sensitive crushable foam. Unloading is elastic to the tension cutoff. Subsequent reloading follows the unloading curve.

Figure M63-2. Yield surface for MODEL \(=1\) in \(p-q\) space

\section*{Remarks:}
1. Volumetric strain. The volumetric strain is defined in terms of the relative volume, \(V\), as:
\[
\gamma=1-V
\]

The relative volume is the ratio of the current volume to the initial volume. In place of the effective plastic strain in the d3plot database, the integrated volumetric strain (natural logarithm of the relative volume) is output.
2. Symmetric elliptical yield surface formulation. Setting MODEL \(=1\) invokes an alternative formulation for crushable with the following yield condition:
\[
F=\sqrt{q^{2}+\alpha^{2} p^{2}}-Y_{s}=0,
\]

This yield condition corresponds to an elliptical yield surface in the pressure (\(p\)) - deviator Mises stress (\(q\)) space; see Figure M63-2. In the above yield condition,
\[
\begin{gathered}
p=-\frac{1}{3} I_{1} \\
q=\sqrt{3 J_{2}} \\
\alpha=\frac{3 k}{\sqrt{9-k^{2}}} \\
Y_{s}=\sigma_{c} \sqrt{1+\left(\frac{\alpha}{3}\right)^{2}}
\end{gathered}
\]

Figure M63-3. Yield surface for MODEL \(=2\) in \(p-q\) space
\(Y_{s}\), the yield stress, gives the size of the elliptical yield surface. \(k\), the stress ratio, is given by
\[
k=\frac{\sigma_{\mathrm{c}}^{0}}{p_{\mathrm{c}}^{0}} .
\]
\(k\) describes the shape of the yield surface and is input as field K . It ranges from 0 (von Mises) to less than 3.

For lateral straining, define individual Poisson's ratios for the elastic (PR) and the plastic (PRP) regimes. The associated flow potential is given by
\[
G=\sqrt{q^{2}+\beta^{2} p^{2}}
\]
where
\[
\beta=\frac{3}{\sqrt{2}} \sqrt{\frac{1-2 \nu^{\mathrm{pl}}}{1+\nu^{\mathrm{pl}}}}
\]
with plastic Poisson's ratio \(\nu^{\mathrm{pl}}\) (PRP). A yield curve or table specified with LCID defines the hardening. If LCID is a yield curve, it relates uniaxial yield stress, \(\sigma_{c}\), as a function of equivalent plastic strain. To consider rate dependence, make LCID a table. RFILTF determines if the algorithm uses plastic strain rates \((\) RFILT \(=0.0)\) or filtered total strain rates \((0.0<\) RFILTF \(<1.0)\). In the latter case, we use exponential smoothing:
\[
\dot{\varepsilon}^{\mathrm{avg}}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\mathrm{avg}}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}^{\mathrm{cur}},
\]

Thus, as RFILTF increases, more filtering occurs.
3. Asymmetric elliptical yield surface formulation. Setting MODEL \(=2\) invokes another formulation for crushable foam with different plastic deformation behavior under tension and compression. It has the following yield condition:
\[
F=\sqrt{q^{2}+\alpha^{2}(p-\bar{p})^{2}}-Y_{s}=0
\]
corresponding to an elliptical yield surface in the pressure \((p)-\) deviator Mises stress (\(q\)) space with its center at \(\bar{p}=\left(p_{c}-p_{t}\right) / 2\); see Figure M63-3. In the above yield condition,
\[
\begin{aligned}
p & =-\frac{1}{3} I_{1} \\
q & =\sqrt{3 J_{2}} \\
\alpha & =\frac{3 k}{\sqrt{\left(3 k_{t}+k\right)(3-k)}} \\
Y_{s} & =\alpha \frac{p_{c}+p_{t}}{2}
\end{aligned}
\]

The yield stress, \(Y_{s}\), gives the size of the elliptical yield surface. The yield stress in hydrostatic compression, \(p_{c}\), is a function of the uniaxial yield stress, \(\sigma_{c}\), through this equation:
\[
p_{c}=\frac{\sigma_{c}\left(\sigma_{c}\left(\frac{1}{\alpha^{2}}+\frac{1}{9}\right)+\frac{1}{3} p_{t}\right)}{p_{t}+\frac{1}{3} \sigma_{c}} .
\]

The following equations give the stress ratios \(k\) and \(k_{t}\) :
\[
k=\frac{\sigma_{\mathrm{c}}^{0}}{p_{\mathrm{c}}^{0}}, \quad k_{t}=\frac{p_{t}}{p_{\mathrm{c}}^{0}} .
\]
\(k\) describes the shape of the yield surface. Input field \(K\) sets \(k\). It ranges from 0 (von Mises) to less than 3. \(k_{t}\) describes the shift of the yield ellipse on the \(p\)-axis. Input field KT sets \(k_{t}\).

The flow potential \(G\) is the same as for MODEL \(=1\). The other statements from Remark 2 on plastic Poisson's ratio PRP, yield curve input with LCID, and strain rate filtering with RFILTF also hold for MODEL \(=2\).

\section*{*MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY}

This is Material Type 64 which will model strain rate sensitive elasto-plastic material with a power law hardening. Optionally, the coefficients can be defined as functions of the effective plastic strain.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & K & M & N & E0 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0001 & none & 0.0002 \\
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VP & EPS0 & RFILTF & & & & & \\
Type & F & F & F & & & & & \\
Default & 0.0 & 1.0 & 0.0 & & & & & \\
\hline
\end{tabular}

VARIABLE
MID

RO
E

PR
Poisson's ratio
K Material constant, \(k\). If \(\mathrm{K}<0\), the absolute value of K is taken as the load curve number that defines \(k\) as a function of effective plastic strain.

M
Strain hardening coefficient, \(m\). If \(\mathrm{M}<0\), the absolute value of M is taken as the load curve number that defines \(m\) as a function of effective plastic strain.

\section*{VARIABLE}

N

E0
VP

EPS0

RFILTF

DESCRIPTION
Strain rate sensitivity coefficient, \(n\). If \(\mathrm{N}<0\), the absolute value of N is taken as the load curve number that defines \(n\) as a function of effective plastic strain.

Initial strain rate \((\) default \(=0.0002)\)
Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation
Quasi-static threshold strain rate. See description under *MAT_015.

Smoothing factor on the effective strain rate for solid elements when VP \(=0\) :
\[
\dot{\varepsilon}_{n}^{\text {avg }}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
\]

\section*{Remarks:}
1. Constitutive Relationship. This material model follows a constitutive relationship of the form:
\[
\sigma=k \varepsilon^{m} \dot{\varepsilon}^{n},
\]
where \(\sigma\) is the yield stress, \(\varepsilon\) is the effective plastic strain, and \(\dot{\varepsilon}\) is the effective total strain rate \((\mathrm{VP}=0)\), or the effective plastic strain rate \((\mathrm{VP}=1)\). The constants \(k, m\), and \(n\) can be expressed as functions of effective plastic strain or can be constant with respect to the plastic strain. The case of no strain hardening can be obtained by setting the exponent of the plastic strain equal to a very small positive value, such as 0.0001 .

The initial yield stress is obtained through:
\[
\sigma_{0}=k \varepsilon_{0}^{m} \dot{\varepsilon}^{n},
\]
with an initial effective strain of
\[
\varepsilon_{0}=\max \left(0.001,\left(\frac{E}{k \dot{\varepsilon}^{n}}\right)^{1 /(m-1)}\right) .
\]
2. Superplastic Forming. This model can be combined with the superplastic forming input (see *LOAD_SUPERPLASTIC_FORMING) to control the magnitude of the pressure in the pressure boundary conditions. Controlling the pressure limits the effective plastic strain rate so that it does not exceed a maximum value at any integration point within the model.
3. Viscoplastic Formulation. A fully viscoplastic formulation is optional. An additional cost is incurred, but the improvement in results can be dramatic.

\section*{*MAT_MODIFIED_ZERILLI_ARMSTRONG}

This is Material Type 65 which is a rate and temperature sensitive plasticity model that is sometimes preferred in ordnance design calculations.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & E0 & N & TR00M & PC & SPALL \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & EFAIL & VP \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B1 & B2 & B3 & G1 & G2 & G3 & G4 & BULK \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Optional FCC Metal Card. This card is optional.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

G Shear modulus

MID Material identification. A unique number or label must be specified (see *PART).

Mass density

\section*{DESCRIPTION}

\section*{VARIABLE}

E0
\(\mathrm{N} \quad n\), exponent for bcc metal
TROOM \(\quad T_{r}\), room temperature
PC \(\quad p_{0}\), Pressure cutoff
SPALL Spall Type:
EQ.1.0: minimum pressure limit
EQ.2.0: maximum principal stress
EQ.3.0: minimum pressure cutoff
\(\mathrm{C} i \quad C_{i}\), coefficients for flow stress; see Remark 1 below.
EFAIL Failure strain for erosion
VP Formulation for rate effects:
EQ.0.0: scale yield stress (default)
EQ.1.0: viscoplastic formulation
\(\mathrm{B} i \quad B_{i}\), coefficients for polynomial to represent temperature dependency of flow stress yield

Gi \(\quad G_{i}\), coefficients for defining heat capacity and temperature dependency of heat capacity

BULK Bulk modulus defined for shell elements only. Do not input for solid elements.

M \(\quad m\), exponent for FCC metal \((\) default \(=0.5)\). This field is only used when \(\mathrm{N}=0.0\) on Card 1 .

\section*{Remarks:}
1. Flow Stress. The Zerilli-Armstrong Material Model expresses the flow stress as follows.
a) For FCC metals \((n=0)\),
\[
\sigma=C_{1}+\left\{C_{2}\left(\varepsilon^{p}\right)^{\mathrm{m}}\left[e^{\left[-C_{3}+C_{4} \ln \left(\dot{\varepsilon}^{*}\right)\right] T}\right]+C_{5}\right\}\left[\frac{\mu(T)}{\mu(293)}\right]
\]
where \(\varepsilon^{p}\) is the effective plastic strain and \(\varepsilon^{*}\) is the effective plastic strain rate defined as
\[
\dot{\varepsilon}^{*}=\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0}} .
\]
\(\dot{\varepsilon}_{0}=1,10^{-3}, 10^{-6}\) for time units of seconds, milliseconds, and microseconds, respectively.
b) For BCC metals (\(n>0\)),
\[
\sigma=C_{1}+C_{2} e^{\left[-C_{3}+C_{4} \ln \left(\varepsilon^{*}\right)\right] T}+\left[C_{5}\left(\varepsilon^{p}\right)^{n}+C_{6}\right]\left[\frac{\mu(T)}{\mu(293)}\right],
\]
where
\[
\frac{\mu(T)}{\mu(293)}=B_{1}+B_{2} T+B_{3} T^{2} .
\]
2. Heat Capacity. The relationship between heat capacity (specific heat) and temperature may be characterized by a cubic polynomial equation as follows:
\[
C_{p}=G_{1}+G_{2} T+G_{3} T^{2}+G_{4} T^{3}
\]
3. Viscoplastic Formulation. A fully viscoplastic formulation is optional. An additional cost is incurred but the improvement is results can be dramatic.

\section*{*MAT_LINEAR_ELASTIC_DISCRETE_BEAM}

This is Material Type 66. This material model is defined for simulating the effects of a linear elastic beam by using six springs each acting about one of the six local degrees-offreedom. The two nodes defining a beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0 , which causes the local \(r\)-axis to be aligned along the two nodes of the beam, to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this model. A triad is used to orient the beam for the directional springs. Translational/rotational stiffness and viscous damping effects are considered for a local cartesian system; see Remark 1. Applications for this element include the modeling of joint stiffnesses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & TKR & TKS & TKT & RKR & RKS & RKT \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TDR & TDS & TDT & RDR & RDS & RDT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FOR & FOS & FOT & MOR & MOS & MOT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density; see also "volume" in the *SECTION_BEAM definition.

\section*{VARIABLE}

TKR

TKS

TKT
RKR
RKS
RKT

TDR
TDS
TDT

RDR
RDS
RDT

FOR Preload force in \(r\)-direction (optional)
FOS
FOT
MOR

MOS Preload moment about s-axis (optional)
MOT Preload moment about \(t\)-axis (optional)

\section*{Remarks:}
1. Coordinate System and Orientation. The formulation of the discrete beam (type 6) assumes that the beam is of zero length and requires no orientation node. A small distance between the nodes joined by the beam is permitted. The local coordinate system which determines (\(r, s, t\)) is given by the coordinate ID (see *DEFINE_COORDINATE_OPTION) in the cross-sectional input (see *SECTION_BEAM), where the global system is the default. The local coordinate
system axes can rotate with either node of the beam or an average rotation of both nodes (see SCOOR variable in *SECTION_BEAM).
2. Null Stiffness. For null stiffness coefficients, no forces corresponding to these null values will develop. The viscous damping coefficients are optional.
3. Rotational Displacement. Rotational displacement is measured in radians.

\section*{*MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM}

This is Material Type 67. This material model is defined for simulating the effects of nonlinear elastic and nonlinear viscous beams by using six springs each acting about one of the six local degrees-of-freedom. The two nodes defining a beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0 , which aligns the local \(r\)-axis along the two nodes of the beam to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this material model. A triad is used to orient the beam for the directional springs. Arbitrary curves to model transitional/ rotational stiffness and damping effects are allowed. See remarks below.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & LCIDTR & LCIDTS & LCIDTT & LCIDRR & LCIDRS & LCIDRT \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDTDR & LCIDTDS & LCIDTDT & LCIDRDR & LCIDRDS & LCIDRDT & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FOR & FOS & FOT & MOR & MOS & MOT & & \\
\hline
\end{tabular}

Card 4. To consider failure, this card must be defined. Otherwise it is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FFAILR & FFAILS & FFAILT & MFAILR & MFAILS & MFAILT & & \\
\hline
\end{tabular}

Card 5. To consider failure, this card must be defined. Otherwise it is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline UFAILR & UFAILS & UFAILT & TFAILR & TFAILS & TFAILT & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & LCIDTR & LCIDTS & LCIDTT & LCIDRR & LCIDRS & LCIDRT \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

LCIDRT

RO Mass density; see also volume in *SECTION_BEAM.
LCIDTR Load curve ID defining translational force resultant along local \(r\) axis as a function of relative translational displacement; see Remarks 1 and 3 and Figure M67-1.

LCIDTS Load curve ID defining translational force resultant along local saxis as a function of relative translational displacement.

LCIDTT Load curve ID defining translational force resultant along local \(t\) axis as a function of relative translational displacement.

LCIDRR Load curve ID defining rotational moment resultant about local \(r\) axis as a function of relative rotational displacement.

LCIDRS Load curve ID defining rotational moment resultant about local saxis as a function of relative rotational displacement.

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Load curve ID defining rotational moment resultant about local \(t\) axis as a function of relative rotational displacement.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDTDR & LCIDTDS & LCIDTDT & LCIDRDR & LCIDRDS & LCIDRDT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDTDR

LCIDTDS

LCIDTDT Load curve ID defining translational damping force resultant along local \(t\)-axis as a function of relative translational velocity.

LCIDRDR

\section*{DESCRIPTION}

Load curve ID defining translational damping force resultant along local \(r\)-axis as a function of relative translational velocity.

Load curve ID defining translational damping force resultant along local \(s\)-axis as a function of relative translational velocity.

Load curve ID defining rotational damping moment resultant about local \(r\)-axis as a function of relative rotational velocity.

\section*{VARIABLE}

LCIDRDS

LCIDRDT

\section*{DESCRIPTION}

Load curve ID defining rotational damping moment resultant about local \(s\)-axis as a function of relative rotational velocity.

Load curve ID defining rotational damping moment resultant about local \(t\)-axis as a function of relative rotational velocity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FOR & FOS & FOT & MOR & MOS & MOT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
FOR
FOS
FOT
MOR

MOS
MOT

\section*{DESCRIPTION}

Preload force in \(r\)-direction (optional).
Preload force in s-direction (optional).
Preload force in \(t\)-direction (optional).
Preload moment about \(r\)-axis (optional).
Preload moment about \(s\)-axis (optional).
Preload moment about \(t\)-axis (optional).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FFAILR & FFAILS & FFAILT & MFAILR & MFAILS & MFAILT & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

VARIABLE
FFAILR

\section*{DESCRIPTION}

Optional failure parameter. If zero, the corresponding force, \(F_{r}\), is not considered in the failure calculation. See Remark 4.

\section*{VARIABLE}

FFAILS

FFAILT Optional failure parameter. If zero, the corresponding force, \(F_{t}\), is not considered in the failure calculation.

MFAILR Optional failure parameter. If zero, the corresponding moment, \(M_{r}\), is not considered in the failure calculation.

MFAILS Optional failure parameter. If zero, the corresponding moment, \(M_{s}\), is not considered in the failure calculation.

MFAILT Optional failure parameter. If zero, the corresponding moment, \(M_{t}\), is not considered in the failure calculation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UFALLR & UFAILS & UFALLT & TFALLR & TFAILS & TFAILT & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

UFAILR

UFAILS Optional failure parameter. If zero, the corresponding displacement, \(u_{s}\), is not considered in the failure calculation.

UFAILT Optional failure parameter. If zero, the corresponding displacement, \(u_{t}\), is not considered in the failure calculation.

TFAILR Optional failure parameter. If zero, the corresponding rotation, \(\theta_{r}\), is not considered in the failure calculation.

TFAILS Optional failure parameter. If zero, the corresponding rotation, \(\theta_{s}\), is not considered in the failure calculation.

Figure M67-1. The resultant forces and moments are determined by a table lookup. If the origin of the load curve is at \([0,0]\) as in (b) and tension and compression responses are symmetric.

\section*{DESCRIPTION}

TFAILT
Optional failure parameter. If zero, the corresponding rotation, \(\theta_{t}\), is not considered in the failure calculation.

\section*{Remarks:}
1. Null Load Curve IDs. For null load curve IDs, no forces are computed.
2. Discrete Beam Formulation. The formulation of the discrete beam (type 6) assumes that the beam is of zero length and requires no orientation node. A small distance between the nodes joined by the beam is permitted. The local coordinate system which determines (\(r, s, t\)) is given by the coordinate ID (see *DEFINE_COORDINATE_OPTION) in the cross-sectional input (see *SECTION_BEAM) where the global system is the default. The local coordinate system axes can rotate with either node of the beam or an average rotation of both nodes (see SCOOR variable in *SECTION_BEAM).
3. Tension and Compression. If different behavior in tension and compression is desired in the calculation of the force resultants, the load curve(s) must be defined in the negative quadrant starting with the most negative displacement then increasing monotonically to the most positive. If the load curve behaves similarly in tension and compression, define only the positive quadrant. Whenever displacement values fall outside of the defined range, the resultant forces will be extrapolated. Figure M67-1 depicts a typical load curve for a force resultant. Load curves used for determining the damping forces and moment resultants always act identically in tension and compression, since only the
positive quadrant values are considered, that is, start the load curve at the origin [0,0].
4. Failure. Catastrophic failure based on force resultants occurs if the following inequality is satisfied.
\[
\left(\frac{F_{r}}{F_{r}^{\text {fail }}}\right)^{2}+\left(\frac{F_{s}}{F_{s}^{\text {fail }}}\right)^{2}+\left(\frac{F_{t}}{F_{t}^{\text {fail }}}\right)^{2}+\left(\frac{M_{r}}{M_{r}^{\text {fail }}}\right)^{2}+\left(\frac{M_{s}}{M_{s}^{\text {fiil }}}\right)^{2}+\left(\frac{M_{t}}{M_{t}^{\text {fail }}}\right)^{2}-1 . \geq 0 .
\]

After failure the discrete element is deleted. Likewise, catastrophic failure based on displacement resultants occurs if the following inequality is satisfied:
\[
\left(\frac{u_{r}}{u_{r}^{\text {fail }}}\right)^{2}+\left(\frac{u_{s}}{u_{s}^{\text {fail }}}\right)^{2}+\left(\frac{u_{t}}{u_{t}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{r}}{\theta_{r}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{s}}{\theta_{s}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{t}}{\theta_{t}^{\text {fail }}}\right)^{2}-1 . \geq 0 .
\]

After failure, the discrete element is deleted. If failure is included, either or both of the criteria may be used.
5. Rotational Displacement. Rotational displacement is measured in radians.

\section*{*MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM}

This is Material Type 68. This material model is for simulating the effects of nonlinear elastoplastic, linear viscous behavior of beams by using six springs each acting about one of the six local degrees-of-freedom. The two nodes defining a beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams, the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0 , which aligns the local \(r\)-axis along the two nodes of the beam to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this material model. A triad orients the beam for the directional springs. Translational/rotational stiffness and damping effects can be considered. The plastic behavior is modeled using force/moment curves as a function of displacements/rotation. Optionally, failure can be specified based on a force/moment criterion and a displacement rotation criterion. See also the remarks below.

\section*{Card Summary:}

Card 1. This card is required
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & TKR & TKS & TKT & RKR & RKS & RKT \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TDR & TDS & TDT & RDR & RDS & RDT & RYLD & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCPDR & LCPDS & LCPDT & LCPMR & LCPMS & LCPMT & & \\
\hline
\end{tabular}

Card 4. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FFAILR & FFAILS & FFAILT & MFAILR & MFAILS & MFAILT & & \\
\hline
\end{tabular}

Card 5. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline UFAILR & UFAILS & UFAILT & TFAILR & TFAILS & TFAILT & & \\
\hline
\end{tabular}

Card 6. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FOR & FOS & FOT & MOR & MOS & MOT & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & TKR & TKS & TKT & RKR & RKS & RKT \\
Type & A & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}

\section*{DESCRIPTION}

MID

RO
TKR Translational stiffness along local \(r\)-axis
LT.O.O: \(\mid\) TKR| is the load curve ID defining the elastic translational force along the local \(r\)-axis as a function of relative translational displacement. Useful for nonlinear elastic behavior.

TKS Translational stiffness along local s-axis
LT.O.O: |TKS| is the load curve ID for defining the elastic translational force along the local \(s\)-axis as a function of relative translational displacement. Useful for nonlinear elastic behavior.

TKT Translational stiffness along local \(t\)-axis
LT.O.O: \(|\mathrm{TKT}|\) is the load curve ID defining the elastic translational force along the local \(t\)-axis as a function of relative translational displacement. Useful for nonlinear elastic behavior.

RKR Rotational stiffness about the local \(r\)-axis
LT.0.0: \(|R K R|\) is the load curve ID defining the elastic rotational moment along the local \(r\)-axis as a function of relative rotational displacement. Useful for nonlinear elastic behavior.

\section*{VARIABLE}

RKS

RKT

\section*{DESCRIPTION}

Rotational stiffness about the local s-axis
LT.O.O: \(\mid\) RKS| is the load curve ID defining the elastic rotational moment along the local \(s\)-axis as a function of relative rotational displacement. Useful for nonlinear elastic behavior.

Rotational stiffness about the local \(t\)-axis
LT.O.O: \(|\mathrm{RKT}|\) is the load curve ID defining the elastic rotational moment along the local \(t\)-axis as a function of relative rotational displacement. Useful for nonlinear elastic behavior.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TDR & TDS & TDT & RDR & RDS & RDT & RYLD & \\
Type & F & F & F & F & F & F & 1 & \\
Default & none & none & none & none & none & none & 0 & \\
\hline
\end{tabular}

VARIABLE
TDR
TDS Translational viscous damper along local s-axis
TDT Translational viscous damper along local \(t\)-axis
RDR Rotational viscous damper about the local \(r\)-axis
RDS Rotational viscous damper about the local s-axis
RDT Rotational viscous damper about the local \(t\)-axis
RYLD Flag for method of computing plastic yielding:
EQ.O: Original method of determining plastic yielding (default)
EQ.1: Compute yield displacement/rotation by taking the first point of the relevant curve as the yield force/moment and dividing it by the relevant stiffness
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCPDR & LCPDS & LCPDT & LCPMR & LCPMS & LCPMT & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCPDR

LCPDS

LCPDT

LCPMR Load curve (or table) ID-yield moment as a function of plastic rotation about the \(r\)-axis (and rotational velocity about the \(r\)-axis, if table). If the curve/table ID is zero, and RKR is nonzero, then elastic behavior is obtained for this component.

LCPMS

LCPMT Load curve (or table) ID-yield moment as a function of plastic rotation about the \(t\)-axis (and rotational velocity about the \(t\)-axis, if table). If the curve/table ID is zero, and RKT is nonzero, then elastic behavior is obtained for this component.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FFAILR & FFAILS & FFAILT & MFAILR & MFAILS & MFAILT & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FFAILR

FFAILS

FFAILT

MFAILR Optional failure parameter. If zero, the corresponding moment, \(M_{r}\), is not considered in the failure calculation.

LT.O.O: |MFAILR| is the load curve ID defining \(M_{r}\) as a function of rotational velocity about the local \(r\)-axis.

MFAILS Optional failure parameter. If zero, the corresponding moment, \(M_{s}\), is not considered in the failure calculation.

LT.O.O: |MFAILS| is the load curve ID defining \(M_{s}\) as a function of rotational velocity about the local \(s\)-axis.

MFAILT Optional failure parameter. If zero, the corresponding moment, \(M_{t}\), is not considered in the failure calculation.

LT.O.O: |MFAILT| is the load curve ID defining \(M_{t}\) as a function of rotational velocity about the local \(t\)-axis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UFAILR & UFAILS & UFALLT & TFALLR & TFAILS & TFAILT & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

UFAILR

UFAILS

UFAILT Optional failure parameter. If zero, the corresponding displacement, \(u_{t}\), is not considered in the failure calculation.
LT.O.O: |UFAILT| is the load curve ID defining \(u_{t}\) as a function of translational velocity along the local \(t\)-axis.

TFAILR Optional failure parameter. If zero, the corresponding rotation, \(\theta_{r}\), is not considered in the failure calculation.

LT.O.O: |TFAILR| is the load curve ID defining \(\theta_{r}\) as a function of rotational velocity about the local \(r\)-axis.

Optional failure parameter. If zero, the corresponding rotation, \(\theta_{s}\), is not considered in the failure calculation.

LT.O.O: |TFAILS| is the load curve ID defining \(\theta_{s}\) as a function of rotational velocity about the local \(s\)-axis.

Optional failure parameter. If zero, the corresponding rotation, \(\theta_{t}\), is not considered in the failure calculation.

LT.O.O: |TFAILT| is the load curve ID defining \(\theta_{t}\) as a function of rotational velocity about the local \(t\)-axis.

PLASTIC DISPLACEMENT
Figure M68-1. The resultant forces and moments are limited by the yield definition. The initial yield point corresponds to a plastic displacement of zero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FOR & FOS & FOT & MOR & MOS & MOT & & \\
Type & F & F & F & F & F & F & & \\
\hline VARIABLE & Preload force in \(r\)-direction (optional) \\
FOR & Preload force in \(s\)-direction (optional) \\
FOS & Preload force in \(t\)-direction (optional) \\
FOT & Preload moment about \(r\)-axis (optional) \\
MOR & Preload moment about \(s\)-axis (optional) \\
MOS &
\end{tabular} Preload moment about \(t\)-axis (optional)

\section*{Remarks:}
1. Elastic behavior. For the translational and rotational degrees of freedom where elastic behavior is desired, set the load curve ID to zero.
2. Plastic displacement. The plastic displacement for the load curves is defined as:
plastic displacement \(=\) total displacement - yield force/elastic stiffness.
3. Discrete beam formulation. The formulation of the discrete beam (type 6) assumes that the beam is of zero length and requires no orientation node. A small distance between the nodes joined by the beam is permitted. The local coordinate system which determines (\(r, s, t\)) is given by the coordinate ID (see *DEFINE_COORDINATE_OPTION) in the cross-sectional input (see *SECTION_BEAM) where the global system is the default. The local coordinate system axes can rotate with either node of the beam or an average rotation of both nodes (see SCOOR variable in *SECTION_BEAM).
4. Failure. Catastrophic failure based on force resultants occurs if the following inequality is satisfied.
\[
\left(\frac{F_{r}}{F_{r}^{\text {fail }}}\right)^{2}+\left(\frac{F_{s}}{F_{s}^{\text {fail }}}\right)^{2}+\left(\frac{F_{t}}{F_{t}^{\text {fail }}}\right)^{2}+\left(\frac{M_{r}}{M_{r}^{\text {fail }}}\right)^{2}+\left(\frac{M_{s}}{M_{s}^{\text {fail }}}\right)^{2}+\left(\frac{M_{t}}{M_{t}^{\text {fail }}}\right)^{2}-1 . \geq 0 .
\]

After failure, the discrete element is deleted. Likewise, catastrophic failure based on displacement resultants occurs if the following inequality is satisfied:
\[
\left(\frac{u_{r}}{u_{r}^{\text {fail }}}\right)^{2}+\left(\frac{u_{s}}{u_{s}^{\text {fail }}}\right)^{2}+\left(\frac{u_{t}}{u_{t}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{r}}{\theta_{r}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{s}}{\theta_{s}^{\text {fail }}}\right)^{2}+\left(\frac{\theta_{t}}{\theta_{t}^{\text {fail }}}\right)^{2}-1 . \geq 0 .
\]

After failure the discrete element is deleted. If failure is included, either or both of the criteria may be used.
5. Rotational displacement. Rotational displacement is measured in radians.
6. History variables. The following additional history variables are available for this material by setting NEIPB on *DATABASE_EXTENT_BINARY:
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 12 & Flag for failure from resultant forces: \\
& EQ.0: Intact \\
& EQ.1: Failed \\
13 & Flag for failure from displacement resultants: \\
& EQ.0: Intact \\
& EQ.1: Failed
\end{tabular}

\section*{*MAT_SID_DAMPER_DISCRETE_BEAM}

This is Material Type 69. The side impact dummy uses a damper that is not adequately treated by the nonlinear force as a function of relative velocity curves since the force characteristics are dependent on the displacement of the piston. See Remarks below.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & ST & D & R & H & K & C \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C3 & STF & RHOF & C1 & C2 & LCIDF & LCIDD & S0 \\
\hline
\end{tabular}

Card 3. Include one card per orifice. Read in up to 15 orifice locations. The next keyword ("*") card terminates this input.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ORFLOC & ORFRAD & SF & DC & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & ST & D & R & H & K & C \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
ST

D d, piston diameter
\(\mathrm{R} \quad R\), default orifice radius
H \(\quad h\), orifice controller position

\section*{VARIABLE}

K

\section*{DESCRIPTION}
\(K\), damping constant
LT.O.O: \(|\mathrm{K}|\) is the load curve number ID (see *DEFINE_CURVE) defining the damping coefficient as a function of the absolute value of the relative velocity.

C C, discharge coefficient
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C3 & STF & RH0F & C1 & C2 & LCIDF & LCIDD & S0 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

C3
Coefficient for fluid inertia term
STF \(\quad k\), stiffness coefficient if piston bottoms out
RHOF \(\quad \rho_{\text {fluid }}\), fluid density
C1 \(\quad C_{1}\), coefficient for linear velocity term
C2 \(\quad C_{2}\), coefficient for quadratic velocity term
LCIDF Load curve number ID defining force as a function of piston displacement, \(s\), that is, term \(f\left(s+s_{0}\right)\). Compressive behavior is defined in the positive quadrant of the force displacement curve. Displacements falling outside of the defined force displacement curve are extrapolated. Care must be taken to ensure that extrapolated values are reasonable.

LCIDD Load curve number ID defining damping coefficient as a function of piston displacement, \(s\), that is, \(g\left(s+s_{0}\right)\). Displacements falling outside the defined curve are extrapolated. Care must be taken to ensure that extrapolated values are reasonable.

Initial displacement, \(s_{0}\); typically set to zero. A positive displace- ment corresponds to compressive behavior.

Figure M69-1. Mathematical model for the Side Impact Dummy damper.
Orifice Cards. Include one card per orifice. Read in up to 15 orifice locations. The next keyword ("*") card terminates this input. On the first card below the optional input parameters SF and DF may be specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cards 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ORFLOC & ORFRAD & SF & DC & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

VARIABLE
ORFLOC
ORFRAD

SF
DC \(\quad c\), linear viscous damping coefficient used after damper bottoms out either in tension or compression

Figure M69-2. Force as a function of displacement as orifices are covered at a constant relative velocity. Only the linear velocity term is active.

\section*{Remarks:}

As the damper moves, the fluid flows through the open orifices to provide the necessary damping resistance. While moving as shown in Figure M69-1, the piston gradually blocks off and effectively closes the orifices. The number of orifices and the size of their opening control the damper resistance and performance. The damping force is computed from,
\[
F=\mathrm{SF} \times\left\{K A_{p} V_{p}\left\{\frac{C_{1}}{A_{0}^{t}}+C_{2}\left|V_{p}\right| \rho_{\text {fluid }}\left[\left(\frac{A_{p}}{C A_{0}^{t}}\right)^{2}-1\right]\right\}-f\left(s+s_{0}\right)+V_{p} g\left(s+s_{0}\right)\right\},
\]
where \(K\) is a user defined constant or a tabulated function of the absolute value of the relative velocity, \(V_{p}\) is the piston velocity, \(C\) is the discharge coefficient, \(A_{p}\) is the piston area, \(A_{0}^{t}\) is the total open areas of orifices at time \(t, \rho_{\text {fluid }}\) is the fluid density, \(C_{1}\) is the coefficient for the linear term, and \(C_{2}\) is the coefficient for the quadratic term.

In the implementation, the orifices are assumed to be circular with partial covering by the orifice controller. As the piston closes, the closure of the orifice is gradual. This gradual closure is properly taken into account to insure a smooth response. If the piston stroke is exceeded, the stiffness value, \(k\), limits further movement, meaning if the damper bottoms out in tension or compression the damper forces are calculated by replacing the damper by a bottoming out spring and damper, \(k\) and \(c\), respectively. The piston stroke must exceed the initial length of the beam element. The time step calculation is based in part
on the stiffness value of the bottoming out spring. A typical force as a function of displacement curve at constant relative velocity is shown in Figure M69-2.

The factor, SF , which scales the force defaults to 1.0 and is analogous to the adjusting ring on the damper.

\section*{*MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM}

This is Material Type 70. This special purpose element represents a combined hydraulic and gas-filled damper which has a variable orifice coefficient. A schematic of the damper is shown in Figure M70-1. Dampers of this type are sometimes used on buffers at the end of railroad tracks and as aircraft undercarriage shock absorbers. This material can be used only as a discrete beam element. See also the remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & C0 & N & P0 & PA & AP & KH \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID & FR & SCLF & CLEAR & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label not must be specified (see *PART). \\
\hline RO & Mass density, see also volume in *SECTION_BEAM definition. \\
\hline CO & Length of gas column, \(C_{0}\) \\
\hline N & Adiabatic constant, \(n\) \\
\hline P0 & Initial gas pressure, \(P_{0}\) \\
\hline PA & Atmospheric pressure, \(P_{a}\) \\
\hline AP & Piston cross sectional area, \(A_{p}\) \\
\hline KH & Hydraulic constant, K \\
\hline LCID & Load curve ID (see *DEFINE_CURVE) defining the orifice area, \(a_{0}\), as a function of element deflection \(S\) \\
\hline
\end{tabular}

Figure M70-1. Schematic of Hydraulic/Gas damper.

SCLF \(\quad\) Scale factor on force \((\) default \(=1.0)\).

\section*{VARIABLE}

FR

CLEAR

\section*{DESCRIPTION}

Return factor on orifice force. This acts as a factor on the hydraulic force only and is applied when unloading. It is intended to represent a valve that opens when the piston unloads to relieve hydraulic pressure. Set it to 1.0 for no such relief.

Clearance. If nonzero, no tensile force develops for positive displacements and negative forces develop only after the clearance is closed.

\section*{Remarks:}

As the damper is compressed two actions contribute to the force which develops. First, the gas is adiabatically compressed into a smaller volume. Secondly, oil is forced through an orifice. A profiled pin may occupy some of the cross-sectional area of the orifice; thus, the orifice area available for the oil varies with the stroke. The force is assumed proportional to the square of the velocity and inversely proportional to the available area.

The equation for this element is:
\[
F=\mathrm{SCLF} \times\left\{K_{h}\left(\frac{V}{a_{0}}\right)^{2}+\left[P_{0}\left(\frac{C_{0}}{C_{0}+S}\right)^{n}-P_{a}\right] A_{p}\right\}
\]
where \(S\) is the element deflection (positive in tension) and \(V\) is the relative velocity across the element.

\section*{*MAT_CABLE_DISCRETE_BEAM}

This is Material Type 71. This model permits elastic cables to be realistically modeled; thus, no force will develop in compression.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & LCID & F0 & TMAXF0 & TRAMP & IREAD \\
Type & A & F & F & F & F & F & F & 1 \\
Default & none & none & none & none & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Additional card for IREAD > 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & OUTPUT & TSTART & FRACLO & MXEPS & MXFRC & & & \\
Type & I & F & F & F & F & & & \\
Default & 0 & 0 & 0 & \(1.0 \mathrm{E}+20\) & \(1.0 \mathrm{E}+20\) & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E

LCID Load curve ID, see *DEFINE_CURVE, defining the stress versus engineering strain. (Optional).

TMAXF0 Time for which pre-tension force will be held

\section*{VARIABLE}

TRAMP
IREAD
OUTPUT

TSTART
FRACL0

MXEPS
MXFRC Maximum force at failure

\section*{Remarks:}

The force, \(F\), generated by the cable is nonzero if and only if the cable is tension. The force is given by:
\[
F=\max \left(F_{0}+K \Delta L, 0 .\right)
\]
where \(\Delta \mathrm{L}\) is the change in length
\[
\Delta L=\text { current length }- \text { (initial length }- \text { offset })
\]
and the stiffness \((\mathrm{E}>0.0\) only \()\) is defined as:
\[
K=\frac{E \times \text { area }}{(\text { initial length }- \text { offset })}
\]

Note that a constant force element can be obtained by setting:
\[
F_{0}>0 \text { and } K=0
\]
although the application of such an element is unknown.
The area and offset are defined on either the cross section or element cards. For a slack cable the offset should be input as a negative length. For an initial tensile force the offset should be positive.

If a load curve is specified the Young's modulus will be ignored and the load curve will be used instead. The points on the load curve are defined as engineering stress versus engineering strain, i.e., the change in length over the initial length. The unloading behavior follows the loading.

By default, cable pretension is applied only at the start of the analysis. If the cable is attached to flexible structure, deformation of the structure will result in relaxation of the cables, which will therefore lose some or all of the intended preload.

This can be overcome by using TMAXF0. In this case, it is expected that the structure will deform under the loading from the cables and that this deformation will take time to occur during the analysis. The unstressed length of the cable will be continuously adjusted until time TMAXF0 such that the force is maintained at the user-defined pre-tension force - this is analogous to operation of the pre-tensioning screws in real cables. After time TMAXF0, the unstressed length is fixed and the force in the cable is determined in the normal way using the stiffness and change of length.

Sudden application of the cable forces at time zero may result in an excessively dynamic response during pre-tensioning. A ramp-up time TRAMP may optionally be defined. The cable force ramps up from zero at time TSTART to the full pre-tension F0 at time TSTART + TRAMP. TMAXF0, if set less than TSTART + TRAMP by the user, will be internally reset to TSTART + TRAMP.

If the model does not use dynamic relaxation, it is recommended that damping be applied during pre-tensioning so that the structure reaches a steady state by time TMAXF0.

If the model uses dynamic relaxation, TSTART, TRAMP, and TMAXF0 apply only during dynamic relaxation. The cable preload at the end of dynamic relaxation carries over to the start of the subsequent transient analysis.

The cable mass will be calculated from length \(\times\) area \(\times\) density if VOL is set to zero on *SECTION_BEAM. Otherwise, VOL \(\times\) density will be used.

If OUTPUT is set to 1 , one additional history variable representing axial strain is output to d3plot for the cable elements. This axial strain can be plotted by LS-PrePost by selecting the beam component labeled as "axial stress". Though the label says "axial stress", it is actually axial strain.

If the stress-strain load curve option, LCID, is combined with preload, two types of behavior are available:
1. If the preload is applied using the TMAXF0/TRAMP method, the initial strain is calculated from the stress-strain curve to achieve the desired preload.
2. If TMAXFO/TRAMP are not used, the preload force is taken as additional to the force calculated from the stress/strain curve. Thus, the total stress in the cable will be higher than indicated by the stress/strain curve.

\section*{*MAT_CONCRETE_DAMAGE}

This is Material Type 72. This model has been used to analyze buried steel reinforced concrete structures subjected to impulsive loadings. A newer version of this model is available as *MAT_CONCRETE_DAMAGE_REL3.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & PR & & & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIGF & A0 & A1 & A2 & & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A0Y & A1Y & A2Y & A1F & A2F & B1 & B2 & B3 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PER & ER & PRR & SIGY & ETAN & LCP & LCR & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(\lambda 1\) & \(\lambda 2\) & \(\lambda 3\) & \(\lambda 4\) & \(\lambda 5\) & \(\lambda 6\) & \(\lambda 7\) & \(\lambda 8\) \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(\lambda 9\) & \(\lambda 10\) & \(\lambda 11\) & \(\lambda 12\) & \(\lambda 13\) & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(\eta 1\) & \(\eta 2\) & \(\eta 3\) & \(\eta 4\) & \(\eta 5\) & \(\eta 6\) & \(\eta 7\) & \(\eta 8\) \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(\eta 9\) & \(\eta 10\) & \(\eta 11\) & \(\eta 12\) & \(\eta 13\) & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & & & & & \\
Type & A & F & F & & & & & \\
Default & none & none & none & & & & & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
PR Poisson's ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGF & A0 & A1 & A2 & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

VARIABLE
SIGF
A0 Cohesion
A1
A2

Pressure hardening coefficient

\section*{DESCRIPTION}

Maximum principal stress for failure

Pressure hardening coefficient
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A0Y & A1Y & A2Y & A1F & A2F & B1 & B2 & B3 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

DESCRIPTION
A0Y Cohesion for yield
A1Y Pressure hardening coefficient for yield limit
A2Y Pressure hardening coefficient for yield limit
A1F Pressure hardening coefficient for failed material
A2F Pressure hardening coefficient for failed material
B1 Damage scaling factor
B2 Damage scaling factor for uniaxial tensile path
B3 Damage scaling factor for triaxial tensile path
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PER & ER & PRR & SIGY & ETAN & LCP & LCR & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & none & 0.0 & none & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

PER
ER
Elastic modulus for reinforcement
PRR

Poisson's ratio for reinforcement

\section*{VARIABLE}

SIGY
ETAN Tangent modulus/plastic hardening modulus
LCP

LCR

\section*{DESCRIPTION}

Initial yield stress

Load curve ID giving rate sensitivity for principal material; see *DEFINE_CURVE.

Load curve ID giving rate sensitivity for reinforcement; see *DE- FINE_CURVE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 1\) & \(\lambda 2\) & \(\lambda 3\) & \(\lambda 4\) & \(\lambda 5\) & \(\lambda 6\) & \(\lambda 7\) & \(\lambda 8\) \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 9\) & \(\lambda 10\) & \(\lambda 11\) & \(\lambda 12\) & \(\lambda 13\) & & & \\
Type & F & F & F & F & F & & & \\
Default & none & none & none & none & none & & & \\
\hline
\end{tabular}

\section*{DESCRIPTION}
\(\lambda 1-\lambda 13\)
Tabulated damage function
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 1\) & \(\eta 2\) & \(\eta 3\) & \(\eta 4\) & \(\eta 5\) & \(\eta 6\) & \(\eta 7\) & \(\eta 8\) \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 9\) & \(\eta 10\) & \(\eta 11\) & \(\eta 12\) & \(\eta 13\) & & & \\
Type & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) & & & \\
Default & none & none & none & none & none & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DESCRIPTION
\(\eta 1-\eta 13 \quad\) Tabulated scale factor.

\section*{Remarks:}
1. Cohesion. Cohesion for failed material \(a_{0 f}=0\).
2. B3. B3 must be positive or zero.
3. Damage Function. \(\lambda_{n} \leq \lambda_{n+1}\). The first point must be zero.

\section*{*MAT_CONCRETE_DAMAGE_REL3}

This is Material Type 72R3. The Karagozian \& Case (K\&C) Concrete Model - Release III is a three-invariant model, uses three shear failure surfaces, includes damage and strainrate effects, and has origins based on the Pseudo-TENSOR Model (Material Type 16). The most significant user improvement provided by Release III is a model parameter generation capability, based solely on the unconfined compression strength of the concrete. The implementation of Release III significantly changed the user input, thus previous input files using Material Type 72 prior to LS-DYNA Version 971, are not compatible with the present input format.

An open source reference, that precedes the parameter generation capability, is provided in Malvar et al. [1997]. A workshop proceedings reference, Malvar et al. [1996], is useful, but may be difficult to obtain. More recent, but limited distribution reference materials, such as Malvar et al. [2000], may be obtained by contacting Karagozian \& Case.

Seven card images are required to define the complete set of model parameters for the \(K \& C\) Concrete Model. An Equation-of-State is also required for the pressure-volume strain response. Brief descriptions of all the input parameters are provided below, however it is expected that this model will be used primarily with the option to automatically generate the model parameters based on the unconfined compression strength of the concrete. These generated material parameters, along with the generated parameters for *EOS_TABULATED_COMPACTION, are written to the d3hsp file.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & & & & & \\
Type & A & F & F & & & & & \\
Default & none & none & none & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FT & A0 & A1 & A2 & B1 & 0MEGA & A1F & \\
Type & F & F & F & F & F & F & F & \\
Default & none & 0.0 & 0.0 & 0.0 & 0.0 & none & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S \(\lambda\) & NOUT & EDROP & RSIZE & UCF & LCRATE & LOCWID & NPTS \\
Type & \(F\) & F & F & F & F & 1 & \(F\) & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 01\) & \(\lambda 02\) & \(\lambda 03\) & \(\lambda 04\) & \(\lambda 05\) & \(\lambda 06\) & \(\lambda 07\) & \(\lambda 08\) \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 09\) & \(\lambda 10\) & \(\lambda 11\) & \(\lambda 12\) & \(\lambda 13\) & B 3 & A0Y & A1Y \\
Type & F & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & none & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 01\) & \(\eta 02\) & \(\eta 03\) & \(\eta 04\) & \(\eta 05\) & \(\eta 06\) & \(\eta 07\) & \(\eta 08\) \\
Type & \(F\) \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 09\) & \(\eta 10\) & \(\eta 11\) & \(\eta 12\) & \(\eta 13\) & \(B 2\) & A2F & A2Y \\
Type & \(F\) \\
Default & none & none & none & none & none & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
PR Poisson's ratio, \(v\)

B1

OMEGA
A1F
\(S \lambda\)
NOUT
EDROP
RSIZE

UCF

FT Uniaxial tensile strength, \(f_{t}\)
A0 Maximum shear failure surface parameter, \(a_{0}\), or \(-f_{c}^{\prime}\) for parameter generation (recommended)

A1 Maximum shear failure surface parameter, \(a_{1}\)
A2 Maximum shear failure surface parameter, \(a_{2}\)

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Compressive damage scaling parameter, \(b_{1}\)
Fractional dilatancy, \(\omega\)
Residual failure surface coefficient, \(a_{1 f}\)
\(\lambda\) stretch factor, \(s\)
Output selector for effective plastic strain (see table)
Post peak dilatancy decay, \(N^{\alpha}\) set to 39.37 if user length unit in meters.

Unit conversion factor for stress (psi/user-unit). For instance set to 145 if \(f_{c}^{\prime}\) in MPa.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline LCRATE & Define (load) curve number for strain-rate effects; effective strain rate on abscissa (negative \(=\) tension) and strength enhancement on ordinate. If LCRATE is set to -1 , strain rate effects are automatically included, based on equations provided in Wu , Crawford, Lan, and Magallanes [2014]. LCRATE \(=-1\) is applicable to models which use time units of seconds, for other time units, the strain-rate effects should be input by means of a curve. \\
\hline LOCWID & Three times the maximum aggregate diameter (input in user length units). \\
\hline NPTS & Number of points in \(\lambda\) versus \(\eta\) damage relation; must be 13 points. \\
\hline \(\lambda 01\) & \(1^{\text {st }}\) value of damage function, (a.k.a., \(1^{\text {st }}\) value of "modified" effective plastic strain; see references for details). \\
\hline \(\lambda 02\) & \(2^{\text {nd }}\) value of damage function, \\
\hline \(\lambda 03\) & \(3{ }^{\text {rd }}\) value of damage function, \\
\hline \(\lambda 04\) & \(4^{\text {th }}\) value of damage function, \\
\hline \(\lambda 05\) & \(5^{\text {th }}\) value of damage function, \\
\hline \(\lambda 06\) & \(6^{\text {th }}\) value of damage function, \\
\hline \(\lambda 07\) & \(7^{\text {th }}\) value of damage function, \\
\hline \(\lambda 08\) & \(8^{\text {th }}\) value of damage function, \\
\hline \(\lambda 09\) & \(9^{\text {th }}\) value of damage function, \\
\hline \(\lambda 10\) & \(10^{\text {th }}\) value of damage function, \\
\hline \(\lambda 11\) & \(11^{\text {th }}\) value of damage function, \\
\hline \(\lambda 12\) & \(12^{\text {th }}\) value of damage function, \\
\hline \(\lambda 13\) & \(13^{\text {th }}\) value of damage function. \\
\hline B3 & Damage scaling coefficient for triaxial tension, \(b_{3}\). \\
\hline A0Y & Initial yield surface cohesion, \(a_{0 y}\). \\
\hline A1Y & Initial yield surface coefficient, \(a_{1 y}\). \\
\hline \(\eta 01\) & \(1{ }^{\text {st }}\) value of scale factor, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline \(\eta 02\) & \(2^{\text {nd }}\) value of scale factor, \\
\hline \(\eta 03\) & \(3^{\text {rd }}\) value of scale factor, \\
\hline \(\eta 04\) & \(4^{\text {th }}\) value of scale factor, \\
\hline \(\eta 05\) & \(5^{\text {th }}\) value of scale factor, \\
\hline \(\eta 06\) & \(6^{\text {th }}\) value of scale factor, \\
\hline \(\eta 07\) & \(7^{\text {th }}\) value of scale factor, \\
\hline \(\eta 08\) & \(8^{\text {th }}\) value of scale factor, \\
\hline \(\eta 09\) & \(9^{\text {th }}\) value of scale factor, \\
\hline \(\eta 10\) & \(10^{\text {th }}\) value of scale factor, \\
\hline \(\eta 11\) & \(11^{\text {th }}\) value of scale factor, \\
\hline \(\eta 12\) & \(12^{\text {th }}\) value of scale factor, \\
\hline \(\eta 13\) & \(13^{\text {th }}\) value of scale factor. \\
\hline B2 & Tensile damage scaling exponent, \(b_{2}\). \\
\hline A2F & Residual failure surface coefficient, \(a_{2 f}\). \\
\hline A2Y & Initial yield surface coefficient, \(a_{2 y}\). \\
\hline
\end{tabular}
\(\lambda\), sometimes referred to as "modified" effective plastic strain, is computed internally as a function of effective plastic strain, strain rate enhancement factor, and pressure. \(\eta\) is a function of \(\lambda\) as specified by the \(\eta\) as a function of \(\lambda\) curve. The \(\eta\) value, which is always between 0 and 1, is used to interpolate between the yield failure surface and the maximum failure surface or between the maximum failure surface and the residual failure surface, depending on whether \(\lambda\) is to the left or right of the first peak in the \(\eta\) as a function of \(\lambda\) curve. The "scaled damage measure" ranges from 0 to 1 as the material transitions from the yield failure surface to the maximum failure surface, and thereafter ranges from 1 to 2 as the material ranges from the maximum failure surface to the residual failure surface. See the references for details.

\section*{Output of Selected Variables:}

The quantity labeled as "plastic strain" by LS-PrePost is actually the quantity described in Table M72-1, in accordance with the input value of NOUT (see Card 3 above).
\begin{tabular}{|c|c|l|}
\hline NOUT & Function & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & & Current shear failure surface radius \\
2 & \(\delta=2 \lambda /\left(\lambda+\lambda_{m}\right)\) & Scaled damage measure \\
3 & \(\dot{\sigma}_{i j} \dot{\varepsilon}_{i j}\) & Strain energy (rate) \\
4 & \(\dot{\sigma}_{i j} \dot{e}_{i j}^{p}\) & Plastic strain energy (rate) \\
\hline
\end{tabular}

Table M72-1. Description of quantity labeled "plastic strain" by LS-PrePost.
An additional six extra history variables as shown in Table M72-2 may be written by setting NEIPH \(=6\) on the keyword *DATABASE_EXTENT_BINARY. The extra history variables are labeled as "history var\#1" through "history var\#6" in LS-PrePost.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Label } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline history var\#1 & Internal energy \\
history var\#2 & Pressure from bulk viscosity \\
history var\#3 & Volume in previous time step \\
history var\#4 & Plastic volumetric strain \\
history var\#5 & Slope of damage evolution \((\eta\) vs. \(\lambda)\) curve \\
history var\#6 & "Modified" effective plastic strain \((\lambda)\) \\
\hline
\end{tabular}

Table M72-2. Extra History Variables for *MAT_072R3

\section*{Sample Input for Concrete:}

As an example of the K\&C Concrete Model material parameter generation, the following sample input for a 45.4 MPa (\(6,580 \mathrm{psi}\)) unconfined compression strength concrete is provided. The basic units for the provided parameters are length in millimeters (mm), time in milliseconds (msec), and mass in grams (g). This base unit set yields units of force in Newtons (N) and pressure in Mega-Pascals (MPa).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & PR & & & & & \\
Value & 72 & \(2.3 \mathrm{E}-3\) & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FT & A0 & A1 & A2 & B1 & OMEGA & A1F & \\
Value & & -45.4 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S \(\lambda\) & NOUT & EDROP & RSIZE & UCF & LCRATE & LOCWID & NPTS \\
Value & & & & \(3.94 E-2\) & 145.0 & 723 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 01\) & \(\lambda 02\) & \(\lambda 03\) & \(\lambda 04\) & \(\lambda 05\) & \(\lambda 06\) & \(\lambda 07\) & \(\lambda 08\) \\
Value & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\lambda 09\) & \(\lambda 10\) & \(\lambda 11\) & \(\lambda 12\) & \(\lambda 13\) & B 3 & A 0 Y & A 1 Y \\
Value & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 01\) & \(\eta 02\) & \(\eta 03\) & \(\eta 04\) & \(\eta 05\) & \(\eta 06\) & \(\eta 07\) & \(\eta 08\) \\
Value & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & \(\eta 09\) & \(\eta 10\) & \(\eta 11\) & \(\eta 12\) & \(\eta 13\) & B2 & A2F & A2Y \\
Value & & & & & & & & \\
\hline
\end{tabular}

Shear strength enhancement factor as a function of effective strain rate is given by a curve (*DEFINE_CURVE) with LCID 723. The sample input values, see Malvar \& Ross [1998], are given in Table M72-3.
\begin{tabular}{|c|c|}
\hline Strain-Rate (1/ms) & Enhancement \\
\hline \hline\(-3.0 \mathrm{E}+01\) & 9.70 \\
\(-3.0 \mathrm{E}-01\) & 9.70 \\
\(-1.0 \mathrm{E}-01\) & 6.72 \\
\(-3.0 \mathrm{E}-02\) & 4.50 \\
\(-1.0 \mathrm{E}-02\) & 3.12 \\
\(-3.0 \mathrm{E}-03\) & 2.09 \\
\(-1.0 \mathrm{E}-03\) & 1.45 \\
\(-1.0 \mathrm{E}-04\) & 1.36 \\
\(-1.0 \mathrm{E}-05\) & 1.28 \\
\(-1.0 \mathrm{E}-06\) & 1.20 \\
\(-1.0 \mathrm{E}-07\) & 1.13 \\
\(-1.0 \mathrm{E}-08\) & 1.06 \\
\(0.0 \mathrm{E}+00\) & 1.00 \\
\(3.0 \mathrm{E}-08\) & 1.00 \\
\(1.0 \mathrm{E}-07\) & 1.03 \\
\(1.0 \mathrm{E}-06\) & 1.08 \\
\(1.0 \mathrm{E}-05\) & 1.14 \\
\(1.0 \mathrm{E}-04\) & 1.20 \\
\(1.0 \mathrm{E}-03\) & 1.26 \\
\(3.0 \mathrm{E}-03\) & 1.29 \\
\(1.0 \mathrm{E}-02\) & 1.33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Strain-Rate (1/ms) & Enhancement \\
\hline \hline \(3.0 \mathrm{E}-02\) & 1.36 \\
\(1.0 \mathrm{E}-01\) & 2.04 \\
\(3.0 \mathrm{E}-01\) & 2.94 \\
\(3.0 \mathrm{E}+01\) & 2.94 \\
\hline
\end{tabular}

Table M72-3. Enhancement as a function of effective strain rate for 45.4 MPa concrete (sample). When defining curve LCRATE, input negative (tensile) values of effective strain rate first. The enhancement should be positive and should be 1.0 at a strain rate of zero.

\section*{*MAT_LOW_DENSITY_VISCOUS_FOAM}

This is Material Type 73. This material model is for Modeling Low Density Urethane Foam with high compressibility and rate sensitivity which can be characterized by a relaxation curve. Its main applications are for seat cushions, padding on the Side Impact Dummies (SID), bumpers, and interior foams. Optionally, a tension cut-off failure can be defined. See the remarks below and the description of material 57.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & LCID & TC & HU & BETA & DAMP \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SHAPE & FAIL & BVFLAG & KCON & LCID2 & BSTART & TRAMP & NV \\
\hline
\end{tabular}

Card 3a. This card is included if and only if LCID2 \(=0\). Include up to 6 of this card. The next keyword ("**) card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Gi & BETAi & REF & & & & & \\
\hline
\end{tabular}

Card 3b. This card is included if and only if LCID2 \(=-1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCID3 & LCID4 & SCALEW & SCALEA & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & LCID & TC & HU & BETA & DAMP \\
Type & A & F & F & I & F & F & F & F \\
Default & none & none & none & none & \(10^{20}\) & 1. & none & 0.05 \\
\hline
\end{tabular}

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density

\section*{VARIABLE}

E

LCID

TC
HU

BETA

DAMP Viscous coefficient (. \(05<\) recommended value \(<.50\)) to model damping effects.

LT.0.0: |DAMP| is the load curve ID which defines the damping constant as a function of the maximum strain in compression defined as:
\[
\varepsilon_{\max }=\max \left(1-\lambda_{1}, 1-\lambda_{2}, 1 .-\lambda_{3}\right)
\]

In tension, the damping constant is set to the value corresponding to the strain at 0 . The abscissa should be defined from 0 to 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SHAPE & FAIL & BVFLAG & KCON & LCID2 & BSTART & TRAMP & NV \\
Type & F & F & F & F & I & F & F & I \\
Default & 1.0 & 0.0 & 0.0 & 0.0 & 0 & 0.0 & 0.0 & 6 \\
\hline
\end{tabular}

\section*{VARIABLE}

SHAPE

\section*{VARIABLE}

BVFLAG

KCON

LCID2

BSTART

TRAMP Optional ramp time for loading
NV Number of terms in fit. Currently, the maximum number is 6 . Since each term used adds significantly to the cost, 2 or 3 terms is recommended. Caution should be exercised when taking the results from the fit. Preferably, all generated coefficients should be positive because negative values may lead to unstable results. Once a satisfactory fit has been achieved, we recommend using the output coefficients in future runs.

Relaxation Constant Cards. If LCID2 \(=0\), then include this card. Up to 6 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETAi & REF & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Gi
BETA \(i\)
REF

\section*{DESCRIPTION}

Optional shear relaxation modulus for the \(i^{\text {th }}\) term
Optional decay constant if \(i^{\text {th }}\) term
Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: off
EQ.1.0: on

Frequency Dependence Card. If LCID2 \(=-1\) then include this card.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID3 & LCID4 & SCALEW & SCALEA & & & & \\
Type & 1 & 1 & 1 & 1 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID3

LCID4

SCALEW

SCALEA

\section*{DESCRIPTION}

Load curve ID giving the magnitude of the shear modulus as a function of the frequency. LCID3 must use the same frequencies as LCID4.

Load curve ID giving the phase angle of the shear modulus as a function of the frequency. LCID4 must use the same frequencies as LCID3.

Flag for the form of the frequency data:
EQ.O: frequency is in cycles per unit time.
EQ.1: circular frequency
Flag for the units of the phase angle:
EQ.0: degrees
EQ.1: radians

\section*{Remarks:}
1. Material Formulation. This viscoelastic foam material formulation models highly compressible viscous foams. The hyperelastic formulation of this model follows that of Material 57.
2. Rate Effects. Rate effects are accounted for through linear viscoelasticity by a convolution integral of the form
\[
\sigma_{i j}^{r}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
where \(g_{i j k l}(t-\tau)\) is the relaxation function. The stress tensor, \(\sigma_{i j}^{r}\), augments the stresses determined from the foam, \(\sigma_{i j}^{f}\); consequently, the final stress, \(\sigma_{i j}\), is taken as the summation of the two contributions:
\[
\sigma_{i j}=\sigma_{i j}^{f}+\sigma_{i j}^{r}
\]

Since we wish to include only simple rate effects, the relaxation function is represented by up to six terms of the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta_{m} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. The formulation is performed in the local system of principal stretches where only the principal values of stress are computed and triaxial coupling is avoided. Consequently, the one-dimensional nature of this foam material is unaffected by this addition of rate effects. The addition of rate effects necessitates 42 additional history variables per integration point. The cost and memory overhead of this model comes primarily from the need to "remember" the local system of principal stretches and the evaluation of the viscous stress components.

Frequency data can be fit to the Prony series. Using Fourier transforms the relationship between the relaxation function and the frequency dependent data is
\[
\begin{aligned}
& G_{s}(\omega)=\alpha_{0}+\sum_{m=1}^{N} \frac{\alpha_{m}\left(\omega / \beta_{m}\right)^{2}}{1+\left(\omega / \beta_{m}\right)^{2}} \\
& G_{\ell}(\omega)=\sum_{m=1}^{N} \frac{\alpha_{m} \omega / \beta_{m}}{1+\omega / \beta_{m}}
\end{aligned}
\]
where the storage modulus and loss modulus are defined in terms of the frequency dependent magnitude \(G\) and phase angle \(\phi\) given by load curves LCID3 and LCID4 respectively,
\[
\begin{aligned}
G_{s}(\omega) & =G(\omega) \cos [\phi(\omega)] \\
G_{l}(\omega) & =G(\omega) \sin [\phi(\omega)]
\end{aligned}
\]
3. Hysteretic Unloading. When hysteretic unloading is used, the reloading will follow the unloading curve if the decay constant, \(\beta\), is set to zero. If \(\beta\) is nonzero, the decay to the original loading curve is governed by the expression:
\[
1-e^{-\beta t}
\]

The bulk viscosity, which generates a rate dependent pressure, may cause an unexpected volumetric response and, consequently, it is optional with this model.

The hysteretic unloading factor results in the unloading curve to lie beneath the loading curve as shown in Figure M57-1. This unloading provides energy dissipation which is reasonable in certain kinds of foam.

\section*{*MAT_ELASTIC_SPRING_DISCRETE_BEAM}

This is Material Type 74. This model permits elastic springs with damping to be combined and represented with a discrete beam element type 6. Linear stiffness and damping coefficients can be defined, and, for nonlinear behavior, a force as a function of deflection and force as a function of rate curves can be used. Displacement based failure and an initial force are optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & F0 & D & CDF & TDF & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FLCID & HLCID & C1 & C2 & DLE & GLCID & & \\
Type & F & F & F & F & F & I & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

K
F0 Optional initial force. This option is inactive if this material is referenced in a part referenced by material type *MAT_ELASTIC_6DOF_SPRING.

D Viscous damping coefficient.
CDF Compressive displacement at failure. Input as a positive number. After failure, no forces are carried. This option does not apply to zero length springs.

EQ.0.0: inactive.

TDF
Tensile displacement at failure. After failure, no forces are carried.

\section*{VARIABLE}

FLCID

HLCID Load curve ID (see *DEFINE_CURVE) defining force as a function of relative velocity for nonlinear behavior (optional). If the origin of the curve is at \((0,0)\), the force magnitude is identical for a given magnitude of the relative velocity, that is, only the sign changes.

C1
C2
DLE

GLCID Optional load curve ID (see *DEFINE_CURVE) defining a scale factor as a function of deflection for load curve ID, HLCID. If zero, a scale factor of unity is assumed.

\section*{Remarks:}

If the linear spring stiffness is used, the force, \(F\), is given by:
\[
F=F_{0}+\mathrm{K} \Delta L+\mathrm{D} \Delta \dot{L}
\]

But if the load curve ID is specified, the force is then given by:
\[
\begin{aligned}
F=F_{0}+\mathrm{K} f(\Delta L) & \left\{1+\mathrm{C} 1 \times \Delta \dot{L}+\mathrm{C} 2 \times \operatorname{sgn}(\Delta \dot{L}) \ln \left[\max \left(1 ., \frac{\Delta \dot{L}}{\mathrm{DLE}}\right)\right]\right\}+\mathrm{D} \Delta \dot{L} \\
& +g(\Delta L) h(\Delta \dot{L}) .
\end{aligned}
\]

In these equations, \(\Delta L\) is the change in length, that is,
\[
\Delta L=\text { current length }- \text { initial length } .
\]

The cross-sectional area is defined on the section card for the discrete beam elements; see *SECTION_BEAM. The square root of this area is used as the contact thickness offset if these elements are included in the contact treatment.

\section*{*MAT_BILKHU/DUBOIS_FOAM}

This is Material Type 75. This model is for simulating isotropic crushable foams. Uniaxial and triaxial test data are used to describe the behavior.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & LCPY & LCUYS & VC & PC & VPC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TSC & VTSC & LCRATE & PR & KCON & ISFLG & NCYCLE & \\
Type & I & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E
LCPY

LCUYS

VC

PC fied (see *PART).

Young's modulus, \(E\) will be ignored. default is 0.05)

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Load curve ID giving pressure for plastic yielding as a function of volumetric strain; see Figure M75-1.

Load curve ID giving uniaxial yield stress as a function of volumetric strain (see Figure M75-1). All abscissa values should be positive if only the results of a compression test are included. Optionally the results of a tensile test can be added (corresponding to negative values of the volumetric strain); in this case PC, VPC, TC and VTC

Viscous damping coefficient (\(0.05<\) recommended value \(<0.50\);

Pressure cutoff for hydrostatic tension. If zero, the default is set to one-tenth of \(p_{0}\), the yield pressure corresponding to a volumetric strain of zero. PC will be ignored if TC is nonzero.

\section*{VARIABLE}

VPC

тС

VTC

LCRATE Load curve ID giving a scale factor for the previous yield curves, dependent upon the volumetric strain rate

PR

KCON Stiffness coefficient for contact interface stiffness. If undefined onethird of Young's modulus, E , is used. KCON is also considered in the element time step calculation; therefore, large values may reduce the element time step size.

ISFLG Flag for tensile response (active only if negative abscissa are present in load curve LCUYS):

EQ.O: load curve abscissa in tensile region correspond to volumetric strain

EQ.1: load curve abscissa in tensile region correspond to effective strain (for large PR, when volumetric strain vanishes)

NCYCLE Number of cycles to determine the average volumetric strain rate. NCYCLE is 1 by default (no smoothing) and cannot exceed 100 .

\section*{Remarks:}
1. Volumetric Strain. The logarithmic volumetric strain is defined in terms of the relative volume, \(V\), as:
\[
\gamma=-\ln (V)
\]

If option ISFLG \(=1\) is used, the effective strain is defined in the usual way:
\[
\varepsilon_{\text {eff }}=\sqrt{\frac{2}{3} \operatorname{tr}\left(\varepsilon^{\mathrm{t}} \varepsilon\right)}
\]

Figure M75-1. Behavior of crushable foam. Unloading is elastic.
The stress and strain pairs in load curve LCPY should be positive values starting with a volumetric strain value of zero.
2. LCUYS. The load curve LCUYS can optionally contain the results of the tensile test (corresponding to negative values of the volumetric strain); if it does, then the load curve information will override PC, VPC, TC and VTC. This is the recommended approach, because the necessary continuity between tensile and compressive regime becomes obvious (see Figure M75-1).
3. Yield Surface. The yield surface is defined as an ellipse in the equivalent pressure and von Mises stress plane. This ellipse is characterized by three points:
a) the hydrostatic compression limit (LCPY),
b) the uniaxial compression limit (LCUYS), and
c) either the pressure cutoff for hydrostatic stress (PC,VPC), the tension cutoff for uniaxial tension (TC,VTC), or the optional tensile part of LCUYS.
4. High Frequency Oscillations. To prevent high frequency oscillations in the strain rate from causing similar high frequency oscillations in the yield stress, a modified volumetric strain rate is used to obtain the scaled yield stress. The modified strain rate is obtained as follows. If NYCLE is \(>1\), then the modified strain rate is obtained by a time average of the actual strain rate over NCYCLE solution cycles. The averaged strain rate is stored in history variable \#3.

\section*{*MAT_GENERAL_VISCOELASTIC_\{OPTION\}}

The available options include:
<BLANK>

\section*{MOISTURE}

This is Material Type 76. This material model provides a general viscoelastic Maxwell model having up to 18 terms in the Prony series expansion and is useful for modeling dense continuum rubbers and solid explosives. Either the coefficients of the Prony series expansion or a relaxation curve may be specified to define the viscoelastic deviatoric and bulk behavior.

The material model can also be used with laminated shells. Either an elastic or viscoelastic layer can be defined with the laminated formulation. To activate laminated shells, you must set the laminated formulation flag on *CONTROL_SHELL. With the laminated option you must also define an integration rule. The addition of an elastic or viscoelastic layer was implemented by Professor Ala Tabiei, and the laminated shells feature was developed and implemented by Professor Ala Tabiei.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & BULK & PCF & EF & TREF & A & B \\
\hline
\end{tabular}

Card 2. Leave blank if the Prony Series Cards (Card 4) are used below. Also, leave blank if an elastic layer is defined in a laminated shell.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
\hline
\end{tabular}

Card 3. This card is included if and only if the MOISTURE keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MO & ALPHA & BETA & GAMMA & MST & & & \\
\hline
\end{tabular}

Card 4. Up to 18 cards may be input. This input is terminated at the next keyword ("*") card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{Gi} i\) & BETA & Ki & BETAK & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & BULK & PCF & EF & TREF & A & B \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
BULK
PCF

EF

TREF

A Coefficient for the Arrhenius and the Williams-Landel-Ferry shift functions

B Coefficient for the Williams-Landel-Ferry shift function

Figure M76-1. Relaxation curves for deviatoric behavior and bulk behavior. The ordinate of LCID is the deviatoric stress divided by 2 times the constant value of deviatoric strain where the stress and strain are in the direction of the prescribed strain, or in non-directional terms, the effective stress divided by 3 times the effective strain. LCIDK defines the mean stress divided by the constant value of volumetric strain imposed in a hydrostatic stress relaxation experiment as a function of time. For best results, the points defined in the curve should be equally spaced on the logarithmic scale. Note the values for the abscissa are input as time, not \(\log\) (time). Furthermore, the curve should be smooth and defined in the positive quadrant. If nonphysical values are determined by least squares fit, LS-DYNA will terminate with an error message after the initialization phase is completed. If the ramp time for loading is included, then the relaxation which occurs during the loading phase is taken into account. This effect may or may not be important.

Relaxation Curve Card. Leave blank if the Prony Series Cards are used below. Also, leave blank if an elastic layer is defined in a laminated shell.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
Type & F & I & F & F & F & I & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline LCID & Load curve ID for deviatoric relaxation behavior. If LCID is given, constants \(G_{i}\), and \(\beta_{i}\) are determined using a least squares fit. See Figure M76-1 for an example relaxation curve. \\
\hline NT & Number of terms in shear fit. If zero, the default is 6 . Fewer than NT terms will be used if the fit produces one or more negative shear moduli. Currently, the maximum number is set to 18 . \\
\hline BSTART & In the fit, \(\beta_{1}\) is set to zero, \(\beta_{2}\) is set to BSTART, \(\beta_{3}\) is 10 times \(\beta_{2}\), \(\beta_{4}\) is 10 times \(\beta_{3}\), and so on. If zero, BSTART is determined by an iterative trial and error scheme. \\
\hline TRAMP & Optional ramp time for loading. \\
\hline LCIDK & Load curve ID for bulk relaxation behavior. If LCIDK is given, constants \(K_{i}\), and \(\beta_{k i}\) are determined via a least squares fit. See Figure M76-1 for an example relaxation curve. \\
\hline NTK & Number of terms desired in bulk fit. If zero, the default is 6 . Currently, the maximum number is set to 18 . \\
\hline BSTARTK & In the fit, \(\beta_{k 1}\) is set to zero, \(\beta_{k 2}\) is set to BSTARTK, \(\beta_{k 3}\) is 10 times \(\beta_{k 2}, \beta_{k 4}\) is 100 times \(\beta_{k 3}\), and so on. If zero, BSTARTK is determined by an iterative trial and error scheme. \\
\hline TRAMPK & Optional ramp time for bulk loading. \\
\hline
\end{tabular}

Moisture Card. Additional card for the MOISTURE keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MO & ALPHA & BETA & GAMMA & MST & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{cc}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MO & Initial moisture, \(M_{0}\). Defaults to zero. \\
ALPHA & Specifies \(\alpha\) as a function of moisture. \\
GT.0.0: Specifies a curve ID. \\
& LT.0.0: Specifies the negative of a constant value.
\end{tabular}

\section*{VARIABLE}

BETA

GAMMA

MST

\section*{DESCRIPTION}

Specifies \(\beta\) as a function of moisture.
GT.0.0: Specifies a curve ID.
LT.O.O: Specifies the negative of a constant value.
Specifies \(\gamma\) as a function of moisture.
GT.0.0: Specifies a curve ID.
LT.O.O: Specifies the negative of a constant value.
Moisture, \(M\). If the moisture is 0.0 , the moisture option is disabled.
GT.O.O: Specifies a curve ID giving moisture as a function of time.

LT.0.0: Specifies the negative of a constant value of moisture.

Prony Series cards. Card Format for viscoelastic constants. Up to 18 cards may be input. If fewer than 18 cards are used, the next keyword ("*") card terminates this input. These cards are not needed if relaxation data is defined. The number of terms for the shear behavior may differ from that for the bulk behavior: insert zero if a term is not included. If an elastic layer is defined you only need to define Gi and \(\mathrm{K} i\) (note in an elastic layer only one card is needed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETA \(i\) & Ki & BETAK \(i\) & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

DESCRIPTION
Optional shear relaxation modulus for the \(i^{\text {th }}\) term
BETA \(i \quad\) Optional shear decay constant for the \(i^{\text {th }}\) term
\(\mathrm{K} i \quad\) Optional bulk relaxation modulus for the \(i^{\text {th }}\) term
BETAK \(i \quad\) Optional bulk decay constant for the \(i^{\text {th }}\) term

\section*{Remarks:}

Rate effects are taken into accounted through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l(t-\tau)}\) is the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by 18 terms from the Prony series:
\[
g(t)=\sum_{m=1}^{N} G_{m} e^{-\beta_{m} t}
\]

We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). An arbitrary number of terms, up to 18 , may be used when applying the viscoelastic model.

For volumetric relaxation, the relaxation function is also represented by the Prony series in terms of bulk moduli:
\[
k(t)=\sum_{m=1}^{N} K_{m} e^{-\beta_{k_{m}} t}
\]

The Arrhenius and Williams-Landel-Ferry (WLF) shift functions account for the effects of the temperature on the stress relaxation. A scaled time, \(t^{\prime}\),
\[
t^{\prime}=\int_{0}^{t} \Phi(T) d t
\]
is used in the relaxation function instead of the physical time. The Arrhenius shift function is
\[
\Phi(T)=\exp \left[-A\left(\frac{1}{T}-\frac{1}{T_{\mathrm{REF}}}\right)\right]
\]
and the Williams-Landel-Ferry shift function is
\[
\Phi(T)=\exp \left(-A \frac{T-T_{\mathrm{REF}}}{B+T-T_{\mathrm{REF}}}\right)
\]

If all three values (TREF, A, and B) are nonzero, the WLF function is used; the Arrhenius function is used if \(B\) is zero; and no scaling is applied if all three values are zero.

The moisture model allows the scaling of the material properties as a function of the moisture content of the material. The shear and bulk moduli are scaled by \(\alpha\), the decay constants are scaled by \(\beta\), and a moisture strain, \(\gamma(M)\left[M-M_{O}\right]\) is introduced analogous to the thermal strain.

\section*{*MAT_HYPERELASTIC_RUBBER}

This is Material Type 77. This material model provides a general hyperelastic rubber model combined optionally with linear viscoelasticity, as outlined by Christensen [1980].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & PR & N & NV & G & SIGF & REF \\
\hline
\end{tabular}

Card 2. Include this card if \(\mathrm{PR}<0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TBHYS & LCBI & LCPL & WBI & WPL & D1 & D2 & D3 \\
\hline
\end{tabular}

Card 3a. Include this card if \(\mathrm{N}>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SGL & SW & ST & LCID1 & DATA & LCID2 & BSTART & TRAMP \\
\hline
\end{tabular}

Card 3b. Include this card if \(\mathrm{N}=0\).
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline C10 & C01 & C11 & C20 & C02 & C30 & THERML & \\
\hline
\end{tabular}

Card 4. Include up to 12 of this card. The next keyword ("*") card terminates this input. Note that VFLAG is only included in the first card of this set.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Gi & BETA & Gj & SIGFj & VFLAG & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & N & NV & G & SIGF & REF \\
Type & A & F & F & I & I & F & F & F \\
\hline
\end{tabular}

\footnotetext{
VARIABLE

\section*{DESCRIPTION}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
}

\section*{VARIABLE}

PR

N

NV

G Shear modulus for frequency-independent damping. Frequencyindependent damping is based on a spring and slider in series. The critical stress for the slider mechanism is SIGF, defined below. For the best results, the value of G should be 250-1000 times greater than SIGF.

SIGF Limit stress for frequency-independent frictional damping
REF Use reference geometry to initialize the stress tensor. *INITIAL_FOAM_REFERENCE_GEOMETRY defines the reference geometry.

EQ.0.0: Off
EQ.1.0: On

Hysteresis Card. Additional card included when \(\mathrm{PR}<0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TBHYS & LCBI & LCPL & WBI & WPL & D1 & D2 & D3 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

TBHYS

D3

LCBI Load curve ID giving force as a function of displacement for the biaxial test used for parameter fitting. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3.

LCPL Load curve ID giving force as a function of displacement for the planar test used for parameter fitting. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3.

WBI Weight factor giving the relative influence of the biaxial test data in the fitting of material parameters. A value of 1.0 means that the
biaxial test data is of equal importance as the uniaxial test data. in the fitting of material parameters. A value of 1.0 means that the
biaxial test data is of equal importance as the uniaxial test data. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3. WPL Weight factor giving the relative influence of planar test data in the
fitting of material parameters. A value of 1.0 means that the planar
test data is of equal importance as the uniaxial test data. Make sure Weight factor giving the relative influence of planar test data in the
fitting of material parameters. A value of 1.0 means that the planar
test data is of equal importance as the uniaxial test data. Make sure Weight factor giving the relative influence of planar test data in the
fitting of material parameters. A value of 1.0 means that the planar
test data is of equal importance as the uniaxial test data. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3.

D1 Compression compliance constant. If this parameter is greater than zero, then LS-DYNA does not use the value of PR set on Card 1 for Poisson's ratio.

D2 Compression compliance constant

\section*{DESCRIPTION}

Table ID for hysteresis, which can be positive or negative; see Remarks 1 and 2 . This field only applies to solid elements. Cord for Poison's ratio.

Compression compliance constant

Card \(\mathbf{3}\) for \(\mathbf{N}>\mathbf{0}\). For \(\mathbf{N}>0\), LS-DYNA computes a least squares fit from the uniaxial or combined data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LCID1 & DATA & LCID2 & BSTART & TRAMP \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

SGL
SW
ST
LCID1

DATA

LCID2

BSTART

TRAMP Optional ramp time for loading

Card \(\mathbf{3}\) for \(\mathbf{N}=\mathbf{0}\). Set the hyperelastic material parameters directly.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C10 & C01 & C11 & C20 & C02 & C30 & THERML & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

C10
\(C_{10}\)
C01
\(\mathrm{C}_{01}\)
C11
\(C_{11}\)
C20
\(\mathrm{C}_{20}\)
C02
\(\mathrm{C}_{02}\)
C30
\(\mathrm{C}_{30}\)
THERML
Flag for the thermal option. If THERML > 0.0, then G, SIGF, C10 and C01 must all specify curve IDs (zero is not permitted) that define the values as functions of temperature. If THERML \(<0.0\), then G, SIGF, C10 and C01, C11, C20, C02, and C30 must all specify curve IDs (zero is not permitted) that define the values as functions of temperature. A 'flat' curve may be used to define a constant value that does not change with temperature. This thermal option is available only for solid elements.

Optional Viscoelastic Constants \& Frictional Damping Constant Cards. Up to 12 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETA \(i\) & G \(j\) & SIGFj & VFLAG & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Gi Optional shear relaxation modulus for the \(i^{\text {th }}\) term. Not used if LCID2 is given.

\section*{VARIABLE}

BETA \(i\)
Gj Optional shear modulus for frequency independent damping represented as the \(j^{\text {th }}\) spring and slider in series in parallel to the rest of the stress contributions.

SIGFj Limit stress for frequency independent, frictional, damping represented as the \(j^{\text {th }}\) spring and slider in series in parallel to the rest of the stress contributions.

Flag for the viscoelasticity formulation. This field appears only in the first Card 4 line.

EQ.0: Standard viscoelasticity formulation (default)
EQ.1: Viscoelasticity formulation using the instantaneous elastic stress (only applicable to solid elements).

\section*{Background:}

Rubber is generally considered to be fully incompressible since the bulk modulus greatly exceeds the shear modulus in magnitude. To model the rubber as an unconstrained material a hydrostatic work term, \(W_{H}(J)\), is included in the strain energy functional which is function of the relative volume, \(J\), [Ogden 1984]:
\[
\begin{aligned}
W\left(J_{1}, J_{2}, J\right) & =\sum_{p, q=0}^{n} C_{p q}\left(J_{1}-3\right)^{p}\left(J_{2}-3\right)^{q}+W_{H}(J) \\
J_{1} & =I_{1} I_{3}^{-1 / 3} \\
J_{2} & =I_{2} I_{3}^{-2 / 3}
\end{aligned}
\]

To prevent volumetric work from contributing to the hydrostatic work, the first and second invariants are modified as shown. If D1 is positive, then
\[
W_{H}(J)=\sum_{i=1}^{3} \frac{(J-1)^{2 i}}{D_{i}} .
\]

Otherwise, it is
\[
W_{H}(J)=\frac{K}{2}(J-1)^{2}
\]
with \(K\) being the linear bulk modulus determined from the corresponding linear shear modulus \(G=2\left(C_{10}+C_{01}\right)\) and Poisson's ratio. Historically this model has been used for incompressible behavior, but it is also valid for compressible data. This procedure is described in more detail by Sussman and Bathe [1987]. The second Piola-Kirchhoff and Cauchy stress tensors are obtained from the strain energy functional as
\[
S=\frac{\partial W}{\partial E}, \quad \sigma_{W}=\frac{1}{J} \boldsymbol{F} \boldsymbol{S} \boldsymbol{F}^{T}
\]
where \(E\) is the Green strain tensor and \(F\) is the deformation gradient. We use the subscript \(W\) here to denote the contribution from the strain energy potential, and with no other contributions the resulting Cauchy stress is simply
\[
\sigma=\sigma_{W} .
\]

Rate effects are taken into account through linear viscoelasticity by adding a sequence of stress contributions
\[
\sigma_{V}=\sum_{i=1}^{n} \sigma_{V}^{i}
\]
where each term is known as a Prony term. Each such stress component \(\sigma_{V}^{i}\) evolves with deformation and time as
\[
\left(\sigma_{V}^{i}\right)^{\nabla}=2 G_{i}\left(\boldsymbol{D}-e^{-\beta_{i}\left(t-t_{0}\right)} \beta_{i} \varepsilon_{V}^{i}\right), \quad\left(\varepsilon_{V}^{i}\right)^{\nabla}=e^{\beta_{i}\left(t-t_{0}\right)} \boldsymbol{D} .
\]

Here \(\nabla\) denotes the Jaumann rate. \(\boldsymbol{D}\) is the rate-of-deformation tensor, \(t\) is time and \(t_{0}\) is an arbitrary time point. Each term has an internal strain \(\varepsilon_{V}^{i}\) associated with itself, which incorporates the memory properties a viscoelastic material typically possesses. This stress is added to the stress tensor determined from the strain energy functional, so that
\[
\sigma=\sigma_{W}+\sigma_{V}
\]

This model is effectively a Maxwell fluid which consists of dampers and springs in series. An arbitrary number of such Prony terms can be input, each characterized by the shear modulus, \(G_{i}\), and relaxation coefficient, \(\beta_{i}\). To avoid a constant shear modulus from this viscoelastic formulation, a term in the series is included only when \(\beta_{i}>0\).

For the sake of understanding the influence these terms have on the rate effects of viscoelasticity, let's investigate the model in a situation with no spin and constant rate-of-deformation with \(\boldsymbol{D} \neq \mathbf{0}\). This means that the Jaumann rate is simply differentiation with time, and we can look at the implications a specific term has. To make some physical sense of things, we deal with both the no hyperelastic material present and the hyperelastic material present cases. For the latter we assume an elastic shear modulus, \(G\), for the hyperelastic material.
1. Constant strain rate, \(\boldsymbol{D}\). For the special case of constant strain rate, \(\boldsymbol{D}\), we have the following expression for the stress rate
\[
\dot{\boldsymbol{\sigma}}_{V}^{i}=2 G_{i} e^{-\beta_{i} t} \boldsymbol{D}
\]
so each term contributes with an instantaneous shear stiffness of \(G_{i}\) that decays with time at a rate determined by \(\beta_{i}\). If we define the relaxation time as
\[
\tau_{i}=1 / \beta_{i}
\]
we see that the term will not contribute much to the response when \(t>5 \tau_{i}\). So with several Prony terms with different relaxation properties, the overall viscoelastic stiffness decays roughly with steps of \(G_{i}\) in time spans of \(\tau_{i}\). This information can be used for determining the material data by making clever use of tensile tests at different strain rates. Looking at the corresponding stress contribution from each term
\[
\boldsymbol{\sigma}_{V}^{i}=2 \frac{G_{i}}{\beta_{i}}\left(1-e^{-\beta_{i} t}\right) \boldsymbol{D}
\]
we see that the stress stabilizes at a nonzero level \(2 \frac{G_{i}}{\beta_{i}} \boldsymbol{D}\) as time goes to infinity. See Figure M77-1.

without hyperelastic material

with hyperelastic material

Figure M77-1. Material response with a constant strain rate
2. Relaxation. To see its effect on stress relaxation, we assume the material has deformed with a constant rate-of-deformation \(\boldsymbol{D}_{0} \neq \mathbf{0}\) between time 0 and \(t_{0}\), and then continues with another constant rate-of-deformation \(\boldsymbol{D}\) (which we allow to be zero) after time \(t_{0}\) (see Figure M77-2). The expression for the stress is
\[
\boldsymbol{\sigma}_{V}^{i}=e^{-\beta_{i}\left(t-t_{0}\right)} \boldsymbol{\sigma}_{0}^{i}+2 \frac{G_{i}}{\beta_{i}}\left(1-e^{-\beta_{i}\left(t-t_{0}\right)}\right) \boldsymbol{D}
\]
where \(\sigma_{0}^{i}\) is the stress level that was reached at time \(t_{0}\). Stress relaxation occurs when \(\boldsymbol{D}=\mathbf{0}\) for which we see that the stress decays (or relaxes) to zero at a rate determined by \(\beta_{i}\). When a hyperelastic material is included, the stress is relaxed to the hyperelastic stress, illustrated by a dashed line in the figure. As before, when combining many terms with different relaxation properties, the stress relaxes in steps of \(\sigma_{0}^{i}\) in time spans of \(\tau_{i}\) and essentially determines the shape of the relaxation curve. This can also be used as a basis for estimating material parameters.

without hyperelastic material

with hyperelastic material

Figure M77-2. Stress relaxation curves
3. Creep. For creep, we assume the same situation but instead of prescribing the strain rate, \(\boldsymbol{D}\), we enforce the stress, \(\sigma\), to be constant after time \(t_{0}\). The expression for the creep strain, \(\varepsilon_{c}\), in the non-presence of a hyperelastic material becomes
\[
\varepsilon_{c}=\frac{\beta_{i}}{2 G_{i}}\left(t-t_{0}\right) \sigma_{0}^{i},
\]
which indicates that the creep strain evolves linearly with time (see Figure M77-3). This is a rather non-physical behavior, but in the presence of a hyperelastic material the creep evolves as
\[
\varepsilon_{c}=\frac{1}{2 G_{i}} \ln \left\{\frac{G+G_{i}}{G+G_{i} e^{-\beta_{i}\left(t-t_{0}\right)}}\right\} \sigma_{0}^{i}
\]
and saturates as one would expect to a constant value. With many such terms, the creep evolves in a quantitatively different manner, but the qualitative behavior is to be understood as described.

The Mooney-Rivlin rubber model (model 27) is obtained by specifying \(N=1\). Despite the differences in formulations, we find that the results obtained with this model are nearly identical with those of material 27 as long as large values of Poisson's ratio are used.

Frequency independent damping is obtained by having a spring and slider in series as shown in the following sketch:

Several springs and sliders in series can be defined that are put in parallel to the rest of the stress contributions of this material model.

Figure M77-3. Creep curves

\section*{Remarks:}
1. Hysteresis (TBHYS > 0). If a positive table ID for hysteresis is defined, then TBHYS is a table having curves that are functions of strain-energy density. Let \(W_{\text {dev }}\) be the current value of the deviatoric strain energy density as calculated above. Furthermore, let \(\bar{W}_{\text {dev }}\) be the peak strain energy density reached up to this point in time. It is then assumed that the resulting stress is reduced by a damage factor according to
\[
\mathbf{S}=D\left(W_{\mathrm{dev}}, \bar{W}_{\mathrm{dev}}\right) \frac{\partial W_{\mathrm{dev}}}{\partial \mathbf{E}}+\frac{\partial W_{\mathrm{vol}}}{\partial \mathbf{E}}
\]
where \(D\left(W_{\mathrm{dev}}, \bar{W}_{\mathrm{dev}}\right)\) is the damage factor which is input as the table, TBHYS. This table consists of curves giving stress reduction (between 0 and 1) as a function of \(W_{\mathrm{dev}}\) indexed by \(\bar{W}_{\mathrm{dev}}\).

Each \(\bar{W}_{\text {dev }}\) curve must be valid for strain energy densities between 0 and \(\bar{W}_{\text {dev }}\). It is recommended that each curve be monotonically increasing, and it is required that each curve equals 1 when \(W_{\text {dev }}>\bar{W}_{\text {dev }}\). Additionally, \({ }^{*}\) DEFINE_TABLE requires that each curve have the same beginning and end point and, furthermore, that they not cross except at the boundaries, although they are not required to cross.

This table can be roughly estimated from a uniaxial quasistatic compression test as follows (see Figure for an illustration of the different curves):
a) Load the specimen to a maximum displacement \(\bar{d}\) and measure the force as function of displacement, \(f_{\text {load }}(d)\).
b) Unload the specimen again measuring the force as a function of displacement, \(f_{\text {unload }}(d)\).

Figure M77-4. Illustration of curves needed from experiments to obtain \(D\left(W_{\mathrm{dev}}, \bar{W}_{\mathrm{dev}}\right)\). a) indicates the response during a uniaxial quasistatic compression test from which you can find \(W_{\mathrm{dev}}(d)\) (area under the curve). Each test is associated with a maximum displacement and thus a peak strain energy, \(\bar{W}_{\text {dev }}\) (area under the curve in b)). c) indicates the unloading curve during the test. Inverting \(W_{\text {dev }}(d)\) allows you to find \(D\left(W_{\text {dev }}, \bar{W}_{\text {dev }}\right)\) from the loading and unloading curves for a value of \(\bar{W}_{\text {dev }}\).
c) The strain energy density is, then, given as a function of the loaded displacement as
\[
W_{\mathrm{dev}}(d)=\frac{1}{V} \int_{0}^{d} f_{\mathrm{load}}(s) d s
\]
i) The peak energy, which is used to index the data set, is given by
\[
\bar{W}_{\mathrm{dev}}=W_{\mathrm{dev}}(\bar{d}) .
\]
ii) From this energy curve we can also determine the inverse, \(d\left(W_{\mathrm{dev}}\right)\). Using this inverse the load curve for LS-DYNA is then given by:
\[
D\left(W_{\mathrm{dev}}, \bar{W}_{\mathrm{dev}}\right)=\frac{f_{\mathrm{unload}}\left[d\left(W_{\mathrm{dev}}\right)\right]}{f_{\mathrm{load}}\left[d\left(W_{\mathrm{dev}}\right)\right]} .
\]
d) This procedure is repeated for different values of \(\bar{d}\) (or equivalently \(\bar{W}_{\text {dev }}\)).
2. Hysteresis (TBHYS < 0). If a negative table ID for hysteresis is defined, then all of the above holds with the difference being that the load curves comprising table, |TBHYS|, must give the strain-energy density, \(W_{\text {dev }}\), as a function of the

Figure M77-5. Tests for parameter fitting
stress reduction factor. This scheme guarantees that all curves have the same beginning point, 0 , and the same end point, 1. For negative TBHYS the user provides \(W_{\mathrm{dev}}\left(D, \bar{W}_{\mathrm{dev}}\right)\) instead of \(D\left(W_{\mathrm{dev}}, \bar{W}_{\mathrm{dev}}\right)\). In practice, this case corresponds to swapping the load curve axes.
3. Parameter fitting. For general fitting of material parameters we refer to Figure M77-5. If at least one of LCBI with a positive WBI \(\left(w_{b}\right)\) or LCPL with a positive WPL \(\left(w_{p}\right)\) is set, parameters determined by N on Card 1 are fitted using a nonlinear least square optimization problem. We assume that LCID1 corresponds to a load curve giving \(f_{u}\) as a function of \(d_{u}\), while LCBI and LCPL are load curves giving \(f_{b}\) as a function of \(d_{b}\) and \(f_{p}\) as a function of \(d_{p}\), respectively. To obtain the test data, load a specimen of dimensions \(L \times W \times T\) as shown in
the figure. The displacements must increase in the curves, and both compressive and tensile data is allowed. Let \(g_{u}, g_{b}\) and \(g_{p}\) be the simulated forces for the displacement data given, then the material parameters are determined to minimize the potential
\[
h=\sum_{d_{u}}\left(1-\frac{g_{u}}{f_{u}}\right)^{2}+w_{b} \sum_{d_{b}}\left(1-\frac{g_{b}}{f_{b}}\right)^{2}+w_{p} \sum_{d_{p}}\left(1-\frac{g_{p}}{f_{p}}\right)^{2} .
\]

The sums are supposed to be over the data points provided for each test. Note that the weight factors can be used to determine the relative influence of each test. Each term in the sums corresponds to the relative force error for the corresponding data point, this to obtain a better fit for smaller strains.

\section*{*MAT_OGDEN_RUBBER}

This is also Material Type 77. This material model provides the Ogden [1984] rubber model combined optionally with linear viscoelasticity as outlined by Christensen [1980].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & PR & N & NV & G & SIGF & REF \\
\hline
\end{tabular}

Card 2. Include this card when \(\mathrm{PR}<0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TBHYS & LCBI & LCPL & WBI & WPL & D1 & D2 & D3 \\
\hline
\end{tabular}

Card 3a. Include this card if \(\mathrm{N}>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SGL & SW & ST & LCID1 & DATA & LCID2 & BSTART & TRAMP \\
\hline
\end{tabular}

Card 3b.1. Include this card if \(\mathrm{N}=0\) or -1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MU1 & MU2 & MU3 & MU4 & MU5 & MU6 & MU7 & MU8 \\
\hline
\end{tabular}

Card 3b.2. Include this card if \(\mathrm{N}=0\) or -1 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
\hline
\end{tabular}

Card 4. Include up to 12 of this card. This input ends with the next keyword ("*") card.
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline Gi & BETA & VFLAG & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & PR & N & NV & G & SIGF & REF \\
Type & A & F & F & I & I & F & F & F \\
\hline
\end{tabular}

VARIABLE
MID

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

RO
PR

N
N
Mass density
Poisson's ratio. If set to a negative number, the Poisson's ratio is the absolute value, and Card 2 is included for extra parameters.

Order of fit to curve LCID1 or combinations of LCID1, LCBI, and LCPL for the Ogden model (currently < 9, 2 generally works okay). LS-DYNA prints the constants generated during the fit to d3hsp. To save the cost of performing the nonlinear fit in future runs, directly input the constants from this fit. You can visually evaluate the goodness of the fit by plotting data in the output file curveplot*. To do this with LS-PrePost, click XYplot \(\rightarrow\) Add to read the curveplot* file.

EQ.0: Allows you to specify the material parameters directly with Cards 3b. 1 and 3b. 2

EQ.-1: Same as \(\mathrm{N}=0\) but invokes a thermal option: parameters MUi and ALPHA \(i\) are read as load curves IDs and thereby define these parameters as functions of temperature. It is available only for solid elements. VFLAG must be 0 .

NV Number of Prony series terms for fitting curve LCID2. If zero, the default is 6 . Currently, 12 is the maximum number. We recommend values less than 12 , possibly \(3-5\), since each term used adds significantly to the cost. Exercise caution when taking the results from the fit. Preferably, all generated coefficients should be positive. Negative values may lead to unstable results. Once you have achieved a satisfactory fit, we recommend inputting the coefficients written into the output file for future runs.

G Shear modulus for frequency independent damping. Frequency independent damping is based on a spring and slider in series. The critical stress for the slider mechanism is SIGF defined below. For the best results, the value of G should be 250-1000 times greater than SIGF.

SIGF Limit stress for frequency independent frictional damping
REF Use reference geometry to initialize the stress tensor. *INITIAL_FOAM_REFERENCE_GEOMETRY defines the reference geometry.

EQ.0.0: Off

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1.0: On

Hysteresis Card. Additional card included when \(\mathrm{PR}<0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TBHYS & LCBI & LCPL & WBI & WPL & D1 & D2 & D3 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
TBHYS

LCBI

LCPL Load curve ID giving force as a function of displacement for the planar test used in parameter fitting. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3 in the manual page for *MAT_HYPERELASTIC_RUBBER.

WBI Weight factor giving the relative influence of the biaxial test data in the fitting of material parameters, a value of 1.0 means that it is of equal importance as the uniaxial test data. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3 in the manual page for *MAT_HYPERELASTIC_RUBBER.

WPL Weight factor giving the relative influence of the planar test data in the fitting of material parameters, a value of 1.0 means that it is of equal importance as the uniaxial test data. Make sure \(\mathrm{N}>0\) on Card 1 if setting this parameter. See Remark 3 in the manual page for *MAT_HYPERELASTIC_RUBBER.

D1 Compression compliance constant. If this parameter is greater than zero, then LS-DYNA does not use the value of PR set on Card 1 for Poisson's ratio.

D2

\section*{DESCRIPTION}

D3
Compression compliance constant

Least Squares Card. For \(\mathrm{N}>0\), a least squares fit to curve LCID1 or LCID1/LCBI/LCPL is computed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LCID1 & DATA & LCID2 & BSTART & TRAMP \\
Type & F & F & F & F & F & F & & F \\
\hline
\end{tabular}

\section*{VARIABLE}

SGL
SW
ST
LCID1

DATA

LCID2

Load curve ID of the deviatoric stress relaxation curve, neglecting the long term deviatoric stress. If LCID2 is given, constants \(G_{i}\) and \(\beta_{i}\) are determined using a least squares fit. See M76-1 for an example relaxation curve. The ordinate of the curve is the viscoelastic deviatoric stress divided by the quantity 2 times the constant value of deviatoric strain where the stress and strain are in the direction of the prescribed strain. If in non-directional terms, it is the effective stress divided by the quantity 3 times the effective strain.

\section*{VARIABLE}

BSTART

\section*{DESCRIPTION}

In the fit, \(\beta_{i}\) is set to zero, \(\beta_{2}\) is set to BSTART, \(\beta_{3}\) is 10 times \(\beta_{2}, \beta_{4}\) is 10 times \(\beta_{3}\), and so on. If zero, BSTART is determined by an iterative trial and error scheme.

Optional ramp time for loading

Material Parameters Card. Include for \(\mathrm{N}=0\) or \(\mathrm{N}=-1\) to set the material parameters directly.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MU1 & MU2 & MU3 & MU4 & MU5 & MU6 & MU7 & MU8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Material Parameters Card. Include for \(\mathrm{N}=0\) or \(\mathrm{N}=-1\) to set the material parameters directly.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

MUi

\section*{DESCRIPTION}
\(\mu_{i}\), the \(i^{\text {th }}\) shear modulus \((\mathrm{N}=0)\). \(i\) varies up to 8 . For \(\mathrm{N}=-1\), each MU \(i\) is a load curve ID for specifying the \(i^{\text {th }}\) shear modulus as a function of temperature, that is, \(\mu_{i}(T)\). If a curve ID is zero, then the corresponding shear modulus is a constant with value zero.

ALPHA \(i \quad \alpha_{i}\), the \(i^{\text {th }}\) exponent \((\mathrm{N}=0)\). \(i\) varies up to 8 . For \(\mathrm{N}=-1\), each ALPHA \(i\) is a load curve ID for specifying the \(i^{\text {th }}\) exponent as a function of temperature, that is, \(\alpha_{i}(T)\). If a curve IDs is zero, then the corresponding exponent is a constant with value zero.

Optional Viscoelastic Constants Cards. Up to 12 cards may be input. The next keyword ("*") card terminates this input if fewer than 12 cards are used.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETAi & VFLAG & & & & & \\
Type & F & F & 1 & & & & & \\
Default & none & none & 0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Gi

BETA \(i\)
VFLAG Flag for the viscoelasticity formulation. This appears only on the first line defining \(\mathrm{G} i, \mathrm{BETA} i\), and VFLAG. If VFLAG \(=0\), the standard viscoelasticity formulation is used (the default), and if VFLAG = 1 (only applicable to solid elements), the viscoelasticity formulation using the instantaneous elastic stress is used.

\section*{Remarks:}

Rubber is generally considered to be fully incompressible since the bulk modulus greatly exceeds the shear modulus in magnitude. To model the rubber as an unconstrained material, a hydrostatic work term is included in the strain energy functional that is a function of the relative volume, \(J\), [Ogden 1984]:
\[
W^{*}=\sum_{i=1}^{3} \sum_{j=1}^{n} \frac{\mu_{j}}{\alpha_{j}}\left(\lambda_{i}^{* \alpha_{j}}-1\right)+W_{H}(J)
\]

The asterisk (\({ }^{*}\)) indicates that the volumetric effects have been eliminated from the principal stretches, \(\lambda_{j}^{*}\). The number of terms, \(n\), may vary from 1 to 8 inclusive. If D1 is positive, then
\[
W_{H}(J)=\sum_{i=1}^{3} \frac{(J-1)^{2 i}}{D_{i}}
\]
whereas otherwise it is
\[
W_{H}(J)=K(J-1-\ln J)
\]
with \(K\) being the linear bulk modulus determined from the corresponding linear shear modulus \(G=\frac{1}{2} \sum_{j=1}^{n} \mu_{j} \alpha_{j}\) and Poisson's ratio. Although this material is commonly used for incompressible rubber behavior, the theory is valid for compressible data as well.

Rate effects are taken into account through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
or in terms of the second Piola-Kirchhoff stress, \(S_{i j}\), and Green's strain tensor, \(E_{i j}\),
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial E_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta t}
\]
given by,
\[
g(t)=\sum_{i=1}^{n} G_{i} e^{-\beta_{i} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). The viscoelastic behavior is optional, and an arbitrary number of terms may be used. In order to avoid a constant shear modulus from this viscoelastic formulation, a term in the series is included only when \(\beta_{i}>0\).

For VFLAG \(=1\), the viscoelastic term is
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \sigma_{k l}^{E}}{\partial \tau} d \tau
\]
where \(\sigma_{k l}^{E}\) is the instantaneous stress evaluated from the internal energy functional. The coefficients in the Prony series therefore correspond to normalized relaxation moduli instead of elastic moduli.

The Mooney-Rivlin rubber model (model 27) is obtained by specifying \(n=1\). In spite of the differences in formulations with Model 27, we find that the results obtained with this model are nearly identical with those of Material 27 as long as large values of Poisson's ratio are used.

The frequency independent damping is obtained by the having a spring and slider in series as shown in the following sketch:

\section*{*MAT_SOIL_CONCRETE}

This is Material Type 78. This model permits concrete and soil to be efficiently modeled. See the remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & G & K & LCPV & LCYP & LCFP & LCRP \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PC & OUT & B & FAlL & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
G Shear modulus
K Bulk modulus
LCPV Load curve ID for pressure as a function of volumetric strain. The pressure as a function of volumetric strain curve is defined in compression only. The sign convention requires that both pressure and compressive strain be defined as positive values where the compressive strain is taken as the negative value of the natural logarithm of the relative volume.

LCYP Load curve ID for yield as a function of pressure:
GT.O: von Mises stress as a function of pressure,
LT.0: Second stress invariant, \(J_{2}\), as a function of pressure. This curve must be defined.

Figure M78-1. Strength reduction factor.
\begin{tabular}{c}
VARIABLE \\
\hline LCFP \\
LCRP \\
PC \\
OUT
\end{tabular}

B

FAIL Flag for failure:
EQ.0: No failure
EQ.1: When pressure reaches failure, pressure element is eroded.

EQ.2: When pressure reaches failure, pressure element loses its ability to carry tension.

\section*{Remarks:}

Pressure is positive in compression. Volumetric strain is defined as the natural log of the relative volume and is positive in compression where the relative volume, \(V\), is the ratio of the current volume to the initial volume. The tabulated data should be given in order

Figure M78-2. Cracking strain versus pressure.
of increasing compression. If the pressure drops below the cutoff value specified, it is reset to that value and the deviatoric stress state is eliminated.

If the load curve ID (LCYP) is provided as a positive number, the deviatoric, perfectly plastic, pressure dependent, yield function, \(\phi\), is given as
\[
\phi=\sqrt{3 J_{2}}-F(p)=\sigma_{y}-F(p)
\]
where, \(F(p)\) is a tabulated function of yield stress as a function of pressure, and the second invariant, \(J_{2}\), is defined in terms of the deviatoric stress tensor as:
\[
J_{2}=\frac{1}{2} S_{i j} S_{i j} .
\]

If LCYP is negative, then the yield function becomes:
\[
\phi=J_{2}-F(p) .
\]

If cracking is invoked by setting the residual strength factor, B, on Card 2 to a value between 0.0 and 1.0, the yield stress is multiplied by a factor \(f\) which reduces with plastic strain according to a trilinear law as shown in Figure M78-1.
\[
\begin{aligned}
b & =\text { residual strength factor } \\
\varepsilon_{1} & =\text { plastic stain at which cracking begins } \\
\varepsilon_{2} & =\text { plastic stain at which residual strength is reached }
\end{aligned}
\]
\(\varepsilon_{1}\) and \(\varepsilon_{2}\) are tabulated functions of pressure that are defined by load curves, see Figure M78-2. The values on the curves are strain as a function of pressure and should be entered in order of increasing pressure. The strain values should always increase monotonically with pressure.

By properly defining the load curves, it is possible to obtain the desired strength and ductility over a range of pressures; see Figure M78-3.

Figure M78-3. Yield stress as a function of plastic strain.

\section*{*MAT_HYSTERETIC_SOIL}

This is Material Type 79. For this material, you supply a shear stress-strain curve. LSDYNA converts this curve into a nested surface model with up to twenty superposed "layers" of elastic-perfectly-plastic material, each with its own elastic modulus and yield stress. The hysteretic behavior follows from the yielding of the different "layers" at different stresses and follows the so-called "Masing" rules. See Remarks below.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K0 & P0 & B & A0 & A1 & A2 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DF & RP & LCID & SFLC & DIL_A & DIL_B & DIL_C & DIL_D \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAM1 & GAM2 & GAM3 & GAM4 & GAM5 & LCD & LCSR & PINIT \\
Type & F & F & F & F & F & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TAU1 & TAU2 & TAU3 & TAU4 & TAU5 & FLAG5 & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

Include this card if FLAG5 \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGTH & SIGR & CHI & TPINIT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
K0
P0

B

A0
A1

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Bulk modulus at the reference pressure. See Remark 1.
Cut-off/datum pressure. P 0 is irrelevant if \(B=A 1=A 2=0\). Otherwise, P0 must be \(<0\) (meaning tensile); a very small negative value is acceptable. Below this pressure, stiffness and strength go to zero. This is also the "zero" pressure for pressure-varying properties. See Remark 3.

Exponent for the pressure-sensitive elastic moduli, \(b\). B must be in the range \(0 \leq B<1\). We do not recommend values too close to 1 because the pressure becomes indeterminate. See Remark 1.

Yield function constant \(a_{0}\) (default \(=1.0\)); see Remark 5.
Yield function constant \(a_{1}\) (default \(=0.0\)); see Remark 5 .
Yield function constant \(a_{2}\) (default \(=0.0\)); see Remark 5 .
Damping factor (must be in the range \(0 \leq \mathrm{DF} \leq 1\)):
EQ.O: No damping
EQ.1: Maximum damping
Reference pressure for following input data; see Remarks 1, 2, and 5.
ap curve ID defining shear stress as a function of shear strain Up to 20 points may be specified in the load curve. See *DEFINE_CURVE and Remarks 4 and 7.

Scale factor to apply to shear stress in LCID
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline DIL_A & Dilation parameter A, see Remark 11. \\
\hline DIL_B & Dilation parameter B, see Remark 11. \\
\hline DIL_C & Dilation parameter C, see Remark 11. \\
\hline DIL_D & Dilation parameter D, see Remark 11. \\
\hline GAM1 & \(\gamma_{1}\), shear strain (ignored if LCID is nonzero) \\
\hline GAM2 & \(\gamma_{2}\), shear strain (ignored if LCID is nonzero) \\
\hline GAM3 & \(\gamma_{3}\), shear strain (ignored if LCID is nonzero) \\
\hline GAM4 & \(\gamma_{4}\), shear strain (ignored if LCID is nonzero) \\
\hline GAM5 & \(\gamma_{5}\), shear strain (ignored if LCID is nonzero) \\
\hline LCD & Optional load curve ID defining the damping ratio of hysteresis at different strain amplitudes (overrides Masing rules for unload/reload). The \(x\)-axis is the shear strain, and the \(y\)-axis is the damping ratio (such as 0.05 for \(5 \%\) damping). The strains (\(x\)-axis values) of curve LCD must be identical to those of curve LCID. See Remark 15. \\
\hline LCSR & Load curve ID defining plastic strain rate scaling effect on yield stress. See *DEFINE_CURVE. The \(x\)-axis is the plastic strain rate; the \(y\)-axis is the yield enhancement factor. See Remark 12. \\
\hline PINIT & \begin{tabular}{l}
Flag for pressure sensitivity. Positive values apply to both B (elastic stiffness scaling) and the A0, A1, and A2 (strength scaling) equations. Negative values apply only to B, while the A0, A1, and A2 equations use the current pressure like PINIT \(=0\). See TPINIT below for changing the time PINIT applies, and see Remarks 9 and 10. \\
|PINIT|.EQ.O: Use current pressure (will vary during the analysis). \\
|PINIT|.EQ.1: Use pressure from the initial stress state. \\
|PINIT|.EQ.2: Use initial "plane stress" pressure \(\left(\sigma_{v}+\sigma_{h}\right) / 2\). \\
|PINIT|.EQ.3: User (compressive) initial vertical stress.
\end{tabular} \\
\hline TAU1 & \(\tau_{1}\), shear stress at \(\gamma_{1}\) (ignored if LCID is nonzero) \\
\hline
\end{tabular}

\section*{VARIABLE}

TAU2
TAU3
TAU4
TAU5
FLAG5
SIGTH
SIGR

TPINIT

CHI Cyclic degradation parameter, see Remark 13.
DESCRIPTION
\(\tau_{2}\), shear stress at \(\gamma_{2}\) (ignored if LCID is nonzero)
\(\tau_{3}\), shear stress at \(\gamma_{3}\) (ignored if LCID is nonzero)
\(\tau_{4}\), shear stress at \(\gamma_{4}\) (ignored if LCID is nonzero)
\(\tau_{5}\), shear stress at \(\gamma_{5}\) (ignored if LCID is nonzero)
If FLAG5 \(=1\), optional Card 5 will be read.
Threshold shear stress ratio for cyclic degradation, see Remark 13.
Residual shear stress ratio for cyclic degradation, see Remark 13.

Time at which PINIT applies. See Remark 10.

\section*{Remarks:}
1. Elastic moduli. The elastic moduli \(G\) and \(K\) are pressure sensitive:
\[
\begin{aligned}
& G(p)=\frac{G_{0}\left(p-p_{0}\right)^{b}}{\left(p_{\text {ref }}-p_{0}\right)^{b}} \\
& K(p)=\frac{K_{0}\left(p-p_{0}\right)^{b}}{\left(p_{\text {ref }}-p_{0}\right)^{b}}
\end{aligned}
\]

In the above \(K_{0}\) is the input value \(K 0, p\) is the current pressure, \(p_{0}\) is the cut-off or datum pressure given by input value P0 (must be zero or negative), \(p_{\text {ref }}\) is the reference pressure given by the input value \(R P, b\) is the input value \(B\), and \(G_{0}\) is the initial shear modulus at small shear strain:
\[
G_{0}=\operatorname{SFLC} \times \frac{\tau_{1}}{\gamma_{1}} .
\]

In the above \(\left(\gamma_{1}, \tau_{1}\right)\), is the first (nonzero) point in LCID. \(G_{0}\) is also the total of the shear moduli of all the nested layers; see Remark 6. For limitations on the value of \(B\), see Remark 9.
2. Volumetric response. The following equation gives the pressure in compression:
\[
p=p_{\text {ref }}\left[-\frac{K_{0}}{p_{\text {ref }}} \ln (V)\right]^{1 /(1-b)}
\]

Here \(V\) is the relative volume, the ratio between the original and current volume. \(p_{\text {ref }}\) and \(b\) are the input values RP and B, respectively. This formula results in an

Figure M79-1. Family of stress-strain curves. The curve labeled total represents LCID \(\times\) SFLC. The other curves represent one "layer" in the material model.
instantaneous bulk modulus that is proportional to \(p^{b}\) and whose value at the reference pressure equals \(K_{0} /(1-b)\).
3. Tensile cut-off. If \(p\) falls below \(p_{0}\) (i.e., becomes more tensile than input value P 0), the shear stresses are set to zero, and the pressure is set to \(p_{0}\). Thus, the material has no stiffness or strength when the pressure is more tensile than \(p_{0}\).
4. Shear stress-strain curve. LCID and SFLC define a curve giving shear stress \((\tau)\) as a function of shear strain \((\gamma)\). The shear strains are the \(x\)-axis values in LCID. The shear stresses are the \(y\)-axis values in LCID multiplied by SFLC. Starting from version R14, LCID may contain up to 20 points (in versions up to R13, the limit was 10 points). The first point on the curve is assumed by default to be \((0,0)\) and does not need to be entered. The slope of the curve must decrease with increasing \(\gamma\).
5. Pressure-sensitivity of the shear response. The curve LCID applies at the reference pressure (input value RP); at other pressures, the curve is scaled by
\[
\frac{\tau(p, \gamma)}{\tau\left(p_{\mathrm{ref}}, \gamma\right)}=\sqrt{\frac{\left[a_{0}+a_{1}\left(p-p_{0}\right)+a_{2}\left(p-p_{0}\right)^{2}\right]}{\left[a_{0}+a_{1}\left(p_{\mathrm{ref}}-p_{0}\right)+a_{2}\left(p_{\mathrm{ref}}-p_{0}\right)^{2}\right]}}
\]

The constants \(a_{0}, a_{1}\), and \(a_{2}\) govern the pressure sensitivity of the yield stress. Only the ratios between these values are important - the absolute stress values are taken from the stress-strain curve scaled, as shown above.
6. Nested yield surface approach. LS-DYNA automatically converts the shear stress-strain curve (with points \(\left.\left(\gamma_{1}, \tau_{1}\right),\left(\gamma_{2}, \tau_{2}\right), \ldots,\left(\gamma_{N}, \tau_{N}\right)\right)\) into a series of \(N\) elastic-perfectly-plastic curves such that \(\sum\left(\tau_{i},(\gamma)\right)=\tau(\gamma)\), as shown in

Figure M79-2. Small and large strain cycles superposed on the input curve
Figure M79-1. Each elastic-perfectly-plastic curve represents one "layer" in the material model. Deviatoric stresses are stored and calculated separately for each layer. The total deviatoric stress is the sum of the deviatoric stresses in each layer. This method generates hysteretic (energy-absorbing) stress-strain curves in response to any strain cycle of amplitude greater than the lowest yield strain of any layer. The example in Figure M79-2 shows the response to small and large strain cycles superposed on the input curve (thick line labeled backbone curve).
7. Definition of shear strain and shear stress. Different definitions of "shear strain" and "shear stress" are possible when applied to three-dimensional stress states. *MAT_079 uses the following definitions. Input shear stress \(\tau\) (from LCID multiplied by SFLC) and shear strain \(\gamma\) (from LCID) are treated by the material model as:
\[
\begin{aligned}
\tau & =0.5 \times \text { Von Mises Stress }=\sqrt{\left(3 \sigma^{\prime}: \sigma^{\prime} / 8\right)} \\
\gamma & =1.5 \times \text { Von Mises Strain }=\sqrt{\left(3 \varepsilon^{\prime}: \varepsilon^{\prime} / 2\right)}
\end{aligned}
\]
where \(\sigma^{\prime}\) and \(\varepsilon^{\prime}\) are the deviatoric stress and strain tensors respectively. For a particular stress or strain state (defined by the relationship among the three principal stresses or strains), a scaling factor may be needed to convert between the definitions given above and the shear stress or strain that an engineer would expect. The *MAT_079 definitions of shear stress and shear strain are derived from triaxial testing in which one principal stress is applied while the other two principal stresses are equal to a confining stress which is held constant. In other words, the principal stresses have the form \((a+q, a, a)\), and the shear stress, as defined above, is \(0.5 q\). If instead you wish the input curve to represent a test in which a pure shear strain is applied over a hydrostatic pressure, such as a shear-

Figure M79-3. Sensitivity of curves to pressure
box test, then we recommend scaling both the \(x\)-axis and the \(y\)-axis of the curve LCID by 0.866 . This factor assumes principal stresses of the form \((p+t, p-t, p)\) where \(t\) is the applied shear stress, and similarly for the principal strains.
8. More about pressure sensitivity. The yield stresses of the layers, and hence the stress at each point on the shear stress-strain input curve, vary with pressure according to constants A0, A1, and A2. The elastic moduli, and hence also the slope of each section of the shear stress-strain curve, vary with pressure according to constant \(B\). These effects combine to modify the shear stress-strain curve according to pressure, as shown in Figure M79-3.
9. PINIT. Pressure sensitivity can make the solution sensitive to numerical noise. In cases where the expected pressure changes are small compared to the initial stress state, using pressure from the initial stress state instead of current pressure as the basis for the pressure sensitivity (option PINIT) may be preferable. This causes the bulk modulus and shear stress-strain curve to be calculated once for each element at the analysis's start and remain fixed thereafter. Positive settings of PINIT affect both stiffness scaling (calculated using B) and strength scaling (calculated using A0, A1, and A2). If using PINIT options 2 ("plane stress" pressure) or 3 (vertical stress), these quantities substitute for pressure \(p\) in the equations above. Input values of \(p_{\text {ref }}\) and \(p_{0}\) should then also be "plane stress" pressure or vertical stress, respectively. Negative settings of PINIT have these effects only on stiffness scaling (B), while the strength scaling is re-calculated every time step from the current pressure as for PINIT \(=0\). If PINIT is nonzero, \(B\) is allowed to be as high as 1.0 (stiffness proportional to initial pressure); otherwise, we do not recommend values of \(B\) higher than about 0.5.
10. TPINIT. TPINIT is relevant only when PINIT is nonzero. When TPINIT \(=0.0\) (the default), PINIT acts at the start of the analysis. The pressures in each element on the first cycle (for instance, due to *INITIAL_STRESS_... cards) determine the pressure-sensitive stiffness and strength parameters which remain constant for the duration of the analysis. If TPINIT is nonzero, the stiffness and strength properties vary dynamically with pressure (same as PINIT \(=0\)) until time TPINIT when they become frozen based on the pressure that exists at time TPINIT. For example, this feature can be used to build up stresses under gravity loading before applying PINIT. If using dynamic relaxation and TPINIT > 0.0, then PINIT acts at time TPINIT in the transient phase.
11. Dilatancy. Parameters DIL_A, DIL_B, DIL_C, and DIL_D control the compaction and dilatancy in sandy soils due to shearing motion. Using this feature with pore water pressure (see *CONTROL_PORE_FLUID) can model liquefaction. However, note that the compaction/dilatancy algorithm used in this material model is very unsophisticated compared to recently published research findings.

The dilatancy is expressed as a volume strain, \(\varepsilon_{\mathrm{v}}\) :
\[
\begin{aligned}
\varepsilon_{\mathrm{v}} & =\varepsilon_{\mathrm{r}}+\varepsilon_{\mathrm{g}} \\
\varepsilon_{\mathrm{r}} & =\mathrm{DIL}_{-} \mathrm{A}(\Gamma)^{\text {DIL_B }} \\
\varepsilon_{\mathrm{g}} & =\frac{\int\left(d \gamma_{x z}^{2}+d \gamma_{y z}^{2}\right)^{1 / 2}}{\text { DIL_C }^{1 / 2} \mathrm{DIL} \mathrm{D} \times \int\left(d \gamma_{x z}^{2}+d \gamma_{y z}^{2}\right)^{1 / 2}} \\
\Gamma & =\left(\gamma_{x z}^{2}+\gamma_{y z}^{2}\right)^{1 / 2} \\
\gamma_{x z} & =2 \varepsilon_{x z} \\
\gamma_{y z} & =2 \varepsilon_{y z}
\end{aligned}
\]
\(\varepsilon_{\mathrm{r}}\) describes soil's dilation due to the magnitude of the shear strains; this is caused by the soil particles having to climb over each other to develop shear strain. \(\varepsilon_{\mathrm{g}}\) describes the compaction of the soil due to the collapse of weak areas and voids caused by continuous shear straining.

Recommended inputs for sandy soil when modeling dilatancy are:
\begin{tabular}{|c|c|c|c|}
\hline DIL_A & DIL_B & DIL_C & DIL_D \\
\hline 10 & 1.6 & 100 & 10 \\
\hline
\end{tabular}

DIL_A and DIL_B may cause instabilities in some models.
12. Strain rate sensitivity. Scaling the yield stress of each layer by a "rate enhancement factor" accounts for strain rate effects (see optional input field LCSR). This factor is a function of the plastic strain rate in that layer. The stress-strain curve defined by LCID and SFLC is for quasi-static loading. The rate enhancement factor (on the \(y\)-axis) is input as a function of plastic strain rate (on the \(x\)-axis) in
curve LCSR. All rate enhancement factors must be equal to or larger than 1.0. Because the rate enhancement factor applies to the strength but not the stiffness and is calculated separately for each layer, situations in which not all the layers are yielding cause an overall enhancement factor between 1.0 and the value in LCSR.
13. Cyclic degradation. See optional input fields SIGR, CHI, and SIGTH. Reducing the size of all yield surfaces proportionally based on the accumulation of the damage strain accounts for cyclic degradation. The following equation determines the strength reduction factor, \(f\) :
\[
f=1-\left(1-\Sigma_{R}\right)\left(1-e^{\frac{-\chi \gamma_{d}}{1-\Sigma_{R}}}\right)
\]
where \(\Sigma\) is the shear stress ratio (defined as current shear stress divided by shear strength at the current pressure); \(\Sigma_{R}\) is the residual shear strength ratio SIGR; \(\chi\) is the input parameter CHI ; and \(\gamma_{d}\) is the damage strain, defined as the summation of absolute incremental changes in Von Mises strain that accumulate whenever \(\Sigma\) exceeds the threshold shear stress ratio SIGTH.
14. Saturated soil. When modeling saturated soil, we do not recommend attempting to represent the additional stiffness of the pore water by increasing the bulk modulus on the *MAT card (this method is sometimes termed a "total stress" model). Using that method causes the pressure calculated by the material model to represent the total pressure (the pore water pressure plus the "effective pressure" which is the component of pressure associated with contact between the soil grains). Pressure-sensitive properties, such as shear strength, then depend unrealistically on total pressure, whereas in real-life soils, they depend on effective pressure. To obtain the latter behavior, model the pore pressure effects with *CONTROL_PORE_FLUID and *BOUNDARY_PORE_FLUID and set the properties on the *MAT card to represent the effective stress properties.
15. Non-Masing damping. See optional input field LCD. Hysteresis damping arises from the energy absorbed during each stress-strain cycle, meaning the area enclosed by the hysteresis loops, such as those shown in Figure M79-2. The nested yield surface approach of this material model governs the shape of the hysteresis loops, providing a level of damping known as "Masing damping" that depends on the shape of the input shear stress-strain curve and the cyclic strain amplitude. Masing damping often overestimates the actual hysteresis damping shown by soils in cyclic tests, particularly at high cyclic shear strains. To counteract this, specify input curve LCD to define "non-Masing damping." In this material model, non-Masing damping acts like a damage model, progressively reducing the properties of the separate nested layers as the strain increases, making the hysteresis loops thinner. Thus, this feature only reduces the damping compared to the default Masing damping. It cannot increase the damping. Furthermore, the gap between Masing and non-Masing damping
must increase monotonically with increasing shear strain. The amount of hysteresis damping will not follow an input LCD if it does not obey these rules. In this case, LS-DYNA writes a warning and a table that includes the Masing damping for each point of the input stress-strain curve to the message file. LS-DYNA outputs the table to provide information for adjusting the damping ratios in LCD to meet the above requirements.

\section*{*MAT_RAMBERG-OSGOOD}

This is Material Type 80. This model is intended as a simple model of shear behavior and can be used in seismic analysis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & GAMY & TAUY & ALPHA & R & BULK & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
GAMY \(\quad\) Reference shear strain, \(\gamma_{y}\)

TAUY \(\quad\) Reference shear stress, \(\tau_{y}\)

\section*{ALPHA Stress coefficient, \(\alpha\)}
\(\mathrm{R} \quad\) Stress exponent, \(r\)
BULK Elastic bulk modulus

\section*{Remarks:}

The Ramberg-Osgood equation is an empirical constitutive relation to represent the onedimensional elastic-plastic behavior of many materials, including soils. This model allows a simple rate independent representation of the hysteretic energy dissipation observed in soils subjected to cyclic shear deformation. For monotonic loading, the stressstrain relationship is given by:
\[
\begin{array}{ll}
\frac{\gamma}{\gamma_{y}}=\frac{\tau}{\tau_{y}}+\alpha\left|\frac{\tau}{\tau_{y}}\right|^{r} & \text { for } \gamma \geq 0 \\
\frac{\gamma}{\gamma_{y}}=\frac{\tau}{\tau_{y}}-\alpha\left|\frac{\tau}{\tau_{y}}\right|^{r} & \text { for } \gamma<0
\end{array}
\]
where \(\gamma\) is the shear and \(\tau\) is the stress. The model approaches perfect plasticity as the stress exponent \(r \rightarrow \infty\). These equations must be augmented to correctly model
unloading and reloading material behavior. The first load reversal is detected by \(\gamma \dot{\gamma}<0\). After the first reversal, the stress-strain relationship is modified to
\[
\begin{array}{ll}
\frac{\left(\gamma-\gamma_{0}\right)}{2 \gamma_{y}}=\frac{\left(\tau-\tau_{0}\right)}{2 \tau_{y}}+\alpha\left|\frac{\left(\tau-\tau_{0}\right)}{2 \tau_{y}}\right|^{\prime} & \text { for } \gamma \geq 0 \\
\frac{\left(\gamma-\gamma_{0}\right)}{2 \gamma_{y}}=\frac{\left(\tau-\tau_{0}\right)}{2 \tau_{y}}-\alpha\left|\frac{\left(\tau-\tau_{0}\right)}{2 \tau_{y}}\right|^{\prime} & \text { for } \gamma<0
\end{array}
\]
where \(\gamma_{0}\) and \(\tau_{0}\) represent the values of strain and stress at the point of load reversal. Subsequent load reversals are detected by \(\left(\gamma-\gamma_{0}\right) \dot{\gamma}<0\).

The Ramberg-Osgood equations are inherently one-dimensional and are assumed to apply to shear components. To generalize this theory to the multidimensional case, it is assumed that each component of the deviatoric stress and deviatoric tensorial strain is independently related by the one-dimensional stress-strain equations. A projection is used to map the result back into deviatoric stress space if required. The volumetric behavior is elastic, and, therefore, the pressure p is found by
\[
p=-K \varepsilon_{v}
\]
where \(\varepsilon_{v}\) is the volumetric strain.

\section*{*MAT_PLASTICITY_WITH_DAMAGE_\{OPTION\}}

This manual entry applies to both types 81 and 82 . Materials 81 and 82 model an elasto-visco-plastic material with user-defined isotropic stress versus strain curves, which, themselves, may be strain-rate dependent. This model accounts for the effects of damage prior to rupture based on an effective plastic-strain measure. Additionally, failure can be triggered when the time step drops below some specified value. Adding an orthotropic damage option will invoke material type 82 . Since type 82 must track directional strains it is, computationally, more expensive.

Available options include:
```

<BLANK>

```

ORTHO
ORTHO_RCDC
ORTHO_RCDC1980
STOCHASTIC
The keyword card can appear in the following ways:
```

*MAT_PLASTICITY_WITH_DAMAGE or *MAT_081
*MAT_PLASTICITY_WITH_DAMAGE_ORTHO or *MAT_082
*MAT_PLASTICITY_WITH_DAMAGE_ORTHO_RCDC or *MAT_082_RCDC
*MAT_PLASTICITY_WITH_DAMAGE_ORTHO_RCDC1980 or *MAT_082_RCDC1980
*MAT_PLASTICITY_WITH_DAMAGE_STOCHASTIC or *MAT_081_STOCHASTIC

```

The ORTHO option invokes an orthotropic damage model, an extension that was first added as for modelling failure in aluminum panels. Directional damage begins after a defined failure strain is reached in tension and continues to evolve until a tensile rupture strain is reached in either one of the two orthogonal directions. After rupture is detected at all integration points, the element is deleted.

The ORTHO_RCDC option invokes the damage model developed by Wilkins [Wilkins, et al. 1977]. The ORTHO_RCDC1980 option invokes a damage model based on strain invariants as developed by Wilkins [Wilkins, et al. 1980]. A nonlocal formulation, which requires additional storage, is used if a characteristic length is defined. The RCDC option, which was added at the request of Toyota, works well in predicting failure in cast aluminum; see Yamasaki, et al., [2006].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & SIGY & ETAN & EPPF & TDEL \\
Type & A & F & F & F & F & \(F\) & \(F\) & \(F\) \\
Default & none & none & none & none & none & 0.0 & \(10^{12}\) & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & EPPFR & VP & LCDM & NUMINT \\
Type & F & F & F & F & F & F & F & 1 \\
Default & 0 & 0 & 0 & 0 & \(10^{14}\) & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & \(F\) \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Ortho RCDC Card. Additional card for keyword options ORTHO_RCDC and ORTHO_RCDC1980.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & BETA & GAMMA & D0 & B & LAMBDA & DS & L \\
Type & F & F & F & F & F & F & F & F \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Tangent modulus, ignored if (LCSS \(>0\)) is defined.
EPPF \(\quad \varepsilon_{\text {failure }}^{p}\), effective plastic strain at which material softening begins
TDEL Minimum time step size for automatic element deletion
C Strain rate parameter, \(C\); see formula below.
\(P \quad\) Strain rate parameter, \(P\); see formula below.
LCSS

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Load curve ID or Table ID

Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain. If defined, EPS1 - EPS8 and ES1 - ES8 are ignored.
Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that rate; see Figure M24-1. When the strain rate falls below the minimum value, the stress as a function of effective plastic strain curve for the lowest value of strain rate is used. Likewise, when the strain rate exceeds the maximum value the stress as a function of effective plastic strain curve for the highest value of strain rate

\section*{VARIABLE}

LCSR Load curve ID defining strain rate scaling effect on yield stress

EPPFR

LCDM \(\quad\) Optional curve ID defining nonlinear damage curve. If this curve
is specified, either EPPF or EPPFR must also be input. If LCDM,
Optional curve ID defining nonlinear damage curve. If this curve
is specified, either EPPF or EPPFR must also be input. If LCDM, EPPF, and EPPFR are all nonzero, then EPPFR is ignored.

NUMINT Number of through thickness integration points which must fail before a shell element is deleted. (If zero, all points must fail.) The default of all integration points is not recommended since shells undergoing large strain are often not deleted due to nodal fiber rotations which limit strains at active integration points after most points have failed. Better results are obtained if NUMINT is set to 1 or a number less than one half of the number of through thickness points. For example, if four through thickness points are used, NUMINT should not exceed 2, even for fully integrated shells which have 16 integration points.

EPS1-EPS8 Effective plastic strain values (optional if SIGY is defined). At least 2 points should be defined.

ES1-ES8 Corresponding yield stress values to EPS1 - EPS8
ALPHA Parameter \(\alpha\) for the Rc-Dc model
BETA

GAMMA \(\varepsilon_{\text {rupture }}^{p}\) effective plastic strain at which material ruptures

Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation

Parameter \(\beta\) for the Rc-Dc model
Parameter \(\gamma\) for the Rc-Dc model

\section*{DESCRIPTION}
is used. C, P, LCSR, EPS1-EPS8, and ES1-ES8 are ignored if a table ID is defined.

Logarithmically Defined Tables. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline D0 & Parameter \(D_{0}\) for the Rc-Dc model \\
\hline B & Parameter \(b\) for the Rc-Dc model \\
\hline LAMBDA & Parameter \(\lambda\) for the Rc-Dc model \\
\hline DS & Parameter \(D_{s}\) for the Rc-Dc model \\
\hline L & Optional characteristic element length for this material. If zero, nodal values of the damage function are used to compute the damage gradient. See discussion below. \\
\hline
\end{tabular}

\section*{Remarks:}
1. The stress strain behavior may be treated by a bilinear stress strain curve by defining the tangent modulus, ETAN. Alternately, a curve similar to that shown in Figure M24-1 is expected to be defined by (EPS1, ES1) - (EPS8, ES8); however, an effective stress versus effective plastic strain curve (LCSS) may be input instead if eight points are insufficient. The cost is roughly the same for either approach. The most general approach is to use the table definition (LCSS) discussed below.

Three options to account for strain rate effects are possible:
a) Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / 6}
\]
where \(\dot{\varepsilon}\) is the strain rate, \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\).
If the viscoplastic option is active, \(\mathrm{VP}=1.0\), and if SIGY is \(>0\), then the dynamic yield stress is computed from the sum of the static stress, \(\sigma_{y}^{s}\left(\varepsilon_{\text {eff }}^{p}\right)\), which is typically given by a load curve ID, and the initial yield stress, SIGY, multiplied by the Cowper-Symonds rate term as follows:
\[
\sigma_{y}\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)=\sigma_{y}^{s}\left(\varepsilon_{\mathrm{eff}}^{p}\right)+\operatorname{SIGY} \times\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p}
\]
where the plastic strain rate is used. With this latter approach similar results can be obtained between this model and material model: *MAT_ANISOTROPIC_VISCOPLASTIC. If SIGY \(=0\), the following equation is used instead where the static stress, \(\sigma_{y}^{s}\left(\varepsilon_{\text {eff }}^{p}\right)\), must be defined by a load curve:

Figure M81-1. Stress strain behavior when damage is included
\[
\sigma_{y}\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)=\sigma_{y}^{s}\left(\varepsilon_{\mathrm{eff}}^{p}\right)\left[1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p}\right]
\]

This latter equation is always used if the viscoplastic option is off.
b) For complete generality a load curve (LCSR) to scale the yield stress may be input instead. In this curve the scale factor as a function of strain rate is defined.
c) If different stress as a function of strain curves can be provided for various strain rates, a table (LCSS) can be used. Then the table input in *DEFINE_TABLE is expected; see Figure M24-1.
2. Damage. The constitutive properties for the damaged material are obtained from the undamaged material properties. The amount of damage is represented \(\omega\) which varies from zero if no damage has occurred to unity for complete rupture. For uniaxial loading, the nominal stress in the damaged material is given by
\[
\sigma_{\text {nominal }}=\frac{P}{A}
\]
where \(P\) is the applied load and \(A\) is the surface area. The true stress is given by:
\[
\sigma_{\text {true }}=\frac{P}{A-A_{\text {loss }}}
\]

Figure M81-2. A nonlinear damage curve is optional. Note that the origin of the curve is at \((0,0)\). The nonlinear damage curve is useful for controlling the softening behavior after the failure strain EPPF is reached.
where \(A_{\text {loss }}\) is the void area. The damage variable can then be defined:
\[
\omega=\frac{A_{\text {loss }}}{A}
\]
such that
\[
0 \leq \omega \leq 1
\]

In this model, unless LCDM is defined, damage is defined in terms of effective plastic strain after the failure strain is exceeded as follows:
\[
\omega=\frac{\varepsilon_{\text {eff }}^{p}-\varepsilon_{\text {failure }}^{p}}{\varepsilon_{\text {rupture }}^{p}-\varepsilon_{\text {failure }}^{p}}, \quad \varepsilon_{\text {failure }}^{p} \leq \varepsilon_{\text {eff }}^{p} \leq \varepsilon_{\text {rupture }}^{p}
\]

After exceeding the failure strain, softening begins and continues until the rupture strain is reached.
3. Rc-Dc Model. The damage, \(D\), for the Rc-Dc model is given by:
\[
D=\int \omega_{1} \omega_{2} d \varepsilon^{p}
\]
where \(\varepsilon^{p}\) is the effective plastic strain,
\[
\omega_{1}=\left(\frac{1}{1-\gamma \sigma_{m}}\right)^{\alpha}
\]
is a triaxial stress weighting term and
\[
\omega_{2}=\left(2-A_{D}\right)^{\beta}
\]
is an asymmetric strain weighting term. In the above \(\sigma_{m}\) is the mean stress. For \(A_{D}\) we use
\[
A_{D}=\min \left(\left|\frac{\sigma_{2}}{\sigma_{3}}\right|,\left|\frac{\sigma_{3}}{\sigma_{2}}\right|\right),
\]
where \(\sigma_{i}\) are the principal stresses and \(\sigma_{1}>\sigma_{2}>\sigma_{3}\). Fracture is initiated when the accumulation of damage is
\[
\frac{D}{D_{c}}>1
\]
where \(D_{c}\) is the critical damage given by
\[
D_{c}=D_{0}\left(1+b|\nabla D|^{\lambda}\right)
\]

A fracture fraction,
\[
F=\frac{D-D_{c}}{D_{s}}
\]
defines the degradations of the material by the Rc-Dc model.
For the Rc-Dc model the gradient of damage needs to be estimated. The damage is connected to the integration points, and, thus, the computation of the gradient requires some manipulation of the LS-DYNA source code. Provided that the damage is connected to nodes, it can be seen as a standard bilinear field and the gradient is easily obtained. To enable this, the damage at the integration points are transferred to the nodes as follows. Let \(E_{n}\) be the set of elements sharing node \(n,\left|E_{n}\right|\) be the number of elements in that set, \(P_{e}\) be the set of integration points in element \(e\) and \(\left|P_{e}\right|\) be the number of points in that set. The average damage \(\bar{D}_{e}\) in element \(e\) is computed as
\[
\bar{D}_{e}=\frac{\sum_{p \in P_{e}} D_{p}}{\left|P_{e}\right|}
\]
where \(D_{p}\) is the damage in integration point \(p\). Finally, the damage value in node \(n\) is estimated as
\[
D_{n}=\frac{\sum_{e \in E_{n}} \bar{D}_{e}}{\left|E_{n}\right|} .
\]

This computation is performed in each time step and requires additional storage. Currently we use three times the total number of nodes in the model for this calculation, but this could be reduced by a considerable factor if necessary.

There is an Rc-Dc option for the Gurson dilatational-plastic model. In the implementation of this model, the norm of the gradient is computed differently. Let \(E_{f}^{l}\) be the set of elements from within a distance \(l\) of element, \(f\), not including the element itself, and let \(\left|E_{f}^{l}\right|\) be the number of elements in that set. The norm of the gradient of damage is estimated roughly as
\[
\|\nabla D\|_{f} \approx \frac{1}{\left|E_{f}^{l}\right|_{e \in E_{f}^{l}}} \frac{\left|D_{e}-D_{f}\right|}{d_{e f}}
\]
where \(d_{e f}\) is the distance between element \(f\) and \(e\).
The reason for taking the first approach is that it should be a better approximation of the gradient; it can for one integration point in each element be seen as a weak gradient of an elementwise constant field. The memory consumption as well as computational work should not be much higher than for the other approach.

The RCDC1980 model is identical to the RCDC model except the expression for \(A_{D}\) is in terms of the principal stress deviators and takes the form
\[
A_{D}=\max \left(\left|\frac{S_{2}}{S_{3}},\left|\frac{S_{2}}{S_{1}}\right|\right)\right.
\]
4. STOCHASTIC Option. The STOCHASTIC option allows spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.
5. Material Histories. *DEFINE_MATERIAL_HISTORIES can be used to output the instability, plastic strain rate, and damage, following
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & & Attributes & Description \\
\hline Instability & - & - - - & Failure indicator \(\varepsilon_{\text {eff }}^{p} / \varepsilon_{\text {fail }}^{p}\), see EPPF \\
\hline Plastic Strain Rate & - & - - - & Effective plastic strain rate \(\dot{\varepsilon}_{\text {eff }}^{p}\) \\
\hline Damage & - & - - - & Damage \(\omega\) \\
\hline
\end{tabular}

\section*{*MAT_FU_CHANG_FOAM_\{OPTION\}}

This is Material Type 83.
Available options include:

\section*{DAMAGE_DECAY}

\section*{LOG_LOG_INTERPOLATION}

Rate effects can be modeled in low and medium density foams; see Figure M83-1. Hysteretic unloading behavior in this model is a function of the rate sensitivity with the most rate sensitive foams providing the largest hysteresis and vice versa. The unified constitutive equations for foam materials by Chang [1995] provide the basis for this model. The mathematical description given below is excerpted from the reference. Further improvements have been incorporated based on work by Hirth, Du Bois, and Weimar [1998]. Their improvements permit: load curves generated from a drop tower test to be directly input, a choice of principal or volumetric strain rates, load curves to be defined in tension, and the volumetric behavior to be specified by a load curve.

Figure M83-1. Rate effects in the nominal stress versus engineering strain curves, which are used to model rate effects in Fu Chang's foam model.

The unloading response was generalized by Kolling, Hirth, Erhart and Du Bois [2006] to allow the Mullin's effect to be modeled, meaning after the first loading and unloading, further reloading occurs on the unloading curve. If it is desired to reload on the loading curves with the new generalized unloading, the DAMAGE_DECAY option is available which allows the reloading to quickly return to the loading curve as the damage parameter decays back to zero in tension and compression.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & KCON & TC & FAIL & DAMP & TBID \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline BVFLAG & SFLAG & RFLAG & TFLAG & PVID & SRAF & REF & HU \\
\hline
\end{tabular}

Card 3a. This card is included if the DAMAGE_DECAY keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MINR & MAXR & SHAPE & BETAT & BETAC & & & \\
\hline
\end{tabular}

Card 3b. This card is included if the DAMAGE_DECAY keyword option is not used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D0 & N0 & N1 & N2 & N3 & C0 & C1 & C2 \\
\hline
\end{tabular}

Card 4. This card is included if the DAMAGE_DECAY keyword option is not used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C3 & C4 & C5 & AIJ & SIJ & MINR & MAXR & SHAPE \\
\hline
\end{tabular}

Card 5. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EXPON & RIULD & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & KCON & TC & FAIL & DAMP & TBID \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & \(10^{20}\) & none & 0.05 & none \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
E
KCON

TC Tension cut-off stress
FAIL Failure option after cutoff stress is reached:
EQ.0.0: Tensile stress remains at cut-off value.
EQ.1.0: Tensile stress is reset to zero.
EQ.2.0: The element is eroded.
DAMP Viscous coefficient to model damping effects (\(0.05<\) recommended value \(<0.50\); default is 0.05)

TBID Table ID (see *DEFINE_TABLE) for nominal stress as a function of strain data at a given strain rate. If the table ID is provided, Cards 3 and 4 may be left blank and the input curves will be used directly in the model. The Table ID can be positive or negative (see Remark 6 below). If TBID \(<0\), enter |TBID| on the *DEFINE_TABLE keyword.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & BVFLAG & SFLAG & RFLAG & TFLAG & PVID & SRAF & REF & HU \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

BVFLAG

SFLAG

RFLAG

TFLAG
Tensile stress evaluation:
EQ.0.0: Linear (follows E) in tension
EQ.1.0: Input via load curves with the tensile response corresponds to negative values of stress and strain.

PVID Optional load curve ID defining pressure as a function of volumetric strain. See Remark 4.

SRAF Strain rate averaging flag (see Remark 5):

LT.0.0:
EQ.0.0:
GT.O.0.AND.LE.0.9999: Filter window for averaging strain rates, suppressing the time step dependence of the operation.

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1.0:
GE.1.0001:
Average the last twelve values.
SRAF - 1.0 is a filter window for averaging strain rates, suppressing the time step dependence of the operation.

REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On
HU
Hysteretic unloading factor between 0.0 and 1.0. See Remark 6 and Figure M83-4.

DAMAGE_DECAY Card. Card 3 for DAMAGE_DECAY keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MINR & MAXR & SHAPE & BETAT & BETAC & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}

VARIABLE
MINR

MAXR Maximum strain rate of interest
SHAPE Shape factor for unloading. Active for nonzero values of the hysteretic unloading factor HU. Values less than one reduce energy dissipation and greater than one increase dissipation; see Figure M83-4.

BETAT Decay constant for damage in tension. The damage decays after loading ceases according to \(e^{-\mathrm{BETAT} \times t}\).

BETAC Decay constant for damage in compression. The damage decays after loading ceases according to \(e^{-\mathrm{BETAC} \times t}\).

Figure M83-2. \(\mathrm{HU}=0, \mathrm{TBID}>0\)
Material Constants Card. Card 3 for keyword option NOT set to DAMAGE_DECAY.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D0 & N0 & N1 & N2 & N3 & C0 & C1 & C2 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
D0
N0
N1

N2
N3
C0

C1

C2

\section*{DESCRIPTION}

Material constant; see Material Formulation.

\section*{VARIABLE}

C3
C4 Material constant; see Material Formulation.
C5 Material constant; see Material Formulation.
AIJ Material constant; see Material Formulation.
SIJ Material constant; see Material Formulation.

Material Constants Card. Card 4 for keyword option NOT set to DAMAGE_DECAY.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C3 & C4 & C5 & AIJ & SIJ & MINR & MAXR & SHAPE \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{DESCRIPTION}

C3
Material constant; see Material Formulation.
C4 Material constant; see Material Formulation.
C5 Material constant; see Material Formulation.
AIJ Material constant; see Material Formulation.
SIJ Material constant; see Material Formulation.
MINR Minimum strain rate of interest
MAXR Maximum strain rate of interest
SHAPE Shape factor for unloading. Active for nonzero values of the hysteretic unloading factor HU. Values less than one reduces the energy dissipation and greater than one increases dissipation; see Figure M83-2.

Unloading Card. This card is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EXPON & RIULD & & & & & & \\
Type & F & F & & & & & & \\
Default & 1.0 & 0.0 & & & & & & \\
\hline
\end{tabular}

VARIABLE
EXPON

\section*{DESCRIPTION}

Exponent for unloading. Active for nonzero values of the hysteretic unloading factor HU. Default is 1.0

EQ.0.0: Off, EQ.1.0: On.

\section*{Material Formulation:}

The strain is divided into two parts: a linear part and a non-linear part of the strain
\[
\mathbf{E}(t)=\mathbf{E}^{L}(t)+\mathbf{E}^{N}(t)
\]
and the strain rate becomes
\[
\dot{\mathbf{E}}(t)=\dot{\mathbf{E}}^{L}(t)+\dot{\mathbf{E}}^{N}(t),
\]
where \(\dot{\mathbf{E}}^{N}\) is an expression for the past history of \(\mathbf{E}^{N}\). A postulated constitutive equation may be written as:
\[
\boldsymbol{\sigma}(t)=\int_{\tau=0}^{\infty}\left[\mathbf{E}_{t}^{N}(\tau), \mathbf{S}(t)\right] d \tau
\]
where \(\mathbf{S}(t)\) is the state variable and \(\int_{\cdot \tau=0}^{\infty}\) is a functional of all values of \(\tau\) in \(T_{\tau}: 0 \leq \tau \leq \infty\) and
\[
\mathbf{E}_{t}^{N}(\tau)=\mathbf{E}^{N}(t-\tau)
\]
where \(\tau\) is the history parameter:
\[
\mathbf{E}_{t}^{N}(\tau=\infty) \Leftrightarrow \text { the virgin material . }
\]

It is assumed that the material remembers only its immediate past, that is, a neighborhood about \(\tau=0\). Therefore, an expansion of \(\mathbf{E}_{t}^{N}(\tau)\) in a Taylor series about \(\tau=0\) yields:
\[
\mathbf{E}_{t}^{N}(\tau)=\mathbf{E}^{N}(0)+\frac{\partial \mathbf{E}_{t}^{N}}{\partial t}(0) d t
\]

Hence, the postulated constitutive equation becomes:
\[
\boldsymbol{\sigma}(t)=\boldsymbol{\sigma}^{*}\left[\mathbf{E}^{N}(t), \dot{\mathbf{E}}^{N}(t), \mathbf{S}(t)\right],
\]
where we have replaced \(\frac{\partial \boldsymbol{E}_{t}^{N}}{\partial t}\) by \(\dot{\mathbf{E}}^{N}\), and \(\sigma^{*}\) is a function of its arguments.
For a special case,
\[
\boldsymbol{\sigma}(t)=\boldsymbol{\sigma}^{*}\left(\mathbf{E}^{N}(t), \mathbf{S}(t)\right),
\]
we may write
\[
\dot{\mathbf{E}}_{t}^{N}=f(\mathbf{S}(t), \mathbf{s}(t))
\]
which states that the nonlinear strain rate is the function of stress and a state variable which represents the history of loading. Therefore, the proposed kinetic equation for foam materials is:
\[
\dot{\mathbf{E}}_{t}^{N}=\frac{\sigma}{\|\boldsymbol{\sigma}\|} D_{0} \exp \left\{-c_{0}\left[\frac{\sigma: \mathbf{S}}{(\|\boldsymbol{S}\|)^{2}}\right]^{2 n_{0}}\right\},
\]
where \(D_{0}, c_{0}\), and \(n_{0}\) are material constants, and \(\mathbf{S}\) is the overall state variable. If either \(D_{0}=0\) or \(c_{0} \rightarrow \infty\) then the nonlinear strain rate vanishes.
\[
\begin{aligned}
\dot{S}_{i j} & =\left[c_{1}\left(a_{i j} R-c_{2} S_{i j}\right) P+c_{3} W^{n_{1}}\left(\left\|\dot{\mathbf{E}}^{N}\right\|\right)^{n_{2}} I_{i j}\right] R \\
R & =1+c_{[}\left[\frac{\left\|\dot{\mathbf{E}}^{N}\right\|}{c_{5}}-1\right]^{n_{3}} \\
P & =\sigma: \dot{\mathbf{E}}^{N} \\
W & =\int \sigma:(d \mathbf{E})
\end{aligned}
\]
where \(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, n_{1}, n_{2}, n_{3}\), and \(a_{i j}\) are material constants and:
\[
\begin{aligned}
\|\boldsymbol{\sigma}\| & =\left(\sigma_{i j} \sigma_{i j}\right)^{\frac{1}{2}} \\
\|\dot{\mathbf{E}}\| & =\left(\dot{E}_{i j} \dot{E}_{i j}\right)^{\frac{1}{2}} \\
\left\|\dot{\mathbf{E}}^{N}\right\| & =\left(\dot{E}^{N}{ }_{i j} \dot{E}^{N}{ }_{i j}\right)^{\frac{1}{2}}
\end{aligned}
\]

In the implementation by Fu Chang the model was simplified such that the input constants \(a_{i j}\) and the state variables \(S_{i j}\) are scalars.

\section*{Additional Remarks:}
1. Bulk Viscosity. The bulk viscosity, which generates a rate dependent pressure, may cause an unexpected volumetric response. Consequently, it is optional with this model.
2. Constant Velocity Loading. Dynamic compression tests at the strain rates of interest in vehicle crash are usually performed with a drop tower. In this test the loading velocity is nearly constant but the true strain rate, which depends on the instantaneous specimen thickness, is not. Therefore, the engineering strain rate input is optional so that the stress-strain curves obtained at constant velocity loading can be used directly. See the SFLAG field.
3. Strain Rates with Multiaxial Loading. To further improve the response under multiaxial loading, the strain rate parameter can either be based on the principal strain rates or the volumetric strain rate. See the RFLAG field.
4. Triaxial Loading. Correlation under triaxial loading is achieved by directly inputting the results of hydrostatic testing in addition to the uniaxial data. Without this additional information which is fully optional, triaxial response tends to be underestimated. See the PVID field.
5. Strain Rate Averaging. Four different options are available. The default, SRAF \(=0.0\), uses a weighted running average with a weight of \(1 / 12\) on the current strain rate. With the second option, \(\mathrm{SRAF}=1.0\), the last twelve strain rates are averaged. The third option, SRAF \(<0\), uses an exponential moving average with factor \(\mid\) SRAF \(\mid\) representing the degree of weighting decrease \((-1 \leq\) SRAF \(<\) 0). The averaged strain rate at time \(t_{n}\) is obtained by:
\[
\dot{\varepsilon}_{n}^{\text {averaged }}=|\mathrm{SRAF}| \dot{\varepsilon}_{n}+(1-|\mathrm{SRAF}|) \dot{\varepsilon}_{n-1}^{\text {averaged }}
\]

To suppress time step dependence, you can select a filter window for averaging strain rates. Depending on units and the wanted filter size, you can input either \(0.0<\) SRAF \(\leq 0.999\) for which SRAF becomes the filter size or SRAF \(\geq 1.0001\) for which SRAF -1.0 becomes the filter size. This rather awkward way of inputting the filter size is for allowing any filter size to accurate precision, including a size of 1.0.
6. Unloading Response Options. Several options are available to control the unloading response for MAT_083:
a) \(H U=0\) and TBID \(>0\). See Figure M83-2.

This is the old way. In this case the unloading response will follow the curve with the lowest strain rate and is rate-independent. The curve with lowest strain rate value (typically zero) in TBID should correspond to the unloading path of the material as measured in a quasistatic test. The

Figure M83-3. \(\mathrm{HU}=0, \mathrm{TBID}<0\)
quasistatic loading path then corresponds to a realistic (small) value of the strain rate.
b) \(H U=0\) and \(T B I D<0\). See Figure M83-3.

In this case the curve with lowest strain rate value (typically zero) in TBID must correspond to the unloading path of the material as measured in a quasistatic test. The quasistatic loading path then corresponds to a realistic (small) value of the strain rate. At least three curves should be used in the table: one for unloading, one for quasistatic, and one or more for dynamic response. The quasistatic loading and unloading path (thus the first two curves of the table) should form a closed loop. The unloading response is given by a damage formulation for the principal stresses as follows:
\[
\sigma_{i}=(1-d) \sigma_{i}
\]

The damage parameter, \(d\), is computed internally in such a way that the unloading path under uniaxial tension and compression is fitted exactly in the simulation. The unloading response is rate dependent in this case. In some cases, this rate dependence for loading and unloading can lead to noisy results. To reduce that noise, it is possible to switch to rate independent unloading with RIULD \(=1\).

The internal computation of \(d\) using the first two curves of the table only works well if they are both nicely shaped and smooth, and no extreme final slope is present under compression, which is often hard to fulfill. Therefore, it is preferable to use the next option, \(\mathrm{HU}>0\) with TBID \(>0\), instead.
c) \(H U>0\) and TBID > 0. See Figure M83-4.

Figure M83-4. HU > 0, TBID > 0

No unloading curve should be provided in the table and the curve with the lowest strain rate value in TBID should correspond to the loading path of the material as measured in a quasistatic test. At least two curves should be used in the table: one for quasistatic and one or more for dynamic response. In this case the unloading response is given by a damage formulation for the principal stresses as follows:
\[
\begin{aligned}
\sigma_{i} & =(1-d) \sigma_{i} \\
d & =(1-H U)\left[1-\left(\frac{W_{\mathrm{cur}}}{W_{\max }}\right)^{\mathrm{SHAPE}}\right]^{\mathrm{EXPON}}
\end{aligned}
\]
where \(W_{\text {cur }}\) corresponds to the current value of the hyperelastic energy per unit undeformed volume. The unloading response is rate dependent in this case. In some cases, this rate dependence for loading and unloading can lead to noisy results. To reduce that noise, it is possible to switch to rate independent unloading with RIULD \(=1\).

The LOG_LOG_INTERPOLATION option uses log-log interpolation for table TBID in the strain rate direction.

\section*{*MAT_WINFRITH_CONCRETE}

This is Material Type 84 with optional rate effects. The Winfrith concrete model is a smeared crack (sometimes known as pseudo crack), smeared rebar model. We implemented this model for the 8-node single integration point solid element (ELFORM \(=1\) on *SECTION_SOLID) and the 4-node single integration point tetrahedral element (\(E L F O R M=10\)). We recommend using a double precision executable for simulations that include this material model. Single precision may produce unstable results.

Broadhouse and Neilson [1987] and Broadhouse [1995] developed this model over many years, and experiments have validated it. Much of the input documentation given here comes directly from the report by Broadhouse. In releases R15 onwards, further developments by Arup are available by setting the input parameter RATE to 8 ; see Cards 5 through 7.

Rebar may be defined using the keyword *MAT_WINFRITH_CONCRETE_REINFORCEMENT, which appears in the following section, or may be modeled with beam elements fixed to the concrete using *CONSTRAINED_BEAM_IN_SOLID.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & TM & PR & UCS & UTS & FE & ASIZE \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(E\) & YS & EH & UELONG & RATE & CONM & CONL & CONT \\
\hline
\end{tabular}

Card 3. This card is required but may be left blank.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required but may be left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
\hline
\end{tabular}

Card 5. Include this card when RATE \(=8\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MAXSHR & LCYMT & LCFTT & LCFCT & & & LCTST & LCCMP \\
\hline
\end{tabular}

Card 6. Include this card when RATE \(=8\). It may be left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CRFAC & COD1 & TENPWR & TENRSD & LCFIB & RO_G & ZSURF & LCFTIM \\
\hline
\end{tabular}

Card 7. Include this card when RATE \(=8\). It may be left blank.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline OTTO & DILATD & DILRAT & DEGRAD & TFAC8 & TLOSSC & CDSF & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & TM & PR & UCS & UTS & FE & ASIZE \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

TM

PR

UCS
UTS
FE
The meaning of FE depends on the value of RATE (see Remark 8):
RATE.EQ.0: Fracture energy (energy per unit area dissipated in opening the crack).

RATE.GT.O: Crack width at which the crack-normal tensile stress goes to zero.

ASIZE Aggregate size, depending on the value of RATE.
RATE.LE.1: Aggregate radius in model length units.
RATE.GE.2: Aggregate diameter in meters. The formula for shear stress carried across cracks with aggregate interlock uses this field; see Remark 11.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E & YS & EH & UELONG & RATE & CONM & CONL & CONT \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

YS Yield stress of rebar
EH Hardening modulus of rebar
UELONG Ultimate elongation before rebar fails.
RATE Material model option (see Remarks 8 and 13):
EQ.O.O: Original Broadhouse implementation with strain rate effects included. WARNING: This option does not guarantee energy conservation.

EQ.1.0: Original Broadhouse implementation with strain rate effects turned off.

EQ.2.0: Like RATE \(=1\) but includes an improved crack algorithm. It is superseded by RATE \(=8\).

EQ.8.0: Improved crack algorithm plus additional inputs on Cards 5 through 7 (recommended).

CONM Units (conversion) flag:
GT.0.0: Factor to convert model mass units to kg
EQ.-1.0: Mass, length, and time units in the model are \(\mathrm{lbf} \times\) sec2/in, inch, and sec.

EQ.-2.0: Mass, length, and time units in the model are \(\mathrm{g}, \mathrm{cm}\), and microsec.

EQ.-3.0: Mass, length, and time units in the model are g, mm, and msec.

EQ.-4.0: Mass, length, and time units in the model are metric ton, mm , and sec.

EQ.-5.0: Mass, length, and time units in the model are kg , mm, and msec.

\section*{VARIABLE}

CONL

\section*{DESCRIPTION}

Length units conversion factor:
CONM.GT.0: CONL is the conversion factor from model length units to meters (for instance, CONL \(=0.001\) for millimeters).

CONM.LE.0: CONL is ignored.

CONT Time units conversion factor:
CONM.GT.0: CONT is the conversion factor from time units to seconds (for example, CONT \(=0.001\) for milliseconds).

CONM.LE.0: CONT is ignored.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

EPS1, EP-
S2, ...

\section*{DESCRIPTION}

Volumetric strain values (natural logarithmic values); see Remark 3. If this card is not left blank, a minimum of 2 values must be defined and a maximum of 8 values are allowed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P1 & P2 & P3 & P4 & P5 & P6 & P7 & P8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

P1, P2, ...
Pressures corresponding to the volumetric strain values given on Card 3. See Remark 3.

Additional card for RATE \(=8\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MAXSHR & LCYMT & LCFTT & LCFCT & & & LCTST & LCCMP \\
Type & F & 1 & 1 & 1 & & & 1 & 1 \\
Default & \(\downarrow\) & none & none & none & & & none & none \\
\hline
\end{tabular}

VARIABLE
MAXSHR

LCCMP

LCYMT Optional load curve ID governing the variation of elastic stiffness with temperature. The \(x\)-axis is temperature, and the \(y\)-axis is a nondimensional factor on elastic modulus TM.

LCFTT Optional load curve ID governing the variation of tensile strength with temperature. The \(x\)-axis is temperature, and the \(y\)-axis is a nondimensional factor on tensile strength UTS. See Remark 9.

LCFCT Optional load curve ID governing the variation of compressive strength with temperature. The \(x\)-axis is temperature, and the \(y\) axis is a nondimensional factor on compressive strength UCS.

LCTST Optional load curve ID governing the post-cracking tensile response. See Remark 8. The \(x\)-axis is crack-opening displacement (length units), and the \(y\)-axis is a nondimensional factor on tensile strength UTS. If LCTST is defined, it overrides FE on Card 1. The first point should be \((0,1)\).

\section*{DESCRIPTION}

Maximum shear stress that can be carried across a crack under conditions of zero normal stress on the crack and zero crack opening displacement. The default value is 1.161 times UTS;` see Remark 11.

Optional load curve ID governing post-yield compression/shear response. The \(x\)-axis is plastic strain,and the \(y\)-axis is a nondimensional factor that scales UCS. See Remark 14.

Additional card for RATE \(=8\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CRFAC & COD1 & TENPWR & TENRSD & LCFIB & R0_G & ZSURF & LCFTIM \\
Type & F & F & F & F & I & \(F\) & \(F\) & 1 \\
Default & 0.0 & 0.0 & 1.0 & 0.01 & none & 0.0 & 0.0 & none \\
\hline
\end{tabular}

VARIABLE
CRFAC

COD1

TENPWR

TENRSD

LCFIB

RO_G

ZSURF

LCFTIM Optional load curve ID giving scaling factor on tensile strength (UTS) as a function of time. See Remarks 9 and 21.

Additional card for RATE \(=8\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & 0TTO & DILATD & DILRAT & DEGRAD & TFAC8 & TLOSSC & CDSF & \\
Type & I & F & F & F & F & F & F & \\
Default & 1 & 0.0 & 0.0 & 0.0 & 0.9 & 1.0 & 8.0 & \\
\hline
\end{tabular}

VARIABLE
OTTO

DILATD

DILRAT
DEGRAD

TFAC8

TLOSSC

CDSF

\section*{DESCRIPTION}

Option for automatic calculation of the Ottosen yield surface constants (see Remark 13):

EQ.1: fib Model Code 2010, normal weight concrete
EQ.2: fib Model Code 2010, lightweight concrete
EQ.3: Same as RATE \(=0,1\) or 2 (Broadhouse model)
Maximum dilation displacement (in model length units) due to crack sliding or yielding

Initial dilation ratio
Lower limit on the factor by which the compressive strength of cracked elements is scaled (see Remark 15):

> EQ.0: No reduction of compressive strength
> GT.0: Equation from Eurocode 2 with lower limit = DEGRAD

Nondimensional modification factor applied to any tensile principal stresses when calculating the Ottosen yield function; see Remark 16.

Nondimensional parameter controlling loss of tensile strength in crushed elements; see Remark 9.

Nondimensional ductility factor for confined concrete. CDSF controls scaling of the \(x\)-axis of LCCMP; see Remark 14.

\section*{Remarks:}
1. Minimum input recommendations. All of the input parameters on Card 1 should be defined, together with RATE and the unit conversion factors CONM, CONL, and CONT on Card 2 (CONL and CONT may be left blank if CONM is negative). If yielding or failure in compression or shear is anticipated, we recommend RATE \(=8\). For \(\operatorname{RATE}=8\), we recommend defining LCCMP. All the other input parameters on Cards 5, 6 , and 7 may be left blank because the defaults are intended to provide a reasonably realistic response.
2. Basic properties. The elastic properties are defined by Young's modulus TM and Poisson's Ratio PR. UCS is the compressive strength under uniaxial stress conditions as measured by a standard cylinder compression test. Note that the strength obtained from standard cube tests is typically 15-25\% greater than the uniaxial compressive strength. UTS, the tensile strength, may be estimated from tables or equations in codes and standards such as Eurocode 2 or ACI-318. It is important that a realistic tensile strength (as opposed to an artificially low "design" value) is input, for reasons explained in Remark 13.
3. Volumetric response. Cards 3 and 4 enable providing the volumetric response curve. In this curve, pressure is positive in compression. Volumetric strain is defined as the natural log of the relative volume and is negative in compression. The tabulated data must be provided in order of increasing compression, with no initial zero point.

If omitting the volume compaction curve, i.e., if Cards 3 and 4 are left blank, LSDYNA uses the scaled curve in Table M84-1. \(p_{1}\) in the curve is the pressure at uniaxial compressive failure:
\[
p_{1}=\frac{\mathrm{UCS}}{3},
\]
\(K\) (referenced in the Table below) is the bulk unloading modulus computed from:
\[
K=\frac{E_{s}}{3(1-2 v)} .
\]

Here \(E_{s}\) is the input tangent modulus for concrete (input parameter TM), and \(v\) is Poisson's ratio.
\begin{tabular}{cc}
\hline Volumetric Strain & Pressure \\
\hline\(-p_{1} / K\) & \(1.00 p_{1}\) \\
-0.002 & \(1.50 p_{1}\) \\
-0.004 & \(3.00 p_{1}\) \\
-0.010 & \(4.80 p_{1}\) \\
\hline
\end{tabular}
\begin{tabular}{cc}
\hline-0.020 & \(6.00 p_{1}\) \\
-0.030 & \(7.50 p_{1}\) \\
-0.041 & \(9.45 p_{1}\) \\
-0.051 & \(11.55 p_{1}\) \\
-0.062 & \(14.25 p_{1}\) \\
-0.094 & \(25.05 p_{1}\) \\
\hline
\end{tabular}

Table M84-1. Default pressure as a function of volumetric strain curve for concrete if the curve is not defined.
4. Binary crack output database. The Winfrith concrete model can generate an additional binary output database containing information on crack locations, directions, and widths. Generating the crack database requires modifyinh the LSDYNA execution line by adding the following:
\(q=c r f\)
where crf is the desired name of the crack database, such as \(q=\mathbf{d 3 c r a c k}\). LSDYNA writes the output at the same times as the d3plot database.

LS-PrePost can display the cracks on the deformed mesh plots. To do so, read the d3plot database into LS-PrePost and select File \(\rightarrow\) Open \(\rightarrow\) Crack from the top menu bar. Or, open the crack database by adding the following to the LS-PrePost execution line:
\[
q=c r f
\]
where crf is the name of the crack database.
By default, LS-PrePost shows all the cracks in visible elements. Setting a minimum crack width for displayed cracks eliminates narrow cracks from the display. To do this, choose Settings \(\rightarrow\) Post Settings \(\rightarrow\) Concrete Crack Width. From the top menu bar of LS-PrePost, choosing Misc \(\rightarrow\) Model Info reveals the number of cracked elements and the maximum crack width in a given plot state.
5. Crack summary output file. Including *DATABASE_BINARY_D3CRACK in the input deck causes LS-DYNA to write an ASCII output file named aea_crack. This command does not have any bearing on the aforementioned binary crack database.
6. Crack plane directions. The crack algorithm uses a non-rotating approach. Once cracks have initiated, their directions remain fixed relative to the element's local axis system. Up to three mutually perpendicular cracks can form in each element. The first crack is initiated on a plane normal to the maximum tensile principal stress when that principal stress reaches the tensile strength (input parameter UTS; see Remark 9 for RATE \(=8\)). A second crack can initiate on any
plane normal to the first crack and does so if the tensile stress acting perpendicular to that plane reaches the tensile strength. After creating two cracks, the only possible plane for the third crack is the one mutually perpendicular to the first two cracks. The third crack initiates if the tensile stress acting perpendicular to that plane reaches the tensile strength.
7. Limitation of non-rotating cracks. The algorithm prevents the tensile stress from exceeding UTS only in directions normal to actual or potential crack planes. It is possible to observe tensile principal stresses greater than UTS in the results if the loading directions rotate after a crack has formed. This result is a limitation of the non-rotating crack approach.
8. Crack tensile response. We model cracks with the "smeared crack" approach, meaning that the stress-strain relationships model the presence of a crack instead of the mesh breaking apart. To reduce the sensitivity of results to mesh size, these relationships are formulated using displacement instead of strain as the abscissa. Displacement, \(\delta\), is calculated from strain, \(\varepsilon\), and the initial element volume, \(V_{0}\), as follows:
\[
\begin{aligned}
\delta & =L_{0} \varepsilon \\
L_{0} & =V_{0}{ }^{1 / 3}
\end{aligned}
\]

After the initiation of a crack, the tensile stress decays with increasing crack opening displacement. For RATE \(=1\) and 2, the decay follows a linear relationship with the tensile strength reaching zero at a crack opening displacement equal to the input parameter FE . For \(\mathrm{RATE}=0\), the decay follows a bilinear relationship. LS-DYNA automatically scales the displacement axis of this bilinear relationship based on the input parameter FE which represents the fracture energy.

For RATE \(=8\) the default is to use FE in the same way as RATE \(=1\) and 2 , but this may optionally be overridden using the load curve LCTST. If defined, the first point of LCTST should be \((0,1)\), i.e., at zero crack opening displacement, the uniaxial tensile strength is equal to unity times UTS. It is expected, but not essential, that the \(y\)-axis values drop to zero at some finite \(x\)-axis value, meaning the tensile strength drops to zero at a finite crack opening displacement. See also Remark 10 regarding fiber-reinforced concrete.
9. Modifications to tensile strength (RATE = 8). When RATE \(=8\), the tensile strength of a given element may be different from UTS for the following reasons:
a) If compressive principal stresses are also present, the tensile strength is scaled by a factor \(k_{T C}\) defined as follows:
\[
\begin{aligned}
k_{T C} & =\text { TENRSD }+(1-\text { TENRSD })\left(1-f^{\text {TENPWR }}\right) \\
f & =-\sigma_{\text {comp }} / \mathrm{UCS} \text { subject to } 0 \leq f \leq 1
\end{aligned}
\]

Here, \(\sigma_{\text {comp }}\) is the most compressive principal stress, and TENRSD and TENPWR are defined on Card 6 . The default values provide a linear reduction of tensile strength from UTS to \(0.01 \times\) UTS as the most compressive principal stress increases from zero to UCS.
b) If any neighboring elements are cracked (where "neighboring" means elements that share at least one node with the uncracked element being considered), the tensile strength is scaled by a crack propagation factor \(k_{C P}\) intended to represent the effect of stress concentrations near a crack tip:
\[
k_{C P}=1-\operatorname{CRFAC}\left(\min \left(1.0, \frac{\delta_{\text {crack,max }}}{\mathrm{COD} 1}\right)\right)
\]

Here, \(\delta_{\text {crack,max }}\) is the greatest crack opening displacement in any neighboring element, and CRFAC and COD1 are input parameters on Card 6.
c) If the element has yielded in compression (see Remark 13), it is assumed that the damage to bonds within the material caused by crushing rapidly eliminates the tensile strength. To represent this effect, the tensile strength is scaled by a factor calculated as follows:
\[
k_{Y}=\max \left[0.0,{ }^{L_{0} \varepsilon_{p}} /\left(\operatorname{TLOSSC} \times \delta_{\sigma=0}\right)\right]
\]

In the above equation, \(L_{0}\) is the initial element size as defined in Remark 8, \(\varepsilon_{p}\) is the plastic strain associated with yielding on the Ottosen yield surface, TLOSSC is a nondimensional input parameter defined on Card 7, and \(\delta_{\sigma=0}\) is the crack opening displacement at which the tensile stress reduces to zero. By default, \(\delta_{\sigma=0}\) is equal to FE, but if LCTST is defined, it is the \(x\)-axis value at which the \(y\)-axis value falls to zero.
d) If LCFTIM is defined (see Remark 21), the current \(y\)-axis value of LCFTIM is a scaling factor \(k_{t}\). Otherwise, \(k_{t}=1\).
e) If LCFTT is defined (see Card 5), a temperature-dependent scaling factor \(k_{T}\) is applied. Otherwise, \(k_{T}=1\).
f) The initial tensile strength of an element, \(f_{t}\), is calculated from UTS and the above factors as follows:
\[
f_{t}=k_{T C} k_{C P} k_{Y} k_{t} k_{T} \times \mathrm{UTS}
\]
10. Fiber-reinforced concrete. Steel fibers increase the ductility of concrete because they resist the opening of cracks. In order for cracks to widen, the fibers that span across the crack must be pulled out or stretched. This effect may be modeled using the load curve LCFIB on Card 6 . The \(x\)-axis is crack opening displacement in length units. The \(y\)-axis is additional tensile stress resisting further opening of the crack. This additional tensile strength is not subject to the reduction factors described in Remark 9, which are appropriate only for the concrete
itself and not for the effect of the fibers. For this reason, we recommend using LCFIB instead of combining the influence of the fibers with the tensile response of the concrete into the curve LCTST. We recommend that the first point of LCFIB should be \((0,0)\) so that the fibers do not influence the overall initial tensile strength.
11. Shear transfer across cracks (RATE \(=2\) and 8). When RATE \(=2\) and 8, the following equations model the aggregate-interlock that allows cracked concrete to carry shear loading. The equations were proposed by Vecchio \& Collins (1986) and subsequently adopted into Norwegian standard NS3473. The maximum shear stress, \(\tau_{\max }\), that the crack plane can carry depends on the compressive stress on the crack, \(\sigma_{c}\), for a closed crack or on the crack opening width, \(w\), for an open crack:
\[
\begin{aligned}
\tau_{\max } & =0.18 \tau_{\mathrm{rm}}+1.64 \sigma_{c}-0.82 \frac{\sigma_{c}^{2}}{\tau_{\mathrm{rm}}} \\
\tau_{\mathrm{rm}} & =\frac{2 f_{t, s h}}{0.31+\frac{0.024 w}{(\mathrm{ASIZE}+0.016)}}
\end{aligned}
\]

ASIZE is the aggregate diameter in meters defined on Card 1. For this purpose, CONL is ignored, and the input value of ASIZE should be in meters even if the model units are not meters.

In the above equations, \(f_{t, s h}\) is a tensile strength that depends on RATE and, if RATE \(=8\), on MAXSHR on Card 5. If RATE \(=8\) and MAXSHR \(=0.0\) (recommended), \(f_{t, s h}\) is equal to the tensile strength (i.e., UTS defined on Card 1) in accordance with Vecchio \& Collins. The above equations then give \(\tau_{\max }=\) 1.16UTS when \(\sigma_{c}\) and \(w\) are both zero. For \(\operatorname{RATE}=8\), if MAXSHR is nonzero, \(f_{t, s h}\) is automatically set such that \(\tau_{\max }=\) MAXSHR when \(\sigma_{c}\) and \(w\) are both zero.

If RATE \(=2, \mathrm{MAXSHR}\) is unavailable. In this case, \(f_{t, s h}=\max (\mathrm{UTS}, 0.086 \mathrm{UCS})\), giving \(\tau_{\max }=\max (1.16 \mathrm{UTS}, 0.1 \mathrm{UCS})\) when \(\sigma_{c}\) and \(w\) are both zero. The 0.1UCS does not comply with the recommendations of Vecchio \& Collins; this is one of the reasons why RATE \(=2\) is not recommended.
12. Compression response: general comments. The compression response of concrete varies according to the stress state. Under uniaxial conditions, such as occur in a cylinder test, concrete exhibits a brittle response, failing rapidly after reaching its compressive strength. Under confined conditions, which occur in reinforced concrete structures when the reinforcement cage resists expansion of the concrete in the directions perpendicular to the main compressive load, the stress state in the concrete consists of one large compressive stress in the loading direction and, typically, two smaller compressive stresses ("confining stresses") in the perpendicular directions. The influence of the confining stresses is twofold: firstly, the compressive strength in the loading direction is increased from
the uniaxial value to an enhanced value (denoted here as \(\sigma_{c}\) and \(\sigma_{c c}\), respectively); and secondly, the compressive response becomes more ductile, meaning that the rate of softening with strain is reduced and the strain to failure is increased.
13. Compression response: yield surface. The Ottosen yield surface governs yielding under compressive stress states. This surface captures the influence of confining stresses on the compressive strength for all settings of RATE. The following equation defines the Ottosen yield surface:
\[
\alpha \frac{J_{2}}{\sigma_{c}^{2}}+\lambda \frac{\sqrt{J_{2}}}{\sigma_{c}}+\beta \frac{I_{1}}{\sigma_{c}}-1=0
\]
where
\[
\lambda=c_{1} \cos \left[\frac{1}{3} \arccos \left(c_{2} \cos (3 \theta)\right)\right] .
\]

In the above \(I_{1}, J_{2}\) and \(J_{3}\) are the first, second and third stress invariants, \(\sigma_{c}\) is the uniaxial compressive strength (input parameter UCS for RATE \(=0,1\) and 2, and see Remark 14 for RATE \(=8\)), and \(\theta\) is the Lode Angle. \(\alpha, \beta, c_{1}\), and \(c_{2}\) are calibration constants that LS-DYNA internally calculates to fit the yield surface through four reference stress states which are chosen automatically.

Two of the reference stress states are uniaxial compression and uniaxial tension, defined by input parameters UCS and UTS. This calibration has a counterintuitive side effect whereby the input value of tensile strength (UTS) affects the whole yield surface, including stress states in which no tensile stresses are present. For this reason, it is important to use values for UTS and UCS that are in similar proportions to each other as for real concrete. This applies to all settings of RATE.

Two further reference stress states are needed for calibration. These differ according to the setting of RATE. RATE \(=0\) and 1 are as described by Broadhouse. RATE \(=8\) offers a choice via the input parameter OTTO, with the default being to adopt the recommendations of fib Model Code for Concrete Structures 2010 ("MC2010") Section 5.1.6. The choice of reference stress state influences the degree to which small confining stresses increase the compressive strength, with the MC2010 method giving a smaller increase than the Broadhouse method.

For \(\operatorname{RATE}=2\), the yield surface is calibrated using the same method as RATE \(=0\) and 1 except that an enhanced tensile strength, namely \(\max (1.25 \mathrm{UTS}, 0.1 \mathrm{UCS})\), is used instead of the actual tensile strength UTS for purpose of calibrating the yield surface. Using an enhannced tensile strength was done in order to reduce the counter-intuitive influence of tensile strength on all-compressive stress states, but it does not accord with recommendations in the literature. For this reason, \(\mathrm{RATE}=8\) is preferred over \(\mathrm{RATE}=2\).
14. Compression Response Post-Yield. For RATE \(=0,1\) and 2, the post-yield response is perfectly-plastic, which fails to capture the brittle response under uniaxial stress conditions and is not representative of real concrete. These settings of RATE are unsuitable for assessing failure under compressive stress states.

For \(\operatorname{RATE}=8\), the compressive stress-strain relation under uniaxial stress conditions is controlled by the loadcurve LCCMP, which should be calibrated by the user to obtain the desired brittle response:
\[
\sigma_{c}=\operatorname{LCCMP}\left(\varepsilon_{p, \text { uniaxial }}\right) \times \operatorname{UCS}
\]

The uniaxial-equivalent plastic strain, \(\varepsilon_{p, \text { uniaxial }}\), is calculated from the equation below so as to provide increased ductility under confined conditions compared to uniaxial conditions by stretching the load curve LCCMP along the \(x\)-axis:
\[
\varepsilon_{p, \text { uniaxial }}=\sum\left[\frac{d \varepsilon_{p}}{1+\operatorname{CDSF}\left(\sigma_{c c} / \sigma_{c}-1\right)}\right]
\]

Here, the actual plastic strain increments are denoted by \(d \varepsilon_{p}\), CDSF is an input parameter on Card 7, and \(\sigma_{c c}\) is the confined compressive strength defined by most compressive principal stress at the point on the Ottosen yield surface corresponding to the current stress state.
15. Influence of cracking on compressive strength. By default, cracking of an element has no influence on its compressive strength. In practice, the compressive strength parallel to an open crack is reduced to some degree. This may be modelled using the optional input parameter DEGRAD which invokes the following equations based on Eurocode 2:
\[
\begin{aligned}
\sigma_{c} & =k_{c r} \sigma_{c, \text { uncracked }} \\
k_{c r} & =1 /\left(0.8+170 \varepsilon_{c r}\right)
\end{aligned}
\]
where \(\varepsilon_{c r}=\max \left(\delta_{c r 1}, \delta_{c r 1}, \delta_{c r 1}\right) / \operatorname{Vol}^{1 / 3}\) subject to DEGRAD \(\leq k_{c r} \leq 1.0\). Here, \(\delta_{c r 1,2,3}\) are the high-tide crack opening displacements.
16. Input parameter TFAC8. For \(\mathrm{RATE}=8\), yielding (governed by the Ottosen yield surface) is treated as a separate deformation mechanism from cracking. Since the Ottosen surface covers the whole stress space including where one or more principal stress is tensile, and since the yield surface is calibrated to pass through the point of uniaxial tensile failure at a stress equal to UTS, either or both deformation mechanisms could potentially occur under conditions where only cracking is expected. The parameter TFAC8 modifies the Ottosen yield surface such that the activation of cracking rather than yielding becomes unambiguous under these circumstances. It does this by calculating the yield surface from principal stresses where any tensile values are artificially scaled down by TFAC8. Thus, for compressive-only stress states, the yield surface calibration is
unaffected by TFAC8, while the expected cracking occurs under tensile stress states. The default value of 0.9 is recommended.
17. Output history variables. The meaning of "plastic strain" in output files differs depending on the setting of RATE. Use NEIPH on *DATABASE_EXTENT_BINARY to request extra history variables with NEIPH on *DATABASE_EXTENT_BINARY. The meanings of these also depend on RATE. The following tables give the meanings of a selection of these variables. In the tables, Crack 1, Crack 2, and Crack 3 refer to the first, second, and third cracks, respectively, to form in the element.
\begin{tabular}{|c|c|}
\hline Plastic Strain or Extra History Variable & Description for RATE \(=0\) \\
\hline Plastic strain & Volumetric plastic strain, see compaction curve defined on Cards 3 and 4. \\
\hline 1 & Maximum current value of the crack status flag across all three cracks; see Remark 18. \\
\hline 2 & Energy absorbed by crack formation \\
\hline 3-5 & High-tide value of the non-dimensional crack opening parameter for Cracks 1, 2, and 3. This value is capped at 5.16. See Remark 19. \\
\hline 36-38 & Crack status flags for Cracks 1, 2, and 3. See Remark 18. \\
\hline 45-47 & Current crack opening displacement for Cracks 1, 2, and 3. See Remark 19. \\
\hline 48-50 & Initiation time for Cracks 1, 2, and 3 \\
\hline Plastic Strain or Extra History Variable & Description for RATE \(=1\) \\
\hline Plastic strain & Volumetric plastic strain, see compaction curve defined on Cards 3 and 4. \\
\hline 1 & Maximum current value of the crack status flag across all three cracks. See Remark 18. \\
\hline 30-32 & High-tide opening displacement for Cracks 1, 2, and 3, capped at a displacement equal to input parameter FE. See Remark 19. \\
\hline 36-38 & Crack status flags for Cracks 1, 2, and 3. See Remark 18. \\
\hline 45-47 & Current crack opening displacement for Cracks 1, 2, and 3. See Remark 19. \\
\hline 48-50 & Initiation time for Cracks 1, 2, and 3 \\
\hline
\end{tabular}
\begin{tabular}{cl}
\hline \begin{tabular}{l}
Plastic Strain or Extra \\
History Variable
\end{tabular} & Description for RATE = 2 and 8 \\
\hline Plastic strain & \begin{tabular}{l}
(Starting from R15): "Damage deformation" in length units, see \\
Remark 20.
\end{tabular} \\
1 & \begin{tabular}{l}
Number of cracks that have formed (0, 1, 2, or 3). \\
2 \\
\(3-5\) \\
Plastic strain due to yielding on Ottosen surface (RATE = 8 \\
only)
\end{tabular} \\
\begin{tabular}{l}
High-tide opening displacement for Cracks 1, 2, and 3 (not \\
capped). See Remark 19.
\end{tabular} \\
\(36-38\) & \begin{tabular}{l}
(Starting from R15): Volumetric plastic strain, see compaction \\
curve defined on Cards 3 and 4.
\end{tabular} \\
\(45-47\) & \begin{tabular}{l}
Crack status flags for Cracks 1, 2, and 3. See Remark 18. \\
Current crack opening displacement for Cracks 1, 2, and 3. See \\
Remark 19.
\end{tabular} \\
\hline
\end{tabular}
18. Crack status flags. The crack status flags referred to in the Extra History Variables have the following meanings:

EQ.0: No crack has formed.
EQ.1: The crack is opening and on the descending branch of the stress-displacement relationship, such that the tensile strength has not yet reached zero.

EQ.2: The crack has partially closed (unloading/reloading branch).
EQ.3: The crack has fully opened such that the tensile strength has reached zero.
19. Extra history variables related to crack opening displacement. The current crack opening displacement may be output for all settings of RATE in Extra History Variables 45 through 47 . It can rise and fall during an analysis as cracks open and close due to changes in loading. These values are not capped, meaning that they reflect the total width of cracks within the element even if the crack opens further after the tensile strength has reached zero.

The high-tide crack opening displacement is the maximum width that has occurred up to that point in the analysis. It differs from the current value in cases where the cracks open and then fully or partially close. This output parameter is available for RATE \(=2\) and 8 . For RATE \(=0\) and RATE \(=1\), high-tide output parameters are available, but we cap them at the value where the tensile strength reaches zero. Although cracks can continue to open further with zero resistance, the capped output parameters do not reflect the additional opening. The capped output parameters are useful for assessing how much of the tensile capacity has
been lost but not for assessing crack widths. For RATE \(=1\), the high-tide output is the crack displacement capped at a value equal to the input parameter FE. For RATE \(=0\), the high-tide output is in a non-dimensional form and is capped at a value of 5.16 which is the point at which the tensile strength reaches zero.
20. Damage deformation. Starting from R15, the parameter output in place of plastic strain for RATE \(=2\) and \(8, \delta_{\mathrm{dam}}\), is defined as follows:
\[
\delta_{\mathrm{dam}}=\varepsilon_{p} \operatorname{Vol}_{0}^{1 / 3}+\delta_{\text {crack } 1}+\delta_{\text {crack } 2}+\delta_{\text {crack } 3}
\]

In this equation, \(\delta_{\text {crack } 1,2,3}\) are the high-tide crack opening displacements, \(\varepsilon_{p}\) is the plastic strain associated with yielding on the Ottosen surface and \(\mathrm{Vol}_{0}\) is the initial element volume.
21. Low "design" values of tensile strength. Users may wish to check that the performance of a structure is not reliant on the tensile strength of concrete, but this should not be done by setting an artificially low value for UTS. Doing so would distort the yield surface as explained in Remark 13 and may also cause cracks to form at random angles due to small tensile stresses occurring dynamically during application of the load. Instead, we recommend scaling down the tensile strength as a function of time, starting from a realistic value given by UTS which will be used to calibrate the yield surface, and then reducing to the desired low "design" value after loads have been applied. This may be achieved using the load curve LCFTIM. The ordinate of LCFTIM is a scaling factor applied to UTS. The abscissa is time. The first point of LCFTIM should be \((0,1)\).
22. Water pressure in cracks. When water seeps into cracks in underwater structures, the water pressure acts to push the crack surfaces apart, balancing the effect of pressure on the structure's outer surfaces which would tend to push the crack together. The input parameters RO_G and ZSURF model the effect of water in any cracks that form by applying an additional compressive stress normal to the crack, irrespective of whether or not there is a path for the water to reach the cracked element from the outer surface of the structure. To use this feature, the model should be oriented such that the global \(z\)-coordinate is vertically upwards. The additional compressive stress, \(\sigma_{\text {water }}\), ramps up from zero to its full value as the crack opening displacement increases from zero to FE, as follows:
\[
\sigma_{\text {water }}=\rho g\left(z_{0}-z_{\mathrm{el}}\right) \times \min \left(1.0, \delta_{\max } / \mathrm{FE}\right)
\]

Here, \(\rho g\) is the input parameter RO_G, \(z_{0}\) is the input parameter ZSURF, \(z_{\mathrm{el}}\) is the \(z\)-coordinate of the element center, \(\delta_{\max }\) is the maximum opening displacement of the crack so far during the analysis, and FE is the input parameter on Card 1.

\section*{References:}
[1] Ottosen N.S., "A failure criterion for concrete". Journal of the Engineering Mechanics Division 103(4):527-35, 1977.
[2] Sturt, R., Montalbini, G. \& Jung, H-I., "Developments in *MAT_WINFRITH_CONCRETE and Application to Modelling Tunnel Linings", 14th European LS-DYNA Conference, 2023.
[3] Taerwe L, Matthys S., "Fib model code for concrete structures", CEB-FIP, 2010.
[4] Vecchio, F.J. \& Collins, M.P., "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear", ACI J 83(2) (1986) pp219-231, 1986.

\section*{*MAT_WINFRITH_CONCRETE_REINFORCEMENT}

This is *MAT_084_REINF for rebar reinforcement supplemental to concrete defined using Material type 84. Reinforcement may be defined in specific groups of elements, but it is usually more convenient to define a two-dimensional material in a specified layer of a specified part. Reinforcement quantity is defined as the ratio of the cross-sectional area of steel relative to the cross-sectional area of concrete in the element (or layer). These cards may follow either one of two formats below and may also be defined in any order.

\section*{Card Summary:}

Card 1a. Reinforcement is defined in specific groups of elements.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EID1 & EID2 & INC & XR & YR & ZR & & \\
\hline
\end{tabular}

Card 1b. Reinforcement is defined in two-dimensional layers by part ID. This option is active when the first entry is left blank.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & PID & AXIS & COOR & RQA & RQB & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}

Option 1. Reinforcement quantities in element groups
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EID1 & EID2 & INC & XR & YR & ZR & & \\
Type & I & I & I & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

EID1 First element ID in group
EID2 Last element ID in group
INC Element increment for generation
XR \(\quad x\)-reinforcement quantity (for bars running parallel to global \(x\)-axis)
YR \(\quad y\)-reinforcement quantity (for bars running parallel to global \(y\) axis)

ZR \(\quad\)-reinforcement quantity (for bars running parallel to global \(z\)-axis)

Option 2. Two dimensional layers by part ID. Option 2 is active when first entry is left blank.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & PID & AXIS & COOR & RQA & RQB & & \\
Type & blank & I & I & F & F & F & & \\
\hline
\end{tabular}

COOR Coordinate location of layer:

\section*{VARIABLE}

PID

AXIS

RQA
RQB

\section*{DESCRIPTION}

Part ID of reinforced elements. If PID \(=0\), the reinforcement is applied to all parts which use the Winfrith concrete model.

Axis normal to layer:
EQ.1: A and B are parallel to global \(y\) and \(z\), respectively.
EQ.2: A and B are parallel to global \(x\) and \(z\), respectively.
EQ.3: A and B are parallel to global \(x\) and \(y\), respectively.

AXIS.EQ.1: \(x\)-coordinate
AXIS.EQ.2: \(y\)-coordinate
AXIS.EQ.3: z-coordinate

\section*{Remarks:}
1. Reinforcement Quantity. Reinforcement quantity is the ratio of area of reinforcement in an element to the element's total cross-sectional area in a given direction. This definition is true for both Options 1 and 2. Where the options differ is in the manner in which it is decided which elements are reinforced. In Option 1, the reinforced element IDs are spelled out. In Option 2, elements of part ID PID which are cut by a plane (layer) defined by AXIS and COOR are reinforced.

\section*{*MAT_ORTHOTROPIC_VISCOELASTIC}

This is Material Type 86. It allows for the definition of an orthotropic material with a viscoelastic part. This model applies to shell elements.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & VF & K & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G0 & GINF & BETA & PRBA & PRCA & PRCB & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AOPT & MANGLE & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
EA Young's Modulus \(E_{a}\)
EB Young's Modulus \(E_{b}\)
EC \(\quad\) Young's Modulus \(E_{c}\)
VF Volume fraction of viscoelastic material
K Elastic bulk modulus
G0
GINF
BETA

PRBA
PRCA
PRCB Poisson's ratio, \(v_{c b}\)
GAB
GBC Shear modulus, \(G_{b c}\)
GCA

AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDI-

VARIABLE

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_ECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, MANGLE, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

MANGLE Material angle in degrees for AOPT \(=0\) and 3, may be overridden on the element card; see *ELEMENT_SHELL_BETA.

A1 A2 A3 Define components of vector a for AOPT \(=2\)
V1 V2 V3 Define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1 D2 D3 Define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{Remarks:}

See material types 2 and 24 for the orthotropic definition.

\section*{*MAT_CELLULAR_RUBBER}

This is Material Type 87. This material model provides a cellular rubber model with confined air pressure combined with linear viscoelasticity as outlined by Christensen [1980]. See Figure M87-1.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & PR & N & & & & \\
\hline
\end{tabular}

Card 2a. This card is included if and only if \(\mathrm{N}>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SGL & SW & ST & LCID & & & & \\
\hline
\end{tabular}

Card 2b. This card is included if and only if \(\mathrm{N}=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C 10 & C 01 & C 11 & C 20 & C 02 & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline P0 & PHI & IVS & G & BETA & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & PR & N & & & & \\
Type & A & F & F & I & & & & \\
\hline
\end{tabular}

VARIABLE
MID

RO
PR Poisson's ratio; typical values are between 0.0 to 0.2 . Due to the large compressibility of air, large values of Poisson's ratio generate physically meaningless results.

\section*{VARIABLE}

N

\section*{DESCRIPTION}

Order of fit for material model (currently < 3). If \(\mathrm{N}>0\), then a least square fit is computed with uniaxial data. The parameters given on Card 2a should be specified. Also see *MAT_MOONEY_RIVLIN_RUBBER (material model 27). A Poisson's ratio of . 5 is assumed for the void free rubber during the fit. The Poisson's ratio defined on Card 1 is for the cellular rubber. A void fraction formulation is used.

Material Least Squares Fit Card. Card 2 if \(\mathrm{N}>0\), a least squares fit is computed from uniaxial data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LCID & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

SGL
SW
ST Specimen thickness
LCID Load curve ID giving the force as a function of actual change in the gauge length, \(\Delta L\). If SGL, SW, and ST are set to unity (1.0), then curve LCID is also engineering stress as a function of engineering strain.

Material Constants Card. Card 2 if \(\mathrm{N}=0\), define the following constants
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C10 & C01 & C11 & C20 & C02 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

VARIABLE
C10

\section*{DESCRIPTION}

Coefficient, \(C_{10}\)

Figure M87-1. Cellular rubber with entrapped air. By setting the initial air pressure to zero, an open cell, cellular rubber can be simulated.

\section*{VARIABLE}

\section*{DESCRIPTION}

C01 Coefficient, \(C_{01}\)
C11 Coefficient, \(\mathrm{C}_{11}\)
C20 Coefficient, \(\mathrm{C}_{20}\)
C02 Coefficient, \(C_{02}\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & P0 & PHI & IVS & G & BETA & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

P0

PHI
IVS
G

\section*{DESCRIPTION}

Initial air pressure, \(p_{0}\)
Ratio of cellular rubber to rubber density, \(\phi\)
Initial volumetric strain, \(\gamma_{0}\)
Optional shear relaxation modulus, \(G\), for rate effects (viscosity)

\section*{VARIABLE}

BETA

\section*{DESCRIPTION}
\[
\text { Optional decay constant, } \beta_{1}
\]

\section*{Remarks:}

Rubber is generally considered to be fully incompressible since the bulk modulus greatly exceeds the shear modulus in magnitude. To model the rubber as an unconstrained material a hydrostatic work term, \(W_{H}(J)\), is included in the strain energy functional which is function of the relative volume, J, [Ogden 1984]:
\[
\begin{aligned}
W\left(J_{1}, J_{2}, J\right) & =\sum_{p, q=0}^{n} C_{p q}\left(J_{1}-3\right)^{p}\left(J_{2}-3\right)^{q}+W_{H}(J) \\
J_{1} & =I_{1} I_{3}{ }^{-1 / 3} \\
J_{2} & =I_{2} I_{3}{ }^{-2 / 3}
\end{aligned}
\]

In order to prevent volumetric work from contributing to the hydrostatic work the first and second invariants are modified as shown. This procedure is described in more detail by Sussman and Bathe [1987].

The effects of confined air pressure in its overall response characteristics is included by augmenting the stress state within the element by the air pressure, that is,
\[
\sigma_{i j}=\sigma_{i j}^{s k}-\delta_{i j} \sigma^{\mathrm{air}},
\]
where \(\sigma_{i j}^{s k}\) is the bulk skeletal stress and \(\sigma^{\text {air }}\) is the air pressure. \(\sigma^{\text {air }}\) is computed from:
\[
\sigma^{\mathrm{air}}=-\frac{p_{0} \gamma}{1+\gamma-\phi},
\]
where \(p_{0}\) is the initial foam pressure usually taken as the atmospheric pressure and \(\gamma\) defines the volumetric strain. The volumetric is found with
\[
\gamma=V-1+\gamma_{0},
\]
where \(V\) is the relative volume of the voids and \(\gamma_{0}\) is the initial volumetric strain which is typically zero. The rubber skeletal material is assumed to be incompressible.

Rate effects are taken into account through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
or in terms of the second Piola-Kirchhoff stress, \(S_{i j}\), and Green's strain tensor, \(E_{i j}\),
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
where \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

Since we wish to include only simple rate effects, the relaxation function is represented by one term from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta_{m} t}
\]
given by,
\[
g(t)=E_{d} e^{-\beta_{1} t} .
\]

This model is effectively a Maxwell fluid which consists of a damper and spring in series. We characterize this in the input by a shear modulus, \(G\), and decay constant, \(\beta_{1}\).

The Mooney-Rivlin rubber model (model 27) is obtained by specifying \(\mathrm{N}=1\) without air pressure and viscosity. In spite of the differences in formulations with Model 27, we find that the results obtained with this model are nearly identical with those of material type 27 as long as large values of Poisson's ratio are used.

\section*{*MAT_MTS}

This is Material Type 88. The MTS model is due to Mauldin, Davidson, and Henninger [1990] and is available for applications involving large strains, high pressures and strain rates. As described in the foregoing reference, this model is based on dislocation mechanics and provides a better understanding of the plastic deformation process for ductile materials by using an internal state variable call the mechanical threshold stress. This kinematic quantity tracks the evolution of the material's microstructure along some arbitrary strain, strain rate, and temperature-dependent path using a differential form that balances dislocation generation and recovery processes. Given a value for the mechanical threshold stress, the flow stress is determined using either a thermal-activation-controlled or a drag-controlled kinetics relationship. An equation-of-state is required for solid elements and a bulk modulus must be defined below for shell elements.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & SIGA & SIGI & SIGS & SIGO & BULK & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline HF0 & HF1 & HF2 & SIGS0 & EDOTS0 & BURG & CAPA & BOLTZ \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SM0 & SM1 & SM2 & EDOTO & GO & PINV & QINV & EDOTI \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GOI & PINVI & QINVI & EDOTS & GOS & PINVS & QINVS & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline RHOCPR & TEMPRF & ALPHA & EPSO & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & SIGA & SIGI & SIGS & SIG0 & BULK & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
SIG & Mass density \\
SIGI & \(\hat{\sigma}_{a}\), dislocation interactions with long-range barriers (force/area) \\
SIGS & \(\hat{\sigma}_{i}\), dislocation interactions with interstitial atoms (force/area) \\
SIG0 & \(\hat{\sigma}_{s^{\prime}}\) dislocation interactions with solute atoms (force/area) \\
BULK & \begin{tabular}{l}
\(\hat{\sigma}_{0}\), initial value of \(\hat{\sigma}\) at zero plastic strain (force/area) NOT USED. \\
Bulk modulus defined for shell elements only. Do not input for \\
solid elements.
\end{tabular}
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HF0 & HF1 & HF2 & SIGS0 & EDOTS0 & BURG & CAPA & BOLTZ \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

HF0
\(a_{0}\), dislocation generation material constant (force/area)
HF1
\(a_{1}\), dislocation generation material constant (force/area)
HF2 \(a_{2}\), dislocation generation material constant (force/area)
SIGS0 \(\quad \hat{\sigma}_{\text {eso }}\), saturation threshold stress at \(0^{\circ} \mathrm{K}\) (force/area)
EDOTS0 \(\quad \dot{\varepsilon}_{\text {\&so }}\), reference strain-rate \(\left(\right.\) time \(\left.^{-1}\right)\).
BURG Magnitude of Burgers vector (interatomic slip distance)
CAPA Material constant, \(A\)
BOLTZ Boltzmann's constant, \(k\) (energy/degree).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SM0 & SM1 & SM2 & EDOTO & GO & PINV & QINV & EDOTI \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } SM0 & & \(G_{0}\), shear modulus at zero degrees Kelvin (force/area) \\
SM1 & & \(b_{1}\), shear modulus constant (force/area) \\
SM2 & & \(b_{2}\), shear modulus constant (degree) \\
EDOT0 & & \(\dot{\varepsilon}_{0}\), reference strain-rate (time \({ }^{-1}\)) \\
G0 & \begin{tabular}{l}
\(g_{0}\), normalized activation energy for a dislocation/dislocation in- \\
teraction \\
PINV
\end{tabular} & \begin{tabular}{l}
\(1 / p\), material constant \\
QINV
\end{tabular} \\
EDOTI & \(1 / q\), material constant \\
& \(\dot{\varepsilon}_{o, i}\), reference strain-rate \(\left(\right.\) time \({ }^{-1}\))
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GOI & PINVI & QINVI & EDOTS & GOS & PINVS & QINVS & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}
\(g_{0, i}\), normalized activation energy for a dislocation/interstitial interaction

PINVI \(\quad 1 / p_{i}\), material constant
QINVI \(1 / q_{i}\), material constant
EDOTS \(\quad \dot{\varepsilon}_{o, s}\), reference strain-rate \(\left(\right.\) time \(\left.^{-1}\right)\)

\section*{VARIABLE}

G0S

PINVS \(\quad 1 / p_{s}\), material constant
QINVS \(1 / q_{s}\), material constant
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RHOCPR & TEMPRF & ALPHA & EPS0 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

RHOCPR \(\quad \rho c_{p}\), product of density and specific heat
TEMPRF \(\quad T_{\text {ref }}\), initial element temperature in degrees K

ALPHA \(\quad \alpha\), material constant (typical value is between 0 and 2)
EPS0 \(\quad \varepsilon_{0}\), factor to normalize strain rate in the calculation of \(\Theta_{o}\left(\right.\) time \(\left.^{-1}\right)\)

\section*{Remarks:}

The flow stress \(\sigma\) is given by:
\[
\sigma=\hat{\sigma}_{a}+\frac{G}{G_{0}}\left[s_{\mathrm{th}} \hat{\sigma}+s_{\mathrm{th}, i} \hat{\sigma}_{i}+s_{\mathrm{th}, s} \hat{\sigma}_{s}\right] .
\]

The first product in the equation for \(\sigma\) contains a micro-structure evolution variable, \(\hat{\sigma}\). which is multiplied by a constant-structure deformation variable \(\mathrm{s}_{\mathrm{th}}: \mathrm{s}_{\mathrm{th}} . \hat{\sigma}\) is the Mechanical Threshold Stress (MTS) and is a function of absolute temperature, \(T\), and the plastic strain-rates, \(\dot{\varepsilon}^{\mathrm{p}}\). The evolution equation for \(\hat{\sigma}\) is a differential hardening law representing dislocation-dislocation interactions:
\[
\frac{\partial}{\partial \varepsilon^{p}} \equiv \Theta_{o}\left[1-\frac{\tanh \left(\alpha \frac{\hat{\sigma}}{\hat{\sigma}_{\varepsilon s}}\right)}{\tanh (\alpha)}\right]
\]

The term \(\frac{\partial \widehat{\sigma}}{\partial \varepsilon^{p}}\) represents the hardening due to dislocation generation while the stress ratio, \(\frac{\widehat{\sigma}}{\widehat{\sigma}_{\text {es }}}\), represents softening due to dislocation recovery. The threshold stress at zero strainhardening, \(\hat{\sigma}_{\varepsilon s}\), is called the saturation threshold stress. \(\Theta_{o}\) is given as:
\[
\Theta_{o}=a_{o}+a_{1} \ln \left(\frac{\dot{\varepsilon}^{p}}{\varepsilon_{0}}\right)+a_{2} \sqrt{\frac{\dot{\varepsilon}^{p}}{\varepsilon_{0}}}
\]
which contains the material constants, \(a_{0}, a_{1}\), and \(a_{2}\). The constant, \(\widehat{\sigma}_{\varepsilon s}\), is given as:
\[
\hat{\sigma}_{\varepsilon \mathrm{s}}=\widehat{\sigma}_{\varepsilon \mathrm{\varepsilon SO}}\left(\frac{\dot{\varepsilon}^{p}}{\dot{\varepsilon}_{\varepsilon \mathrm{sO}}}\right)^{k T / G b^{3} A}
\]
which contains the input constants: \(\widehat{\sigma}_{\varepsilon s o}, \dot{\varepsilon}_{\varepsilon s o}, b, A\), and \(k\). The shear modulus, \(G\), appearing in these equations is assumed to be a function of temperature and is given by the correlation.
\[
G=G_{0}-b_{1} /\left(e^{b_{2} / T}-1\right)
\]
which contains the constants: \(G_{0}, b_{1}\), and \(b_{2}\). For thermal-activation controlled deformation \(s_{\mathrm{th}}\) is evaluated using an Arrhenius rate equation of the form:
\[
s_{\mathrm{th}}=\left\{1-\left[\frac{k T \ln \left(\frac{\dot{\varepsilon}_{0}}{\dot{\varepsilon}^{p}}\right)}{G b^{3} g_{0}}\right]^{\frac{1}{q}}\right\}^{\frac{1}{p}} .
\]

The absolute temperature is given as:
\[
T=T_{\mathrm{ref}}+\frac{E}{\rho c_{p}}
\]
where \(E\) is the internal energy density per unit initial volume.

\section*{*MAT_PLASTICITY_POLYMER}

This is Material Type 89. An elasto-plastic material with an arbitrary stress as a function of strain curve and arbitrary strain rate dependency can be defined. It is intended for applications where the elastic and plastic sections of the response are not as clearly distinguishable as they are for metals. Rate dependency of failure strain is included. Many polymers show a more brittle response at high rates of strain. This material is supported for the commonly used solid, shell, and thick shell elements. 2D plane strain stress, plane strain, and axisymmetric elements are not supported.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & none & none & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & & & & \\
Type & F & F & I & I & & & \\
Default & 0 & 0 & 0 & 0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFTX & DAMP & RFAC & LCFAIL & NUMINT & & & \\
Type & F & F & F & I & F & & & \\
Default & 0 & 0 & 0 & 0 & 0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

RO
E Young's modulus
PR
C Strain rate parameter, C, (Cowper Symonds)
\(P \quad\) Strain rate parameter, \(P\), (Cowper Symonds)
LCSS Load curve ID or Table ID
Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of total effective strain.
Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective strain for that rate.
Logarithmically Defined Tables. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude.

LCSR Load curve ID defining strain rate scaling effect on yield stress. If LCSR is negative, the load curve is evaluated using a binary search for the correct interval for the strain rate. The binary search is slower than the default incremental search, but in cases where large changes in the strain rate may occur over a single time step, it is more robust.

EFTX Failure flag:
EQ.O.O: Failure determined by maximum tensile strain (default).
EQ.1.0: Failure determined only by tensile strain in local \(x\) direction.

EQ.2.0: Failure determined only by tensile strain in local \(y\) direction.

DAMP Viscous damping factor in the units of [stress \(\times\) time]. Typical values are \(10^{-3} \mathrm{Ns} / \mathrm{mm}^{2}\) or \(10^{-4} \mathrm{Ns} / \mathrm{mm}^{2}\). If set too high, instabilities can result.

VARIABLE
RFAC

LCFAIL Load curve ID giving variation of failure strain with strain rate. The points on the \(x\)-axis should be natural log of strain rate, while the \(y\)-axis should be the true strain to failure. Typically, this is measured by a uniaxial tensile test, and the strain values are converted to true strain.

NUMINT Number of integration points which must fail before the element is deleted. This option is available for shells only.

LT.O.O: |NUMINT| is percentage of integration points/layers which must fail before shell element fails.

\section*{Remarks:}
1. *MAT_089 compared to *MAT_024. *MAT_089 is the same as *MAT_024 except for the following points:
- Load curve lookup for yield stress is based on equivalent uniaxial strain, not plastic strain (see Remarks 2 and 3).
- Elastic stiffness is initially equal to \(E\) but will be increased according to the slope of the stress-strain curve (see Remark 7).
- Special strain calculation is used for failure and damage (see Remark 2).
- Failure strain depends on strain rate (see Remark 4).
2. Strain calculation for failure and damage. The strain used for failure and damage calculation, \(\varepsilon_{\mathrm{pm}}\), is based on an approximation of the greatest value of maximum principal strain encountered during the analysis:
\[
\varepsilon_{\mathrm{pm}}=\max _{\mathrm{i} \leq \mathrm{n}}\left(\varepsilon_{H}^{i}+\varepsilon_{\mathrm{vm}}^{i}\right)
\]
where
\(n=\) current time step index
\(\max _{i \leq n}(\ldots)=\) maximum value attained by the argument during the calculation
\[
\varepsilon_{H}=\frac{\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}}{3}
\]
\(\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}=\) cumulative strain in the local \(\mathrm{x}, \mathrm{y}\), or z direction
\[
\begin{aligned}
\varepsilon_{\mathrm{vm}} & =\sqrt{\frac{2}{3} \operatorname{tr}\left(\varepsilon^{\prime \mathrm{T}} \varepsilon^{\prime}\right)} \text {, the usual definition of equivalent uniaxial strain } \\
\varepsilon^{\prime} & =\text { deviatoric strain tensor, where each } \varepsilon_{x}, \varepsilon_{y}, \text { and } \varepsilon_{z} \text { is cumulative }
\end{aligned}
\]
3. Yield stress load curves. When looking up yield stress from the load curve LCSS, the \(x\)-axis value is \(\varepsilon_{\mathrm{vm}}\).

\section*{4. Failure strain load curves.}
\(\varepsilon_{\mathrm{sr}}=\frac{\mathrm{d} \varepsilon_{\mathrm{pm}}}{\mathrm{d} t}=\) strain rate for failure and damage calculation
\(\varepsilon_{F}=\operatorname{LCFAIL}\left(\varepsilon_{s r}\right)\)
\(=\) Instantanous true strain to failure from look-up on the curve LCFAIL
5. Damage. A damage approach is used to avoid sudden shocks when the failure strain is reached. Damage begins when the "strain ratio," \(R\), reaches 1.0 , where
\[
R=\int \frac{d \varepsilon_{\mathrm{pm}}}{\varepsilon_{F}} .
\]

Damage is complete, and the element fails and is deleted, when \(R=1.1\). The damage,
\[
D=\left\{\begin{array}{lr}
1.0 & R<1.0 \\
10(1.1-R) & 1.0<R<1.1
\end{array},\right.
\]
is a reduction factor applied to all stresses. For example, when \(R=1.05\), then \(D=0.5\).
6. Strain definitions. Unlike other LS-DYNA material models, both the input stress-strain curve and the strain to failure are defined as total true strain, not plastic strain. The input can be defined from uniaxial tensile tests; nominal stress and nominal strain from the tests must be converted to true stress and true strain. The elastic component of strain must not be subtracted out.
7. Elastic stiffness scaling. The stress-strain curve is permitted to have sections steeper (i.e. stiffer) than the elastic modulus. When these are encountered the elastic modulus is increased to prevent spurious energy generation. The elastic stiffness is scaled by a factor \(f_{\mathrm{e}}\), which is calculated as follows:
\[
f_{e}=\max \left(1.0, \frac{s_{\max }}{3 G}\right)
\]
where
\(G=\) initial shear modulus
\(S_{\max }=\) maximum slope of stress-strain curve encountered during the analysis
8. Precision. Double precision is recommended when using this material model, especially if the strains become high.
9. Shell numbering. Invariant shell numbering is recommended when using this material model. See *CONTROL_ACCURACY.

\section*{*MAT_ACOUSTIC}

This is Material Type 90. It specifies the material properties of a linear acoustic fluid. This fluid is assumed to be compressible, irrotational, inviscid, and subject to small displacements. This material is intended for general acoustic applications in either the time domain or frequency domain. See Appendix W for a description of applications. Depending on the application, it can be used with the implicit or explicit solvers.

This model is appropriate for tracking low pressure stress waves in an acoustic media, such as air or water, and can be used only with the acoustic pressure element formulation. The acoustic pressure element requires only one unknown per node. This element is very cost effective. Optionally, cavitation can be allowed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & C & BETA & CF & ATMOS & GRAV & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & XN & YN & ZN & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
C Sound speed
BETA
Damping factor. Recommended values are between 0.1 and 1.0.
CF Cavitation flag:
EQ.0.0: Off
EQ.1.0: On

ATMOS Atmospheric pressure (optional)
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } GRAV & & Gravitational acceleration constant (optional) \\
XP & & \(x\)-coordinate of free surface point \\
YP & & \(y\)-coordinate of free surface point \\
ZP & & \(z\)-coordinate of free surface point \\
XN & & \(x\)-direction cosine of free surface normal vector \\
YN & & \(y\)-direction cosine of free surface normal vector \\
ZN & & \(z\)-direction cosine of free surface normal vector
\end{tabular}

\section*{*MAT_ACOUSTIC_COMPLEX}

This is Material Type 90_COMPLEX. It specifies the material properties of a linear acoustic fluid. This fluid is assumed to be compressible, irrotational, inviscid, and subject to small displacements. This material only works with acoustic elements It is intended for direct, steady state vibration simulations with real and imaginary material properties. The model should be used with *CONTROL_IMPLICIT_SSD_DIRECT and thus only works with the implicit solver. See Appendix \(W\) for a description of this application.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RHOR & BULKR & RHOI & BULKI & & & \\
Type & A & F & F & F & F & & & \\
Default & none & none & none & none & none & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDRR & LCIDKR & LCIDRI & LCIDKI & & & & \\
Type & 1 & 1 & 1 & 1 & & & \\
Default & 0 & 0 & 0 & 0 & & & \\
Remarks & 2 & 2 & 2 & 2 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RHOR Real part of the density, \(\rho_{r}\)
BULKR \(\quad\) Real part of the bulk modulus, \(K_{r}\)
RHOI Imaginary part of the density, \(\rho_{i}\)
BULKI Imaginary part of the bulk modulus, \(K_{i}\)
LCIDRR Load curve ID for specifying frequency variation of \(\rho_{r}\).

VARIABLE
LCIDKR Load curve ID for specifying frequency variation of \(K_{r}\).
LCIDRI Load curve ID for specifying frequency variation of \(\rho_{i}\).
LCIDKI Load curve ID for specifying frequency variation of \(K_{i}\).

\section*{Remarks:}
1. Mass and Stiffness. The contributions of elements using this material model are
\[
\begin{aligned}
& {\left[\bar{M}_{f}\right]=\frac{-K_{r}}{\left(K_{r}^{2}+K_{i}^{2}\right)} \int_{V} N_{f}^{T} N_{f} d V+\frac{i K_{i}}{\left(K_{r}^{2}+K_{i}^{2}\right)} \int_{V} N_{f}^{T} N_{f} d V} \\
& {\left[\bar{K}_{f}\right]=\frac{-\rho_{r}}{\left(\rho_{r}^{2}+\rho_{i}^{2}\right)} \int_{V} \nabla N_{f}^{T} \nabla N_{f} d V+\frac{i \rho_{i}}{\left(\rho_{r}^{2}+\rho_{i}^{2}\right)} \int_{V} \nabla N_{f}^{T} \nabla N_{f} d V}
\end{aligned}
\]
2. Frequency Dependence. If the load curve specifying the frequency variation is undefined, then the property is constant with frequency.

\section*{*MAT_ACOUSTIC_DAMP}

This is Material Type 90_DAMP. It specifies the material properties of a linear acoustic fluid. This fluid is assumed to be compressible, irrotational, inviscid, and subject to small displacements. This model can only be used with acoustic elements. This material works for explicit transient and direct, steady state vibration applications. See Appendix W for a description of applications. Depending on the application, it can be used with the implicit or explicit solvers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & CEE & BETA & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & none & 0.0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & VDC & BETA2 \\
Type & & & & & & & & \\
Default & & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
CEE Sound speed, \(c\)
BETA Linear bulk viscosity coefficient, \(\beta\)
VDC Volumetric drag coefficient, \(r\)
BETA2 Quadratic bulk viscosity coefficient, \(\beta_{2}\)

\section*{Remarks:}
1. Usage in Direct Steady State Vibration. The bulk viscosity parameters, BETA and BETA2, are ignored in steady, state vibration simulations invoked with *CONTROL_IMPLICIT_SSD_DIRECT. The volumetric drag coefficient, \(r\), contributes to the fluid damping matrix:
\[
\left[W_{f}\right]=\frac{-r}{\rho^{2} c^{2}} \int_{V} N_{f}^{T} N_{f} d V
\]
\(r\) has dimensions of force / volume / velocity.
2. Usage in Explicit Transient Analysis. For spectral analyses (see *CONTROL_ACOUSTIC_SPECTRAL), the bulk viscosity parameters, BETA and BETA2, contribute an artificial pressure:
\[
\Delta p=\beta \Delta t \dot{p}+\beta_{2} \frac{\Delta t^{2}}{\rho c^{2}} \dot{p} \max (\dot{p}, 0) .
\]

Nonzero values of BETA and BETA2 will adversely affect the time step.

\section*{*MAT_ACOUSTIC_POROUS_DB}

This is Material Type 90_POROUS_DB. It specifies the material properties of a linear acoustic fluid. This fluid is assumed to be compressible, irrotational, inviscid, and subject to small displacements. This material works with acoustic elements. It is intended for direct, steady state forced vibration of porous materials having a rigid frame, such as glass wool. It should be used with *CONTROL_IMPLICIT_SSD_DIRECT and thus can only be used with the implicit solver. See Appendix W for a description of applications.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RH00 & CEE0 & SIGMA & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & none & none & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RHO0 Mass density in air, \(\rho_{0}\)
CEE0 Sound speed in air, \(c_{0}\)
SIGMA Flow resistivity, \(\sigma\)
\(\mathrm{Ci} \quad\) Constants of the material model. See Remark 2.

\section*{Remarks:}
1. Characteristic Impedance and Propagation Constant. The characteristic impedance is
\[
Z=\rho_{o} c_{o}\left(1+c_{1} X^{c_{2}}-i c_{3} X^{c_{4}}\right),
\]
and the propagation constant is
\[
\Gamma=\frac{2 \pi f}{c_{o}}\left(c_{5} X^{c_{6}}+i\left(1+c_{7} X^{c_{8}}\right)\right),
\]
where
\[
f=\frac{\omega}{2 \pi}, \quad X=\frac{\rho_{0} f}{\sigma} .
\]
2. Delany-Bazley, Miki and Allard-Champoux Models. C 1 to C 8 of various regression models for the impedance and propagation constant, including those of Delany-Bazley, Miki, and Allard-Champoux, are listed in the journal Applied Acoustics, Sound absorption of porous materials - Accuracy of prediction methods, Oliva and Hongisto, 74 (2013) 1473-1479.

\section*{*MAT_SOFT_TISSUE_\{OPTION\}}

Available options include:
```

<BLANK>
VISCO

```

This is Material Type 91 (OPTION \(=<\) BLANK \(>\)) or Material Type 92 (OPTION = VISCO). This material is a transversely isotropic hyperelastic model for representing biological soft tissues, such as ligaments, tendons, and fascia. The representation provides an isotropic Mooney-Rivlin matrix reinforced by fibers having a strain energy contribution with the qualitative material behavior of collagen. The model has a viscoelasticity option which activates a six-term Prony series kernel for the relaxation function. In this case, the hyperelastic strain energy represents the elastic (long-time) response. See Weiss et al. [1996] and Puso and Weiss [1998] for additional details.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & R0 & C1 & C2 & C3 & C4 & C5 & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline XK & XLAM & FANG & XLAMO & FAILSF & FAILSM & FAILSHR & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & AX & AY & AZ & BX & BY & BZ & \\
\hline
\end{tabular}

Card 4. This card is required. For shells, this input does not apply, so it may be included as a blank line.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LA1 & LA2 & LA3 & MACF & & & & \\
\hline
\end{tabular}

Card 5. This card is included for the VISCO keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline S1 & S2 & S3 & S4 & S5 & S6 & & \\
\hline
\end{tabular}

Card 6. This card is included for the VISCO keyword option.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline T1 & T2 & T3 & T4 & T5 & T6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & C1 & C2 & C3 & C4 & C5 & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
C1-C5 fied (see *PART).

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Hyperelastic coefficients (see equations in Material Formulation section below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XK & XLAM & FANG & XLAM0 & FAlLSF & FAILSM & FAILSHR & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
XK Bulk modulus
XLAM Stretch ratio at which fibers are straightened
FANG Angle in degrees of a material rotation about the \(c\)-axis, available for \(\mathrm{AOPT}=0\) (shells only) and \(\mathrm{AOPT}=3\) (all element types). This angle may be overridden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO. See Remark 1.

XLAM0 Initial fiber stretch (optional). See Remark 2.
FAILSF Stretch ratio for ligament fibers at failure (applies to shell elements only). If zero, failure is not considered.

VARIABLE
FAILSM

FAILSHR

\section*{DESCRIPTION}

Stretch ratio for surrounding matrix material at failure (applies to shell elements only). If zero, failure is not considered.

Shear strain at failure at a material point (applies to shell elements only). If zero, failure is not considered. This failure value is independent of FAILSF and FAILSM.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & AX & AY & AZ & BX & BY & BZ & \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details). The fiber direction depends on this coordinate system (see Remark 1).

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle FANG on this keyword or BETA on the *ELEMENT_SHELL_\{OPTION\} input.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking

VARIABLE
the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or with FANG on this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying the angle rotation depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

Vector components that depend on the value of AOPT:
AOPT.LT.0.0: Ignored
AOPT.EQ.1.0: Components of point \(p\) (XP, YP, ZP)
AOPT.EQ.2.0: Components of vector a (A1, A2, A3)
AOPT.GT.2.0: Components of vector \(\mathbf{v}(\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3)\)
\(B X, B Y, B Z \quad\) Vector components that depend on the value of AOPT:
AOPT.LE.1.0: Ignored
AOPT.EQ.2.0: Components of vector d (D1, D2, D3)
AOPT.EQ.3.0: Ignored
AOPT.EQ.4.0: Components of point \(p\) (XP, YP, ZP)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LA1 & LA2 & LA3 & MACF & & & & \\
Type & F & F & F & I & & & & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

LAX, LAY, LAZ Local fiber orientation vector (solids only)

\section*{VARIABLE}

MACF

\section*{DESCRIPTION}

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA or FANG rotation

EQ.-3: Switch material axes \(a\) and \(c\) before BETA or FANG rotation

EQ.-2: Switch material axes \(a\) and \(b\) before BETA or FANG rotation

EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA or FANG rotation

EQ.3: Switch material axes \(a\) and \(c\) after BETA or FANG rotation

EQ.4: Switch material axes \(b\) and \(c\) after BETA or FANG rotation

Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. The BETA on *ELEMENT_SOLID_\{OPTION\} if defined is used for the rotation for all AOPT options. If BETA is not used for the element, then a rotation only occurs for AOPT \(=3\) where FANG is applied.

Prony Series Card 1. Additional card for VISCO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S1 & S2 & S3 & S4 & S5 & S6 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

Prony Series Card 2. Additional card for VISCO keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T1 & T2 & T3 & T4 & T5 & T6 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
S1-S6

T1 - T6

\section*{DESCRIPTION}

Factors in the Prony series (see Material Formulation and Remark 3)

Characteristic times for Prony series relaxation kernel (see Material Formulation and Remark 3)

\section*{Material Formulation:}

The overall strain energy, \(W\), is "uncoupled" and includes two isotropic deviatoric matrix terms, a fiber term, \(F\), and a bulk term:
\[
W=C_{1}\left(\tilde{I}_{1}-3\right)+C_{2}\left(\tilde{I}_{2}-3\right)+F(\lambda)+\frac{1}{2} K[\ln (J)]^{2}
\]

Here, \(\tilde{I}_{1}\) and \(\tilde{I}_{2}\) are the deviatoric invariants of the right Cauchy deformation tensor, \(\lambda\) is the deviatoric part of the stretch along the current fiber direction, and \(J=\operatorname{detF}\) is the volume ratio. The material coefficients \(C_{1}\) and \(C_{2}\) are the Mooney-Rivlin coefficients, while \(K\) is the effective bulk modulus of the material (input parameter XK).

The derivatives of the fiber term \(F\) are defined to capture the behavior of crimped collagen. The fibers are assumed to be unable to resist compressive loading - thus the model is isotropic when \(\lambda<1\). An exponential function describes the straightening of the fibers, while a linear function describes the behavior of the fibers once they are straightened past a critical fiber stretch level \(\lambda \geq \lambda^{*}\) (input parameter XLAM):
\[
\frac{\partial F}{\partial \lambda}= \begin{cases}0 & \lambda<1 \\ \frac{C_{3}}{\lambda}\left[\exp \left(C_{4}(\lambda-1)\right)-1\right] & \lambda<\lambda^{*} \\ \frac{1}{\lambda}\left(C_{5} \lambda+C_{6}\right) & \lambda \geq \lambda^{*}\end{cases}
\]

Coefficients \(C_{3}, C_{4}\), and \(C_{5}\) must be defined by the user. \(C_{6}\) is determined by LS-DYNA to ensure stress continuity at \(\lambda=\lambda^{*}\). Sample values for the material coefficients \(C_{1}-C_{5}\) and \(\lambda^{*}\) for ligament tissue can be found in Quapp and Weiss [1998]. The bulk modulus \(K\) should be at least 3 orders of magnitude larger than \(C_{1}\) to ensure near-incompressible material behavior.

Viscoelasticity is included through a convolution integral representation for the time-dependent second Piola-Kirchoff stress \(\mathbf{S}(\mathbf{C}, t)\) :
\[
\mathbf{S}(\mathbf{C}, t)=\mathbf{S}^{e}(\mathbf{C})+\int_{0}^{t} 2 G(t-s) \frac{\partial W}{\partial \mathbf{C}(s)} d s
\]

Here, \(\mathbf{S}^{e}\) is the elastic part of the second Piola-Kirchoff stress as derived from the strain energy, and \(G(t-s)\) is the reduced relaxation function, represented by a Prony series:
\[
G(t)=\sum_{i=1}^{6} S_{i} \exp \left(\frac{t}{T_{i}}\right)
\]

Puso and Weiss [1998] describe a graphical method to fit the Prony series coefficients to relaxation data that approximates the behavior of the continuous relaxation function proposed by Y-C. Fung, as quasilinear viscoelasticity.

\section*{Remarks:}
1. Fiber direction. For shell elements, the fiber direction lies in the plane of the element. The fiber direction is along the \(a\)-axis material direction. This direction depends on the value of AOPT.

For solids elements, the local coordinate system depends on the value of AOPT. The fiber direction is oriented in the local system using input parameters LAX, LAY, and LAZ. By default, (LAX,LAY,LAZ \()=(1,0,0)\), and the fiber is aligned with the local \(a\)-direction.
2. Initial fiber stretch. An optional initial fiber stretch can be specified using XLAM0. The initial stretch is applied during the first time step. This creates preload in the model as soft tissue contacts, and equilibrium is established. For example, a ligament tissue "uncrimping strain" of \(3 \%\) can be represented with initial stretch value of 1.03.
3. Prony series input. If the VISCO keyword option is included, at least one Prony series term (S1, T1) must be defined.

\section*{*MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM}

This is Material Type 93. This material model is defined for simulating the effects of nonlinear elastic and nonlinear viscous beams by using six springs each acting about one of the six local degrees-of-freedom. The input consists of part IDs that reference material type, *MAT_ELASTIC_SPRING_DISCRETE_BEAM (type 74 above). Generally, these referenced parts are used only for the definition of this material model and are not referenced by any elements. The two nodes defining a beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0, which causes the local \(r\)-axis to be aligned along the two nodes of the beam to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this material model. A triad is used to orient the beam for the directional springs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & TPIDR & TPIDS & TPIDT & RPIDR & RPIDS & RPIDT \\
Type & A & F & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
TPIDR

TPIDS Translational motion in the local s-direction is governed by part ID TPIDS. If zero, no force is computed in this direction.

TPIDT Translational motion in the local \(t\)-direction is governed by part ID TPIDT. If zero, no force is computed in this direction.

RPIDR Rotational motion about the local \(r\)-axis is governed by part ID RPIDR. If zero, no moment is computed about this axis.

RPIDS Rotational motion about the local s-axis is governed by part ID RPIDS. If zero, no moment is computed about this axis.

\section*{DESCRIPTION}

Rotational motion about the local \(t\)-axis is governed by part ID RPIDT. If zero, no moment is computed about this axis.

\section*{Remarks:}

Rotational displacement is measured in radians.

\section*{*MAT_INELASTIC_SPRING_DISCRETE_BEAM}

This is Material Type 94. This model permits elastoplastic springs with damping to be represented with a discrete beam element type 6 . A yield force as a function deflection curve is used which can vary in tension and compression.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & F0 & D & CDF & TDF & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FLCID & HLCID & C1 & C2 & DLE & GLCID & & \\
Type & F & F & F & F & F & I & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
K
F0 Optional initial force. This option is inactive if this material is referenced by a part referenced by material type *MAT_INELASTIC_6DOF_SPRING.

D Optional viscous damping coefficient.
CDF Compressive displacement at failure. Input as a positive number. After failure, no forces are carried. This option does not apply to zero length springs.

EQ.0.0: inactive.

TDF Tensile displacement at failure. After failure, no forces are carried.
EQ.0.0: inactive.

\section*{VARIABLE}

FLCID

HLCID

Damping coefficient
C2
DLE
GLCID Optional load curve ID (see *DEFINE_CURVE) defining a scale factor as a function of deflection for load curve ID, HLCID. If zero, a scale factor of unity is assumed.

\section*{Remarks:}
1. Force. To determine the force, a trial force is first computed as:
\[
F^{T}=F^{n}+K \times \Delta \dot{L}(\Delta t)
\]

The yield force is taken from the load curve:
\[
F^{\curlyvee}=F_{y}\left(\Delta L^{\text {plastic }}\right),
\]
where \(L^{\text {plastic }}\) is the plastic deflection, given by
\[
\Delta L^{\text {plastic }}=\frac{F^{T}-F^{Y}}{S+K^{\max }} .
\]

Here \(S\) is the slope of FLCID and \(K^{\text {max }}\) is the maximum elastic stiffness:
\[
K^{\max }=\max \left(K, 2 \times S^{\max }\right) .
\]

The trial force is, then, checked against the yield force to determine \(F\) :
\[
F= \begin{cases}F^{Y} & \text { if } F^{T}>F^{Y} \\ F^{T} & \text { if } F^{T} \leq F^{Y}\end{cases}
\]

The final force, which includes rate effects and damping, is given by:
\[
\begin{aligned}
F^{n+1}=F \times[& \left.+\mathrm{C} 1 \times \Delta \dot{L}+\mathrm{C} 2 \times \operatorname{sgn}(\Delta \dot{L}) \ln \left(\max \left\{1,, \frac{|\Delta \dot{L}|}{\mathrm{DLE}}\right\}\right)\right]+\mathrm{D} \times \Delta \dot{L} \\
& +g(\Delta L) h(\Delta \dot{L}) .
\end{aligned}
\]
2. Yield Force Curve. Unless the origin of the curve starts at (0,0), the negative part of the curve is used when the spring force is negative where the negative of the plastic displacement is used to interpolate, \(F_{y}\). The positive part of the curve is used whenever the force is positive. In these equations, \(\Delta L\) is the change in length
\[
\Delta L=\text { current length }- \text { initial length } .
\]
3. Cross-Sectional Area. The cross-sectional area is defined on the section card for the discrete beam elements, See *SECTION_BEAM. The square root of this area is used as the contact thickness offset if these elements are included in the contact treatment.

\section*{*MAT_INELASTIC_6DOF_SPRING_DISCRETE_BEAM}

This is Material Type 95. This material model is defined for simulating the effects of nonlinear inelastic and nonlinear viscous beams by using six springs each acting about one of the six local degrees-of-freedom. The input consists of part IDs that reference material type *MAT_INELASTIC_SPRING_DISCRETE_BEAM above (type 94). Generally, these referenced parts are used only for the definition of this material model and are not referenced by any elements. The two nodes defining a beam may be coincident to give a zero length beam, or offset to give a finite length beam. For finite length discrete beams, the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0, which causes the local \(r\)-axis to be aligned along the two nodes of the beam, to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this material model. A triad must be used to orient the beam for zero length beams.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & TPIDR & TPIDS & TPIDT & RPIDR & RPIDS & RPIDT \\
Type & A & F & । & । & । & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
TPIDR

TPIDS Translational motion in the local s-direction is governed by part ID TPIDS. If zero, no force is computed in this direction.

TPIDT Translational motion in the local \(t\)-direction is governed by part ID TPIDT. If zero, no force is computed in this direction.

RPIDR Rotational motion about the local \(r\)-axis is governed by part ID RPIDR. If zero, no moment is computed about this axis.

RPIDS Rotational motion about the local s-axis is governed by part ID RPIDS. If zero, no moment is computed about this axis.

RPIDT
Rotational motion about the local \(t\)-axis is governed by part ID RPIDT. If zero, no moment is computed about this axis.

\section*{Remarks:}

Rotational displacement is measured in radians.

\section*{*MAT_BRITTLE_DAMAGE}

This is Material Type 96. It is an anisotropic brittle damage model designed primarily for concrete though it can be applied to a wide variety of brittle materials.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & TLIMIT & SLIMIT & FTOUGH & SRETEN \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VISC & FRA_RF & E_RF & YS_RF & EH_RF & FS_RF & SIGY & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label must be specified (see *PART). \\
\hline RO & Mass density \\
\hline E & Young's modulus, \(E\) \\
\hline PR & Poisson's ratio, \(v\) \\
\hline TLIMIT & Tensile limit, \(f_{n}\) \\
\hline SLIMIT & Shear limit, \(f_{s}\) \\
\hline FTOUGH & Fracture toughness, \(g_{c}\) \\
\hline SRETEN & Shear retention, \(\beta\) \\
\hline VISC & Viscosity, \(\eta\) \\
\hline FRA_RF & Fraction of reinforcement in section \\
\hline E_RF & Young's modulus of reinforcement \\
\hline YS_RF & Yield stress of reinforcement \\
\hline
\end{tabular}

\author{
VARIABLE \\ EH_RF \\ Hardening modulus of reinforcement \\ FS_RF Failure strain (true) of reinforcement \\ SIGY Compressive yield stress, \(\sigma_{y}\) \\ EQ.0: No compressive yield
}

\section*{Remarks:}

A full description of the tensile and shear damage parts of this material model is given in Govindjee, Kay and Simo [1994,1995]. This model admits progressive degradation of tensile and shear strengths across smeared cracks that are initiated under tensile loadings. Compressive failure is governed by a simplistic J2 flow correction that can be disabled if not desired. Damage is handled by treating the rank 4 elastic stiffness tensor as an evolving internal variable for the material. Softening induced mesh dependencies are handled by a characteristic length method [Oliver 1989].

Description of properties:
1. \(E\) is the Young's modulus of the undamaged material also known as the virgin modulus.
2. \(\quad v\) is the Poisson's ratio of the undamaged material also known as the virgin Poisson's ratio.
3. \(\quad f_{n}\) is the initial principal tensile strength (stress) of the material. Once this stress has been reached at a point in the body a smeared crack is initiated there with a normal that is co-linear with the \(1^{\text {st }}\) principal direction. Once initiated, the crack is fixed at that location, though it will convect with the motion of the body. As the loading progresses the allowed tensile traction normal to the crack plane is progressively degraded to a small machine dependent constant.

The degradation is implemented by reducing the material's modulus normal to the smeared crack plane according to a maximum dissipation law that incorporates exponential softening. The restriction on the normal tractions is given by
\[
\phi_{t}=(\mathbf{n} \otimes \mathbf{n}): \sigma-f_{n}+(1-\varepsilon) f_{n}(1-\exp [-H \alpha]) \leq 0
\]
where \(\mathbf{n}\) is the smeared crack normal, \(\varepsilon\) is the small constant, \(H\) is the softening modulus, and \(\alpha\) is an internal variable. \(H\) is set automatically by the program; see \(g_{c}\) below. \(\alpha\) measures the crack field intensity and is output in the equivalent plastic strain field, \(\bar{\varepsilon}^{p}\), in a normalized fashion.

The evolution of \(\alpha\) is governed by a maximum dissipation argument. When the normalized value reaches unity, the material's strength has been reduced to \(2 \%\) of its original value in the normal and parallel directions to the smeared crack. Note that for plotting purposes it is never output greater than 5.
4. \(\quad f_{s}\) is the initial shear traction that may be transmitted across a smeared crack plane. The shear traction is limited to be less than or equal to \(f_{s}(1-\beta)(1-\) \(\exp [-H \alpha])\) through the use of two orthogonal shear damage surfaces. Note that the shear degradation is coupled to the tensile degradation through the internal variable \(\alpha\) which measures the intensity of the crack field. \(\beta\) is the shear retention factor defined below. The shear degradation is taken care of by reducing the material's shear stiffness parallel to the smeared crack plane.
5. \(\quad g_{c}\) is the fracture toughness of the material. It should be entered as fracture energy per unit area crack advance. Once entered the softening modulus is automatically calculated based on element and crack geometries.
6. \(\quad \beta\) is the shear retention factor. As the damage progresses the shear tractions allowed across the smeared crack plane asymptote to the product \(\beta f_{s}\).
7. \(\eta\) represents the viscosity of the material. Viscous behavior is implemented as a simple Perzyna regularization method which allows for the inclusion of first order rate effects. The use of some viscosity is recommend as it serves as regularizing parameter that increases the stability of calculations.
8. \(\sigma_{y}\) is a uniaxial compressive yield stress. A check on compressive stresses is made using the J2 yield function
\[
\mathbf{s}: \mathbf{s}-\sqrt{\frac{2}{3}} \sigma_{y} \leq 0
\]
where \(\mathbf{s}\) is the stress deviator. If violated, a J2 return mapping correction is executed. This check is executed (1) when no damage has taken place at an integration point yet; (2) when damage has taken place at a point, but the crack is currently closed; and (3) during active damage after the damage integration (i.e. as an operator split). Note that if the crack is open the plasticity correction is done in the plane-stress subspace of the crack plane.

A variety of experimental data has been replicated using this model from quasi-static to explosive situations. Reasonable properties for a standard grade concrete would be:
\begin{tabular}{|c|c|}
\hline Property & Value \\
\hline\(E\) & \(3.15 \times 10^{6} \mathrm{psi}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property & Value \\
\hline \hline\(f_{n}\) & 450 psi \\
\(f_{s}\) & 2100 psi \\
\(v\) & 0.2 \\
\(g_{c}\) & \(0.8 \mathrm{lbs} / \mathrm{in}\) \\
\(\beta\) & 0.03 \\
\(\eta\) & \(0.0 \mathrm{psi}-\mathrm{sec}\) \\
\(\sigma_{y}\) & 4200 psi \\
\hline
\end{tabular}

For stability, values of \(\eta\) between 104 to \(106 \mathrm{psi} / \mathrm{sec}\) are recommended. Our limited experience thus far has shown that many problems require nonzero values of \(\eta\) to run to avoid error terminations.

Various other internal variables such as crack orientations and degraded stiffness tensors are internally calculated but currently not available for output.

\section*{*MAT_GENERAL_JOINT_DISCRETE_BEAM}

This is Material Type 97. This model is used to define a general joint constraining any combination of degrees of freedom between two nodes. The nodes may belong to rigid or deformable bodies. In most applications the end nodes of the beam are coincident and the local coordinate system (\(r, s, t\) axes) is defined by CID (see *SECTION_BEAM).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & TR & TS & TT & RR & RS & RT \\
Type & A & F & 1 & 1 & 1 & 1 & 1 & 1 \\
Remarks & 1 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RPST & RPSR & & & & & & \\
Type & F & F & & & & & & \\
Remarks & 2 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
TR

TS Translational constraint code along the s-axis:

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density; see also volume in *SECTION_BEAM definition.
Translational constraint code along the \(r\)-axis:
EQ.0: Free
EQ.1: Constrained

EQ.0: Free
EQ.1: Constrained

\section*{VARIABLE}

TT
Translational constraint code along the \(t\)-axis:
EQ.0: Free
EQ.1: Constrained
RR Rotational constraint code about the \(r\)-axis:
EQ.0: Free
EQ.1: Constrained

Rotational constraint code about the \(s\)-axis:
EQ.0: Free
EQ.1: Constrained

RT Rotational constraint code about the \(t\)-axis:
EQ.0: Free
EQ.1: Constrained
RPST Penalty stiffness scale factor for translational constraints
RPSR Penalty stiffness scale factor for rotational constraints

\section*{Remarks:}
1. Inertia and Stability. For explicit calculations, the additional stiffness due to this joint may require addition mass and inertia for stability. Mass and rotary inertia for this beam element is based on the defined mass density, the volume, and the mass moment of inertia defined in the *SECTION_BEAM input.
2. Penalty Stiffness. The penalty stiffness applies to explicit calculations. For implicit calculations, constraint equations are generated and imposed on the system equations; therefore, these constants, RPST and RPSR, are not used.

\section*{*MAT_SIMPLIFIED_JOHNSON_COOK_\{OPTION\}}

Available options include:
<BLANK>
STOCHASTIC
This is Material Type 98 implementing Johnson/Cook strain sensitive plasticity. It is used for problems where the strain rates vary over a large range. In contrast to the full Johnson/Cook model (material type 15) this model introduces the following simplifications:
1. thermal effects and damage are ignored,
2. and the maximum stress is directly limited since thermal softening which is very significant in reducing the yield stress under adiabatic loading is not available.

An iterative plane stress update is used for the shell elements, but due to the simplifications related to thermal softening and damage, this model is \(50 \%\) faster than the full Johnson/Cook implementation. To compensate for the lack of thermal softening, limiting stress values are introduced to keep the stresses within reasonable limits.

A resultant formulation for the Belytschko-Tsay, the C0 Triangle, and the fully integrated type 16 shell elements is available and can be activated by specifying either zero or one through thickness integration point on the *SECTION_SHELL card. While less accurate than through thickness integration, this formulation runs somewhat faster. Since the stresses are not computed in the resultant formulation, the stresses written to the databases for the resultant elements are set to zero.

This model is also available for the Hughes-Liu beam, the Belytschko-Schwer beam, and for the truss element. For the resultant beam formulation, the rate effects are approximated by the axial rate, since the thickness of the beam about it bending axes is unknown. Because this model is primarily used for structural analysis, the pressure is determined using the linear bulk modulus.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & VP & & & \\
Type & A & F & F & F & F & & & \\
Default & none & none & none & none & 0.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & N & C & PSFAIL & SIGMAX & SIGSAT & EPSO \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0.0 & 0.0 & 0.0 & \(10^{17}\) & SIGSAT & \(10^{28}\) & 1.0 \\
\hline
\end{tabular}
VARIABLE

\section*{DESCRIPTION}
MID
RO Mass density
E Young's modulus
PR
Poisson's ratio
VP Formulation for rate effects:
EQ.0.0: scale yield stress (default)
EQ.1.0: viscoplastic formulation
This option applies only to the 4-node shell and 8-node thick shell if and only if through thickness integration is used.
A See Remark 1.
B See Remark 1.
\(\mathrm{N} \quad\) See Remark 1.
C \(\quad\) See Remark 1.

VARIABLE
PSFAIL
SIGMAX Maximum stress obtainable from work hardening before rate effects are added (optional). This option is ignored if VP \(=1.0\)

SIGSAT Saturation stress which limits the maximum value of effective stress which can develop after rate effects are added (optional).

EPS0 Quasi-static threshold strain rate. See description under *MAT_015.

\section*{Remarks:}
1. Flow Stress. Johnson and Cook express the flow stress as
\[
\sigma_{y}=\left(A+B \bar{\varepsilon}^{p^{n}}\right)\left(1+C \ln \dot{\varepsilon}^{*}\right)
\]
where \(A, B\), and \(C\) are input constants and \(\bar{\varepsilon}^{p}\) is the effective plastic strain. \(\dot{\varepsilon}^{*}\) is the normalized effective strain rate:
\[
\dot{\mathcal{E}}^{*}=\frac{\dot{\bar{\varepsilon}}}{\operatorname{EPS} 0} .
\]

The maximum stress is limited by SIGMAX and SIGSAT by:
\[
\sigma_{y}=\min \left\{\min \left[A+B \bar{\varepsilon}^{p^{n}}, \operatorname{SIGMAX}\right]\left(1+c \ln \dot{\varepsilon}^{*}\right), \mathrm{SIGSAT}\right\} .
\]

Failure occurs when the effective plastic strain exceeds PSFAIL.
2. Viscoplastic. If the viscoplastic option is active (\(\mathrm{VP}=1.0\)), the parameters SIGMAX and SIGSAT are ignored since these parameters make convergence of the plastic strain iteration loop difficult to achieve. The viscoplastic option replaces the effective strain rate in the forgoing equations by the effective plastic strain rate. Numerical noise is substantially reduced by the viscoplastic formulation.
3. STOCHASTIC. The STOCHASTIC option allows spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.

\author{
*MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE
}

\section*{*MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE}

This is Material Type 99. This model, which is implemented with multiple through thickness integration points, is an extension of model 98 to include orthotropic damage as a means of treating failure in aluminum panels. Directional damage begins after a defined failure strain is reached in tension and continues to evolve until a tensile rupture strain is reached in either one of the two orthogonal directions. After rupture is detected at NUMINT integration points, the element is deleted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & VP & EPPFR & LCDM & NUMINT \\
Type & A & F & F & F & F & F & I & 1 \\
Default & none & none & none & none & 0.0 & \(10^{16}\) & optional & \(\{\) all \(\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & N & C & PSFAIL & SIGMAX & SIGSAT & EPSO \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0.0 & 0.0 & 0.0 & \(10^{17}\) & SIGSAT & \(10^{28}\) & 1.0 \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
E Young's modulus
PR Poisson's ratio
VP Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline & This option applies only to the 4-node shell and 8-node thick shell if and only if through thickness integration is used. \\
\hline EPPFR & Plastic strain at which material ruptures (logarithmic) \\
\hline LCDM & Load curve ID defining nonlinear damage curve. See Figure M81-2. \\
\hline NUMINT & Number of through thickness integration points which must fail before the element is deleted. If zero, all points must fail. The default of all integration points is not recommended since elements undergoing large strain are often not deleted due to nodal fiber rotations which limit 0 strains at active integration points after most points have failed. Better results are obtained if NUMINT is set to 1 or a number less than one half of the number of through thickness points. For example, if four through thickness points are used, NUMINT should not exceed 2 , even for fully integrated shells which have 16 integration points. \\
\hline A & See Remark 1 in *MAT_098. \\
\hline B & See Remark 1 in *MAT_098. \\
\hline N & See Remark 1 in *MAT_098. \\
\hline C & See Remark 1 in *MAT_098. \\
\hline PSFAIL & Principal plastic strain at failure. If zero, failure is not considered. \\
\hline SIGMAX & Maximum stress obtainable from work hardening before rate effects are added (optional). This option is ignored if VP \(=1.0\). \\
\hline SIGSAT & Saturation stress which limits the maximum value of effective stress which can develop after rate effects are added (optional). \\
\hline EPS0 & Quasi-static threshold strain rate. See description under *MAT_015. \\
\hline
\end{tabular}

\section*{Remarks:}

See the description for the SIMPLIFIED_JOHNSON_COOK model above.

\section*{*MAT_SPOTWELD_\{OPTION1\}_\{OPTION2\}}

This is Material Type 100. The material model applies to beam element type 9 and to solid element type 1. The failure models apply to both beam and solid elements.

In the case of solid elements, if hourglass type 4 is specified then hourglass type 4 will be used; otherwise, hourglass type 6 will be automatically assigned. Hourglass type 6 is preferred.

The beam elements, based on the Hughes-Liu beam formulation, may be placed between any two deformable shell surfaces and tied with constraint contact, *CONTACT_SPOTWELD, which eliminates the need to have adjacent nodes at spot weld locations. Beam spot welds may be placed between rigid bodies and rigid/deformable bodies by making the node on one end of the spot weld a rigid body node which can be an extra node for the rigid body; see *CONSTRAINED_EXTRA_NODES_OPTION. In the same way rigid bodies may also be tied together with this spot weld option. This weld option should not be used with rigid body switching. The foregoing advice is valid if solid element spot welds are used; however, since the solid elements have just three degrees-of-freedom at each node, *CONTACT_TIED_SURFACE_TO_SURFACE must be used instead of *CONTACT_SPOTWELD.

In flat topologies the shell elements have an unconstrained drilling degree-of-freedom which prevents torsional forces from being transmitted. If the torsional forces are deemed to be important, brick elements should be used to model the spot welds.

Beam and solid element force resultants for MAT_SPOTWELD are written to the spot weld force file, swforc, and the file for element stresses and resultants for designated elements, elout.

It is advisable to include all spot welds, which provide the tracked nodes, and spot welded materials, which define the reference segments, within a single *CONTACT_SPOTWELD interface for beam element spot welds or a *CONTACT_TIED_SURFACE_TO_SURFACE interface for solid element spot welds. As a constraint method these interfaces are treated independently which can lead to significant problems if such interfaces share common nodal points. An added benefit is that memory usage can be substantially less with a single interface.

Available options for OPTION1 include:
<BLANK>
DAMAGE-FAILURE
The DAMAGE-FAILURE option causes one additional line to be read with the damage parameter and a flag that determines how failure is computed from the resultants. On this line the parameter, RS, if nonzero, invokes damage mechanics combined with the plasticity model to achieve a smooth drop off of the resultant forces prior to the removal
of the spot weld. The parameter OPT determines the method used in computing resultant based failure, which is unrelated to damage.

Available options for OPTION2 include:
<BLANK>
UNIAXIAL
The UNIAXIAL keyword option causes the transverse stresses and transverse strains to be zero for solid spot welds. The older uniaxial method, invoked with \(\mathrm{E}<0.0\) on Card 1, assumed only the transverse stresses are zero. Compared to the older method, the UNIAXIAL keyword option increases the stability of the solver. See Remark 2 for more details.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & EH & DT & TFAIL \\
\hline
\end{tabular}

Card 2a. This card is included if no keyword option is used (<BLANK>) for OPTION1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & NRR & NRS & NRT & MRR & MSS & MTT & NF \\
\hline
\end{tabular}

Card 2b. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=-2,-1\) or 0 on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & NRR & NRS & NRT & MRR & MSS & MTT & NF \\
\hline
\end{tabular}

Card 2c. This card is included if the DAMAGE-FAILURE keyword option is used and OPT = 1 on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & SIGAX & SIGTAU & & & & & \(N\) \\
\hline
\end{tabular}

Card 2d. This card is included if the DAMAGE-FAILURE keyword option is used and \(\mathrm{OPT}=2,12\), or 22 on Card 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & USRV1 & USRV2 & USRV3 & USRV4 & USRV5 & USRV6 & NF \\
\hline
\end{tabular}

Card 2e. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=3\) or 4 on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & ZD & ZT & ZALP1 & ZALP2 & ZALP3 & ZRRAD & NF \\
\hline
\end{tabular}

Card 2f. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=5\) on Card 3 .
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline EFAIL & ZD & ZT & ZT2 & & & & \\
\hline
\end{tabular}

Card 2g. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=6,7,9,-9\) or 10 on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & & & & & & & \(N F\) \\
\hline
\end{tabular}

Card 2 h . This card is included if the DAMAGE-FAILURE keyword option is used and OPT = 11 on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EFAIL & LCT & LCC & & & & & NF \\
\hline
\end{tabular}

Card 3. This card is included if the DAMAGE-FAILURE keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline RS & OPT & FVAL & TRUE_T & ASFF & BETA & & DMGOPT \\
\hline
\end{tabular}

Card 3.1. This card is included if the DAMAGE-FAILURE keyword option is used and DMGOPT \(=-1\) on Card 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DMGOPT & FMODE & FFCAP & TTOPT & & & & \\
\hline
\end{tabular}

Card 4. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=12\) or 22 on Card 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline USRV7 & USRV8 & USRV9 & USRV10 & USRV11 & USRV12 & USRV13 & USRV14 \\
\hline
\end{tabular}

Card 5. This card is included if the DAMAGE-FAILURE keyword option is used and OPT \(=12\) or 22 on Card 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline USRV15 & USRV16 & USRV17 & USRV18 & USRV19 & USRV20 & USRV21 & USRV22 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & SIGY & EH & DT & TFAIL \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label must be specified (see *PART). \\
\hline RO & Mass density \\
\hline E & \begin{tabular}{l}
Young's modulus. \\
LT.O.O: \(|\mathrm{E}|\) is the Young's modulus. \(\mathrm{E}<0\) invokes uniaxial stress for solid spot welds with the transverse stresses assumed to be zero. See Remark 2. This is for when OPTION2 is unset (<BLANK>) only.
\end{tabular} \\
\hline PR & Poisson's ratio \\
\hline SIGY & Yield Stress: \\
\hline & GT.0: Initial yield stress \\
\hline & EQ.0: Default to 1\% of E \\
\hline & LT.O: A yield curve or table is assigned by |SIGY|; see Remark 5. \\
\hline EH & Plastic hardening modulus, \(E_{h}\) \\
\hline DT & Time step size for mass scaling, \(\Delta t\) \\
\hline TFAIL & Failure time if nonzero. If zero, this option is ignored. \\
\hline
\end{tabular}

Card 2 for No Failure. Additional card when no keyword option is used (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & NRR & NRS & NRT & MRR & MSS & MTT & NF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
EFAIL Effective plastic strain in weld material at failure. The spot weld element is deleted when the plastic strain at each integration point exceeds EFAIL. If zero, failure due to effective plastic strain is not considered.

NRR Axial force resultant \(N_{r r_{F}}\) at failure. If zero, failure due to this component is not considered.

\section*{GT.0: Constant value}

LT.0: |NRR| is a load curve ID, defining the axial force resultant \(N_{r r_{F}}\) at failure as a function of the effective strain rate.

NRS

NRT

MRR Torsional moment resultant \(M_{r r_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.0: |MRR| is a load curve ID, defining the torsional moment resultant \(M_{r r_{F}}\) at failure as a function of the effective strain rate.

Moment resultant \(M_{S S_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.O: |MSS| is a load curve ID, defining the moment resultant \(M_{S s_{F}}\) at failure as a function of the effective strain rate.

MTT Moment resultant \(M_{t t_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.O: \(|\mathrm{MTT}|\) is a load curve ID, defining the moment resultant \(M_{t t_{F}}\) at failure as a function of the effective strain rate.

NF Number of force vectors stored for filtering

Card 2 for Resultant Based Failure. Additional card for DAMAGE-FAILURE keyword option with OPT \(=-2,-1\) or 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & NRR & NRS & NRT & MRR & MSS & MTT & NF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

EFAIL

NRR

NRS

NRT

MRR Torsional moment resultant \(M_{r r_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.O: \(|M R R|\) is a load curve ID, defining the torsional moment resultant \(M_{r r_{F}}\) at failure as a function of the effective strain rate.

\section*{VARIABLE}

MSS
Moment resultant \(M_{s s_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.0: |MSS| is a load curve ID, defining the moment resultant \(M_{s s_{F}}\) at failure as a function of the effective strain rate.

MTT Moment resultant \(M_{t t_{F}}\) at failure. If zero, failure due to this component is not considered.

GT.0: Constant value
LT.0: \(|\mathrm{MTT}|\) is a load curve ID, defining the moment resultant \(M_{t t_{F}}\) at failure as a function of the effective strain rate.

NF Number of force vectors stored for filtering

Card 2 for Stress Based Failure. Additional card for DAMAGE-FAILURE keyword option with OPT = 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & SIGAX & SIGTAU & & & & & NF \\
Type & F & F & F & & & & & F \\
\hline
\end{tabular}

VARIABLE
EFAIL

SIGAX Maximum axial stress \(\sigma_{r r}^{F}\) at failure.
GT.0.0: Constant maximum axial stress at failure
EQ.0.0: Failure due to this component is not considered.
LT.0.0: \(|S I G A X|\) is a load curve ID defining the maximum axial stress at failure as a function of the effective strain rate.

SIGTAU Maximum shear stress \(\tau^{F}\) at failure.
GT.0.0: Constant maximum shear stress at failure

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.0.0: Failure due to this component is not considered.
LT.0.0: |SIGTAU| is a load curve ID defining the maximum shear stress at failure as a function of the effective strain rate.

NF Number of force vectors stored for filtering

Card 2 for User Subroutine Based Failure. Additional card for DAMAGE-FAILURE keyword option with OPT \(=2,12\), or 22.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & USRV1 & USRV2 & USRV3 & USRV4 & USRV5 & USRV6 & NF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

EFAIL

USRVn Failure constants for user failure subroutine, \(n=1,2, \ldots, 6\)
NF Number of force vectors stored for filtering

Card 2 for Notch Stress Failure. Additional card for DAMAGE-FAILURE keyword option with OPT \(=3\) or 4 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2e & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & ZD & ZT & ZALP1 & ZALP2 & ZALP3 & ZRRAD & NF \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

EFAIL

\section*{DESCRIPTION}

Effective plastic strain in weld material at failure. The plastic strain must exceed the rupture strain (RS) at each integration point before deletion occurs. See Card 3.

\section*{VARIABLE}

ZT
ZALP1 \(\quad\) Correction factor \(\alpha_{1}\)
ZALP2 \(\quad\) Correction factor \(\alpha_{2}\)
ZALP3 Correction factor \(\alpha_{3}\)
ZRRAD \(\quad\) Notch root radius (OPT = 3 only)
NF Number of force vectors stored for filtering

Card 2 for Structural Stress Failure. Additional card for DAMAGE-FAILURE keyword option with OPT \(=5\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2f & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & ZD & ZT & ZT2 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

VARIABLE
EFAIL Effective plastic strain in weld material at failure. The plastic strain must exceed the rupture strain (RS) at each integration point before

ZD Notch diameter
ZT Sheet thickness
ZT2
deletion occurs. See Card 3.

\section*{DESCRIPTION}

Second sheet thickness

Card 2 for Stress Based Failure from Resultants/Rate Effects. Additional card for DAMAGE-FAILURE keyword option with OPT \(=6,7,9,-9\) or 10 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 g & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & & & & & & & NF \\
Type & F & & & & & & & F \\
\hline
\end{tabular}

\section*{VARIABLE \\ EFAIL}

NF Number of force vectors stored for filtering

Card 2 for Resultant Based Failure for Beams depending on Loading Direction. Additional card for DAMAGE-FAILURE keyword option with OPT =11.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 h & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & LCT & LCC & & & & & NF \\
Type & F & F & F & & & & & F \\
\hline
\end{tabular}

\section*{VARIABLE}

EFAIL

LCT Load curve or Table ID. Load curve defines resultant failure force under tension as a function of loading direction (in degree range 0 to 90). Table defines these curves as functions of strain rates. See remarks.

LCC Load curve or Table ID. Load curve defines resultant failure force under compression as a function of loading direction (in degree range 0 to 90). Table defines these curves as functions of strain rates. See remarks.

NF Number of force vectors stored for filtering

Additional card for the DAMAGE-FAILURE option.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RS & OPT & FVAL & TRUE_T & ASFF & BETA & & DMGOPT \\
Type & F & F & F & F & I & F & & F \\
\hline
\end{tabular}

\section*{VARIABLE}

RS

OPT

\section*{DESCRIPTION}

Rupture strain (or rupture time if DMGOPT = 2 or 12). Define if and only if damage is active.

Failure option:
EQ.-9: OPT = 9 failure is evaluated and written to the swforc file, but element failure is suppressed.
EQ.-2: Same as option -1 but in addition, the peak value of the failure criteria and the time it occurs is stored and is written into the swforc database. This information may be necessary since the instantaneous values written at specified time intervals may miss the peaks. Additional storage is allocated to store this information.
EQ.-1: OPT \(=0\) failure is evaluated and written into the swforc file, but element failure is suppressed.

EQ.0: Resultant based failure
EQ.1: Stress based failure computed from resultants (Toyota)
EQ.2: User subroutine uweldfail to determine failure
EQ.3: Notch stress-based failure (beam and hex assembly welds only)

EQ.4: Stress intensity factor at failure (beam and hex assembly welds only)

EQ.5: Structural stress at failure (beam and hex assembly welds only)
EQ.6: Stress based failure computed from resultants (Toyota). In this option a shell strain rate dependent failure model is used (beam and hex assembly welds only). The static failure stresses are defined by part ID using the keyword *DEFINE_SPOTWELD_RUPTURE_STRESS.

EQ.7: Stress based failure for solid elements (Toyota) with peak stresses computed from resultants, and strength values input for pairs of parts; see *DEFINE_SPOTWELD_FAILURE_RESULTANTS. Strain rate effects are optional.
EQ.8: Not used
EQ.9: Stress based failure from resultants (Toyota). In this option a shell strain rate dependent failure model is used (beam welds only). The static failure stresses are defined

\section*{DESCRIPTION}
by part ID using the keyword *DEFINE_SPOTWELD_RUPTURE_PARAMETER.

EQ.10: Stress based failure with rate effects. Failure data is defined by material using the keyword *DEFINE_SPOWELD_FAILURE.

EQ.11: Resultant based failure (beams only). In this option load curves or tables LCT (tension) and LCC (compression) can be defined as resultant failure force as a function loading direction (curve) or resultant failure force as a function of loading direction for each strain rate (table).

EQ.12: User subroutine uweldfail12 with 22 material constants to determine damage and failure
EQ.22: user subroutine uweldfail22 with 22 material constants to determine failure

FVAL Failure parameter.
OPT.EQ.-2: Not used
OPT.EQ.-1: Not used
OPT.EQ.0: Function ID (*DEFINE_FUNCTION) to define alternative Weld Failure. If this is set, the values given for NRR, NRS, NRT, MRR, MSS and MTT in Card 2 are ignored. See description of Weld Failure for \(\mathrm{OPT}=0\).

OPT.EQ.1: Not used
OPT.EQ.2: Not used
OPT.EQ.3: Notch stress value at failure (\(\sigma_{\mathrm{KF}}\))
OPT.EQ.4: Stress intensity factor value at failure (\(K_{\mathrm{eqF}}\))
OPT.EQ.5: Structural stress value at failure (\(\sigma_{\mathrm{sF}}\))
OPT.EQ.6: Number of cycles that failure condition must be met to trigger beam deletion.
OPT.EQ.7: Not used
OPT.EQ.9: Number of cycles that failure condition must be met to trigger beam deletion.
OPT.EQ.10: ID of data defined by *DEFINE_SPOTWELD_FAILURE.

\section*{DESCRIPTION}

OPT.EQ.12: Number of history variables available in user defined failure subroutine, uweldfaill2.

TRUE_T
True weld thickness. This optional value is available for solid element failure and is used to reduce the moment contribution to the failure calculation from artificially thick weld elements under shear loading, so shear failure can be modeled more accurately. Note that the behavior of TRUE_T depends on TTOPT. See Remark 8.

NOTE: We do not recommend using TRUE_T. Instead, we recommend using TTOPT \(=2\) and leaving TRUE_T \(=0.0\). In many cases, TTOPT \(=2\) does a better job of removing the spurious moments. See Remark 9.

ASFF Weld assembly simultaneous failure flag:
EQ.0: Damaged elements fail individually.
EQ.1: Damaged elements fail when first reaches failure criterion.

BETA Damage model decay rate
DMGOPT Damage option flag:
EQ.-1: Flag to include Card 3.1 for additional damage fields. DMGOPT will be set on Card 3.1.

EQ.0: Plastic strain based damage
EQ.1: Plastic strain based damage with post damage stress limit
EQ.2: Time based damage with post damage stress limit
EQ.10: Like DMGOPT = 0, but failure option will initiate damage
EQ.11: Like DMGOPT = 1, but failure option will initiate damage
EQ.12: Like DMGOPT = 2, but failure option will initiate damage

Damage Option Card. Optional additional card for the DAMAGE-FAILURE option; read only if DMGOPT \(=-1\) on Card 3 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DMGOPT & FMODE & FFCAP & TTOPT & & & & \\
Type & F & F & F & I & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DMGOPT

FMODE \(\quad\) Failure surface ratio for damage or failure, for DMGOPT \(=10,11\), or 12

EQ.O: Damage initiates
GT.0: Damage or failure (see Remark 6)
FFCAP

TTOPT Options for TRUE_T / weld failure behavior:
EQ.O: TRUE_T behavior of version R9 and later (see Remark 8)
EQ.1: TRUE_T behavior of version R8 and earlier (see Remark 8)
EQ.2: Weld failure is invariant with respect to the node numbering of weld elements. For this case, there is no need for the TRUE_T correction. We recommend using this option with TRUE_T set to 0.0. See Remark 9.

Failure Constants Card. Additional card for OPT = 12 or 22.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & USRV7 & USRV8 & USRV9 & USRV10 & USRV11 & USRV12 & USRV13 & USRV14 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Failure Constants Card. Additional card for OPT=12 or 22.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & USRV15 & USRV16 & USRV17 & USRV18 & USRV19 & USRV20 & USRV21 & USRV22 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
USRVn Failure constants for OPT \(=12\) or 22 user defined failure, \(n=7\), 8,...,22

\section*{Remarks:}
1. Failure Model Overview. Spot weld material is modeled with isotropic hardening plasticity coupled to failure models. EFAIL specifies a failure strain which fails each integration point in the spot weld independently. The OPT parameter is used to specify a failure criterion that fails the entire weld element when the criterion is met. Alternatively, EFAIL and OPT may be used to initiate damage when the DAMAGE-FAILURE option is active using RS, BETA, and DMGOPT as described below.

Beam spot weld elements can use any OPT value except 7. Brick spot weld elements can use any OPT value except \(3,4,5,6,9\), and -9 . Hex assembly spot welds can use any OPT value except 9 and -9 .

For all OPT failure criteria, if a zero is input for a failure parameter on Card 2, the corresponding term will be omitted from the equation. For example, if for \(\mathrm{OPT}=0\), only \(N_{r r_{F}}\) is nonzero, the failure surface is reduced to \(\left|N_{r r}\right|=N_{r r_{F}}\) (see below).

Similarly, if the failure strain EFAIL is set to zero, the failure strain model is not used. Both EFAIL and OPT failure may be active at the same time.
2. Loading Solid Welds Uniaxially. We have implemented two methods of loading solid and solid weld assemblies uniaxially. The older method is invoked by defining the elastic modulus, \(E\), as a negative number where the absolute value of \(E\) is the desired value for \(E\). This uniaxial option causes the two transverse stress terms to be assumed to be zero throughout the calculation. This assumption eliminates parasitic transverse stress that causes slow growth of plastic strain-based damage.

The other method is invoked by setting OPTION2 to UNIAXIAL. This method is preferred. It causes the two transverse stress terms and the two transverse strains terms to be set to zero. It was added because we found that the older method sometimes induced spurious oscillations in the axial force, leading to premature failure.

The motivation for the uniaxial options can be explained with a weld loaded in tension. Due to Poisson's effect, an element in tension would be expected to contract in the transverse directions. However, because the weld nodes are constrained to the mid-plane of shell elements, such contraction is only possible to the degree that the shell element contracts. In other words, the uniaxial stress state cannot be represented by the weld. For plastic strain-based damage, this effect can be particularly apparent as it causes tensile stress to continue to grow very large as the stress state becomes very nearly triaxial tension. In this stress state, plastic strain grows very slowly so it appears that damage calculation is failing to knock down the stress. By simply assuming that the transverse stresses are zero, the plastic strain grows as expected and damage is much more effective.
3. NF. NF specifies the number of terms used to filter the stresses or resultants used in the OPT failure criterion. NF cannot exceed 30. The default value is set to zero which is generally recommended unless oscillatory resultant forces are observed in the time history databases. Although welds should not oscillate significantly, this option was added for consistency with the other spot weld options. NF affects the storage since it is necessary to store the resultant forces as history variables. The NF parameter is available only for beam element welds.
4. Time Scaling. The inertias of the spot welds are scaled during the first time step so that their stable time step size is \(\Delta t\). A strong compressive load on the spot weld at a later time may reduce the length of the spot weld so that stable time step size drops below \(\Delta t\). If the value of \(\Delta t\) is zero, mass scaling is not performed, and the spot welds will probably limit the time step size. Under most circumstances, the inertias of the spot welds are small enough that scaling them will have a negligible effect on the structural response and the use of this option is encouraged.
5. Yield Curve or Table for SIGY. When using a yield curve or table for SIGY, a simplified plasticity algorithm is used, assuming a linear behavior within one time increment. Thus, no iterative return mapping has to be performed.
6. Damage. When the DAMAGE-FAILURE option is invoked, the constitutive properties for the damaged material are obtained from the undamaged material properties. The amount of damage evolved is represented by the constant, \(\omega\), which varies from zero if no damage has occurred to unity for complete rupture. For uniaxial loading, the nominal stress in the damaged material is given by
\[
\sigma_{\text {nominal }}=\frac{P}{A}
\]
where \(P\) is the applied load and \(A\) is the surface area. The true stress is given by:
\[
\sigma_{\text {true }}=\frac{P}{A-A_{\text {loss }}}
\]
where \(A_{\text {loss }}\) is the void area. The damage variable can then be defined:
\[
\omega=\frac{A_{\mathrm{loss}}}{A}
\]
where
\[
0 \leq \omega \leq 1
\]

In this model, damage is initiated when the effective plastic strain in the weld exceeds the failure strain, EFAIL . If \(\mathrm{DMGOPT}=10,11\), or 12 , damage will initiate when the effective plastic strain exceeds EFAIL, or when the failure criterion is met, whichever occurs first. The failure criterion is specified by the OPT parameter. If the inputted value of \(\mathrm{EFAIL}=0\) and \(\mathrm{DMGOPT}=10,11\), or 12 , then damage will only be initiated if the failure criterion is met. After damage initiates, the damage variable is evaluated by one of two ways:
a) For DMGOPT \(=0,1,10\), or 11 , the damage variable is a function of effective plastic strain in the weld:
\[
\varepsilon_{\text {failure }}^{p} \leq \varepsilon_{\mathrm{eff}}^{p} \leq \varepsilon_{\text {rupture }}^{p} \Rightarrow \omega=\frac{\varepsilon_{\mathrm{eff}}^{p}-\varepsilon_{\text {failure }}^{p}}{\varepsilon_{\text {rupture }}^{p}-\varepsilon_{\text {failure }}^{p}}
\]
where \(\varepsilon_{\text {failure }}^{p}=\) EFAIL and \(\varepsilon_{\text {rupture }}^{p}=\) RS. If DMGOPT \(=10\) or 11, and damage initiates by the failure criterion, then \(\varepsilon_{\text {failure }}^{p}\) is set equal to the effective plastic strain in the weld at the time of damage initiation.
b) For DMGOPT = 2 or 12 , the damage variable is a function of time:
\[
t_{\text {failure }} \leq t \leq t_{\text {rupture }} \Rightarrow \omega=\frac{t-t_{\text {failure }}}{t_{\text {rupture }}}
\]
where \(t_{\text {failure }}\) is the time at which damage initiates, and \(t_{\text {rupture }}=\) RS. For DMGOPT \(=2, t_{\text {failure }}\) is set equal to the time at which \(\varepsilon_{\text {eff }}^{p}\) exceeds EFAIL. For \(\mathrm{DMGOPT}=12, t_{\text {failure }}\) is set equal to either the time when \(\varepsilon_{\text {eff }}^{p}\) exceeds EFAIL or the time when the failure criterion is met, whichever occurs first.

If \(\mathrm{DMGOPT}=0,1\), or 2 , inputting \(\mathrm{EFAIL}=0\) will cause damage to initiate as soon as the weld stress reaches the yield surface. Prior to version 9.1, inputting EFAIL \(=0\) for DMGOPT \(=10,11,12\) would similarly cause damage to initiate when the stress state reaches the yield surface, but version 9.1 and later will ignore EFAIL \(=0\) and only initiate damage when the failure criterion is met. If the effective plastic strain is zero when damage initiates by the failure criterion, then the yield stress of the weld is reduced to the current effective stress so that the stress state is on the yield surface and plastic strain can start to grow.

For \(\mathrm{DMGOPT}=1\), the damage behavior is the same as for \(\mathrm{DMGOPT}=0\), but an additional damage variable is calculated to prevent stress growth during softening. Similarly, DMGOPT = 11 behaves like DMGOPT \(=10\) except for the additional damage variable. This additional function is also used with DMGOPT \(=2\) and 12. The effect of this additional damage function is noticed only in brick and brick assembly welds in tension loading where it prevents growth of the tensile force in the weld after damage initiates.

For DMGOPT = 10, 11, or 12 an optional FMODE parameter determines whether a weld that reaches the failure surface will fail immediately or initiate damage. The failure surface calculation has shear terms, which may include the torsional moment as well as normal and bending terms. If FMODE is input with a value between 0 and 1, then when the failure surface is reached, the sum of the square of the shear terms is divided by the sum of the square of all terms. If this ratio exceeds FMODE, then the weld will fail immediately. If the ratio is less than or equal to FMODE, then damage will initiate. The FMODE option is available only for brick and brick assembly welds.

For resultant based failure \((\mathrm{OPT}=-1\) or 0\()\) and \(\mathrm{DMGOPT}=10,11\), or 12 an optional FFCAP parameter determines whether a weld that reaches the failure surface will fail immediately. After damage initiation, the failure function can reach values above 1.0. This can now be limited by the FFCAP value (should be larger than 1.0):
\[
\left(\left[\frac{\max \left(N_{r r}, 0\right)}{N_{r r_{F}}}\right]_{<\mathrm{FFCAP}}^{2}+\left[\frac{N_{r s}}{N_{r s_{F}}}\right]^{2}+\left[\frac{N_{r t}}{N_{r t_{F}}}\right]^{2}+\left[\frac{M_{r r}}{M_{r r_{F}}}\right]^{2}+\left[\frac{M_{s s}}{M_{s s_{F}}}\right]^{2}+\left[\frac{M_{t t}}{M_{t t_{F}}}\right]^{2}\right)^{\frac{1}{2}}
\]
7. BETA. If BETA is specified, the stress is multiplied by an exponential using \(\omega\) defined in the equations define in Remark 6,
\[
\sigma_{d}=\sigma \exp (-\beta \omega)
\]

For weld elements in an assembly (see RPBHX on *CONTROL_SPOTWELD_BEAM or *DEFINE_HEX_SPOTWELD_ASSEMBLY), the failure criterion is evaluated using the assembly cross section. If damage is not active, all elements will be deleted when the failure criterion is met. If damage is active, then damage is calculated independently in each element of the assembly. By default, elements of the assembly are deleted as damage in each element is complete. If \(\mathrm{ASFF}=1\), then failure and deletion of all elements in the assembly will occur simultaneously when damage is complete in any one of the elements.
8. TRUE_T and TTOPT. Solid weld elements and weld assemblies are tied to the mid-plane of shell materials and so typically have a thickness that is half the sum of the thicknesses of the welded shell sections. As a result, a weld under shear loading can be subject to an artificially large moment which will be balanced by normal forces transferred through the tied contact. These normal forces will cause the out-of-plane bending moment used in the failure calculation to be artificially high.

TRUE_T was our original implementation to fix this issue. Inputting a TRUE_T value that is smaller than the modeled thickness, for example, \(10 \%-30 \%\) of true thickness will scale down the moment or stress that results from the balancing moment and provide more realistic failure calculations for solid elements and weld assemblies. TRUE_T effects only the failure calculation, not the weld element behavior. If TRUE_T \(=0.0\) or data is omitted, the modeled weld element thickness is used. Our preferred solution to this problem is keeping TRUE_\(\mathrm{T}=0.0\) and setting TTOPT \(=2\) which is discussed in Remark 9.

The behavior of TRUE_T depends on TTOPT. In LS-DYNA version R9, a modification to the TRUE_T behavior was made to address a condition of weld assemblies that are tied to shell elements of significantly different stiffness. This change had unintended effects on the behavior of weld failure, so TTOPT was added to revert the behavior of TRUE_T to that of R8 and earlier versions. The default behavior of TTOPT is to perform the R9 method but setting TTOPT = 1 will cause the earlier method to be used. TTOPT = 1 also invokes a second correction. With TTOPT \(=0\), weld assemblies use TRUE_T as if it was a scale factor, but single element welds use it as a thickness value. Setting TTOPT = 1 corrects this so that both weld assemblies and single welds use TRUE_T as a thickness value.

For OPT \(=0\) (see below), the two out-of-plane moments, \(M_{s s}\) and \(M_{t t}\) are replaced by modified terms \(\widehat{M}_{s s}\) and \(\widehat{M}_{t t}\) :
\[
\begin{aligned}
& {\left[\frac{\max \left(N_{r r}, 0\right)}{N_{r r_{F}}}\right]^{2}+\left[\frac{N_{r s}}{N_{r s_{F}}}\right]^{2}+\left[\frac{N_{r t}}{N_{r t_{F}}}\right]^{2}+\left[\frac{M_{r r}}{M_{r r_{F}}}\right]^{2}+\left[\frac{\widehat{M}_{s s}}{M_{s s_{F}}}\right]^{2}+\left[\frac{\widehat{M}_{t t}}{M_{t t_{F}}}\right]^{2}-1=0} \\
& \widehat{M}_{s s}= \begin{cases}M_{\text {ss }}-N_{r t} t\left(1-t_{\text {true }}\right) & \text { for solid weld assemblies with TTOPT }=0 \\
\left.M_{s s}-N_{r t} t-t_{\text {true }}\right) & \text { otherwise }\end{cases} \\
& \widehat{M}_{t t}= \begin{cases}M_{t t}-N_{r s} t\left(1-t_{\text {true }}\right) & \text { for solid weld assemblies with TTOPT }=0 \\
M_{t t}-N_{r s}\left(t-t_{\text {true }}\right) & \text { otherwise }\end{cases}
\end{aligned}
\]

In the above, \(t\) is the element thickness and \(t_{\text {true }}\) is the TRUE_T parameter. For OPT = 1 (see below), the same modification is done to the moments that contribute to the normal stress, as shown below:
\[
\sigma_{r r}=\frac{N_{r r}}{A}+\frac{\sqrt{\widehat{M}_{s s}^{2}+\widehat{M}_{t t}^{2}}}{Z}
\]
9. \(\quad\) TTOPT = 2. By default, failure is calculated using forces on the bottom surface of the weld as defined by nodes 1 to 4 of each element. Setting TTOPT \(=2\) causes the average of the forces on the bottom and top to be used so that failure is invariant. When TTOPT = 2 is used, the averaging causes the spurious moments or peak normal stress to cancel, so there is no need for a TRUE_T correction. Therefore, the best practice is to use TTOPT \(=2\) and TRUE_T \(=0.0\).
10. History Data Output Files. Spot weld force history data is written into the swforc ASCII file. In this database the resultant moments are not available, but they are in the binary time history database and in the ASCII elout file.
11. Material Histories. The probability of failure in solid or beam spotwelds can be estimated by retrieving the corresponding material histories for output to the d3plot database.
\begin{tabular}{|llll|}
\hline \hline & & \multicolumn{1}{c|}{\begin{tabular}{l}
*DEFINE_MATERIAL_HISTORIES Properties \\
Label
\end{tabular}} & \multicolumn{1}{c|}{ Attributes } \\
Description
\end{tabular}

These two labels are supported for all options (OPT and DMGOPT, including assemblies and beams), except for user defined failure. The instability measure is the maximum over time; namely, it gives the maximum value for a given element throughout the simulation. If a damage option is invoked, then damage will initiate and increment when the instability reaches unity, and elements are not deleted until the damage value reaches unity. If no damage option is
invoked, then the damage output is always zero and elements will be deleted at the point when the instability measure reaches unity

\section*{OPT = -1 or 0}

OPT \(=0\) and OPT = -1 invoke a resultant-based failure criterion that fails the weld if the resultants are outside of the failure surface defined by:
\[
\left[\frac{\max \left(N_{r r}, 0\right)}{N_{r r_{F}}}\right]^{2}+\left[\frac{N_{r s}}{N_{r s_{F}}}\right]^{2}+\left[\frac{N_{r t}}{N_{r t_{F}}}\right]^{2}+\left[\frac{M_{r r}}{M_{r r_{F}}}\right]^{2}+\left[\frac{M_{s s}}{M_{s s_{F}}}\right]^{2}+\left[\frac{M_{t t}}{M_{t t_{F}}}\right]^{2}-1=0
\]
where the numerators in the equation are the resultants calculated in the local coordinates of the cross section, and the denominators are the values specified in the input. If OPT \(=-\) 1 , the failure surface equation is evaluated, but element failure is suppressed. This allows easy identification of vulnerable spot welds when post-processing. Failure is likely to occur if \(\mathrm{FC}>1.0\).

Alternatively, a *DEFINE_FUNCTION could be used to define the Weld Failure for \(\mathrm{OPT}=0\). Then set FVAL \(=\) function ID. Such a function could look like this:
```

*DEFINE_FUNCTION
100
func(nrr,nrs,nrt,mrr,mss,mtt)=(nrr/5.0)*(nrr/5.0)

```

The six arguments for this function (\(\mathrm{nrr}, \ldots, \mathrm{mtt}\)) are the force and moment resultants during the computation.

\section*{OPT = 1 :}

OPT = 1 invokes a stress based failure model, which was developed by Toyota Motor Corporation and is based on the peak axial and transverse shear stresses. The weld fails if the stresses are outside of the failure surface defined by
\[
\left(\frac{\sigma_{r r}}{\sigma_{r r}^{F}}\right)^{2}+\left(\frac{\tau}{\tau^{F}}\right)^{2}-1=0
\]

If strain rates are considered, then the failure criteria becomes:
\[
\left[\frac{\sigma_{r r}}{\sigma_{r r}^{F}\left(\dot{\varepsilon}_{\text {eff }}\right)}\right]^{2}+\left[\frac{\tau}{\tau^{F}\left(\dot{\varepsilon}_{\text {eff }}\right)}\right]^{2}-1=0
\]
where \(\sigma_{r r}^{F}\left(\dot{\varepsilon}_{\text {eff }}\right)\) and \(\tau^{F}\left(\dot{\varepsilon}_{\text {eff }}\right)\) are defined by load curves (SIGAX and SIGTAU are less than zero). The peak stresses are calculated from the resultants using simple beam theory:
\[
\sigma_{r r}=\frac{N_{r r}}{A}+\frac{\sqrt{M_{s s}^{2}+M_{t t}^{2}}}{Z}
\]

Figure M100-1. A solid element used as spot weld is shown. When resultant based failure is used orientation is very important. Nodes n1-n4 attach to the lower shell mid-surface and nodes n5-n8 attach to the upper shell mid-surface. The resultant forces and moments are computed based on the assumption that the brick element is properly oriented.
\[
\tau=\frac{M_{r r}}{2 Z}+\frac{\sqrt{N_{r s}^{2}+N_{r t}^{2}}}{A}
\]
where the area and section modulus are given by:
\[
\begin{aligned}
& A=\pi \frac{d^{2}}{4} \\
& Z=\pi \frac{d^{3}}{32}
\end{aligned}
\]

In the above equations, \(d\) is the equivalent diameter of the beam element or solid element used as a spot weld.

\section*{OPT = 2}

OPT \(=2\) invokes a user-written subroutine uweldfail, documented in Appendix Q .

OPT = 12 or 22
\(\mathrm{OPT}=12\) and OPT=22 invoke similar user-written subroutines, uweldfail12 and uweldfail22, respectively. Both allow up to 22 failure parameters to be used rather than the 6 allowed with \(\mathrm{OPT}=2\). OPT \(=12\) also allows user control of weld damage.

\section*{OPT = 3}

OPT = 3 invokes a failure based on notch stress, see Zhang [1999]. Failure occurs when the failure criterion:
\[
\sigma_{k}-\sigma_{k F} \geq 0
\]
is satisfied. The notch stress is given by the equation:
\[
\sigma_{k}=\alpha_{1} \frac{4 F}{\pi d t}\left(1+\frac{\sqrt{3}+\sqrt{19}}{8 \sqrt{\pi}} \sqrt{\frac{t}{\rho}}\right)+\alpha_{2} \frac{6 M}{\pi d t^{2}}\left(1+\frac{2}{\sqrt{3 \pi}} \sqrt{\frac{t}{\rho}}\right)+\alpha_{3} \frac{4 F_{r r}}{\pi d^{2}}\left(1+\frac{5}{3 \sqrt{2 \pi}} \frac{d}{t} \sqrt{\frac{t}{\rho}}\right)
\]

Here,
\[
\begin{aligned}
F & =\sqrt{F_{r s}^{2}+F_{r t}^{2}} \\
M & =\sqrt{M_{s s}^{2}+M_{t t}^{2}}
\end{aligned}
\]
and the \(\alpha_{i}(i=1,2,3)\) are input corrections factors with default values of unity. If spot welds are between sheets of unequal thickness, the minimum thickness of the spot welded sheets may be introduced as a crude approximation.
\(\mathrm{OPT}=4\)
OPT = 4 invokes failure based on structural stress intensity, see Zhang [1999]. Failure occurs when the failure criterion:
\[
K_{\mathrm{eq}}-K_{\mathrm{eqF}} \geq 0
\]
is satisfied where
\[
K_{\mathrm{eq}}=\sqrt{K_{I}^{2}+K_{I I}^{2}}
\]
and
\[
\begin{aligned}
K_{I} & =\alpha_{1} \frac{\sqrt{3} F}{2 \pi d \sqrt{t}}+\alpha_{2} \frac{2 \sqrt{3} M}{\pi d t \sqrt{t}}+\alpha_{3} \frac{5 \sqrt{2} F_{r r}}{3 \pi d \sqrt{t}} \\
K_{I I} & =\alpha_{1} \frac{2 F}{\pi d \sqrt{t}}
\end{aligned}
\]

Here, \(F\) and \(M\) are as defined above for the notch stress formulas and again, \(\alpha_{i}(i=1,2,3)\) are input corrections factors with default values of unity. If spot welds are between sheets of unequal thickness, the minimum thickness of the spot welded sheets may be used as a crude approximation.

The maximum structural stress at the spot weld was utilized successfully for predicting the fatigue failure of spot welds, see Rupp, et. al. [1994] and Sheppard [1993]. The corresponding results from] Rupp, et. al. are listed below where it is assumed that they may be suitable for crash conditions.

\section*{\(O P T=5\)}

OPT = 5 invokes failure by
\[
\max \left(\sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3}\right)-\sigma_{s F}=0
\]
where \(\sigma_{s F}\) is the critical value of structural stress at failure. It is noted that the forces and moments in the equations below refer to the beam node 1, beam node 2, and the midpoint, respectively. The three stress values, \(\sigma_{v 1}, \sigma_{v 2}, \sigma_{v 3}\), are defined by:
\[
\sigma_{v 1}(\zeta)=\frac{F_{r s 1}}{\pi d t_{1}} \cos \zeta+\frac{F_{r t 1}}{\pi d t_{1}} \sin \zeta-\frac{1.046 \beta_{1} F_{r r 1}}{t_{1} \sqrt{t_{1}}}-\frac{1.123 M_{s s 1}}{d t_{1} \sqrt{t_{1}}} \sin \zeta+\frac{1.123 M_{t t 1}}{d t_{1} \sqrt{t_{1}}} \cos \zeta
\]
with
\[
\begin{gathered}
\beta_{1}= \begin{cases}0 & F_{r r 1} \leq 0 \\
1 & F_{r r 1}>0\end{cases} \\
\sigma_{v 2}(\zeta)=\frac{F_{r s 2}}{\pi d t_{2}} \cos \zeta+\frac{F_{r t 2}}{\pi d t_{2}} \sin \zeta-\frac{1.046 \beta_{1} F_{r r 2}}{t_{2} \sqrt{t_{2}}}+\frac{1.123 M_{s s 2}}{d t_{2} \sqrt{t_{2}}} \sin \zeta-\frac{1.123 M_{t t 2}}{d t_{2} \sqrt{t_{2}}} \cos \zeta
\end{gathered}
\]
with
\[
\begin{gathered}
\beta_{2}= \begin{cases}0 & F_{r r 2} \leq 0 \\
1 & F_{r r 2}>0\end{cases} \\
\sigma_{v 3}(\zeta)=0.5 \sigma(\zeta)+0.5 \sigma(\zeta) \cos (2 \alpha)+0.5 \tau(\zeta) \sin (2 \alpha)
\end{gathered}
\]
where
\[
\begin{aligned}
\sigma(\zeta) & =\frac{4 \beta_{3} F_{r r}}{\pi d^{2}}+\frac{32 M_{s s}}{\pi d^{3}} \sin \zeta-\frac{32 M_{t t}}{\pi d^{3}} \cos \zeta \\
\tau(\zeta) & =\frac{16 F_{r s}}{3 \pi d^{2}} \sin ^{2} \zeta+\frac{16 F_{r t}}{3 \pi d^{2}} \cos ^{2} \zeta \\
\alpha & =\frac{1}{2} \tan ^{-1} \frac{2 \tau(\zeta)}{\sigma(\zeta)} \\
\beta_{3} & = \begin{cases}0 & F_{r r} \leq 0 \\
1 & F_{r r}>0\end{cases}
\end{aligned}
\]

The stresses are calculated for all directions, \(0^{\circ} \leq \zeta \leq 90^{\circ}\), in order to find the maximum.
\(O P T=10\)
OPT = 10 invokes the failure criterion developed by Lee and Balur (2011). It is available for welds modeled by beam elements, solid elements, or solid assemblies. A detailed discussion of the criterion is given in the user's manual section for *DEFINE_SPOTWELD_FAILURE.

\section*{\(O P T=11\)}

OPT = 11 invokes a resultant force based failure criterion for beams. With corresponding load curves or tables LCT and LCC, resultant force at failure \(F_{\text {fail }}\) can be defined as function of loading direction \(\gamma\) (curve) or loading direction \(\gamma\) and effective strain rate \(\dot{\varepsilon}\) (table):
\[
F_{\text {fail }}=f(\gamma) \quad \text { or } \quad F_{\text {fail }}=f(\gamma, \dot{\varepsilon})
\]
with the following definitions for loading direction (in degree) and effective strain rate:
\[
\gamma=\tan ^{-1}\left(\left|\frac{F_{\text {shear }}}{F_{\text {axial }}}\right|\right), \quad \dot{\varepsilon}=\left[\frac{2}{3}\left(\dot{\varepsilon}_{\text {axial }}^{2}+\varepsilon_{\text {shear }}^{2}\right)\right]^{1 / 2}
\]

It depends on the sign of the axial beam force, if LCT or LCC are used for failure condition:
\[
\begin{array}{llll}
F_{\text {axial }}>0: & {\left[F_{\text {axial }}^{2}+F_{\text {shear }}^{2}\right]^{1 / 2}>\mathrm{F}_{\text {fail,LCT }} \rightarrow} & \text { failure } \\
F_{\text {axial }}<0: & {\left[F_{\text {axial }}^{2}+F_{\text {shear }}^{2}\right]^{1 / 2}>\mathrm{F}_{\text {fail,LCC }} \rightarrow} & \rightarrow \text { failure }
\end{array}
\]

\section*{*MAT_SPOTWELD_DAIMLERCHRYSLER_\{OPTION\}}

This is Material Type 100. The material model applies only to solid element type l. If hourglass type 4 is specified, then hourglass type 4 will be used; otherwise, hourglass type 6 will be automatically assigned. Hourglass type 6 is preferred.

Spot weld elements may be placed between any two deformable shell surfaces and tied with constraint contact, *CONTACT_TIED_SURFACE_TO_SURFACE, which eliminates the need to have adjacent nodes at spot weld locations. Spot weld failure is modeled using this card and *DEFINE_CONNECTION_PROPERTIES data. Details of the failure model can be found in Seeger, Feucht, Frank, Haufe, and Keding [2005].

NOTE: It is advisable to include all spot welds, which provide the tracked nodes, and spot welded materials, which define the reference segments, within a single *CONTACT_TIED_SURFACE_TO_SURFACE interface. This contact type uses constraint equations. If multiple interfaces are treated independently, significant problems can occur if such interfaces share common nodes. An added benefit is that memory usage can be substantially less with a single interface.

Available options include:
<BLANK>
UNIAXIAL
The UNIAXIAL keyword option causes the transverse stresses and transverse strains to be zero for solid spot welds. The older uniaxial method, invoked with \(\mathrm{E}<0.0\) on Card 1, assumed only the transverse stresses are zero. Compared to the older method, the UNIAXIAL keyword option increases the stability of the solver. See Remark 1 for more details.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & & DT & TFAIL \\
Type & A & F & F & F & & & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EFAIL & & & & & & & NF \\
Type & F & & & & & & & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RS & ASFF & & TRUE_T & CON_ID & RFILTF & JTOL & DMGOPT \\
Type & F & I & & F & F & F & F & F \\
\hline
\end{tabular}

Damage Option Card. LS-DYNA reads this optional card only if DMGOPT \(=-1\) on Card 3.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & TTOPT & & & & \\
Type & & & & 1 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus.
LT.O.O: \(|\mathrm{E}|\) is the Young's modulus. \(\mathrm{E}<0\) invokes uniaxial stress for solid spot welds with the transverse stresses assumed to be zero. See Remark 1. This is for when the keyword option is unset (<BLANK>) only.

PR Poisson's ratio
DT Time step size for mass scaling, \(\Delta t\)
TFAIL Failure time if nonzero. If zero, this option is ignored.
EFAIL Effective plastic strain in weld material at failure. See Remark 2.

\section*{VARIABLE}

NF

ASFF

TRUE_T

Weld assembly simultaneous failure flag (see Remark 3):
EQ.O: Damaged elements fail individually.
EQ.1: Damaged elements fail when first reaches failure criterion.
True weld thickness for single hexahedron solid weld elements. Note that the behavior of TRUE_T depends on TTOPT. See Remark 8 on *MAT_SPOTWELD.

NOTE: We do not recommend using TRUE_T. Instead, we recommend using TTOPT \(=2\) and leaving TRUE_T \(=0.0\). In many cases, TTOPT = 2 does a better job of removing the spurious moments. See Remark 9 on *MAT_SPOTWELD.

CON_ID Connection ID of *DEFINE_CONNECTION card. A negative CON_ID deactivates failure; see Remark 5.

RFILTF Smoothing factor on the effective strain rate (default is 0.0), potentially used in table DSIGY < 0 and in functions for PRUL.ge. 2 (see *DEFINE_CONNECTION_PROPERTIES).
\[
\dot{\varepsilon}_{n}^{\mathrm{avg}}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\mathrm{avg}}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
\]

JTOL Tolerance value for relative volume change (default: JTOL \(=0.01\)). Solid element spot welds with a Jacobian less than JTOL will be eroded.

DMGOPT Damage option flag:
EQ.-1: Flag to include Card 3.1 for additional damage fields.

VARIABLE
TTOPT

\section*{DESCRIPTION}

Options for TRUE_T / weld failure behavior:
EQ.0: TRUE_T behavior of version R9 and later (see Remark 8 on *MAT_SPOTWELD)

EQ.1: TRUE_T behavior of version R8 and earlier (see Remark 8 on *MAT_SPOTWELD)

EQ.2: Weld failure is invariant with respect to the node numbering of weld elements. For this case, there is no need for the TRUE_T correction. We recommend using this option with TRUE_T set to 0.0. See Remark 9 on *MAT_SPOTWELD.

\section*{Remarks:}
1. Loading solid welds uniaxially. We have implemented two methods of loading solid and solid weld assemblies uniaxially. The older method is invoked by defining the elastic modulus, \(E\), as a negative number where the absolute value of \(E\) is the desired value for \(E\). This uniaxial option causes the two transverse stress terms to be assumed to be zero throughout the calculation. This assumption eliminates parasitic transverse stress that causes slow growth of plastic strainbased damage.

The other method is invoked by setting OPTION to UNIAXIAL. This method is preferred. It causes the two transverse stress terms and the two transverse strains terms to be set to zero. It was added because we found that the older method sometimes induced spurious oscillations in the axial force, leading to premature failure.

The motivation for the uniaxial options can be explained with a weld loaded in tension. Due to Poisson's effect, an element in tension would be expected to contract in the transverse directions. However, because the weld nodes are constrained to the mid-plane of shell elements, such contraction is only possible to the degree that the shell element contracts. In other words, the uniaxial stress state cannot be represented by the weld. For plastic strain-based damage, this effect can be particularly apparent as it causes tensile stress to continue to grow very large as the stress state becomes very nearly triaxial tension. In this stress state, plastic strain grows very slowly so it appears that damage calculation is failing to knock down the stress. By simply assuming that the transverse stresses are zero, the plastic strain grows as expected and damage is much more effective
2. Connection properties. This weld material is modeled with isotropic hardening plasticity. The yield stress and constant hardening modulus are assumed to
be those of the welded shell elements as defined in a *DEFINE_CONNECTION_PROPERTIES table. *DEFINE_CONNECTION_PROPERTIES data also define a failure function and the damage type. The interpretation of EFAIL and RS is determined by the choice of damage type. This is discussed in Remark 4 on *DEFINE_CONNECTION_PROPERTIES.
3. Weld assembly failure. For weld elements in an assembly (see RPBHX on *CONTROL_SPOTWELD_BEAM or *DEFINE_HEX_SPOTWELD_ASSEMBLY), the failure criterion is evaluated using the assembly cross section. If damage is not active, all elements will be deleted when the failure criterion is met. If damage is active, then damage is calculated independently in each element of the assembly. By default, elements of the assembly are deleted as damage in each element is complete. If \(\mathrm{ASFF}=1\), then failure and deletion of all elements in the assembly will occur simultaneously when damage is complete in any one of the elements.
4. Output. Solid element force resultants for *MAT_SPOTWEL_DAIMLERCHRYSLER are written to the spot weld force file, swforc, and the file for element stresses and resultants for designated elements, ELOUT. Also, spot weld failure data is written to the file, dcfail.
5. Deactivating weld failure. An option to deactivate weld failure is switched on by setting CON_ID to a negative value where the absolute value of CON_ID becomes the connection ID. When weld failure is deactivated, the failure function is evaluated and output to swforc and dcfail, but the weld retains its full strength.

\section*{*MAT_GEPLASTIC_SRATE_2000a}

This is Material Type 101. The GEPLASTIC_SRATE_2000a material model characterizes General Electric's commercially available engineering thermoplastics subjected to high strain rate events. This material model features the variation of yield stress as a function of strain rate, cavitation effects of rubber modified materials, and automatic element deletion of either ductile or brittle materials.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & RATESF & EDOT0 & ALPHA & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSS & LCFEPS & LCFSIG & LCE & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

RO Mass density
E Young's Modulus
PR Poisson's ratio
RATESF Constant in plastic strain rate equation
EDOT0 Reference strain rate
ALPHA Pressure sensitivity factor
LCSS Load curve ID or table ID that defines the post yield material behavior. The values of this stress-strain curve are the difference of the yield stress and strain, respectively. This means the first values for both stress and strain should be zero. All subsequent values will define softening or hardening.

\section*{VARIABLE}

LCFEPS

LCFSIG Load curve ID that defines the maximum principal failure stress as a function of strain rate

LCE Load curve ID that defines the unloading moduli as a function of plastic strain

\section*{Remarks:}

The constitutive model for this approach is:
\[
\dot{\varepsilon}_{p}=\dot{\varepsilon}_{0} \exp \left\{A\left[\sigma-S\left(\varepsilon_{p}\right)\right]\right\} \times \exp (-p \alpha A)
\]
where \(\dot{\varepsilon}_{0}\) and \(A\) are rate dependent yield stress parameters, \(S\left(\varepsilon_{p}\right)\) is the internal resistance (strain hardening), and \(\alpha\) is a pressure dependence parameter.

In this material the yield stress may vary throughout the finite element model as a function of strain rate and hydrostatic stress. Post yield stress behavior is captured in material softening and hardening values. Finally, ductile or brittle failure measured by plastic strain or maximum principal stress, respectively, is accounted for by automatic element deletion.

Although this may be applied to a variety of engineering thermoplastics, GE Plastics have constants available for use in a wide range of commercially available grades of their engineering thermoplastics.

\section*{*MAT_INV_HYPERBOLIC_SIN_\{OPTION\}}

This is Material Type 102. It allows the modeling of temperature and rate-dependent plasticity, Sheppard and Wright [1979].

Available options include:
<BLANK>
THERMAL
such that the keyword card can appear as:
*MAT_INV_HYPERBOLIC_SIN or *MAT_102
*MAT_INV_HYPERBOLIC_SIN_THERMAL or *MAT_102_T

\section*{Card Summary:}

Card 1a. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & T & HC & VP & \\
\hline
\end{tabular}

Card 1b. This card is included if the THERMAL keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & ALPHA & N & A & Q & G & EPSO \\
\hline
\end{tabular}

Card 2a. This card is included if the keyword option is unset (<BLANK \(>\)).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA & \(N\) & \(A\) & \(Q\) & \(G\) & EPSO & LCQ & \\
\hline
\end{tabular}

Card 2b. This card is included if the THERMAL keyword option is used.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCE & LCPR & LCCTE & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}

Card 1 for no keyword option (<BLANK \(>\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & T & HC & VP & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 2 } MID & & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
RO & & Mass density \\
E & & Young's Modulus \\
PR & & Poisson's ratio \\
T & & Initial temperature \\
HC & & Heat generation coefficient \\
VP & Formulation for rate effects: \\
& EQ.0.0: Scale yield stress (default) \\
& EQ.1.0: Viscoplastic formulation
\end{tabular}

Card 1 for the THERMAL keyword option
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & ALPHA & N & A & Q & G & EPS0 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label must be specified (see *PART). \\
\hline RO & Mass density \\
\hline ALPHA & \(\alpha\). See Remark 1. This \(\alpha\) is not the coefficient of thermal expansion. \\
\hline N & See Remark 1. \\
\hline A & See Remark 1. \\
\hline Q & See Remark 1. \\
\hline G & See Remark 1. \\
\hline EPSO & Minimum strain rate considered in calculating Z \\
\hline
\end{tabular}

Card 2 for no keyword option (<BLANK>)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & N & A & Q & G & EPSO & LCQ & \\
Type & F & F & F & F & F & F & I & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline ALPHA & \(\alpha\). See Remark 1. This \(\alpha\) is not the coefficient of thermal expansion. \\
\hline N & See Remark 1. \\
\hline A & See Remark 1. \\
\hline Q & See Remark 1. \\
\hline G & See Remark 1. \\
\hline EPS0 & Minimum strain rate considered in calculating Z. \\
\hline LCQ & ID of curve specifying parameter \(Q\) : \\
\hline & GT.0: \(Q\) as function of plastic strain. \\
\hline & LT.O: \(Q\) as function of temperature. \\
\hline
\end{tabular}

Card 2 for the THERMAL keyword option
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCE & LCPR & LCCTE & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

LCPR ID of curve defining Poisson's ratio as a function of temperature

VARIABLE
LCCTE

\section*{DESCRIPTION}

ID of curve defining the coefficient of thermal expansion as a function of temperature

\section*{Remarks:}
1. Material description. Resistance to deformation is both temperature and strain rate dependent. The flow stress equation is:
\[
\sigma=\frac{1}{\alpha} \sinh ^{-1}\left[\left(\frac{Z}{A}\right)^{\frac{1}{N}}\right]
\]
where \(Z\), the Zener-Holloman temperature compensated strain rate, is:
\[
\mathrm{Z}=\max (\dot{\varepsilon}, \mathrm{EPS} 0) \times \exp \left(\frac{Q}{\mathrm{GT}}\right)
\]

The units of the material constitutive constants are as follows: \(A(1 / \mathrm{sec}), N\) (dimensionless), \(\alpha(1 / \mathrm{MPa})\), the activation energy for flow, \(Q(\mathrm{~J} / \mathrm{mol})\), and the universal gas constant, \(G(\mathrm{~J} / \mathrm{mol} \mathrm{K})\). The value of \(G\) only varies with the unit system chosen. Typically, it is either \(8.3144 \mathrm{~J} /(\mathrm{mol} \mathrm{K})\), or \(40.8825 \mathrm{lb} \mathrm{in} /(\mathrm{mol} \mathrm{R})\).

The final equation necessary to complete our description of high strain rate deformation is one that enables computing the temperature change during the deformation. In the absence of a coupled thermo-mechanical finite element code, we assume adiabatic temperature change and follow the empirical assumption that \(90-95 \%\) of the plastic work is dissipated as heat. Thus, the heat generation coefficient is
\[
\mathrm{HC} \approx \frac{0.9}{\rho C_{v}}
\]
where \(\rho\) is the density of the material and \(C_{v}\) is the specific heat.
2. History variables. \(Z\) is output as history variable \#11 when using the THERMAL keyword option and as history variable \#8 when not using the THERMAL keyword option. See NEIPH and NEIPS on *DATABASE_EXTENT_BINARY to set the number of extra history variables output to d3plot.

\section*{*MAT_ANISOTROPIC_VISCOPLASTIC}

This is Material Type 103. This anisotropic-viscoplastic material model applies to shell, thick shell, solid, and SPH elements. The material constants may be fit directly or, if desired, stress as a function of strain data may be input and a least squares fit will be performed by LS-DYNA to determine the constants. Kinematic, isotropic, or a combination of kinematic and isotropic hardening may be used. A detailed description of this model can be found in the following references: Berstad, Langseth, and Hopperstad [1994]; Hopperstad and Remseth [1995]; and Berstad [1996]. Failure is based on effective plastic strain or by a user defined subroutine.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & FLAG & LCSS & ALPHA \\
\hline
\end{tabular}

Card 2. This card is required
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QR1 & CR1 & QR2 & CR2 & QX1 & CX1 & QX2 & CX2 \\
\hline
\end{tabular}

Card 3a. Include this card for shell elements and thick shell formulations 1, 2, and 6.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline VK & VM & R00 & R45 & R90 & & & \\
\hline
\end{tabular}

Card 3b. Include this card for solid elements, SPH elements, and thick shell formulations 3,5 , and 7 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline VK & VM & F & G & \(H\) & \(L\) & \(M\) & \(N\) \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & FAIL & NUMINT & MACF & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & SIGY & FLAG & LCSS & ALPHA \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Initial yield stress
FLAG Flag:
EQ.O: Give all material parameters
EQ.1: Material parameters \(Q_{r 1}, C_{r 1}, Q_{r 2}\), and \(C_{r 2}\) for pure isotropic hardening \((\alpha=1)\) are determined by a least squares fit to the curve or table specified by the variable LCSS. If \(\alpha\) is input as less than \(1, Q_{r 1}\) and \(Q_{r 2}\) are then modified by multiplying them by the factor \(\alpha\), while the factors \(Q_{x 1}\) and \(Q_{x 2}\) are taken as the product of the factor \((1-\alpha)\) and the original parameters \(Q_{r 1}\) and \(Q_{r 2}\), respectively, for pure isotropic hardening. \(C_{x 1}\) is set equal to \(C_{r 1}\) and \(C_{x 2}\) is set equal to \(C_{r 2}\). \(\alpha\) is input as variable ALPHA on Card 1 .
EQ.2: Use load curve directly, that is, no fitting is required for the parameters \(Q_{r 1}, C_{r 1}, Q_{r 2}\), and \(C_{r 2}\). A table is not allowed and only isotropic hardening is implemented.
EQ.4: Use table definition directly. No fitting is required and the values for \(Q_{r 1}, C_{r 1}, Q_{r 2}, C_{r 2}, V_{k}\), and \(V_{m}\) are ignored. Only isotropic hardening is implemented, and this option is only available for solids.

LCSS
Load curve ID or Table ID. Card 2 is ignored with this option.

Load Curve ID. The load curve ID defines effective stress as a

\section*{VARIABLE}

ALPHA

\section*{DESCRIPTION}
function of effective plastic strain. For this load curve case, viscoplasticity is modeled when the coefficients \(V_{k}\) and \(V_{m}\) are provided.

Table ID. The table consists of stress as a function of effective plastic strain curves indexed by strain rate. See Figure M24-1.

FLAG.EQ.1: Table is used to calculate the coefficients \(V_{k}\) and \(V_{m}\).
FLAG.EQ.4: Table is interpolated and used directly. This option is available only for solid elements.
\(\alpha\) distribution of hardening used in the curve-fitting. \(\alpha=0\) is pure kinematic hardening while \(\alpha=1\) provides pure isotropic hardening.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & QR1 & CR1 & QR2 & CR2 & QX1 & CX1 & QX2 & CX2 \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

QR1

QX2
CX2

CR1 Isotropic hardening parameter \(C_{r 1}\)
QR2 Isotropic hardening parameter \(Q_{r 2}\)
CR2 Isotropic hardening parameter \(C_{r 2}\)
QX1 Kinematic hardening parameter \(Q_{\chi 1}\)
CX1 \(\quad\) Kinematic hardening parameter \(C_{\chi 1}\)

\section*{DESCRIPTION}

Isotropic hardening parameter \(Q_{r 1}\)

Kinematic hardening parameter \(Q_{\chi 2}\)
Kinematic hardening parameter \(C_{\chi 2}\)

Shell Elements Card. This card is included for shell elements and thick shell formulations 1, 2, and 6 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VK & VM & R00 & R45 & R90 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{cll}
\cline { 1 - 1 } VARIABLE & & \multicolumn{1}{c}{ DESCRIPTI } \\
\cline { 1 - 1 } & & Viscous material parameter \(V_{k}\) \\
VM & & Viscous material parameter \(V_{m}\) \\
R00 & & \(R_{00}\) for shell (default \(\left.=1.0\right)\) \\
R45 & & \(R_{45}\) for shell (default \(\left.=1.0\right)\) \\
R90 & & \(R_{90}\) for shell (default \(\left.=1.0\right)\)
\end{tabular}

Solid Elements Card. This card is included for solid elements, SPH elements, and thick shell formulations 3,5 , and 7 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VK & VM & F & G & H & L & M & N \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

VK
VM \(\quad\) Viscous material parameter \(V_{m}\)
F \(\quad F\) in yield criteria (default \(=1 / 2\)); see Remarks
G \(\quad G\) in yield criteria (default \(=1 / 2\)); see Remarks
H \(\quad H\) in yield criteria (default \(=1 / 2\)); see Remarks
L \(\quad L\) in yield criteria (default \(=3 / 2\)); see Remarks
M \(\quad M\) in yield criteria (default \(=3 / 2\)); see Remarks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIAB & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline N & & \multicolumn{7}{|l|}{\(N\) in yield criteria (default \(=3 / 2\)); see Remarks} \\
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & FAlL & NUMINT & MACF & & & & \\
\hline Type & F & F & F & 1 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying

\section*{VARIABLE}

FAIL Failure flag:
LT.O.O: User defined failure subroutine is called to determine failure. This is subroutine named, MATUSR_103, in dyn21.f.

EQ.0.0: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

NUMINT Number of integration points which must fail before element deletion. If zero, all points must fail. This option applies to shell elements only. For the case of one point shells, NUMINT should be set to a value that is less than the number of through thickness integration points. Nonphysical stretching can sometimes appear in the results if all integration points have failed except for one point away from the midsurface because unconstrained nodal rotations will prevent strains from developing at the remaining integration point. In fully integrated shells, similar problems can occur.

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_-

\section*{VARIABLE}

\section*{DESCRIPTION}

SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 6 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP
A1, A2, A3

\section*{DESCRIPTION}

Coordinates of point \(p\) for AOPT \(=1\) and 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4
Components of vector \(\mathbf{d}\) for AOPT \(=2\)
Material angle in degrees for AOPT \(=0\) (shells and thick shells only) and AOPT \(=3\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, and *ELEMENT_SOLID_ORTHO.

\section*{Remarks:}

The uniaxial stress-strain curve is given on the following form
\[
\begin{aligned}
\sigma\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)= & \sigma_{0}+Q_{r 1}\left[\left(1-\exp \left(-C_{r 1} \varepsilon_{\mathrm{eff}}^{p}\right)\right)\right]+Q_{r 2}\left[1-\exp \left(-C_{r 2} \varepsilon_{\mathrm{eff}}^{p}\right)\right] \\
& +Q_{\chi 1}\left[\left(1-\exp \left(-C_{\chi 1} \varepsilon_{\mathrm{eff}}^{p}\right)\right)\right]+Q_{\chi 2}\left[\left(1-\exp \left(-C_{\chi 2} \varepsilon_{\mathrm{eff}}^{p}\right)\right)\right]+V_{k} \dot{\varepsilon}_{\mathrm{eff}}^{p} V_{m}
\end{aligned}
\]

For solids the following yield criteria is used
\[
\begin{aligned}
F\left(\sigma_{22}-\sigma_{33}\right)^{2} & +G\left(\sigma_{33}-\sigma_{11}\right)^{2}+H\left(\sigma_{11}-\sigma_{22}\right)^{2}+2 L \sigma_{23}^{2}+2 M \sigma_{31}^{2}+2 N \sigma_{12}^{2} \\
& =\left[\sigma\left(\varepsilon_{\mathrm{eff}}^{p}, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)\right]^{2}
\end{aligned}
\]
where \(\varepsilon_{\text {eff }}^{p}\) is the effective plastic strain and \(\dot{\varepsilon}_{\text {eff }}^{p}\) is the effective plastic strain rate. For shells the anisotropic behavior is given by \(R_{00}, R_{45}\) and \(R_{90}\). The model will work when the three first parameters in Card 3 are given values. When \(V_{k}=0\), the material will behave elasto-plastically. Default values are given by:
\[
\begin{gathered}
F=G=H=\frac{1}{2} \\
L=M=N=\frac{3}{2} \\
R_{00}=R_{45}=R_{90}=1
\end{gathered}
\]

Strain rates are accounted for using the Cowper and Symonds model which scales the yield stress with the factor:
\[
1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p}
\]

To convert these constants set the viscoelastic constants, \(V_{k}\) and \(V_{m}\), to the following values:
\[
\begin{aligned}
V_{k} & =\operatorname{SIGY}\left(\frac{1}{C}\right)^{\frac{1}{p}} \\
V_{m} & =\frac{1}{p}
\end{aligned}
\]

If LCSS is nonzero, substitute the initial, quasi-static yield stress for SIGY in the equation for \(V_{k}\) above.

This model properly treats rate effects. The viscoplastic rate formulation is an option in other plasticity models in LS-DYNA, such as *MAT_003 and *MAT_024, invoked by setting the parameter VP to 1.

\section*{*MAT_ANISOTROPIC_PLASTIC}

This is Material Type 103_P. This anisotropic-plastic material model is a simplified version of the MAT_ANISOTROPIC_VISCOPLASTIC above. This material model applies only to shell elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & LCSS & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & QR1 & CR1 & QR2 & CR2 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R00 & R45 & R90 & S11 & S22 & S33 & S12 & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E
PR
SIGY
LCSS

QR1
CR1
QR2
CR2
R00
R45
R90
S11

S22

S33

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus
Poisson's ratio
Initial yield stress
Load curve ID. The load curve ID defines effective stress as a function of effective plastic strain. Card 2 is ignored with this option.

Isotropic hardening parameter \(Q_{r 1}\)
Isotropic hardening parameter \(C_{r 1}\)
Isotropic hardening parameter \(Q_{r 2}\)
Isotropic hardening parameter \(C_{r 2}\)
\(R_{00}\) for anisotropic hardening
\(R_{45}\) for anisotropic hardening
\(R_{90}\) for anisotropic hardening
Yield stress in local \(x\)-direction. This input is ignored if (\(R_{00}, R_{45}, R_{90}\)) \(>0\).

Yield stress in local \(y\)-direction. This input is ignored if \(\left(R_{00}, R_{45}, R_{90}\right)>0\).

Yield stress in local z-direction. This input is ignored if \(\left(R_{00}, R_{45}, R_{90}\right)>0\).

\section*{VARIABLE}

S12

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector v with the element normal.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.

XP, YP, ZP \(\quad x_{p}, y_{p}, z_{p}\) define coordinates of point \(\mathbf{p}\) for AOPT \(=1\) and 4.
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad a_{1}, a_{2}, a_{3}\) define components of vector a for \(\mathrm{AOPT}=2\).
D1, D2, D3 \(\quad d_{1}, d_{2}, d_{3}\) define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).
\(\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3 \quad v_{1}, v_{2}, v_{3}\) define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4.
BETA Material angle in degrees for AOPT \(=0\) and 3, may be overridden on the element card, see *ELEMENT_SHELL_BETA.

\section*{Remarks:}

If no load curve is defined for the effective stress versus effective plastic strain, the uniaxial stress-strain curve is given on the following form
\[
\sigma\left(\varepsilon_{\mathrm{eff}}^{p}\right)=\sigma_{0}+Q_{r 1}\left[1-\exp \left(-C_{r 1} \varepsilon_{\mathrm{eff}}^{p}\right)\right]+Q_{r 2}\left[1-\exp \left(-C_{r 2} \varepsilon_{\mathrm{eff}}^{p}\right)\right]
\]
where \(\varepsilon_{\text {eff }}^{p}\) is the effective plastic strain. For shells the anisotropic behavior is given by \(R_{00}, R_{45}\) and \(R_{90}\), or the yield stress in the different direction. Default values are given by:
\[
R_{00}=R_{45}=R_{90}=1
\]
if the variables R00, R45, R90, S11, S22, S33 and S12 are set to zero.

\section*{*MAT_DAMAGE_1}

This is Material Type 104. This is a continuum damage mechanics (CDM) model which includes anisotropy and viscoplasticity. The CDM model applies to shell, thick shell, and solid elements. A more detailed description of this model can be found in the paper by Berstad, Hopperstad, Lademo, and Malo [1999]. This material model can also model anisotropic damage behavior by setting FLAG to -1 in Card 2.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline MID & RO & E & PR & SIGY & LCSS & LCDS & \\
\hline
\end{tabular}

Card 2a. This card is included if FLAG = -1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Q1 & C1 & Q2 & C2 & EPSD & EPSR & & FLAG \\
\hline
\end{tabular}

Card \(\mathbf{2 b}\). This card is included if FLAG \(\geq 0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Q1 & C1 & Q2 & C2 & EPSD & S & DC & FLAG \\
\hline
\end{tabular}

Card 3a. This card is included if the element type is shells or thick shells.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline VK & VM & R00 & R45 & R90 & & & \\
\hline
\end{tabular}

Card 3 b . The is card is included if the element type is solids.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(V K\) & VM & F & G & H & L & M & N \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & & CPH & MACF & YO & ALPHA & THETA & ETA \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & \(Y P\) & \(Z P\) & \(A 1\) & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & LCSS & LCDS & \\
Type & A & F & F & F & F & I & I & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Initial yield stress, \(\sigma_{0}\)
LCSS Load curve ID defining effective stress as a function of effective plastic strain. Isotropic hardening parameters on Card 2 are ignored with this option.

LCDS Load curve ID defining nonlinear damage curve for FLAG \(=-1\).
Anisotropic Damage Card. This card is included if FLAG = -1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Q1 & C1 & Q2 & C2 & EPSD & EPSR & & FLAG \\
Type & F & F & F & F & F & F & & F \\
\hline
\end{tabular}

VARIABLE
Q1
C1 Isotropic hardening parameter \(C_{1}\)
Q2 Isotropic hardening parameter \(Q_{2}\)
C2 Isotropic hardening parameter \(C_{2}\)

\section*{VARIABLE}

EPSD

EPSR
FLAG

\section*{DESCRIPTION}

Damage threshold \(\varepsilon_{\text {eff,d }}^{p}\). Damage effective plastic strain when material softening begins (default \(=0.0\)).

Effective plastic strain at which material ruptures (logarithmic).
Damage type flag:
EQ.-1: Anisotropic damage check (only for shell elements)
EQ.0: Standard isotropic damage (default)
EQ.1: Standard isotropic damage plus strain localization check (only for shell elements)

EQ.10: Enhanced isotropic damage
EQ.11: Enhanced isotropic damage plus strain localization check (only for shell elements)

Isotropic Damage Only Card. This card is included if FLAG \(\geq 0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Q1 & C1 & Q2 & C2 & EPSD & S & DC & FLAG \\
\hline Type & F & F & F & F & F & F & F & F \\
\hline \multicolumn{2}{|l|}{VARIABLE} & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline \multicolumn{2}{|l|}{Q1} & \multicolumn{7}{|l|}{Isotropic hardening parameter \(Q_{1}\)} \\
\hline \multicolumn{2}{|l|}{C1} & \multicolumn{7}{|l|}{Isotropic hardening parameter \(C_{1}\)} \\
\hline \multicolumn{2}{|l|}{Q2} & \multicolumn{7}{|l|}{Isotropic hardening parameter \(Q_{2}\)} \\
\hline \multicolumn{2}{|l|}{C2} & \multicolumn{7}{|l|}{Isotropic hardening parameter \(C_{2}\)} \\
\hline \multicolumn{2}{|l|}{EPSD} & \multicolumn{7}{|l|}{Damage threshold \(\varepsilon_{\text {eff,d }}^{p}\). Damage effective plastic strain when ma terial softening begins (default \(=0.0\)) .} \\
\hline \multicolumn{2}{|l|}{S} & \multicolumn{7}{|l|}{Damage material constant \(S\left(\right.\) default \(\left.=\frac{\sigma_{0}}{200}\right)\)} \\
\hline \multicolumn{2}{|l|}{DC} & \multicolumn{7}{|l|}{Critical damage value \(D_{C}\) (default \(=0.5\)). When the damage value, \(D\), reaches this value, the element is deleted from the calculation.} \\
\hline
\end{tabular}

\section*{VARIABLE}

DESCRIPTION
FLAG
Damage type flag:
EQ.-1: Anisotropic damage check (only for shell elements)
EQ.O: Standard isotropic damage (default)
EQ.1: Standard isotropic damage plus strain localization check (only for shell elements)
EQ.10: Enhanced isotropic damage
EQ.11: Enhanced isotropic damage plus strain localization check (only for shell elements)

Shell Element Material Parameters Card. This card is included for shell or thick shell elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VK & VM & R00 & R45 & R90 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

VK
VM Viscous material parameter, \(V_{m}\)
R00 \(\quad R_{00}\) for shell (default \(\left.=1.0\right)\)
R45 \(\quad R_{45}\) for shell (default \(\left.=1.0\right)\)
R90
\(R_{90}\) for shell (default \(=1.0\))

Brick Element Material Parameters Card. This card is included for solid elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & VK & VM & F & G & H & L & M & N \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIAB & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline VK & & \multicolumn{7}{|l|}{Viscous material parameter, \(V_{k}\)} \\
\hline VM & & \multicolumn{7}{|l|}{Viscous material parameter, \(V_{m}\)} \\
\hline F & & \multicolumn{7}{|l|}{\(F\) for solid (default \(=1 / 2\))} \\
\hline G & & \multicolumn{7}{|l|}{\(G\) for solid \((\) default \(=1 / 2)\)} \\
\hline H & & \multicolumn{7}{|l|}{\(H\) for solid (default \(=1 / 2\))} \\
\hline L & & \multicolumn{7}{|l|}{\(L\) for solid (default \(=3 / 2\))} \\
\hline M & & \multicolumn{7}{|l|}{\(M\) for solid (default \(=3 / 2\))} \\
\hline N & & \multicolumn{7}{|l|}{\(N\) for solid (default \(=3 / 2\))} \\
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & CPH & MACF & YO & ALPHA & THETA & ETA \\
\hline Type & F & & F & I & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between

\section*{VARIABLE}

\section*{DESCRIPTION}
the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

CPH Microdefects closure parameter \(h\) for enhanced damage (\(F L A G \geq 10\)).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 6 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

\section*{VARIABLE}

Y0

\section*{DESCRIPTION}

Initial damage energy release rate, \(Y_{0}\), for enhanced damage (\(F L A G \geq 10\)).

ALPHA \(\quad\) Exponent \(\alpha\) for enhanced damage (FLAG \(\geq 10\))
THETA \(\quad\) Exponent \(\theta\) for enhanced damage (FLAG \(\geq 10\))
ETA \(\quad\) Exponent \(\eta\) for enhanced damage (FLAG \(\geq 10\))
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}
\(\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad\) Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
A1, A2, A3 Components of vector a for AOPT \(=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

D1, D2, D3
V1, V2, V3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
Material angle in degrees for \(\mathrm{AOPT}=0\) (shells only) and \(\mathrm{AOPT}=3\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, and *ELEMENT_SOLID_ORTHO.

\section*{Remarks:}
1. Standard isotropic damage model (FLAG =0 or 1). The Continuum Damage Mechanics (CDM) model is based on an approach proposed by Lemaitre [1992]. The effective stress \(\tilde{\sigma}\), which is the stress calculated over the section that effectively resist the forces, reads
\[
\tilde{\sigma}=\frac{\sigma}{1-D}
\]
where \(D\) is the damage variable. The evolution equation for the damage variable is defined as
\[
\dot{D}=\left\{\begin{array}{lll}
0 & \text { for } & \varepsilon_{\mathrm{eff}}^{p} \leq \varepsilon_{\mathrm{eff,d}}^{p} \\
\frac{Y}{S} \dot{\varepsilon}_{\mathrm{eff}}^{p} & \text { for } & \varepsilon_{\mathrm{eff}}^{p}>\varepsilon_{\mathrm{eff}, \mathrm{~d}}^{p}
\end{array} \text { and } \sigma_{1}>0\right.
\]
where \(\varepsilon_{\mathrm{eff}, \mathrm{d}}^{p}\) is the damage threshold, \(S\) is the so-called damage energy release rate, and \(\sigma_{1}\) is the maximum principal stress. The damage energy density release rate is
\[
Y=\frac{1}{2} \mathbf{e}_{\mathbf{e}}: \mathbf{C}: \mathbf{e}_{\mathbf{e}}=\frac{\sigma_{v m}^{2} R_{v}}{2 E(1-D)^{2}}
\]
where \(E\) is Young's modulus and \(\sigma_{v m}\) is the equivalent von Mises stress. The triaxiality function \(R_{v}\) is defined as
\[
R_{v}=\frac{2}{3}(1+v)+3(1-2 v)\left(\frac{\sigma_{H}}{\sigma_{v m}}\right)^{2}
\]
with Poisson's ratio \(v\) and hydrostatic stress \(\sigma_{H}\).
2. Enhanced isotropic damage model (FLAG = 10 or 11). A more sophisticated damage model that includes crack closure effects (reduced damage under compression) and more flexibility in stress state dependence and functional expressions is invoked by setting FLAG \(=10\) or 11 . The corresponding evolution equation for the damage variable is defined as
\[
\dot{D}=\left(\frac{2 \tau_{\max }}{\sigma_{v m}}\right)^{\eta}\left(\frac{Y-Y_{0}}{S}\right)^{\alpha}(1-D)^{1-\theta} \dot{\varepsilon}_{\mathrm{eff}}^{p}
\]
where \(\tau_{\max }\) is the maximum shear stress, \(Y_{0}\) is the initial damage energy release rate, and \(\eta, \alpha\), and \(\theta\) are additional material constants. \(\rangle\) are the Macauley brackets. The damage energy density release rate is
\[
Y=\frac{1+v}{2 E}\left(\sum_{i=1}^{3}\left(\left\langle\tilde{\sigma}_{i}\right\rangle^{2}+h\left\langle-\tilde{\sigma}_{i}\right\rangle^{2}\right)\right)-\frac{v}{2 E}\left(\left\langle\tilde{\sigma}_{H}\right\rangle^{2}+h\left\langle-\tilde{\sigma}_{H}\right\rangle^{2}\right)
\]
where \(\tilde{\sigma}_{i}\) are the principal effective stresses and \(h\) is the microdefects closure parameter that accounts for different damage behavior in tension and compression. A value of \(h \approx 0.2\) is typically observed in many experiments as stated in

Lemaitre [2000]. A parameter set of \(h=1, Y_{0}=0, \alpha=1, \theta=1\), and \(\eta=0\) should give the same results as the standard isotropic damage model (FLAG \(=0\) or 1) with \(\varepsilon_{\text {eff,d }}^{p}=0\) as long as \(\sigma_{1}>0\).
3. Strain localization check (FLAG =1 or 11). In order to add strain localization computation to the damage models above, parameter FLAG should be set to 1 (standard damage) or 11 (enhanced damage). An acoustic tensor-based bifurcation criterion is checked and history variable no. 4 is set to 1.0 if strain localization is indicated. This is only available for shell elements.
4. Anisotropic damage model (FLAG =-1). At each thickness integration points, an anisotropic damage law acts on the plane stress tensor in the directions of the principal total shell strains, \(\varepsilon_{1}\) and \(\varepsilon_{2}\), as follows:
\[
\begin{aligned}
& \sigma_{11}=\left[1-D_{1}\left(\varepsilon_{1}\right)\right] \sigma_{110} \\
& \sigma_{22}=\left[1-D_{2}\left(\varepsilon_{2}\right)\right] \sigma_{220} \\
& \sigma_{12}=\left[1-\frac{D_{1}+D_{2}}{2}\right] \sigma_{120}
\end{aligned}
\]

The transverse plate shear stresses in the principal strain directions are assumed to be damaged as follows:
\[
\begin{aligned}
& \sigma_{13}=\left(1-D_{1} / 2\right) \sigma_{130} \\
& \sigma_{23}=\left(1-D_{2} / 2\right) \sigma_{230}
\end{aligned}
\]

In the anisotropic damage formulation, \(D_{1}\left(\varepsilon_{1}\right)\) and \(D_{2}\left(\varepsilon_{2}\right)\) are anisotropic damage functions for the loading directions 1 and 2, respectively. Stresses \(\sigma_{110}, \sigma_{220}\), \(\sigma_{120}, \sigma_{130}\) and \(\sigma_{230}\) are stresses in the principal shell strain directions as calculated from the undamaged elastic-plastic material behavior. The strains \(\varepsilon_{1}\) and \(\varepsilon_{2}\) are the magnitude of the principal strains calculated upon reaching the damage thresholds. Damage can only develop for tensile stresses, and the damage functions \(D_{1}\left(\varepsilon_{1}\right)\) and \(D_{2}\left(\varepsilon_{2}\right)\) are identical to zero for negative strains \(\varepsilon_{1}\) and \(\varepsilon_{2}\). The principal strain directions are fixed within an integration point as soon as either principal strain exceeds the initial threshold strain in tension. A more detailed description of the damage evolution for this material model is given in the description of Material 81.
5. Anisotropic viscoplasticity. The uniaxial stress-strain curve is given in the following form
\[
\sigma\left(r, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)=\sigma_{0}+Q_{1}\left[1-\exp \left(-C_{1} r\right)\right]+Q_{2}\left[1-\exp \left(-C_{2} r\right)\right]+V_{k} \dot{\varepsilon}_{\mathrm{eff}}^{p} V_{m}
\]
where \(r\) is the damage accumulated plastic strain, which can be calculated by
\[
\dot{r}=\dot{\varepsilon}_{\mathrm{eff}}^{p}(1-D) .
\]

For bricks the following yield criterion associated with the Hill criterion is used
\[
\begin{aligned}
F\left(\tilde{\sigma}_{22}-\tilde{\sigma}_{33}\right)^{2}+G\left(\tilde{\sigma}_{33}-\tilde{\sigma}_{11}\right)^{2} & +H\left(\tilde{\sigma}_{11}-\tilde{\sigma}_{22}\right)^{2} \\
& +2 L \tilde{\sigma}_{23}^{2}+2 M \tilde{\sigma}_{31}^{2}+2 N \tilde{\sigma}_{12}^{2}=\sigma\left(r, \dot{\varepsilon}_{\mathrm{eff}}^{p}\right)
\end{aligned}
\]
where \(r\) is the damage effective viscoplastic strain and \(\dot{\varepsilon}_{\text {eff }}^{p}\) is the effective viscoplastic strain rate. For shells the anisotropic behavior is given by the R-values: \(R_{00}, R_{45}\), and \(R_{90}\). When \(V_{k}=0\), the material will behave as an elastoplastic material without rate effects. Default values for the anisotropic constants are given by:
\[
\begin{array}{r}
F=G=H=\frac{1}{2} \\
L=M=N=\frac{3}{2} \\
R_{00}=R_{45}=R_{90}=1
\end{array}
\]
so that isotropic behavior is obtained.
Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor:
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]

To convert these constants, set the viscoelastic constants, \(V_{k}\) and \(V_{m}\), to the following values:
\[
\begin{aligned}
V_{k} & =\sigma\left(\frac{1}{C}\right)^{\frac{1}{p}} \\
V_{m} & =\frac{1}{p}
\end{aligned}
\]

\section*{*MAT_DAMAGE_2}

This is Material Type 105. This is an elastic viscoplastic material model combined with continuum damage mechanics (CDM). This material model applies to shell, thick shell, and brick elements. The elastoplastic behavior is described in the description of material model 24. A more detailed description of the CDM model is given in the description of material model 104 above.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & ETAN & FAIL & TDEL \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline C & \(P\) & LCSS & LCSR & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPSD & S & DC & & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & \(10^{20}\) & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE \\ MID}

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Tangent modulus; ignored if LCSS \(>0\)
FAIL Failure flag:
EQ.0.0: Failure due to plastic strain is not considered.
GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL Minimum time step size for automatic element deletion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & & & & \\
Type & F & F & 1 & 1 & & & & \\
Default & 0.0 & 0.0 & 0 & 0 & & & & \\
\hline
\end{tabular}

VARIABLE
C
P Strain rate parameter, \(p\); see Remarks below.
LCSS Load curve ID or Table ID. Load curve ID defining effective stress as a function of effective plastic strain. If defined EPS1 - EPS8 and ES1-ES8 are ignored. The table ID defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate, See Figure M24-1. The stress as a function of effective plastic strain curve for the lowest value of strain rate is used if the strain rate falls below the minimum value.

\section*{VARIABLE}

LCSR

\section*{DESCRIPTION}

Likewise, the stress as a function of effective plastic strain curve for the highest value of strain rate is used if the strain rate exceeds the maximum value. The strain rate parameters, \(C\) and \(P\); the curve ID, LCSR; EPS1 - EPS8; and ES1 - ES8 are ignored if a Table ID is defined.

Load curve ID defining strain rate scaling effect on yield stress
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPSD & S & DC & & & & & \\
Type & F & F & F & & & & & \\
Default & 0.0 & \(\downarrow\) & 0.5 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

EPSD

\section*{DESCRIPTION}

Damage threshold, \(r_{d}\). Damage effective plastic strain when material softening begins.

S
Damage material constant \(S\). Default \(=\sigma_{0} / 200\).
DC \(\quad\) Critical damage value \(D_{C}\). When the damage value \(D\) reaches this value, the element is deleted from the calculation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
EPS1 - EPS8

\section*{DESCRIPTION}

Effective plastic strain values (optional if SIGY is defined). At least 2 points should be defined.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
ES1-ES8

\section*{DESCRIPTION}

Corresponding yield stress values to EPS1 - EPS8.

\section*{Remarks:}

By defining the tangent modulus (ETAN), the stress-strain behavior becomes a bilinear curve. Alternately, a curve similar to that shown in Figure M10-1 is expected to be defined by (EPS1, ES1) - (EPS8, ES8); however, an effective stress as a function of effective plastic strain curve ID (LCSS) may be input instead if eight points are insufficient. The cost is roughly the same for either approach. The most general approach is to use the table definition with table ID, LCSS, discussed below.

Three options to account for strain rate effects are possible.
1. Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate, \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\).
2. For complete generality a load curve (LCSR) to scale the yield stress may be input instead. In this curve the scale factor as a function of strain rate is defined.
3. If different stress as a function of strain curves can be provided for various strain rates, the option using the reference to a table (LCSS) can be used. Then the table input in *DEFINE_TABLE must be used; see Figure M24-1

A fully viscoplastic formulation is used in this model.

\section*{*MAT_ELASTIC_VISCOPLASTIC_THERMAL}

This is Material Type 106. This is an elastic viscoplastic material with thermal effects.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & SIGY & ALPHA & LCSS & FAlL \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & QR1 & CR1 & QR2 & CR2 & QX1 & CX1 & QX2 & CX2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCE & LCPR & LCSIGY & LCR & LCX & LCALPH \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCC & LCP & TREF & LCFAIL & NUSHIS & T1PHAS & T2PHAS & TOL \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

User History Card. Additional card only for NUHIS.gt.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FUSHI1 & FUSHI 2 & FUSHI 3 & FUSHI 4 & FUSHI 5 & FUSHI 6 & FUSHI 7 & FUSHI 8 \\
Type & I & I & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Initial yield stress
LCSS Load curve ID or Table ID. The load curve ID defines effective stress as a function of effective plastic strain. The table ID defines for each temperature value a load curve ID giving the stress as a function of effective plastic strain for that temperature (*DEFINE_TABLE) or it defines for each temperature value a table ID which defines for each strain rate a load curve ID giving the stress as a function of effective plastic strain (*DEFINE_TABLE_3D). The stress as a function of effective plastic strain curve for the lowest value of temperature or strain rate is used if the temperature or strain rate falls below the minimum value. Likewise, maximum values cannot be exceeded. See Remark 1.

FAIL Effective plastic failure strain for erosion
ALPHA Coefficient of thermal expansion
QR1 Isotropic hardening parameter, \(Q_{r 1}\)
CR1 Isotropic hardening parameter, \(C_{r 1}\)
QR2 Isotropic hardening parameter, \(Q_{r 2}\)
CR2 Isotropic hardening parameter, \(C_{r 2}\)
QX1 Kinematic hardening parameter, \(Q_{\chi 1}\)
CX1 Kinematic hardening parameter, \(C_{\chi 1}\)
QX2 Kinematic hardening parameter, \(Q_{\chi 2}\)
CX2 Kinematic hardening parameter, \(C_{\chi 2}\)
C Viscous material parameter, C
P Viscous material parameter, \(p\)

TREF

LCFAIL

NUHIS

T1PHAS

LCP Load curve for scaling the viscous material parameter P as a function of temperature

DESCRIPTION
Load curve defining Young's modulus as a function of temperature. E on Card 1 is ignored with this option.

Load curve defining Poisson's ratio as a function of temperature. PR on Card 1 is ignored with this option.

Load curve defining the initial yield stress as a function of temperature. SIGY on Card 1 is ignored with this option.

Load curve for scaling the isotropic hardening parameters QR1 and QR2 or the stress given by the load curve LCSS as a function of temperature

Load curve for scaling the kinematic hardening parameters QX1 and QX2 as a function of temperature

Load curve ID defining the instantaneous coefficient of thermal expansion as a function of temperature:
\[
d \varepsilon_{i j}^{\text {thermal }}=\alpha(T) d T \delta_{i j} .
\]

ALPHA on Card 1 is ignored with this option. If LCALPH is defined as the negative of the load curve ID, the curve is assumed to define the coefficient relative to a reference temperature, TREF below, such that the total thermal strain is given by
\[
\varepsilon_{i j}^{\text {thermal }}=\left[\alpha(T)\left(T-T_{\text {ref }}\right)-\alpha\left(T_{0}\right)\left(T_{0}-T_{\text {ref }}\right)\right] \delta_{i j} .
\]

Here, temperature \(T_{0}\) is the initial temperature.
Load curve for scaling the viscous material parameter \(C\) as a function of temperature. See Remark 1.

Reference temperature required if and only if LCALPH is given with a negative curve ID perature. FAIL on Card 1 is ignored with this option.

Number of additional user defined history variables. See Remarks 2 and 3.

Lower temperature limit for cooling rate evaluation. Cooling rate can be used as input for user defined variables.

\section*{VARIABLE}

T2PHAS

TOL

FUSH \(i\)

\section*{DESCRIPTION}

Upper temperature limit for cooling rate evaluation. Cooling rate can be used as input for user defined variables.

Optional tolerance for plasticity update. The default is \(10^{-6}\) for solid elements and \(10^{-3}\) for shells. This parameter overrides the default tolerance for all element types.

Function ID for user defined history variables. See Remarks 2 and 3.

\section*{Remarks:}
1. Viscous Effects. If LCSS is not given any value, the uniaxial stress-strain curve has the form:
\[
\begin{aligned}
\sigma\left(\varepsilon_{\mathrm{eff}}^{p}\right)=\sigma_{0} & +Q_{r 1}\left[1-\exp \left(-C_{r 1} \varepsilon_{\mathrm{eff}}^{p}\right)\right]+Q_{r 2}\left[1-\exp \left(-C_{r 2} \varepsilon_{\mathrm{eff}}^{p}\right)\right] \\
& +Q_{\chi 1}\left[1-\exp \left(-C_{\chi 1} \varepsilon_{\mathrm{eff}}^{p}\right)\right]+Q_{\chi 2}\left[1-\exp \left(-C_{\chi 2} \varepsilon_{\mathrm{eff}}^{p}\right)\right] .
\end{aligned}
\]

Viscous effects are accounted for using the Cowper and Symonds model, which scales the yield stress with the factor:
\[
1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p} .
\]
2. User-defined history data. The user can define up to eight additional history variables that are added to the list of history variables (see table in Remark 3). These values can for example be used to evaluate the hardness of the material.

The additional variables are to be given by respective *DEFINE_FUNCTION keywords as functions of the cooling rate between T2PHASE and T1PHASE, temperature, time, user-defined histories themselves, equivalent plastic strain, rate of the equivalent plastic strain, and the first six history variables (see table in Remark 3). A function declaration should, thus, look as follows:
```

*DEFINE_FUNCTION
1,user \overline{defined history 1}
uhist(trate,temp,time,usrhst1,usrhst2,...,usrhstn,epspl,
epsplrate,hist2,hist3,...,hist6) = ...

```
3. History Values. The most important history variables of this material model are listed in the following table. To be able to post-process that data, parameters NEIPS (shells) or NEIPH (solids) must be defined on *DATABASE_EXTENT_BINARY.
\begin{tabular}{|c|l|}
\hline History Variable \# & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Temperature \\
2 & Young's modulus \\
3 & Poisson's ratio \\
4 & Yield stress \\
5 & Isotropic scaling factor \\
6 & Kinematic scaling factor \\
9 & Effective plastic strain rate \\
\(10 \rightarrow 9+\) NUSHIS & User defined history variables \\
\hline
\end{tabular}

\section*{*MAT_MODIFIED_JOHNSON_COOK}

This is Material Type 107. Adiabatic heating is included in the material formulation. Material type 107 is not intended for use in a coupled thermal-mechanical analysis or in a mechanical analysis where temperature is prescribed using *LOAD_THERMAL.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & BETA & XS1 & CP & ALPHA \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline EODOT & TR & TM & T0 & FLAG1 & FLAG2 & & \\
\hline
\end{tabular}

Card 3a.1. This card is included if FLAG1 \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(A\) & \(B\) & \(N\) & \(C\) & \(M\) & & & \\
\hline
\end{tabular}

Card 3a.2. This card is included if FLAG1 \(=0\).
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline Q1 & C1 & Q2 & C2 & & & & \\
\hline
\end{tabular}

Card 3b.1. This card is included if FLAG1 \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIGA & B & BETA0 & BETA1 & & & & \\
\hline
\end{tabular}

Card 3b.2. This card is included if FLAG1 \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & N & ALPHAO & ALPHA1 & & & & \\
\hline
\end{tabular}

Card 4a. This card is included if FLAG2 \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DC & PD & D1 & D2 & D3 & D4 & D5 & \\
\hline
\end{tabular}

Card 4 b. This card is included if FLAG2 \(=1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DC & WC & PHI & GAMMA & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TC & TAUC & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & BETA & XS1 & CP & ALPHA \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density

E

PR Poisson's ratio, \(v\)
BETA Damage coupling parameter; see Equation (107.3).
EQ.O.0: No coupling between ductile damage and the constitutive relation

EQ.1.0: Full coupling between ductile damage and the constitutive relation

XS1
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EODOT & TR & TM & T0 & FLAG1 & FLAG2 & & \\
Type & F & F & F & F & I & 1 & & \\
\hline
\end{tabular}

CP \(\quad\) Specific heat \(C_{p}\); see Equation (107.21).
ALPHA Thermal expansion coefficient, \(\alpha\)
Taylor-Quinney coefficient \(\chi\), see Equation (107.21). Gives the portion of plastic work converted into heat (normally taken to be 0.9)

\section*{VARIABLE}

E0DOT

\section*{DESCRIPTION}

Quasi-static threshold strain rate \(\left(\dot{\varepsilon}_{0}=\dot{p}_{0}=\dot{r}_{0}\right)\); see Equation (107.12). See description for EPS0 in *MAT_015.

\section*{VARIABLE}

TR
TM
T0
FLAG1

FLAG2

\section*{DESCRIPTION}

Room temperature, see Equation (107.13)
Melt temperature, see Equation (107.13)
Initial temperature
Constitutive relation flag:
EQ.O: Modified Johnson-Cook constitutive relation; see Equation (107.11).

EQ.1: Zerilli-Armstrong constitutive relation, see Equation (107.14).

Fracture criterion flag:
EQ.O: Modified Johnson-Cook fracture criterion; see Equation (107.15).

EQ.1: Cockcroft-Latham fracture criterion; see Equation (107.19).

Modified Johnson-Cook Constitutive Relation. This card is included when FLAG1 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & N & C & M & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

A
B
N
C Johnson-Cook strain rate sensitivity parameter C; see Equation (107.11).

M Johnson-Cook thermal softening parameter m; see Equation (107.11).

Modified Johnson-Cook Constitutive Relation. This card is included when FLAG1 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Q1 & C1 & Q2 & C2 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Q1 Voce hardening parameter \(Q_{1}\) (when \(B=n=0\)); see Equation (107.11).

C1 Voce hardening parameter \(C_{1}\) (when \(B=n=0\)); see Equation (107.11).

Q2 Voce hardening parameter \(Q_{2}\) (when \(B=n=0\)); see Equation (107.11).

C2 Voce hardening parameter \(C_{2}\) (when \(B=n=0\)); see Equation (107.11).

Modified Zerilli-Armstrong Constitutive Relation. This card is included when FLAG1 \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGA & B & BETA0 & BETA1 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

SIGA
B
BETA0
BETA1

\section*{DESCRIPTION}

Zerilli-Armstrong parameter \(\alpha_{a}\); see Equation (107.14).
Zerilli-Armstrong parameter B; see Equation (107.14).
Zerilli-Armstrong parameter \(\beta_{0}\); see Equation (107.14).
Zerilli-Armstrong parameter \(\beta_{1}\); see Equation (107.14).

Modified Zerilli-Armstrong Constitutive Relation. This card is included when FLAG1 = 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & N & ALPHAO & ALPHA1 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

A Zerilli-Armstrong parameter \(A\); see Equation (107.14).
\(\mathrm{N} \quad\) Zerilli-Armstrong parameter \(n\); see Equation (107.14).
ALPHA0 Zerilli-Armstrong parameter \(\alpha_{0}\), see Equation (107.14).
ALPHA1 Zerilli-Armstrong parameter \(\alpha_{1}\), see Equation (107.14).
Modified Johnson-Cook Fracture Criterion. This card is included when FLAG2 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DC & PD & D1 & D2 & D3 & D4 & D5 & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

DC

PD
Damage threshold; see Equation (107.15).
D1-D5 Fracture parameters in the Johnson-Cook fracture criterion; see Equation (107.16).

Cockcroft Latham Fracture Criterion. This card is included when FLAG2 \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DC & WC & PHI & GAMMA & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DC

WC Critical Cockcroft-Latham parameter \(W_{c}\), see Equation (107.19).
Critical Cockcroft-Latham parameter \(W_{c}\), see Equation (107.19).
When the plastic work per volume reaches this value, the element is eroded from the simulation.

PHI Extended Cockcroft-Latham parameter \(\phi\), see Equation (107.20).

\section*{DESCRIPTION}

Critical damage parameter \(D_{c}\); see Equations (107.15) and (107.22). When the damage value \(D\) reaches this value, the element is eroded from the calculation.

Extended Cockcroft-Latham parameter \(\gamma\), see Equation (107.20).

Additional Element Erosion Criteria Card.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TC & TAUC & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

TC

TAUC Critical shear stress parameter, \(\tau_{c}\). When the maximum shear stress, \(\tau\), reaches this value, the element is eroded from the simulation.

\section*{Remarks:}

An additive decomposition of the rate-of-deformation tensor \(\mathbf{d}\) is assumed, that is,
\[
\begin{equation*}
\mathbf{d}=\mathbf{d}^{e}+\mathbf{d}^{p}+\mathbf{d}^{t} \tag{107.1}
\end{equation*}
\]
where \(\mathbf{d}^{e}\) is the elastic part, \(\mathbf{d}^{p}\) is the plastic part and \(\mathbf{d}^{t}\) is the thermal part.
The elastic rate-of-deformation \(\mathrm{d}^{e}\) is defined by a linear hypo-elastic relation
\[
\begin{equation*}
\widetilde{\sigma}^{\nabla J}=\left(K-\frac{2}{3} G\right) \operatorname{tr}\left(\mathbf{d}^{e}\right) \mathbf{I}+\mathbf{2} G \mathbf{d}^{e} \tag{107.2}
\end{equation*}
\]
where \(\mathbf{I}\) is the unit tensor, \(K\) is the bulk modulus and \(G\) is the shear modulus. The effective stress tensor is defined by
\[
\begin{equation*}
\widetilde{\sigma}=\frac{\sigma}{1-\beta D} \tag{107.3}
\end{equation*}
\]
where \(\sigma\) is the Cauchy-stress and \(D\) is the damage variable, while the Jaumann rate of the effective stress reads
\[
\begin{equation*}
\widetilde{\sigma}^{\nabla J}=\dot{\widetilde{\sigma}}-\mathbf{W} \cdot \widetilde{\sigma}-\widetilde{\sigma} \cdot \mathbf{W}^{T} \tag{107.4}
\end{equation*}
\]

Here \(\mathbf{W}\) is the spin tensor. The parameter \(\beta\) is equal to unity for coupled damage and equal to zero for uncoupled damage.

The thermal rate-of-deformation \(\mathbf{d}^{T}\) is defined by
\[
\begin{equation*}
\mathbf{d}^{T}=\alpha \bar{T} \mathbf{I} \tag{107.5}
\end{equation*}
\]
where \(\alpha\) is the linear thermal expansion coefficient and \(T\) is the temperature.
The plastic rate-of-deformation is defined by the associated flow rule as
\[
\begin{equation*}
\mathbf{d}^{p}=\dot{r} \frac{\partial f}{\partial \sigma}=\frac{3}{2} \frac{\dot{r}}{1-\beta D} \frac{\widetilde{\sigma}^{\prime}}{\tilde{\sigma}_{\mathrm{eq}}} \tag{107.6}
\end{equation*}
\]
where \((\cdot)^{\prime}\) means the deviatoric part of the tensor, \(r\) is the damage-equivalent plastic strain, \(f\) is the dynamic yield function, that is,
\[
\begin{gather*}
\mathbf{d}^{p}=\dot{r} \frac{\partial f}{\partial \sigma}=\frac{3}{2} \frac{\dot{r}}{1-\beta D} \frac{\widetilde{\sigma}^{\prime}}{\tilde{\sigma}_{\text {eq }}} \tag{107.6}\\
f=\sqrt{\frac{3}{2} \widetilde{\sigma}^{\prime}: \widetilde{\sigma}^{\prime}}-\sigma_{Y}(r, \dot{r}, T) \leq 0, \quad \dot{r} \geq 0, \quad \dot{r} f=0 \tag{107.7}
\end{gather*}
\]
and \(\tilde{\sigma}_{\text {eq }}\) is the damage-equivalent stress,
\[
\begin{equation*}
\tilde{\sigma}_{\mathrm{eq}}=\sqrt{\frac{3}{2} \widetilde{\sigma}^{\prime}: \widetilde{\sigma}^{\prime}} \tag{107.8}
\end{equation*}
\]

The following plastic work conjugate pairs are identified
\[
\begin{equation*}
\dot{W}^{p}=\sigma: \mathbf{d}^{p}=\tilde{\sigma}_{\mathrm{eq}} \dot{r}=\sigma_{\mathrm{eq}} \dot{p} \tag{107.9}
\end{equation*}
\]
where \(\dot{W}^{p}\) is the specific plastic work rate, and the equivalent stress \(\sigma_{\text {eq }}\) and the equivalent plastic strain \(p\) are defined as
\[
\begin{equation*}
\sigma_{\mathrm{eq}}=\sqrt{\frac{3}{2} \widetilde{\sigma}^{\prime}: \widetilde{\sigma}^{\prime}}=(1-\beta D) \tilde{\sigma}_{\mathrm{eq}} \dot{p}=\sqrt{\frac{2}{3} \mathbf{d}^{p}: \mathbf{d}^{p}}=\frac{\dot{r}}{(1-\beta D)} \tag{107.10}
\end{equation*}
\]

The material strength \(\sigma_{Y}\) is defined by:
1. The modified Johnson-Cook constitutive relation
\[
\begin{equation*}
\sigma_{Y}=\left\{A+B r^{n}+\sum_{i=1}^{2} Q_{i}\left[1-\exp \left(-C_{i} r\right)\right]\right\}\left(1+\dot{r}^{*}\right)^{C}\left(1-T^{* m}\right) \tag{107.11}
\end{equation*}
\]
where \(A, B, C, m, n, Q_{1}, C_{1}, Q_{2}\), and \(C_{2}\) are material parameters; the normalized damage-equivalent plastic strain rate \(\dot{r}^{*}\) is defined by
\[
\begin{equation*}
\dot{r}^{*}=\frac{\dot{r}}{\dot{\varepsilon}_{0}} \tag{107.12}
\end{equation*}
\]
in which \(\dot{\varepsilon}_{0}\) is a user-defined reference strain rate; and the homologous temperature reads
\[
\begin{equation*}
T^{*}=\frac{T-T_{r}}{T_{m}-T_{r}} \tag{107.13}
\end{equation*}
\]
in which \(T_{r}\) is the room temperature and \(T_{m}\) is the melting temperature.
2. The Zerilli-Armstrong constitutive relation
\[
\begin{equation*}
\sigma_{Y}=\left\{\sigma_{a}+B \exp \left[-\left(\beta_{0}-\beta_{1} \ln \dot{r}\right) T\right]+A r^{n} \exp \left[-\left(\alpha_{0}-\alpha_{1} \ln \dot{r}\right) T\right]\right\} \tag{107.14}
\end{equation*}
\]
where \(\sigma_{a}, B, \beta_{0}, \beta_{1}, A, n, \alpha_{0}\), and \(\alpha_{1}\) are material parameters.
Damage evolution is defined by:
1. The extended Johnson-Cook damage evolution rule:
\[
\Delta D=\left\{\begin{array}{cl}
0 & p \leq p_{d} \tag{107.15}\\
\frac{D_{c} \Delta p}{p_{f}-p_{d}} & p>p_{d}
\end{array}\right.
\]
where the current equivalent fracture strain \(p_{f}=p_{f}\left(\sigma^{*}, \Delta p^{*}, T^{*}\right)\) is defined as
\[
\begin{equation*}
p_{f}=\left[D_{1}+D_{2} \exp \left(D_{3} \sigma^{*}\right)\right]\left(1+\Delta p^{*}\right)^{D_{4}}\left(1+D_{5} T^{*}\right) \tag{107.16}
\end{equation*}
\]

Here \(D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{C}\), and \(p_{d}\) are material parameters. The normalized equivalent plastic strain increment \(\Delta p^{*}\) is defined by
\[
\begin{equation*}
\Delta p^{*}=\frac{\Delta p}{\dot{\varepsilon}_{0}} \tag{107.17}
\end{equation*}
\]
and the stress triaxiality \(\sigma^{*}\) reads
\[
\begin{equation*}
\sigma^{*}=\frac{\sigma_{H}}{\sigma_{\mathrm{eq}}}, \quad \sigma_{H}=\frac{1}{3} \operatorname{tr}(\sigma) \tag{107.18}
\end{equation*}
\]
2.The Cockcroft-Latham damage evolution rule:
\[
\begin{equation*}
\Delta D=\frac{D_{C}}{W_{C}} \max \left(\sigma_{1}, 0\right) \Delta p \tag{107.19}
\end{equation*}
\]
where \(D_{C}\) and \(W_{C}\) are material parameters. This assumes that the material parameters \(\phi\) or \(\gamma\) are zero. If they are not, the uncoupled extended CockcroftLatham damage evolution rule is used:
\[
\begin{equation*}
\Delta D=\frac{\sigma_{\mathrm{eq}}}{W_{\mathrm{C}}} \max \left(\phi \frac{\sigma_{1}}{\sigma_{\mathrm{eq}}}+(1-\phi) \frac{\sigma_{1}-\sigma_{3}}{\sigma_{\mathrm{eq}}}, 0\right)^{\gamma} \Delta p \tag{107.20}
\end{equation*}
\]

Adiabatic heating is calculated as
\[
\begin{equation*}
\dot{T}=\chi \frac{\sigma: \mathbf{d}^{p}}{\rho C_{p}}=\chi \frac{\tilde{\sigma}_{e q} \dot{r}}{\rho C_{p}} \tag{107.21}
\end{equation*}
\]
where \(\chi\) is the Taylor-Quinney parameter, \(\rho\) is the density and \(C_{p}\) is the specific heat. The initial value of the temperature \(T_{0}\) may be specified by the user.

Element erosion occurs when one of the following several criteria are fulfilled:
1. The damage is greater than the critical value
\[
\begin{equation*}
D \geq D_{C} \tag{107.22}
\end{equation*}
\]
2. The maximum shear stress is greater than a critical value
\[
\begin{equation*}
\tau_{\max }=\frac{1}{2} \max \left\{\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right\} \geq \tau_{C} \tag{107.23}
\end{equation*}
\]
3. The temperature is greater than a critical value
\[
\begin{equation*}
T \geq T_{C} \tag{107.24}
\end{equation*}
\]
\begin{tabular}{|c|l|}
\hline History Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Evaluation of damage \(D\) \\
2 & Evaluation of stress triaxiality \(\sigma^{*}\) \\
3 & Evaluation of damaged plastic strain \(r\) \\
4 & Evaluation of temperature \(T\) \\
5 & Evaluation of damaged plastic strain rate \(\dot{r}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline History Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline 8 & Evaluation of plastic work per volume \(W\) \\
9 & Evaluation of maximum shear stress \(\tau_{\max }\) \\
\hline
\end{tabular}

\section*{*MAT_ORTHO_ELASTIC_PLASTIC}

This is Material Type 108. This model combines orthotropic elastic plastic behavior with an anisotropic yield criterion. This model is implemented only for shell elements.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E11 & E22 & G12 & PR12 & PR23 & PR31 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SIGMA0 & LC & QR1 & CR1 & QR2 & CR2 & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline R11 & R22 & R33 & R12 & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|l|l|l|l|l|l|}
\hline AOPT & BETA & & & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D17 & D2 & D3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E11 & E22 & G12 & PR12 & PR23 & PR31 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

RO
E11
E22

G12

PR12
PR23
PR31

\section*{DESCRIPTION}

Mass density
Young's modulus in 11-direction
Young's modulus in 22-direction
Shear modulus in 12-direction
Poisson's ratio 12
Poisson's ratio 23
Poisson's ratio 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGMAO & LC & QR1 & CR1 & QR2 & CR2 & & \\
Type & F & I & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

SIGMA0
LC

QR1
CR1 Isotropic hardening parameter, \(C_{R 1}\)
QR2 Isotropic hardening parameter, \(Q_{R 2}\)
CR2 Isotropic hardening parameter, \(C_{R 2}\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R11 & R22 & R33 & R12 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIAB & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline R11 & & \multicolumn{7}{|l|}{Yield criteria parameter, \(R_{11}\)} \\
\hline R22 & & \multicolumn{7}{|l|}{Yield criteria parameter, \(R_{22}\)} \\
\hline R33 & & \multicolumn{7}{|l|}{Yield criteria parameter, \(R_{33}\)} \\
\hline R12 & & \multicolumn{7}{|l|}{Yield criteria parameter, \(R_{12}\)} \\
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & BETA & & & & & & \\
\hline Type & F & F & & & & & & \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. Nodes 1, 2 and 4 of an element are identical to the node used for the definition of a coordinate system as by *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by offsetting the material axes by an angle, BETA, from a line determined by taking the cross product of the vector \(\mathbf{v}\) with the normal to the plane of the element
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.

BETA Material angle in degrees for AOPT \(=0\) and 3. BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for AOPT \(=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for AOPT \(=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for AOPT \(=2\)

\section*{Remarks:}

The yield function is defined as
\[
f=\bar{f}(\sigma)-\left[\sigma_{0}+R\left(\varepsilon^{p}\right)\right],
\]
where the equivalent stress \(\sigma_{\text {eq }}\) is defined as an anisotropic yield criterion
\[
\sigma_{\mathrm{eq}}=\sqrt{F\left(\sigma_{22}-\sigma_{33}\right)^{2}+G\left(\sigma_{33}-\sigma_{11}\right)^{2}+H\left(\sigma_{11}-\sigma_{22}\right)^{2}+2 L \sigma_{23}^{2}+2 M \sigma_{31}^{2}+2 N \sigma_{12}^{2}} .
\]

Here \(F, G, H, L, M\) and \(N\) are constants obtained by testing the material in different orientations. They are defined as
\[
\begin{array}{rlrl}
F & =\frac{1}{2}\left(\frac{1}{R_{22}^{2}}+\frac{1}{R_{33}^{2}}-\frac{1}{R_{11}^{2}}\right), & L & =\frac{3}{2 R_{23}^{2}} \\
G & =\frac{1}{2}\left(\frac{1}{R_{33}^{2}}+\frac{1}{R_{11}^{2}}-\frac{1}{R_{22}^{2}}\right), & M & =\frac{3}{2 R_{31}^{2}} \\
H & =\frac{1}{2}\left(\frac{1}{R_{11}^{2}}+\frac{1}{R_{22}^{2}}-\frac{1}{R_{33}^{2}}\right), & N=\frac{3}{2 R_{12}^{2}}
\end{array}
\]

The yield stress ratios are defined as follows
\[
\begin{array}{ll}
R_{11}=\frac{\bar{\sigma}_{11}}{\sigma_{0}}, & R_{12}=\frac{\bar{\sigma}_{12}}{\tau_{0}} \\
R_{22}=\frac{\bar{\sigma}_{22}}{\sigma_{0}}, & R_{23}=\frac{\bar{\sigma}_{23}}{\tau_{0}} \\
R_{33}=\frac{\bar{\sigma}_{33}}{\sigma_{0}}, & R_{31}=\frac{\bar{\sigma}_{31}}{\tau_{0}}
\end{array}
\]
where \(\sigma_{i j}\) is the measured yield stress values, \(\sigma_{0}\) is the reference yield stress, and \(\tau_{0}=\) \(\sigma_{0} / \sqrt{3}\).

The strain hardening, \(R\), is either defined by the load curve or by the extended Voce law,
\[
R\left(\varepsilon^{p}\right)=\sum_{i=1}^{2} Q_{R i}\left[1-\exp \left(-C_{R i} \varepsilon^{p}\right)\right]
\]
where \(\varepsilon^{p}\) is the effective (or accumulated) plastic strain, and \(Q_{R i}\) and \(C_{R i}\) are strain hardening parameters.

\section*{*MAT_JOHNSON_HOLMQUIST_CERAMICS}

This is Material Type 110. This Johnson-Holmquist Plasticity Damage Model is useful for modeling ceramics, glass and other brittle materials. A more detailed description can be found in a paper by Johnson and Holmquist [1993].
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & A & B & C & M & N \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPSO & T & SFMAX & HEL & PHEL & BETA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & K1 & K2 & K3 & FS & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
G
A
B
C Strength parameter (for strain rate dependence)
M

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Density
Shear modulus
Intact normalized strength parameter
Fractured normalized strength parameter

Fractured strength parameter (pressure exponent)

\section*{VARIABLE}

N
EPS0
T
SFMAX Maximum normalized fractured strength (defaults to \(10^{20}\) when set to 0.0).

HEL Hugoniot elastic limit
PHEL Pressure component at the Hugoniot elastic limit
BETA Fraction of elastic energy loss converted to hydrostatic energy. It affects bulking pressure (history variable 1) that accompanies damage.

D1 Parameter for plastic strain to fracture
D2 Parameter for plastic strain to fracture (exponent)
K1

K2
K3 Third pressure coefficient
FS Element deletion criterion:
LT.0.0: Fail if \(p^{*}+t^{*}<0\) (tensile failure)
EQ.0.0: No failure (default)
GT.0.0: Fail if the effective plastic strain > FS

\section*{Remarks:}

The equivalent stress for a ceramic-type material is given by
\[
\sigma^{*}=\sigma_{i}^{*}-D\left(\sigma_{i}^{*}-\sigma_{f}^{*}\right)
\]
where
\[
\sigma_{i}^{*}=a\left(p^{*}+t^{*}\right)^{n}\left(1+c \ln \dot{\varepsilon}^{*}\right)
\]
represents the intact, undamaged behavior. The superscript, "*", indicates a normalized quantity. The stresses are normalized by the equivalent stress at the Hugoniot elastic limit, the pressures are normalized by the pressure at the Hugoniot elastic limit, and the
strain rate by the reference strain rate defined in the input. In this equation \(a\) is the intact normalized strength parameter, \(c\) is the strength parameter for strain rate dependence, \(\dot{\varepsilon}^{*}\) is the normalized plastic strain rate, and
\[
\begin{aligned}
t^{*} & =\frac{T}{\text { PHEL }} \\
p^{*} & =\frac{p}{\text { PHEL }}
\end{aligned}
\]

In the above, \(T\) is the maximum tensile pressure strength, PHEL is the pressure component at the Hugoniot elastic limit, and \(p\) is the pressure.
\[
D=\sum \frac{\Delta \varepsilon^{p}}{\varepsilon_{f}^{p}}
\]
represents the accumulated damage (history variable 2) based upon the increase in plastic strain per computational cycle and the plastic strain to fracture
\[
\varepsilon_{f}^{p}=d_{1}\left(p^{*}+t^{*}\right)^{d_{2}}
\]
and
\[
\sigma_{f}^{*}=b\left(p^{*}\right)^{m}\left(1+c \ln \dot{\varepsilon}^{*}\right) \leq \text { SFMAX }
\]
represents the damaged behavior. The parameter \(d_{1}\) controls the rate at which damage accumulates. If it is set to 0 , full damage occurs in one time step, that is, instantaneously. It is also the best parameter to vary when attempting to reproduce results generated by another finite element program.

In undamaged material, the hydrostatic pressure is given by
\[
P=k_{1} \mu+k_{2} \mu^{2}+k_{3} \mu^{3}
\]
in compression and
\[
P=k_{1} \mu
\]
in tension where \(\mu=\rho / \rho_{0}-1\). When damage starts to occur, there is an increase in pressure. A fraction, between 0 and 1 , of the elastic energy loss, \(\beta\), is converted into hydrostatic potential energy (pressure). The details of this pressure increase are given in the reference.

Given HEL and G, \(\mu_{\text {hel }}\) can be found iteratively from
\[
\mathrm{HEL}=k_{1} \mu_{\mathrm{hel}}+k_{2} \mu_{\mathrm{hel}}^{2}+k_{3} \mu_{\mathrm{hel}}^{3}+(4 / 3) g\left(\mu_{\mathrm{hel}} /\left(1+\mu_{\mathrm{hel}}\right)\right.
\]
and, subsequently, for normalization purposes,
\[
P_{\text {hel }}=k_{1} \mu_{\text {hel }}+k_{2} \mu_{\text {hel }}^{2}+k_{3} \mu_{\text {hel }}^{3}
\]
and
\[
\sigma_{\text {hel }}=1.5\left(\text { hel }-p_{\text {hel }}\right) .
\]

These are calculated automatically by LS-DYNA if \(p_{\text {hel }}\) is zero on input.

\section*{*MAT_JOHNSON_HOLMQUIST_CONCRETE}

This is Material Type 111. This model can be used for concrete subjected to large strains, high strain rates and high pressures. The equivalent strength is expressed as a function of the pressure, strain rate, and damage. The pressure is expressed as a function of the volumetric strain and includes the effect of permanent crushing. The damage is accumulated as a function of the plastic volumetric strain, equivalent plastic strain and pressure. A more detailed description of this model can be found in the paper by Holmquist, Johnson, and Cook [1993].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G & A & B & C & N & FC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T & EPSO & EFMIN & SFMAX & PC & UC & PL & UL \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & K1 & K2 & K3 & FS & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
G & Mass density \\
A & Shear modulus \\
B & Normalized cohesive strength \\
& Normalized pressure hardening
\end{tabular}

\section*{Remarks:}

The normalized equivalent stress is defined as
\[
\sigma^{*}=\frac{\sigma}{f_{c}^{\prime}}
\]
where \(\sigma\) is the actual equivalent stress, and \(f_{\mathrm{c}}^{\prime}\) is the quasi-static uniaxial compressive strength. The expression is defined as:
\[
\sigma^{*}=\left[A(1-D)+B P^{* N}\right]\left[1+C \ln \left(\dot{\varepsilon}^{*}\right)\right] .
\]
where \(D\) is the damage parameter, \(P^{*}=P / f_{\mathrm{c}}^{\prime}\) is the normalized pressure and \(\dot{\varepsilon}^{*}=\dot{\varepsilon} / \dot{\varepsilon}_{0}\) is the dimensionless strain rate. The model incrementally accumulates damage, \(D\), both from equivalent plastic strain and plastic volumetric strain, and is expressed as
\[
D=\sum \frac{\Delta \varepsilon_{p}+\Delta \mu_{p}}{D_{1}\left(P^{*}+T^{*}\right)^{D_{2}}}
\]

Here, \(\Delta \varepsilon_{p}\) and \(\Delta \mu_{p}\) are the equivalent plastic strain and plastic volumetric strain, \(D_{1}\) and \(D_{2}\) are material constants and \(T^{*}=T / f_{\mathrm{c}}^{\prime}\) is the normalized maximum tensile hydrostatic pressure.

The damage strength, DS , is defined in compression when \(P^{*}>0\) as
\[
\mathrm{DS}=f_{c}^{\prime} \min \left[\mathrm{SFMAX}, A(1-D)+B P^{*^{N}}\right]\left[1+C * \ln \left(\dot{\varepsilon}^{*}\right)\right]
\]
or in tension if \(P^{*}<0\), as
\[
\mathrm{DS}=f_{c}^{\prime} \max \left[0, A(1-D)-A\left(\frac{P^{*}}{T}\right)\right]\left[1+C * \ln \left(\dot{\varepsilon}^{*}\right)\right] .
\]

The pressure for fully dense material is expressed as
\[
P=K_{1} \bar{\mu}+K_{2} \bar{\mu}^{2}+K_{3} \bar{\mu}^{3}
\]
where \(K_{1}, K_{2}\) and \(K_{3}\) are material constants and the modified volumetric strain is defined as
\[
\bar{\mu}=\frac{\mu-\mu_{\text {lock }}}{1+\mu_{\text {lock }}}
\]
where \(\mu_{\text {lock }}\) is the locking volumetric strain.

\section*{*MAT_FINITE_ELASTIC_STRAIN_PLASTICITY}

This is Material Type 112. An elasto-plastic material with an arbitrary stress versus strain curve and arbitrary strain rate dependency can be defined. The elastic response of this model uses a finite strain formulation so that large elastic strains can develop before yielding occurs. This model is available for solid elements only. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & & \\
Type & A & F & F & F & F & F & & \\
Default & none & none & none & none & none & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & & & & \\
Type & F & F & I & I & & & & \\
Default & 0.0 & 0.0 & 0 & 0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & F & F & F & F & F & \(F\) & \(F\) & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E
PR

SIGY

ETAN

C

P Strain rate parameter, \(p\); see Remarks below.
LCSS Load curve ID or table ID.
Load Curve ID. The load curve defines effective stress as a function of effective plastic strain. If defined, EPS1 - EPS8 and ES1 - ES8 are ignored.
Table ID. The table defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate; see Figure M24-1. The stress as a function of effective plastic strain curve for the lowest value of strain rate is used if the strain rate falls below the minimum value. Likewise, the stress as a function of effective plastic strain curve for the highest value of strain rate is used if the strain rate exceeds the maximum value. The strain rate parameters, \(C\) and \(p\); the curve ID LCSR; EPS1 - EPS8; and ES1-ES8 are ignored if a table ID is defined.

LCSR Load curve ID defining strain rate scaling effect on yield stress

\section*{VARIABLE}

EPS1 - EPS8

\section*{DESCRIPTION}

Effective plastic strain values (optional if SIGY is defined). At least 2 points should be defined. The first point must be zero corresponding to the initial yield stress. WARNING: If the first point is nonzero, the yield stress is extrapolated to determine the initial yield. If this option is used, SIGY and ETAN are ignored and may be input as zero.

ES1 - ES8 \(\quad\) Corresponding yield stress values to EPS1 - EPS8.

\section*{Remarks:}

By defining the tangent modulus ETAN, the stress strain behavior is treated using a bilinear stress strain curve. Alternately, a curve similar to that shown in Figure M10-1 is expected to be defined by (EPS1, ES1) - (EPS8, ES8); however, an effective stress as a function of effective plastic strain curve (LCSS) may be input instead if eight points are insufficient. The cost is roughly the same for either approach. The most general approach is to use the table definition (LCSS) discussed below.

Three options to account for strain rate effects are possible.
1. Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate, \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\).
2. For complete generality a load curve (LCSR) to scale the yield stress may be input instead. In this curve the scale factor as a function of strain rate is defined.
3. If different stress as a function of strain curves can be provided for various strain rates, the option using the reference to a table (LCSS) can be used. Then the table input in *DEFINE_TABLE must be used; see Figure M24-1.

\section*{*MAT_TRIP}

This is Material Type 113. This isotropic elasto-plastic material model applies to shell elements only. It features a special hardening law aimed at modelling the temperature dependent hardening behavior of austenitic stainless TRIP-steels. TRIP stands for Transformation Induced Plasticity. A detailed description of this material model can be found in Hänsel, Hora, and Reissner [1998] and Schedin, Prentzas, and Hilding [2004].
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & CP & T0 & TREF & TA0 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & C & D & P & Q & EOMART & VM0 \\
Type & F & F & F & F & F & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AHS & BHS & M & N & EPS0 & HMART & K1 & K2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
CP Adiabatic temperature calculation option:
EQ.0.0: Adiabatic temperature calculation is disabled.

\section*{DESCRIPTION}

GT.0.0: CP is the specific heat \(C_{p}\). Adiabatic temperature calculation is enabled.

T0

TREF Reference temperature for output of the yield stress as history variable 1.

TA0 Reference temperature \(T_{A 0}\), the absolute zero for the used temperature scale. For example, TA0 is -273.15 if the Celsius scale is used and 0.0 if the Kelvin scale is used.

A
B
C Martensite rate equation parameter \(C\); see Remarks below.

D

P

Q
E0MART
VM0

AHS
BHS
M
N
Initial temperature \(T_{0}\) of the material if adiabatic temperature calculation is enabled.
and

Martensite rate equation parameter \(A\); see Remarks below.
Martensite rate equation parameter \(B\); see Remarks below.

Martensite rate equation parameter \(D\); see Remarks below.
Martensite rate equation parameter \(p\); see Remarks below.
Martensite rate equation parameter \(Q\); see Remarks below.
Martensite rate equation parameter \(E_{0(\text { mart })}\); see Remarks below.
The initial volume fraction of martensite \(0.0<V_{m 0}<1.0\) may be initialised using two different methods:

GT.0.0: \(V_{m 0}\) is set to VM0.

> LT.O.O: Can be used only when there are initial plastic strains \(\varepsilon^{p}\) present, such as when using \({ }^{*}\) INITIAL_STRESS_SHELL. The absolute value of VM0 is then the load curve ID for a function \(f\) that sets \(V_{m 0}=f\left(\varepsilon^{p}\right)\). The function \(f\) must be a monotonically nondecreasing function of \(\varepsilon^{p}\).

Hardening law parameter \(A_{\mathrm{HS}}\); see Remarks below.
Hardening law parameter \(B_{\text {HS }}\); see Remarks below.
Hardening law parameter \(m\); see Remarks below.
Hardening law parameter \(n\); see Remarks below.

\section*{VARIABLE}

EPS0

K2

HMART Hardening law parameter \(\Delta H_{\gamma \rightarrow \alpha^{\prime}}\); see Remarks below.
K1 Hardening law parameter \(K_{1}\); see Remarks below.

\section*{DESCRIPTION}

Hardening law parameter \(\varepsilon_{0}\); see Remarks below.

Hardening law parameter \(K_{2}\); see Remarks below.

\section*{Remarks:}

Here a short description is given of the TRIP-material model. The material model uses the von Mises yield surface in combination with isotropic hardening. The hardening is temperature dependent. Therefore, this material model must be run either in a coupled thermo-mechanical solution, using prescribed temperatures or using the adiabatic temperature calculation option. Setting the parameter \(C P\) to the specific heat, \(C_{p}\), of the material activates the adiabatic temperature calculation that calculates the temperature rate from the equation
\[
\dot{T}=\sum_{i, j} \frac{\sigma_{i j} D_{i j}^{p}}{\rho C_{p}}
\]
where \(\sigma: \mathbf{D}^{p}\) (the numerator) is the plastically dissipated heat. Using the Kelvin scale is recommended, even though other scales may be used without problems.

The hardening behavior is described by the following equations. The Martensite rate equation is
\[
\frac{\partial V_{m}}{\partial \bar{\varepsilon}^{p}}= \begin{cases}\bar{A}^{0} & \varepsilon<E_{0(\text { mart })} \\ \frac{\mathrm{B}}{A} V_{m}^{p}\left(\frac{1-V_{m}}{V_{m}}\right)^{\frac{B+1}{B}} \frac{[1-\tanh (\mathrm{C}+\mathrm{D} \times T)]}{2} \exp \left(\frac{Q}{T-T_{A 0}}\right) & \bar{\varepsilon}^{p} \geq E_{0(\mathrm{mart})}\end{cases}
\]
where \(\bar{\varepsilon}^{p}\) is the effective plastic strain and \(T\) is the temperature.
The martensite fraction is integrated from the above rate equation:
\[
V_{m}=\int_{0}^{\varepsilon} \frac{\partial V_{m}}{\partial \bar{\varepsilon}^{p}} d \bar{\varepsilon}^{p}
\]

It always holds that \(0.0<V_{m}<1.0\). The initial martensite content is \(V_{m 0}\) and must be greater than zero and less than 1.0. Note that \(V_{m 0}\) is not used during a restart or when initializing the \(V_{m 0}\) history variable using *INITIAL_STRESS_SHELL.

The yield stress is:
\[
\sigma_{y}=\left\{B_{H S}-\left(B_{H S}-A_{H S}\right) \exp \left(-m\left[\bar{\varepsilon}^{p}+\varepsilon_{0}\right]^{n}\right)\right\}\left(K_{1}+K_{2} T\right)+\Delta H_{\gamma \rightarrow \alpha^{\prime}} V_{m}
\]

The parameters \(p\) and \(B\) should fulfill the following condition
\[
\frac{1+B}{B}<p
\]

If the condition is not fulfilled, then the martensite rate will approach infinity as \(V_{m}\) approaches zero. Setting the parameter \(\varepsilon_{0}\) larger than zero (typical range \(0.001-0.02\)) is recommended. Apart from the effective true strain a few additional history variables are output; see below.

\section*{Output History Variables:}
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & \begin{tabular}{l}
Yield stress of material at temperature TREF. Useful to evaluate the \\
strength of the material after e.g., a simulated forming operation.
\end{tabular} \\
2 & \begin{tabular}{l}
Volume fraction martensite, \(V_{m}\) \\
3
\end{tabular} \\
\begin{tabular}{l}
CP.EQ.0.0: not used \\
CP.GT.0.0: temperature from adiabatic temperature calculation
\end{tabular} \\
\hline
\end{tabular}

\section*{*MAT_LAYERED_LINEAR_PLASTICITY}

This is Material Type 114. It is a layered elastoplastic material with an arbitrary stress as a function of strain curve. An arbitrary strain rate dependency can also be defined. This material must be used with the user defined integration rules (see *INTEGRATIONSHELL) for modeling laminated composite and sandwich shells where each layer can be represented by elastoplastic behavior with constitutive constants that vary from layer to layer. Lamination theory is applied to correct for the assumption of a uniform constant shear strain through the thickness of the shell. Unless this correction is applied, the stiffness of the shell can be grossly incorrect leading to poor results. Generally, without the correction the results are too stiff. This model is available for shell elements only. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & \(10^{20}\) & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & & & & \\
Type & F & F & I & I & & & & \\
Default & 0.0 & 0.0 & 0 & 0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E
PR
SIGY
ETAN
FAIL

TDEL
C Strain rate parameter, \(C\); see Remarks below.
P
LCSS

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Young's modulus
Poisson's ratio

Yield stress
Tangent modulus; ignored if LCSS \(>0\) is defined.
Failure flag:
LT.0.0: User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure.

EQ.O.O: Failure is not considered. This option is recommended be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

Minimum time step size for automatic element deletion

Strain rate parameter, \(p\); see Remarks below.
Load curve ID or Table ID. if failure is not of interest since many calculations will

Load Curve ID. The load curve defines effective stress as a function of effective plastic strain. If defined, EPS1 - EPS8 and ES1 - ES8 are ignored.

\author{
VARIABLE
}

LCSR
EPS1 - EPS8

ES1-ES8

\section*{DESCRIPTION}

Table ID. The table defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate; see Figure M24-1. The stress as a function of effective plastic strain curve for the lowest value of strain rate is used if the strain rate falls below the minimum value. Likewise, the stress as a function of effective plastic strain curve for the highest value of strain rate is used if the strain rate exceeds the maximum value. C, P, LCSR, EPS1 - EPS8, and ES1 - ES8 are ignored if a table ID is defined.

Load curve ID defining strain rate scaling effect on yield stress
Effective plastic strain values (optional if SIGY is defined). At least 2 points should be defined. The first point must be zero corresponding to the initial yield stress. WARNING: If the first point is nonzero the yield stress is extrapolated to determine the initial yield. If this option is used, SIGY and ETAN are ignored and may be input as zero.

Corresponding yield stress values to EPS1 - EPS8.

\section*{Remarks:}

The stress strain behavior may be treated by a bilinear stress strain curve by defining the tangent modulus, ETAN. Alternately, a curve similar to that shown in Figure M10-1 is expected to be defined by (EPS1, ES1) - (EPS8, ES8); however, an effective stress as a function of effective plastic strain curve (LCSS) may be input instead if eight points are insufficient. The cost is roughly the same for either approach. The most general approach is to use the table definition (LCSS) discussed below.

Three options to account for strain rate effects are possible.
1. Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate; \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\).
2. For complete generality a load curve (LCSR) to scale the yield stress may be input instead. This curve defines the scale factor as a function of strain rate.
3. If different stress as a function of strain curves can be provided for various strain rates, the option using the reference to a table (LCSS) can be used. Then the table input in *DEFINE_TABLE must be used; see Figure M24-1.

\section*{*MAT_UNIFIED_CREEP}

This is Material Type 115. This is an elastic creep model for modeling creep behavior when plastic behavior is not considered.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & A & N & M & \\
\hline Type & A & F & F & F & F & F & F & \\
\hline Default & none & \\
\hline \multicolumn{2}{|l|}{VARIABLE} & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline \multicolumn{2}{|l|}{MID} & \multicolumn{7}{|l|}{Material identification. A unique number or label must be specified (see *PART).} \\
\hline \multicolumn{2}{|l|}{RO} & \multicolumn{7}{|l|}{Mass density} \\
\hline \multicolumn{2}{|l|}{E} & \multicolumn{7}{|l|}{Young's modulus} \\
\hline \multicolumn{2}{|l|}{PR} & \multicolumn{7}{|l|}{Poisson's ratio} \\
\hline \multicolumn{2}{|l|}{A} & \multicolumn{7}{|l|}{Stress coefficient} \\
\hline \multicolumn{2}{|l|}{N} & \multicolumn{7}{|l|}{Stress exponent} \\
\hline \multicolumn{2}{|l|}{M} & \multicolumn{7}{|l|}{Time exponent} \\
\hline
\end{tabular}

\section*{Remarks:}

The effective creep strain, \(\bar{\varepsilon}^{c}\), given as:
\[
\bar{\varepsilon}^{c}=A \bar{\sigma}^{n} \bar{t}^{m}
\]
where \(A, n\), and \(m\) are constants and \(\bar{t}\) is the effective time. The effective stress, \(\bar{\sigma}\), is defined as:
\[
\bar{\sigma}=\sqrt{\frac{3}{2} \sigma_{i j} \sigma_{i j}} .
\]

The creep strain, therefore, is only a function of the deviatoric stresses. The volumetric behavior for this material is assumed to be elastic. By varying the time constant \(m\)
primary creep \((m<1)\), secondary creep \((m=1)\), and tertiary creep (\(m>1\)) can be modeled. This model is described by Whirley and Henshall [1992].

\section*{*MAT_UNIFIED_CREEP_ORTHO}

This is Material Type 115_O. This is an orthotropic elastic creep model for modeling creep behavior when plastic behavior is not considered. This material is available for solid elements, thick shell element formulations 3,5, and 7, and SPH elements. It is available for both explicit and implicit dynamics.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E1 & E2 & E3 & PR21 & PR31 & PR32 \\
Type & A & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G 12 & G 23 & G 13 & A & N & M & & \\
Type & F & F & F & F & F & F & & \\
Default & none & none & none & none & none & none & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & MACF & XP & YP & ZP & A 1 & A 2 & A 3 \\
Type & F & F & F & F & F & F & F & F \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
Default & none & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
E \(i\) & Mass density \\
PR \(i j\) & Young's moduli \\
G \(i j\) & Elastic Poisson's ratios \\
A & Elastic shear moduli \\
N & Stress coefficient \\
M & Time exponent
\end{tabular}

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between

\section*{VARIABLE}
the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

XP, YP, ZP \(\quad\) Define coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
A1, A2, A3 Define components of vector a for AOPT = 2

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Define components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4
Define components of vector \(\mathbf{d}\) for AOPT \(=2\)
Material angle in degrees for \(\mathrm{AOPT}=3\). It may be overridden on the element card; see *ELEMENT_TSHELL_BETA or *ELEMENT_SOLID_ORTHO.

\section*{Remarks:}

The stress-strain relationship is based on an additive split of the strain,
\[
\dot{\varepsilon}=\dot{\varepsilon}_{e}+\dot{\varepsilon}_{c} .
\]

Here, the multiaxial creep strain is given by
\[
\dot{\varepsilon}_{c}=\dot{\bar{\varepsilon}}_{c} \frac{2 s}{3 \bar{\sigma}}
\]
and \(\bar{\varepsilon}^{c}\) is the effective creep strain, \(s\) the deviatoric stress
\[
s=\sigma-\frac{1}{3} \operatorname{tr}(\sigma) \mathbf{I}
\]
and \(\bar{\sigma}\) the effective stress
\[
\bar{\sigma}=\sqrt{\frac{3}{2} s: s}
\]

The effective creep strain is given by
\[
\dot{\bar{\varepsilon}}^{c}=A \bar{\sigma}^{N} t^{M}
\]
where \(A, N\), and \(M\) are constants.
The stress increment is given by
\[
\Delta \sigma=\mathrm{C} \Delta \varepsilon_{e}=\mathrm{C}\left(\Delta \varepsilon-\Delta \varepsilon_{c}\right)
\]
where the constitutive matrix \(\mathbf{C}\) is taken as orthotropic and can be represented in Voigt notation by its inverse as
\[
\mathbf{C}^{-1}=\left[\begin{array}{rrrrrl}
\frac{1}{E_{1}} & -\frac{v_{21}}{E_{2}} & -\frac{v_{31}}{E_{3}} & & & \\
-\frac{v_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{v_{32}}{E_{3}} & & & \\
-\frac{v_{13}}{E_{1}} & -\frac{v_{23}}{E_{2}} & \frac{1}{E_{3}} & & & \\
& & & \frac{1}{G_{12}} & & \\
& & & & \frac{1}{G_{23}} & \\
& & & & & \frac{1}{G_{13}}
\end{array}\right]
\]

\section*{*MAT_COMPOSITE_LAYUP}

This is Material Type 116. This material is for modeling the elastic responses of composite layups that have an arbitrary number of layers through the shell thickness. A pre-integration is used to compute the extensional, bending, and coupling stiffness for use with the Belytschko-Tsay resultant shell formulation. The angles of the local material axes are specified from layer to layer in the *SECTION_SHELL input. This material model must be used with the user defined integration rule for shells (see *INTEGRATION_SHELL) which allows the elastic constants to change from integration point to integration point. Since the stresses are not computed in the resultant formulation, the stresses output to the binary databases for the resultant elements are zero. Note that this shell does not use laminated shell theory and that storage is allocated for just one integration point (as reported in d3hsp) regardless of the layers defined in the integration rule.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AOPT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
EA \(\quad E_{a}\), Young's modulus in the \(a\)-direction
EB \(\quad E_{b}\), Young's modulus in the \(b\)-direction
EC
PRBA

PRCA
PRCB
GAB

GBC \(\quad G_{b c}\), shear modulus \(b c\)
GCA
AOPT Material axes option, see Figure M2-1:
EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. Nodes 1, 2, and 4 of an element are identical to the nodes used for the definition of a coordinate system as by *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector, \(\mathbf{v}\), with the element normal.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

\section*{VARIABLE}

XP, YP, ZP
A1, A2, A3
V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Define coordinates of point \(p\) for AOPT \(=1\) and 4 .
Define components of vector a for AOPT \(=2\).
Define components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4 .
Define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).
Material angle in degrees for AOPT \(=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}

This material law is based on standard composite lay-up theory. The implementation, [Jones 1975], allows the calculation of the force, \(N\), and moment, \(M\), stress resultants from:
\[
\begin{aligned}
& \left\{\begin{array}{c}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{16} \\
A_{21} & A_{22} & A_{26} \\
A_{16} & A_{26} & A_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\varepsilon_{z}^{0}
\end{array}\right\}+\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{21} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{z}
\end{array}\right\} \\
& \left\{\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{21} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\varepsilon_{z}^{0}
\end{array}\right\}+\left[\begin{array}{lll}
D_{11} & D_{12} & D_{16} \\
D_{21} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{array}\right]\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{z}
\end{array}\right\}
\end{aligned}
\]
where \(A_{i j}\) is the extensional stiffness, \(D_{i j}\) is the bending stiffness, and \(B_{i j}\) is the coupling stiffness which is a null matrix for symmetric lay-ups. The mid-surface strains and curvatures are denoted by \(\varepsilon_{i j}^{0}\) and \(\kappa_{i j}\), respectively. Since these stiffness matrices are symmetric, 18 terms are needed per shell element in addition to the shell resultants which are integrated in time. This is considerably less storage than would typically be required with through thickness integration which requires a minimum of eight history variables per integration point. For instance, if 100 layers are used, 800 history variables would be stored. Not only is memory much less for this model, but the CPU time required is also considerably reduced.

\section*{*MAT_COMPOSITE_MATRIX}

This is Material Type 117. This material is used for modeling the elastic responses of composites where a pre-integration is used to compute the extensional, bending, and coupling stiffness coefficients for use with the Belytschko-Tsay resultant shell formulation. Since the stresses are not computed in the resultant formulation, the stresses output to the binary databases for the resultant elements are zero.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & & & & \\
Type & A & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 11 & C 12 & C 22 & C 13 & C 23 & C 33 & C 14 & C 24 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C34 & C44 & C15 & C25 & C35 & C45 & C55 & C16 \\
\hline Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C26 & C36 & C46 & C56 & C66 & AOPT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. Nodes 1, 2, and 4 of an element are identical to the nodes used for the definition of a coordinate system as by *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by an angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_CO-

\section*{VARIABLE}
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector \(\mathbf{a}\) for \(\mathrm{AOPT}=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
BETA Material angle in degrees for AOPT \(=0\) and 3. BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}

The calculation of the force, \(N_{i j}\), and moment, \(M_{i j}\), stress resultants is given in terms of the membrane strains, \(\varepsilon_{i}^{0}\), and shell curvatures, \(\kappa_{i}\), as:
\[
\left[\begin{array}{c}
N_{x} \\
N_{y} \\
N_{x y} \\
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right]=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\varepsilon_{z}^{0} \\
\kappa_{x} \\
\kappa_{y} \\
\kappa_{z}
\end{array}\right]
\]
where \(C_{i j}=C_{j i}\). In this model this symmetric matrix is transformed into the element local system and the coefficients are stored as element history variables. In *MAT_COMPOSITE_DIRECT, the resultants are already assumed to be given in the element local system which reduces the storage since the 21 coefficients are not stored as history variables as part of the element data.

The shell thickness is built into the coefficient matrix and, consequently, within the part ID, which references this material ID. The thickness must be uniform.

\section*{*MAT_COMPOSITE_DIRECT}

This is Material Type 118. This material is used for modeling the elastic responses of composites where a pre-integration is used to compute the extensional, bending, and coupling stiffness coefficients for use with the Belytschko-Tsay resultant shell formulation. Since the stresses are not computed in the resultant formulation, the stresses output to the binary databases for the resultant elements are zero.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & & & & \\
Type & A & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 11 & C 12 & C 22 & C 13 & C 23 & C 33 & C 14 & C 24 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C34 & C44 & C15 & C25 & C35 & C45 & C55 & C16 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C26 & C36 & C46 & C56 & C66 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density

\section*{VARIABLE}

CIJ

\section*{DESCRIPTION}

Coefficients of the stiffness matrix, \(C_{i j}\)

\section*{Remarks:}

The calculation of the force, \(N_{i j}\), and moment, \(M_{i j}\), stress resultants is given in terms of the membrane strains, \(\varepsilon_{i}^{0}\), and shell curvatures, \(\kappa_{i}\), as:
\[
\left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y} \\
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\varepsilon_{z}^{0} \\
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}
\]
where \(C_{i j}=C_{j i}\). In this model the stiffness coefficients are already assumed to be given in the element local system which reduces the storage. Great care in the element orientation and choice of the local element system, see *CONTROL_ACCURACY, must be observed if this model is used.

The shell thickness is built into the coefficient matrix and, consequently, within the part ID, which references this material ID, the thickness must be uniform.

\section*{*MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM}

This is Material Type 119. It is a very general spring and damper model. This beam is based on the MAT_SPRING_GENERAL_NONLINEAR option. Additional unloading options have been included. The two nodes defining the beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams the absolute value of the variable SCOOR in the *SECTION_BEAM input should be set to a value of 2.0 or 3.0 to give physically correct behavior. A triad is used to orient the beam for the directional springs.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & KT & KR & IUNLD & OFFSET & DAMPF & IFLAG \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDTR & LCIDTS & LCIDTT & LCIDRR & LCIDRS & LCIDRT & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDTUR & LCIDTUS & LCIDTUT & LCIDRUR & LCIDRUS & LCIDRUT & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDTDR & LCIDTDS & LCIDTDT & LCIDRDR & LCIDRDS & LCIDRDT & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDTER & LCIDTES & LCIDTET & LCIDRER & LCIDRES & LCIDRET & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline UTFAILR & UTFAILS & UTFAILT & WTFAILR & WTFAILS & WTFAILT & FCRIT & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline UCFAILR & UCFAILS & UCFAILT & WCFAILR & WCFAILS & WCFAILT & & \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IUR & IUS & IUT & IWR & IWS & IWT & & \\
\hline
\end{tabular}

Card 9. This card is read if IFLAG \(=2\). It is optional, but if it is included, Cards 10 and 11 must also be included.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LM1R1S & LM1R2S & LM1R1T & LM1R2T & LM2R1S & LM2R1T & & \\
\hline
\end{tabular}

Card 10. This card is read if IFLAG \(=2\). It is optinal but must be included if Card 9 is included.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LUM1R1S & LUM1R2S & LUM1R1T & LUM1R2T & LUM2R1S & LUM2R1T & & \\
\hline
\end{tabular}

Card 11. This card is read if IFLAG \(=2\). It is optional but must be included if Card 9 is included.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline KUM1R1S & KUM1R2S & KUM1R1T & KUM1R2T & KUM2R1S & KUM2R1T & KUM2R2S & KUM2R2T \\
\hline
\end{tabular}

Card 12. This card is read if IFLAG \(=2\). It is optional, but if it is included Cards 13 and 14 must be included.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline E1TR & E2TR & E1RR & E2RR & E1RS & E2RS & E1RT & E2RT \\
\hline
\end{tabular}

Card 13. This card is read if IFLAG \(=2\). It is optional but must be included if Card 12 is included.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline E1M1R1S & E2M1R1S & E1M1R2S & E2M1R2S & E1M1R1T & E2M1R1T & E1M1R2T & E2M1R2T \\
\hline
\end{tabular}

Card 14. This card is read if IFLAG \(=2\). It is optional but must be included if Card 12 is included..
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline E1M2R1S & E2M2R1S & E1M2R1T & E2M2R1T & & & & \\
\hline
\end{tabular}

Card 15. This card is read if IUNLD \(=2\) and IFLAG \(=0\) or 1 . It is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline KTS & KTT & KRS & KRT & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & KT & KR & IUNLD & OFFSET & DAMPF & IFLAG \\
Type & A & F & F & F & I & F & F & I \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density; see also volume in *SECTION_BEAM definition.
KT

KR

IUNLD

OFFSET

DAMPF Damping factor for stability. Values in the neighborhood of unity are recommended. This damping factor is properly scaled to eliminate time step size dependency. Also, it is active if and only if the local stiffness is defined.

IFLAG Formulation flag:
EQ.0: Displacement formulation which is used in all other models

EQ.1: Linear strain formulation. The displacements and

\section*{VARIABLE}

\section*{DESCRIPTION}
velocities are divided by the initial length of the beam.
EQ.2: A displacement formulation to simulate the buckling behavior of crushable frames
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDTR & LCIDTS & LCIDTT & LCIDRR & LCIDRS & LCIDRT & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDTR

LCIDTS Load curve ID defining translational force resultant along local saxis as a function of relative translational displacement (IFLAG \(=0\) or 1 only).

LCIDTT Load curve ID defining translational force resultant along local \(t\) axis as a function of relative translational displacement (IFLAG \(=0\) or 1 only).

LCIDRR Load curve for rotational moment resultant about the local \(r\)-axis:
IFLAG.NE.2: Load curve ID defining rotational moment resultant about local \(r\)-axis as a function of relative rotational displacement
IFLAG.EQ.2: Load curve ID defining rotational moment resultant about local \(r\)-axis as a function of relative rotational displacement at node 2

LCIDRS Load curve for rotational moment resultant about local \(s\)-axis:
IFLAG.NE.2: Load curve ID defining rotational moment resultant about local \(s\)-axis as a function of relative

\section*{VARIABLE}

LCIDRT Load curve for rotational moment resultant about local \(t\)-axis:
IFLAG.NE.2: Load curve ID defining rotational moment resultant about local \(t\)-axis as a function of relative rotational displacement
IFLAG.EQ.2: Load curve ID defining rotational moment resultant about local \(t\)-axis as a function of relative rotational displacement at node 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDTUR & LCIDTUS & LCIDTUT & LCIDRUR & LCIDRUS & LCIDRUT & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDTUR

LCIDTUS

LCIDTUT Load curve ID defining translational force resultant along local \(t\) axis as a function of relative translational displacement during unloading (IFLAG \(=0\) or 1 only).

\section*{VARIABLE}

\author{
LCIDRUR
}

LCIDRUS

LCIDRUT Load curve ID defining rotational moment resultant about local \(t\) axis:

IFLAG.NE.2: Load curve ID defining rotational moment resultant about local \(t\)-axis as a function of relative rotational displacement during unloading. If zero, no viscous forces are generated for this degree of freedom

IFLAG.EQ.2: Load curve ID defining rotational moment resultant about local \(t\)-axis as a function of relative rotational displacement during unloading at node 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDTDR & LCIDTDS & LCIDTDT & LCIDRDR & LCIDRDS & LCIDRDT & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDTDR

LCIDTDS Load curve ID defining translational damping force resultant along local \(s\)-axis as a function relative translational velocity.

LCIDTDT Load curve ID defining translational damping force resultant along local \(t\)-axis as a function of relative translational velocity.

\section*{VARIABLE}

LCIDRDR

LCIDRDS

LCIDRDT Load curve ID defining rotational damping moment resultant about local \(t\)-axis as a function of relative rotational velocity.

\section*{DESCRIPTION}

Load curve ID defining rotational damping moment resultant about local \(r\)-axis as a function of relative rotational velocity.

Load curve ID defining rotational damping moment resultant about local \(s\)-axis as a function of relative rotational velocity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDTER & LCIDTES & LCIDTET & LCIDRER & LCIDRES & LCIDRET & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{LCIDTER}

LCIDTES

LCIDTET

LCIDRER

LCIDRES

LCIDRET
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UTFAILR & UTFAILS & UTFAILT & WTFAILR & WTFAILS & WTFAILT & FCRIT & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

Load curve ID defining translational damping force scale factor as a function of relative displacement in local \(r\)-direction.

Load curve ID defining translational damping force scale factor as a function of relative displacement in local s-direction.

Load curve ID defining translational damping force scale factor as a function of relative displacement in local \(t\)-direction.

Load curve ID defining rotational damping moment resultant scale factor as a function of relative displacement in local \(r\)-rotation.

Load curve ID defining rotational damping moment resultant scale factor as a function of relative displacement in local s-rotation.

Load curve ID defining rotational damping moment resultant scale factor as a function of relative displacement in local \(t\)-rotation.

\author{
VARIABLE \\ UTFAILR
}

UTFAILS Optional, translational displacement at failure in tension. If zero, the corresponding displacement, \(u_{s}\), is not considered in the failure calculation.

Optional, translational displacement at failure in tension. If zero, the corresponding displacement, \(u_{t}\), is not considered in the failure calculation.

Optional, rotational displacement at failure in tension. If zero, the corresponding rotation, \(\theta_{r}\), is not considered in the failure calculation.

WTFAILS Optional, rotational displacement at failure in tension. If zero, the corresponding rotation, \(\theta_{s}\), is not considered in the failure calculation.

WTFAILT Optional rotational displacement at failure in tension. If zero, the corresponding rotation, \(\theta_{t}\), is not considered in the failure calculation.

FCRIT Failure criterion (see Remark 1):
EQ.0.0: Two separate criteria, one for negative displacements and rotations, another for positive displacements and rotations

EQ.1.0: One criterion that considers both positive and negative displacements and rotations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UCFAILR & UCFAILS & UCFAILT & WCFAILR & WCFAILS & WCFAILT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

UCFAILR
Optional, translational displacement at failure in compression. If zero, the corresponding displacement, \(u_{r}\), is not considered in the

\section*{VARIABLE}

UCFAILS

UCFAILT

WCFAILR

WCFAILS

WCFAILT

\section*{DESCRIPTION}
failure calculation. Define as a positive number.
Optional, translational displacement at failure in compression. If zero, the corresponding displacement, \(u_{s}\), is not considered in the failure calculation. Define as a positive number.

Optional, translational displacement at failure in compression. If zero, the corresponding displacement, \(u_{t}\), is not considered in the failure calculation. Define as a positive number.

Optional, rotational displacement at failure in compression. If zero, the corresponding rotation, \(\theta_{r}\), is not considered in the failure calculation. Define as a positive number.

Optional, rotational displacement at failure in compression. If zero, the corresponding rotation, \(\theta_{s}\), is not considered in the failure calculation. Define as a positive number.

Optional, rotational displacement at failure in compression. If zero, the corresponding rotation, \(\theta_{t}\), is not considered in the failure calculation. Define as a positive number.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IUR & IUS & IUT & IWR & IWS & IWT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

IUR
IUS
IUT Initial translational displacement along local \(t\)-axis.
IWR Initial rotational displacement about the local \(r\)-axis.
IWS Initial rotational displacement about the local s-axis.
IWT Initial rotational displacement about the local \(t\)-axis.

Loading Rotational Moment Card. This card is read if IFLAG \(=2\). It is optional. If it is included, Cards 10 and 11 must be included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LM1R1S & LM1R2S & LM1R1T & LM1R2T & LM2R1S & LM2R1T & & \\
Type & । & । & । & । & । & । & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LM1R1S

LM1R2S Load curve ID defining rotational moment resultant at node 1 about local \(s\)-axis as a function of relative rotational displacement at node 2 .

LM1R1T Load curve ID defining rotational moment resultant at node 1 about local \(t\)-axis as a function of relative rotational displacement at node 1 .

LM1R2T Load curve ID defining rotational moment resultant at node 1 about local \(t\)-axis as a function of relative rotational displacement at node 2 .

LM2R1S Load curve ID defining rotational moment resultant at node 2 about local \(s\)-axis as a function of relative rotational displacement at node 1 .

LM2R1T Load curve ID defining rotational moment resultant at node 2 about local \(t\)-axis as a function of relative rotational displacement at node 1 .

Unloading Rotational Moment Card. This card is read if IFLAG = 2. It must be included if Card 9 is included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LUM1R1S & LUM1R2S & LUM1R1T & LUM1R2T & LUM2R1S & LUM2R1T & & \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{ccc}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } LUM1R1S & & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 1 about local \(s\)-axis as a function of relative rotational dis- \\
placement at node 1
\end{tabular} \\
LUM1R2S & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 1 about local \(s\)-axis as a function of relative rotational dis- \\
placement at node 2
\end{tabular} \\
LUM1R1T & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 1 about local \(t\)-axis as a function of relative rotational dis- \\
placement at node 1
\end{tabular} \\
LUM1R2T & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 1 about local \(t\)-axis as a function of relative rotational dis- \\
placement at node 2
\end{tabular} \\
LUM2R1S & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 2 about local \(s\)-axis as a function of relative rotational dis- \\
placement at node 1
\end{tabular} \\
LUM2R1T & \begin{tabular}{l}
Load curve ID for unloading defining rotational moment resultant \\
at node 2 about local \(t\)-axis as a function of relative rotational dis- \\
placement at node 1
\end{tabular}
\end{tabular}

Unload Stiffness for Bending Moment Card. This card is read if IFLAG = 2. It must be included if Card 9 is included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & KUM1R1S & KUM1R2S & KUM1R1T & KUM1R2T & KUM2R1S & KUM2R1T & KUM2R2S & KUM2R2T \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

KUM1R1S Optional unload stiffness for bending moment about local s-axis at node 1 due to relative rotation at node 1 . If left blank, LS-DYNA will calculate this value.

KUM1R2S Optional unload stiffness for bending moment about local s-axis at node 1 due to relative rotation at node 2 . If left blank, LS-DYNA will calculate this value.

\author{
VARIABLE \\ KUM1R1T
}

KUM1R2T Optional unload stiffness for bending moment about local \(t\)-axis at node 1 due to relative rotation at node 2. If left blank, LS-DYNA will calculate this value.

KUM2R1S Optional unload stiffness for bending moment about local s-axis at node 2 due to relative rotation at node 1 . If left blank, LS-DYNA will calculate this value.

KUM2R1T Optional unload stiffness for bending moment about local \(t\)-axis at node 2 due to relative rotation at node 1. If left blank, LS-DYNA will calculate this value. .

KUM2R2S Optional unload stiffness for bending moment about local s-axis at node 2 due to relative rotation at node 2. If left blank, LS-DYNA will calculate this value.

KUM2R2T Optional unload stiffness for bending moment about local \(t\)-axis at node 2 due to relative rotation at node 2. If left blank, LS-DYNA will calculate this value.

Elastic limit of loading curves. This card is read if IFLAG \(=2\). It is optional. If not input, the values derived by LS-DYNA based on the related curves will be used. If it is included, Cards 13 and 14 must be included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E1TR & E2TR & E1RR & E2RR & E1RS & E2RS & E1RT & E2RT \\
Type & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{c}
VARIABLE \\
\hline E1TR \\
E2TR \\
E1RR \\
E2RR
\end{tabular}

\section*{DESCRIPTION}

Negative, compressive, elastic limit of curve LCIDTR
Positive, tensile, elastic limit of curve LCIDTR
Negative elastic limit of curve LCIDRR
Positive elastic limit of curve LCIDRR

\section*{VARIABLE}

E1RR
E2RR Positive elastic limit of curve LCIDRS
E1RT Negative elastic limit of curve LCIDRT
E2RT Positive elastic limit of curve LCIDRT

Elastic limit of loading curves. This card is read if IFLAG \(=2\). If not input, the values derived by LS-DYNA based on the related curves will be used. It must be included if Card 12 is included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 13 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E1M1R1S & E2M1R1S & E1M1R2S & E2M1R2S & E1M1R1T & E2M1R1T & E1M1R2T & E2M1R2T \\
Type & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

E1M1R1S
E2M1R1S Positive, tensile, elastic limit of curve LM1R1S
E1M1R2S Negative elastic limit of curve LM1R2S
E2M1R2S Positive elastic limit of curve LM1R2S
E1M1R1T Negative, tensile, elastic limit of curve LM1R1T
E2M1R1T Positive, tensile, elastic limit of curve LM1R1T
E1M1R2T Negative elastic limit of curve LM1R2T
E2M1R2T Positive elastic limit of curve LM1R2T

Elastic limit of loading curves. This card is read if IFLAG \(=2\). It is optional. If not input, the values derived by LS-DYNA based on the related curves will be used. It must be included if Card 12 is included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 14 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E1M2R1S & E2M2R1S & E1M2R1T & E2M2R1T & & & & \\
Type & \(F\) & \(F\) & \(F\) & \(F\) & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

E1M2R1S
E2M2R1S
E1M2R1T Negative elastic limit of curve LM2R1T
E2M2R1T Positive elastic limit of curve LM2R1T

Unloading stiffness along local-s and local- \(t\). This card is read if IUNLD \(=2\) and IFLAG \(=0\) or 1 . It is optional. If not input, the values along local \(r\)-axis, KT and KR, will be used for all axes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 15 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & KTS & KTT & KRS & KRT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

KTS
Translational stiffness along local \(s\)-axis for IUNLD \(=2.0\).
KTT
Translational stiffness along local \(t\)-axis for IUNLD \(=2.0\)
KRS
Rotational stiffness along local \(s\)-axis for IUNLD \(=2.0\)
KRT

Figure M119-1. Load and unloading behavior.

\section*{Remarks:}
1. Failure criterion. When the catastrophic failure criterion is satisfied, the discrete element is deleted. Failure for this material depends directly on the displacement resultants. The failure criterion depends on the value of FCRIT.

If FCRIT \(=0.0\), failure occurs if either of the following inequalities are satisfied:
\[
\begin{aligned}
& A^{t}-1 \geq 0 \\
& A^{c}-1 \geq 0
\end{aligned}
\]
where
\[
\begin{aligned}
& A^{t}=\left[\frac{\max \left(0, u_{r}\right)}{u_{r}^{\text {tfail }}}\right]^{2}+\left[\frac{\max \left(0, u_{s}\right)}{u_{s}^{\text {tfail }}}\right]^{2}+\left[\frac{\max \left(0, u_{t}\right)}{\left.u_{t}^{\text {tfail }}\right]^{2}}+\left[\left[\frac{\max \left(0, \theta_{r}\right)}{\theta_{r}^{\text {tfail }}}\right]^{2}\right.\right. \\
&+\left[\frac{\max \left(0, \theta_{s}\right)}{\theta_{s}^{\text {tfail }}}\right]^{2}+\left[\frac{\max \left(0, \theta_{t}\right)}{\theta_{t}^{\text {tfail }}}\right]^{2} \\
& A_{c}=\left[\frac{\max \left(0, u_{r}\right)}{u_{r}^{\text {cfail }}}\right]^{2}+\left[\frac{\max \left(0, u_{s}\right)}{u_{s}^{\text {cfail }}}\right]^{2}+\left[\frac{\max \left(0, u_{t}\right)}{u_{t}^{\text {cfail }}}\right]^{2}+\left[\frac{\max \left(0, \theta_{r}\right)}{\left.\theta_{r}^{\text {cfail }}\right]^{2}}\right. \\
&+\left[\frac{\max \left(0, \theta_{s}\right)}{\theta_{s}^{\text {cfail }}}\right]^{2}+\left[\frac{\max \left(0, \theta_{t}\right)}{\theta_{t}^{\text {cfail }}}\right]^{2}
\end{aligned}
\]

Positive (tension) values of displacement and rotation are considered in the first criterion and negative (compression) values in the second. Either the tension failure or the compression failure or both may be used. If any of the input failure displacements and rotations (UTFAILR etc) are left as zero, the corresponding terms will be omitted from the equations for \(A^{t}\) and \(A^{c}\) above.

If FCRIT \(=1.0\), then a single criterion is used:
\[
A^{t}+A^{c}-1 \geq 0
\]

Thus, the combined effect of all the displacements and rotations is considered, be they positive or negative.
2. Force. There are two formulations for calculating the force. The first is the standard displacement formulation, where, for example, the force in a linear spring is
\[
F=-K \Delta \ell
\]
for a change in length of the beam of \(\Delta l\). The second formulation is based on the linear strain, giving a force of
\[
F=-K \frac{\Delta \ell}{\ell_{0}}
\]
for a beam with an initial length of \(\ell_{0}\). This option is useful when there are springs of different lengths but otherwise similar construction since it automatically reduces the stiffness of the spring as the length increases, allowing an entire family of springs to be modeled with a single material. Note that all the displacement and velocity components are divided by the initial length, and therefore the scaling applies to the damping and rotational stiffness.
3. Rotational displacement. Rotational displacement is measured in radians.

\section*{*MAT_GURSON}

This is Material Type 120. This is the Gurson dilatational-plastic model. This model is available for shell and solid elements. A detailed description of this model can be found in the following references: Gurson [1975, 1977], Chu and Needleman [1980] and Tvergaard and Needleman [1984]. The implementation in LS-DYNA is based on the implementation of Feucht [1998] and Faßnacht [1999], which was recoded at LSTC. Strain rate dependency can be defined using a table (see LCSS on Card 6).

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & SIGY & N & Q1 & Q2 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline FC & F0 & EN & SN & FN & ETAN & ATYP & FF0 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline L 1 & L 2 & L 3 & L 4 & FF1 & FF2 & FF3 & FF4 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCSS & LCFF & NUMINT & LCFO & LCFC & LCFN & VGTYP & DEXP \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & N & Q1 & Q2 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress

Q1
Q2

N Exponent for Power law (default =0.0). This value is only used if ATYP \(=1\) and LCSS \(=0\) (see Cards 2 and 6).

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified.

Gurson flow function parameter \(q_{1}\)
Gurson flow function parameter \(q_{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FC & F0 & EN & SN & FN & ETAN & ATYP & FF0 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

FC

F0

EN \(\quad\) Mean nucleation strain \(\varepsilon_{N}\) :
GT.0.0: Constant value

\section*{LT.0.0: Load curve ID \(=(-E N)\) which defines mean nucleation \(\operatorname{strain} \varepsilon_{N}\) as a function of element length}

Critical void volume fraction \(f_{c}\) where voids begin to aggregate. This value is only used if LCFC \(=0\) (see Card 6).

Initial void volume fraction, \(f_{0}\). This value is only used if LCF0 \(=0\) (see Card 6).

Standard deviation \(s_{N}\) of the normal distribution of \(\varepsilon_{N}\) :
GT.0.0: Constant value

\section*{VARIABLE}

\section*{DESCRIPTION}

LT.O.O: Load curve ID \(=(-\mathrm{SN})\) which defines standard deviation \(s_{N}\) of the normal distribution of \(\varepsilon_{N}\) as a function of element length

FN

ETAN Hardening modulus. This value is only used if ATYP = 2 and LCSS = 0 (see Card 6).

ATYP Type of hardening:
EQ.0.0: Ideal plastic
\[
\sigma_{Y}=\operatorname{SIGY}
\]

EQ.1.0: Power law
\[
\sigma_{Y}=\operatorname{SIGY} \times\left(\frac{\varepsilon^{p}+\operatorname{SIGY} / \mathrm{E}}{\operatorname{SIGY} / \mathrm{E}}\right)^{1 / \mathrm{N}}
\]

EQ.2.0: Linear hardening
\[
\sigma_{Y}=\mathrm{SIGY}+\frac{\mathrm{E} \times \mathrm{ETAN}}{\mathrm{E}-\mathrm{ETAN}} \varepsilon^{p}
\]

EQ.3.0: 8 points curve
Failure void volume fraction \(f_{F}\). This value is only used if no curve is given by (L1, FF1) - (L4, FF4) and LCFF \(=0\) (see Cards 5 and 6).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

EPS1 - EPS8

ES1 - ES8

\section*{DESCRIPTION}

Effective plastic strain values. The first point must be zero corresponding to the initial yield stress. At least 2 points should be defined. These values are used if ATYP \(=3\) and LCSS \(=0\) (see Cards 2 and 6).

Corresponding yield stress values to EPS1 - EPS8. These values are used if ATYP \(=3\) and LCSS \(=0\) (see Cards 2 and 6).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & L1 & L2 & L3 & L4 & FF1 & FF2 & FF3 & FF4 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
L1 - L4

FF1 - FF4

\section*{DESCRIPTION}

Element length values. These values are only used if LCFF \(=0\) (see Card 6).

Corresponding failure void volume fraction. These values are only used if LCFF \(=0(\) see Card 6\()\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSS & LCFF & NUMINT & LCF0 & LCFC & LCFN & VGTYP & DEXP \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & \(F\) & \(F\) \\
Default & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 3.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LCSS

\section*{DESCRIPTION}

Load curve ID or Table ID. If defined, ATYP, EPS1 - EPS8 and ES1 - ES8 are ignored.

Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain.

\section*{VARIABLE}

LCFF Load curve ID defining failure void volume fraction, \(f_{F}\), as a function of element length

NUMINT Number of integration points which must fail before the element is deleted. This option is available for shells and solids.

LT.O.O: |NUMINT| is percentage of integration points/layers which must fail before shell element fails. For fully integrated shells, a methodology is used where a layer fails if one integration point fails and then the given percentage of layers must fail before the element fails. Only available for shells.

LCFC Load curve ID defining critical void volume fraction, \(f_{c}\), as a function of element length

LCFN Load curve ID defining void volume fraction of nucleating particles, \(f_{N}\), as a function of element length

VGTYP Type of void growth behavior:
EQ.O.O: Void growth in case of tension and void contraction in case of compression, but never below \(f_{0}\) (default)
EQ.1.0: Void growth only in case of tension
EQ.2.0: Void growth in case of tension and void contraction in case of compression, even below \(f_{0}\)

\section*{VARIABLE}

DEXP Exponent value for damage history variable 16

\section*{Remarks:}

The Gurson flow function is defined as:
\[
\Phi=\frac{\sigma_{M}^{2}}{\sigma_{Y}^{2}}+2 q_{1} f^{*} \cosh \left(\frac{3 q_{2} \sigma_{H}}{2 \sigma_{Y}}\right)-1-\left(q_{1} f^{*}\right)^{2}=0
\]
where \(\sigma_{M}\) is the equivalent von Mises stress, \(\sigma_{Y}\) is the yield stress, and \(\sigma_{H}\) is the mean hydrostatic stress. The effective void volume fraction is defined as
\[
f^{*}(f)= \begin{cases}f & f \leq f_{c} \\ f_{c}+\frac{1 / q_{1}-f_{c}}{f_{F}-f_{c}}\left(f-f_{c}\right) & f>f_{c}\end{cases}
\]

The growth of void volume fraction is defined as
\[
\dot{f}=\dot{f}_{G}+\dot{f}_{N}
\]
where the growth of existing voids is defined as
\[
\dot{f}_{G}=(1-f) \dot{\varepsilon}_{k k}^{p}
\]
and nucleation of new voids is defined as
\[
\dot{f}_{N}=A \dot{\varepsilon}_{p}
\]
with function \(A\)
\[
A=\frac{f_{N}}{S_{N} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{\varepsilon_{p}-\varepsilon_{N}}{S_{N}}\right)^{2}\right]
\]

Voids are nucleated only in tension.

\section*{History Variables:}
\begin{tabular}{c|c|l}
\hline Shell & Solid & \multicolumn{1}{|c}{ Description } \\
\hline \hline 1 & 1 & Void volume fraction \\
4 & 2 & Triaxiality variable \(\sigma_{H} / \sigma_{M}\) \\
5 & 3 & Effective strain rate \\
6 & 4 & Growth of voids \\
7 & 5 & Nucleation of voids \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline Shell & Solid & \multicolumn{1}{|c}{ Description } \\
\hline \hline 11 & 11 & Dimensionless material damage value \(= \begin{cases}\frac{\left(f-f_{0}\right)}{\left(f_{c}-f_{0}\right)} & f \leq f_{\mathcal{C}} \\
1+\frac{\left(f-f_{c}\right)}{\left(f_{F}-f_{c}\right)} & f>f_{\mathcal{C}}\end{cases}\) \\
13 & 13 & Deviatoric part of microscopic plastic strain \\
14 & 14 & Volumetric part of macroscopic plastic strain \\
16 & 16 & Dimensionless material damage value \(=\left(\frac{f-f_{0}}{f_{F}-f_{0}}\right)^{1 / D E X P}\) \\
\hline
\end{tabular}

\section*{*MAT_GURSON_JC}

This is an enhancement of Material Type 120. This is the Gurson model with the additional Johnson-Cook failure criterion (see Card 5). This model is available for shell and solid elements. Strain rate dependency can be defined using a table (see LCSS). An extension for void growth under shear-dominated states and for Johnson-Cook damage evolution is optional.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & SIGY & N & Q1 & Q2 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FC & FO & EN & SN & FN & ETAN & ATYP & FFO \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIG1 & SIG2 & SIG3 & SIG4 & SIG5 & SIG6 & SIG7 & SIG8 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline LCDAM & L1 & L2 & D1 & D2 & D3 & D4 & LCJC \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCSS & LCFF & NUMINT & LCFO & LCFC & LCFN & VGTYP & DEXP \\
\hline
\end{tabular}

Card 7. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline KW & BETA & M & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & N & Q 1 & Q2 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & none & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E Young's modulus
PR Poisson's ratio

SIGY
N

Q1
Q2

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density

Yield stress
Exponent for power law. This field is only used if ATYP = 1 and LCSS \(=0\) (see Cards 2 and 6).

Gurson flow function parameter \(q_{1}\)
Gurson flow function parameter \(q_{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FC & FO & EN & SN & FN & ETAN & ATYP & FF0 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

FC
Critical void volume fraction, \(f_{c}\), where voids begin to aggregate

\section*{VARIABLE}

F0
EN Mean nucleation strain, \(\varepsilon_{N}\) :
GT.0.0: Constant value
LT.0.0: Load curve ID \(=(-E N)\) which defines mean nucleation strain, \(\varepsilon_{N}\), as a function of element length

Standard deviation, \(s_{N}\), of the normal distribution of \(\varepsilon_{N}\) :
GT.0.0: Constant value
LT.O.O: Load curve ID \(=(-\mathrm{SN})\) which defines standard deviation, \(s_{N}\), of the normal distribution of \(\varepsilon_{N}\) as a function of element length

FN Void volume fraction of nucleating particles, \(f_{N}\). This field is only used if LCFN \(=0\).

ETAN Hardening modulus. This field is only used if ATYP = 2 and LCSS = 0 (see Card 6).

ATYP Type of hardening:
EQ.0.0: Ideal plastic,
\[
\sigma_{Y}=\text { SIGY }
\]

EQ.1.0: Power law,
\[
\sigma_{Y}=\operatorname{SIGY} \times\left(\frac{\varepsilon^{p}+\operatorname{SIGY} / \mathrm{E}}{\operatorname{SIGY} / \mathrm{E}}\right)^{1 / \mathrm{N}}
\]

EQ.2.0: Linear hardening,
\[
\sigma_{Y}=\operatorname{SIGY}+\frac{\mathrm{E} \times \mathrm{ETAN}}{\mathrm{E}-\mathrm{ETAN}} \varepsilon^{p}
\]

EQ.3.0: 8 points curve
Failure void volume fraction, \(f_{F}\). This field is only used if LCFF \(=0\) (see Card 6).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIG1 & SIG2 & SIG3 & SIG4 & SIG5 & SIG6 & SIG7 & SIG8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

EPS1 - EPS8

ES1 - ES8

\section*{DESCRIPTION}

Effective plastic strain values. The first point must be zero corresponding to the initial yield stress. At least 2 points should be defined. These values are used if \(\operatorname{ATYP}=3\) and \(\operatorname{LCSS}=0\). See Cards 2 and 6.

Corresponding yield stress values to EPS1 - EPS8. These values are used if ATYP \(=3\) and LCSS \(=0\). See Cards 2 and 6 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCDAM & L1 & L2 & D1 & D2 & D3 & D4 & LCJC \\
Type & I & F & F & F & F & F & F & 1 \\
Default & 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 \\
\hline
\end{tabular}

L2 Upper triaxiality factor defining failure evolution (Johnson-Cook)
D1 - D4 Johnson-Cook damage parameters

\section*{VARIABLE}

LCDAM

L1

LCJC

\section*{DESCRIPTION}

Load curve defining the scaling factor, \(\Lambda\), as a function of element length. It scales the Johnson-Cook failure strain (see remarks). If LCDAM \(=0\), no scaling is performed.

1 Lower triaxiality factor defining failure evolution (Johnson-Cook)

Load curve defining the scaling factor for Johnson-Cook failure as a function of triaxiality (see remarks). If LCJC >0, parameters D1, D2 and D3 are ignored.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSS & LCFF & NUMINT & LCF0 & LCFC & LCFN & VGTYP & DEXP \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & F & F \\
Default & 0 & 0 & 1 & 0 & 0 & 0 & 0.0 & 3.0 \\
\hline
\end{tabular}

VARIABLE
LCSS

LCFF

NUMINT

\section*{DESCRIPTION}

Load curve ID or Table ID. If defined, ATYP, EPS1 - EPS8 and ES1 - ES8 are ignored.

Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain.
Tabular Data. The table ID defines for each strain rate value a load curve ID giving the effective stress as a function effective plastic strain for that rate; see Figure M24-1 and *MAT_024. When the strain rate falls below the minimum value, the stress as a function of effective plastic strain curve for the lowest value of strain rate is used.

Logarithmically Defined Tables. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude.

Load curve ID defining failure void volume fraction, \(f_{F}\), as a function of element length

Number of through thickness integration points which must fail before the element is deleted. This option is available for shells and solids.

LT.O.O: |NUMINT| is the percentage of integration points/layers which must fail before shell element fails. For fully integrated shells, a methodology is used where a layer fails if one integration point fails and then the given percentage of layers must fail before the element fails. Only available for shells.

\section*{VARIABLE}

LCF0

LCFC

LCFN

VGTYP

DEXP

\section*{DESCRIPTION}

Load curve ID defining initial void volume fraction, \(f_{0}\), as a function of element length

Load curve ID defining critical void volume fraction, \(f_{c}\), as a function of element length

Load curve ID defining void volume fraction of nucleating particles, \(f_{N}\), as a function of element length

Type of void growth behavior.
EQ.0.0: Void growth in case of tension and void contraction in case of compression, but never below \(f_{0}\) (default)
EQ.1.0: Void growth only in case of tension
EQ.2.0: Void growth in case of tension and void contraction in case of compression, even below \(f_{0}\)

Exponent value for damage history variable 16

Optional Card (starting with version 971 release R4)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & KW & BETA & M & & & & & \\
Type & F & F & F & & & & & \\
Default & 0.0 & 0.0 & 1.0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

KW

BETA
M

\section*{DESCRIPTION}

Parameter \(k_{\omega}\) for void growth in shear-dominated states. See remarks.

Parameter \(\beta\) in Lode cosine function. See remarks.
Parameter for generalization of Johnson-Cook damage evolution. See remarks.

\section*{Remarks:}

The Gurson flow function is defined as:
\[
\Phi=\frac{\sigma_{M}^{2}}{\sigma_{Y}^{2}}+2 q_{1} f^{*} \cosh \left(\frac{3 q_{2} \sigma_{H}}{2 \sigma_{Y}}\right)-1-\left(q_{1} f^{*}\right)^{2}=0
\]
where \(\sigma_{M}\) is the equivalent von Mises stress, \(\sigma_{Y}\) is the yield stress, and \(\sigma_{H}\) is the mean hydrostatic stress. The effective void volume fraction is defined as
\[
f^{*}(f)= \begin{cases}f & f \leq f_{c} \\ f_{c}+\frac{1 / q_{1}-f_{c}}{f_{F}-f_{c}}\left(f-f_{c}\right) & f>f_{c}\end{cases}
\]

The growth of void volume fraction is defined as
\[
\dot{f}=\dot{f}_{G}+\dot{f}_{N}
\]
where the growth of existing voids is defined as
\[
\dot{f_{G}}=(1-f) \dot{\varepsilon}_{k k}^{p}+k_{\omega} \omega(\sigma) f(1-f) \dot{\varepsilon}_{M}^{p l} \frac{\sigma_{Y}}{\sigma_{M}}
\]

The second term is an optional extension for shear failure proposed by Nahshon and Hutchinson [2008] with new parameter \(k_{\omega}\) (= 0 by default), effective plastic strain rate in the matrix \(\dot{\varepsilon}_{M^{\prime}}^{p l}\) and Lode cosin function \(\omega(\sigma)\) :
\[
\omega(\sigma)=1-\xi^{2}-\beta \times \xi(1-\xi), \quad \xi=\cos (3 \theta)=\frac{27}{2} \frac{J_{3}}{\sigma_{M}^{3}}
\]
with parameter \(\beta\), Lode angle \(\theta\) and third deviatoric stress invariant \(J_{3}\).
Nucleation of new voids is defined as
\[
\dot{f}_{N}=A \dot{\varepsilon}_{M}^{p l}
\]
with function \(A\)
\[
A=\frac{f_{N}}{S_{N} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{\varepsilon_{M}^{p l}-\varepsilon_{N}}{S_{N}}\right)^{2}\right]
\]

Voids are nucleated only in tension.
The Johnson-Cook failure criterion is added to this material model. Based on the triaxiality ratio \(\sigma_{H} / \sigma_{M}\) failure is calculated as:
\[
\begin{aligned}
& \sigma_{H} / \sigma_{M}>L_{1}: \text { Gurson model } \\
& L_{1} \geq \sigma_{H} / \sigma_{M} \geq L_{2}: \text { Gurson model and Johnson-Cook failure criteria } \\
& L_{2}<\sigma_{H} / \sigma_{M} \quad: \text { Gurson model }
\end{aligned}
\]

Johnson-Cook failure strain is defined as
\[
\varepsilon_{f}=\left[D_{1}+D_{2} \exp \left(D_{3} \frac{\sigma_{H}}{\sigma_{M}}\right)\right]\left(1+D_{4} \ln \dot{\varepsilon}\right) \Lambda,
\]
where \(D_{1}, D_{2}, D_{3}\) and \(D_{4}\) are the Johnson-Cook failure parameters and \(\Lambda\) is a function for including mesh-size dependency. An alternative expression can be used, where the first term of the above equation (including D1, D2 and D3) is replaced by a general function LCJC which depends on triaxiality
\[
\varepsilon_{f}=\operatorname{LCJC} \times\left(\frac{\sigma_{H}}{\sigma_{M}}\right)\left(1+D_{4} \ln \dot{\varepsilon}\right) \Lambda .
\]

The Johnson-Cook damage parameter \(D_{f}\) is calculated with the following evolution equation:
\[
\dot{D}_{f}=\frac{\dot{\varepsilon}^{p l}}{\varepsilon_{f}} \Rightarrow D_{f}=\sum \frac{\Delta \varepsilon^{p l}}{\varepsilon_{f}} .
\]
where \(\Delta \varepsilon^{p l}\) is the increment in effective plastic strain. The material fails when \(D_{f}\) reaches 1.0. A more general (non-linear) damage evolution is possible if \(M>1\) is chosen:
\[
\dot{D}_{f}=\frac{M}{\varepsilon_{f}} D_{f}^{\left(1 \frac{1}{\dot{\varepsilon}} \bar{p}, \frac{1}{M}\right)} \quad M \geq 1.0
\]

\section*{History variables:}
\begin{tabular}{c|c|l}
\hline Shell & Solid & \multicolumn{1}{|c}{ Description } \\
\hline \hline 1 & 1 & Void volume fraction \\
4 & 2 & Triaxiality variable \(\sigma_{\mathrm{H}} / \sigma_{\mathrm{M}}\) \\
5 & 3 & Effective strain rate \\
6 & 4 & Growth of voids \\
7 & 5 & Nucleation of voids \\
8 & 6 & \begin{tabular}{l}
Johnson-Cook failure strain \(\varepsilon_{f}\) \\
9
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
Johnson-Cook damage parameter \(D_{f}\) \\
Domain variable: \\
EQ.0: elastic stress update \\
EQ.1: region (a) Gurson \\
EQ.2: region (b) Gurson + Johnson-Cook \\
EQ.3: region (c) Gurson
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline Shell & Solid & \multicolumn{1}{|c}{ Description } \\
\hline \hline 11 & 11 & Dimensionless material damage value \(= \begin{cases}\frac{\left(f-f_{0}\right)}{\left(f_{c}-f_{0}\right)} & f \leq f_{\mathrm{c}} \\
1+\frac{\left(f-f_{c}\right)}{\left(f_{F}-f_{c}\right)} & f>f_{\mathrm{c}}\end{cases}\) \\
13 & 13 & Deviatoric part of microscopic plastic strain \\
14 & 14 & Volumetric part of macroscopic plastic strain \\
16 & 16 & Dimensionless material damage value \(=\left(\frac{f-f_{0}}{f_{F}-f_{0}}\right)^{1 / \mathrm{DEXP}}\) \\
\hline
\end{tabular}

\section*{*MAT_GURSON_RCDC}

This is an enhancement of Material Type 120. This is the Gurson model with the Wilkins Rc-Dc [Wilkins, et al., 1977] fracture model added. This model is available for shell and solid elements. A detailed description of this model can be found in the following references: Gurson [1975, 1977]; Chu and Needleman [1980]; and Tvergaard and Needleman [1984].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & SIGY & N & Q1 & Q2 \\
\hline
\end{tabular}

\section*{Card 2. Description.}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FC & FO & EN & SN & FN & ETAN & ATYP & FFO \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline L1 & L2 & L3 & L4 & FF1 & FF2 & FF3 & FF4 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline LCSS & LCFF & NUMINT & & & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ALPHA & BETA & GAMMA & DO & B & LAMBDA & DS & L \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & N & Q1 & Q2 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & none & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
N Exponent for Power law. This field is only used if ATYP = 1 and LCSS \(=0\). See Cards 2 and 6.

Q1 Gurson flow function parameter \(q_{1}\)
Q2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FC & F0 & EN & SN & FN & ETAN & ATYP & FF0 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

FC Critical void volume fraction, \(f_{c}\)

\section*{VARIABLE}

F0
EN
SN
FN
ETAN

ATYP

FF0

\section*{DESCRIPTION}

Initial void volume fraction, \(f_{0}\)
Mean nucleation strain, \(\varepsilon_{N}\)
Standard deviation, \(S_{N}\), of the normal distribution of \(\varepsilon_{N}\)
Void volume fraction of nucleating particles
Hardening modulus. This field is only used if ATYP \(=2\) and LCSS \(=0\). See Card 6.

Type of hardening:
EQ.0.0: Ideal plastic,
\[
\sigma_{Y}=\text { SIGY }
\]

EQ.1.0: Power law,
\[
\sigma_{Y}=\operatorname{SIGY} \times\left(\frac{\varepsilon^{p}+\operatorname{SIGY} / \mathrm{E}}{\operatorname{SIGY} / \mathrm{E}}\right)^{1 / \mathrm{N}}
\]

EQ.2.0: Linear hardening,
\[
\sigma_{Y}=\mathrm{SIGY}+\frac{\mathrm{E} \times \mathrm{ETAN}}{\mathrm{E}-\mathrm{ETAN}} \varepsilon^{p}
\]

EQ.3.0: 8 points curve
Failure void volume fraction, \(f_{F}\). This field is used if no curve is given by the points (L1, FF1) - (L4, FF4) and LCFF \(=0\). See Cards 5 and 6.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\author{
VARIABLE \\ EPS1 - EPS8
}

ES1 - ES8

\section*{DESCRIPTION}

Effective plastic strain values. The first point must be zero corresponding to the initial yield stress. This option is only used if ATYP equal to 3. At least 2 points should be defined. These values are used if ATYP \(=3\) and LCSS \(=0\). See Cards 2 and 6.

Corresponding yield stress values to EPS1-EPS8. These values are used if ATYP \(=3\) and LCSS \(=0\). See Cards 2 and 6 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & L1 & L2 & L3 & L4 & FF1 & FF2 & FF3 & FF4 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
L1 - L4
FF1 - FF4

\section*{DESCRIPTION}

Element length values. These fields are only used if LCLF \(=0\).
Corresponding failure void volume fraction. These values are only used if LCLF \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSS & LCFF & NUMINT & & & & & \\
Type & 1 & 1 & 1 & & & & & \\
Default & 0 & 0 & 1 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCSS

\section*{DESCRIPTION}

Load curve ID defining effective stress as a function of effective plastic strain. ATYP is ignored with this option.

LCLF Load curve ID defining failure void volume fraction as a function of element length. The values L1 - L4 and FF1 - FF4 are ignored with this option.

VARIABLE
NUMINT

\section*{DESCRIPTION}

Number of through thickness integration points which must fail before the element is deleted
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & BETA & GAMMA & D0 & B & LAMBDA & DS & L \\
Type & F & F & F & F & F & F & F & F \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
ALPHA
BETA
GAMMA
D0

B
LAMBDA
DS
L Characteristic element length for this material

\section*{Remarks:}

The Gurson flow function is defined as:
\[
\Phi=\frac{\sigma_{M}^{2}}{\sigma_{Y}^{2}}+2 q_{1} f^{*} \cosh \left(\frac{3 q_{2} \sigma_{H}}{2 \sigma_{Y}}\right)-1-\left(q_{1} f^{*}\right)^{2}=0,
\]
where \(\sigma_{M}\) is the equivalent von Mises stress, \(\sigma_{Y}\) is the Yield stress, and \(\sigma_{H}\) is the mean hydrostatic stress. The effective void volume fraction is defined as
\[
f^{*}(f)= \begin{cases}f & f \leq f_{c} \\ f_{c}+\frac{1 / q_{1}-f_{c}}{f_{F}-f_{c}}\left(f-f_{c}\right) & f>f_{c}\end{cases}
\]

The growth of the void volume fraction is defined as
\[
\dot{f}=\dot{f}_{G}+\dot{f}_{N}
\]
where the growth of existing voids is given as:
\[
\dot{f}_{G}=(1-f) \dot{\varepsilon}_{k k}^{p}
\]
and nucleation of new voids as:
\[
\dot{f}_{N}=A \dot{\varepsilon}_{p}
\]
in which \(A\) is defined as
\[
A=\frac{f_{N}}{S_{N} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\varepsilon_{p}-\varepsilon_{N}}{S_{N}}\right)^{2}\right)
\]

The Rc-Dc model is described in the following. The damage \(D\) is given by
\[
D=\int \omega_{1} \omega_{2} d \varepsilon^{p}
\]
where \(\varepsilon^{p}\) is the equivalent plastic strain,
\[
\omega_{1}=\left(\frac{1}{1-\gamma \sigma_{m}}\right)^{\alpha}
\]
is a triaxial stress weighting term, and
\[
\omega_{2}=\left(2-A_{D}\right)^{\beta}
\]
is a asymmetric strain weighting term. In the above \(\sigma_{m}\) is the mean stress and
\[
A_{D}=\max \left(\frac{S_{2}}{S_{3}}, \frac{S_{2}}{S_{1}}\right)
\]

Fracture is initiated when the accumulation of damage is
\[
\frac{D}{D_{c}}>1
\]
where \(D_{c}\) is the a critical damage given by
\[
D_{c}=D_{0}\left(1+b|\nabla D|^{\lambda}\right)
\]

A fracture fraction
\[
F=\frac{D-D_{c}}{D_{s}}
\]
defines the degradations of the material by the Rc-Dc model.
The characteristic element length is used in the calculation of \(\nabla D\). Calculation of this factor is only done for elements with a smaller element length than this value.

\section*{*MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM}

This is Material Type 121. This is a very general spring and damper model. This beam is based on the MAT_SPRING_GENERAL_NONLINEAR option and is a one-dimensional version of the 6DOF_DISCRETE_BEAM above. The forces generated by this model act along a line between the two connected nodal points. Additional unloading options have been included.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & IUNLD & OFFSET & DAMPF & & \\
Type & A & F & F & I & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDT & LCIDTU & LCIDTD & LCIDTE & & & & \\
Type & 1 & 1 & 1 & 1 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UTFAIL & UCFAIL & IU & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density; see also volume in *SECTION_BEAM definition.
K Translational stiffness for unloading option 2.0
IUNLD Unloading option (Also see Figure M119-1):
EQ.O.0: Loading and unloading follow loading curve.
EQ.1.0: Loading follows loading curve; unloading follows unloading curve. The unloading curve ID if undefined is

\section*{VARIABLE}

OFFSET Offset to determine permanent set upon unloading if the IUNLD \(=3.0\). The permanent sets in compression and tension are equal to the product of this offset value and the maximum compressive and tensile displacements, respectively.

DAMPF Damping factor for stability. Values in the neighborhood of unity are recommended. This damping factor is properly scaled to eliminate time step size dependency. Also, it is active if and only if the local stiffness is defined.

LCIDT Load curve ID defining translational force resultant along the axis as a function of relative translational displacement. If zero, no stiffness related forces are generated for this degree of freedom. The loading curves must be defined from the most negative displacement to the most positive displacement. The force does not need to increase monotonically for the loading curve. The curves are extrapolated when the displacement range falls outside the curve definition.

LCIDTU Load curve ID defining translational force resultant along the axis as a function of relative translational displacement during unloading. The force values defined by this curve must increase monotonically from the most negative displacement to the most positive displacement. For IUNLD = 1.0, the slope of this curve must equal or exceed the loading curve for stability reasons. This is not the case for IUNLD \(=2.0\). For loading and unloading to follow the same path simply set LCIDTU \(=\) LCIDT.

LCIDTD Load curve ID defining translational damping force resultant along the axis as a function of relative translational velocity.

LCIDTE Load curve ID defining translational damping force scale factor as a function of relative displacement along the axis.

\section*{VARIABLE}

UTFAIL

IU

UCFAIL Optional, translational displacement at failure in compression. If zero, failure in compression is not considered.

\section*{DESCRIPTION}

Optional, translational displacement at failure in tension. If zero, failure in tension is not considered.

Initial translational displacement along axis

\section*{Remarks:}

Rotational displacement is measured in radians.

\section*{*MAT_HILL_3R}

This is Material Type 122. This is Hill's 1948 planar anisotropic material model with 3 R values.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & R0 & E & PR & HR & P1 & P2 & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline R00 & R45 & R90 & LCID & E0 & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & & & & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & HR & P1 & P2 & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus, \(E\)
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } PR & Poisson's ratio, \(v\) \\
HR & Hardening rule: \\
& EQ.1.0: Linear (default) \\
& EQ.2.0: Exponential \\
& EQ.3.0: Load curve \\
& Material parameter: \\
& HR.EQ.1.0: Tangent modulus \\
& HR.EQ.2.0: \(k\), strength coefficient for exponential hardening \\
& Material parameter: \\
& HR.EQ.1.0: Yield stress \\
& HR.EQ.2.0: \(n\), exponent
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R00 & R45 & R90 & LCID & E0 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

R00
R45

R90
LCID
E0
\(\varepsilon_{0}\) for determining initial yield stress for exponential hardening. (default \(=0.0\))
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. The material axes are then rotated about the shell element normal by an angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by the vector a defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

A1 A2 A3 Components of vector a for AOPT \(=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
V1 V2 V3
D1 D2 D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}

The calculated effective stress is stored in history variable \#4.

\section*{*MAT_HILL_3R_3D}

This is Material Type 122_3D. It combines orthotropic elastic behavior with Hill's 1948 anisotropic plasticity theory. Anisotropic plastic properties are given by 6 material parameters, \(F, G, H, L, M, N\), which are determined by experiments. This model is implemented for solid elements.

This keyword can be written either as *MAT_HILL_3R_3D or *MAT_122_3D.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EX & EY & EZ & PRXY & PRYZ & PRXZ \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GXY & GYZ & GXZ & F & G & \(H\) & \(L\) & \(M\) \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(N\) & HR & P1 & P2 & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & & & & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EX & EY & EZ & PRXY & PRYZ & PRXZ \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
EX \(\quad E_{x}\), Young's modulus in the \(x\)-direction
LT.O.O: \(|E X|\) is a load curve ID defining \(E_{x}\) as a function of temperature.

EY \(\quad E_{y}\), Young's modulus in the \(y\)-direction
LT.O.O: \(|\mathrm{EY}|\) is a load curve ID defining \(E_{y}\) as a function of temperature.
\(E_{z}\), Young's modulus in the \(z\)-direction
LT.0.0: |EZ| is a load curve ID defining \(E_{z}\) as a function of temperature.

PRXY
\(v_{x y}\), Poisson's ratio \(x y\)
LT.O.O: \(\mid \mathrm{PRXY\mid}\) is a load curve ID defining \(v_{x y}\) as a function of temperature.

PRYZ \(\quad v_{y z}\), Poisson's ratio \(y z\)
LT.O.O: |PRYZ| is a load curve ID defining \(v_{y z}\) as a function of temperature.

PRXZ \(\quad v_{x z}\), Poisson's ratio \(x z\)
LT.O.0: |PRXZ| is a load curve ID defining \(v_{x z}\) as a function of temperature.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GXY & GYZ & GXZ & F & G & H & L & M \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
GXY

\section*{DESCRIPTION}
\(G_{x y}\), shear modulus \(x y\)

\section*{DESCRIPTION}

LT.O.O: \(|G X Y|\) is load curve ID defining \(G_{x y}\) as a function of temperature.
\(G_{y z}\), shear modulus \(y z\)
LT.O.O: \(|\mathrm{GYZ}|\) is load curve ID defining \(G_{y z}\) as a function of temperature.

GXZ \(\quad G_{x z}\), shear modulus \(x z\)
LT.0.0: \(|\mathrm{GXZ}|\) is load curve ID defining \(G_{x z}\) as a function of temperature.

F Material constant in Hill's 1948 yield criterion (see Remark 1).
LT.O.O: \(|\mathrm{F}|\) is a load curve ID defining \(F\) as a function of temperature.

G Material constant in Hill's 1948 yield criterion (see Remark 1).
LT.O.O: \(|G|\) is a load curve ID defining \(G\) as a function of temperature.

H Material constant in Hill's 1948 yield criterion (see Remark 1).
LT.O.O: \(|\mathrm{H}|\) is a load curve ID defining \(H\) as a function of temperature.

Material constant in Hill's 1948 yield criterion (see Remark 1).
LT.O.O: \(|\mathrm{L}|\) is a load curve ID defining \(L\) as a function of temperature.

M Material constant in Hill's 1948 yield criterion (see Remark 1).
LT.O.O: \(|\mathrm{M}|\) is a load curve ID defining \(M\) as a function of temperature.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & N & HR & P1 & P2 & & & & \\
Type & F & I & I/F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

N

HR Hardening rule:
EQ.1: stress-strain relationship is defined by load curve or 2D table ID, P1. P2 is ignored.
EQ.2: stress-strain relationship is defined by strength coefficient \(k\) (P1) and strain hardening coefficient \(n\) (P2), as in Swift's exponential hardening equation:
\[
\sigma_{\text {yield }}=k(\varepsilon+0.01)^{n}
\]

P1 Material parameter:
HR.EQ.1: load curve or 2D table ID defining stress-strain curve. If P 1 is a 2 D table ID , the table gives stress-strain curves for different temperatures.
HR.EQ.2: \(k\), strength coefficient in \(\sigma_{\text {yield }}=k(\varepsilon+0.01)^{n}\)
P2 Material parameter:
HR.EQ.1: not used
HR.EQ.2.0: \(n\), the exponent in \(\sigma_{\text {yield }}=k(\varepsilon+0.01)^{n}\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & 1 & & & & & & & \\
\hline
\end{tabular}

VARIABLE
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.1.0: locally orthotropic with material axes determined by a point \(p\) in space and the global location of the element center; this is the \(a\)-direction.

EQ.2.0: globally orthotropic with material axes determined by the vectors a and d, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal.

EQ.4.0: locally orthotropic in cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(\mathbf{p}\), which define the centerline axis.

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP Coordinates of point \(p\) for AOPT \(=1\) and 4
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector \(\mathbf{a}\) for AOPT \(=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
Components of vector \(\mathbf{d}\) for AOPT \(=2\)
Material angle in degrees for \(\mathrm{AOPT}=3\). It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO.

\section*{Remarks:}
1. Hill's 1948 Yield Criterion. Hill's yield criterion is based on the assumptions that the material is orthotropic, that hydrostatic stress does not affect yielding, and that there is no Bauschinger effect. According to Hill, when the principal axes of anisotropy are the axes of reference, the yield surface has the form
\[
f=\bar{\sigma}(\sigma)-\sigma_{\text {yield }}\left(\varepsilon_{p}\right)=0
\]
where the effective stress \(\bar{\sigma}\) (stored as history variable \#2) is given by
\[
\begin{aligned}
(F+G) \bar{\sigma}^{2}=F\left(\sigma_{y}-\sigma_{z}\right)^{2} & +G\left(\sigma_{z}-\sigma_{x}\right)^{2} \\
& +H\left(\sigma_{x}-\sigma_{y}\right)^{2}+2 L \tau_{y z}^{2}+2 M \tau_{z x}^{2}+2 N \tau_{x y}^{2}
\end{aligned}
\]
and where \(F, G, H, L, M\), and \(N\) are material parameters of the current state of anisotropy, assuming three mutually orthogonal planes of symmetry at every point. The material \(z\)-direction is the reference direction.

Let \(X, Y, Z\) be the tensile yield stresses in the principal directions of anisotropy, then
\[
\frac{\sigma_{\mathrm{y} 0}^{2}}{X^{2}}=\frac{G+H}{F+G}, \quad \frac{\sigma_{\mathrm{y} 0}^{2}}{Y^{2}}=\frac{H+F}{F+G}, \quad \frac{\sigma_{\mathrm{y} 0}^{2}}{\mathrm{Z}^{2}}=1
\]
where \(\sigma_{\mathrm{y} 0}=\sigma_{\text {yield }}(0) . F, G\), and \(H\) are not uniquely determined, but the choice of \(F+G=1\) gives
\[
\begin{aligned}
& F=\frac{Z^{2}}{2}\left(\frac{1}{Y^{2}}+\frac{1}{Z^{2}}-\frac{1}{X^{2}}\right) \\
& G=\frac{Z^{2}}{2}\left(\frac{1}{X^{2}}+\frac{1}{Z^{2}}-\frac{1}{Y^{2}}\right) \\
& H=\frac{Z^{2}}{2}\left(\frac{1}{X^{2}}+\frac{1}{Y^{2}}-\frac{1}{Z^{2}}\right)
\end{aligned}
\]

If \(R_{x y}, S_{z x}\), and \(T_{x y}\) are the yield stresses in shear with respect to the principal axes of anisotropy, then
\[
L=\frac{Z^{2}}{2 R_{x y}^{2}}, \quad M=\frac{Z^{2}}{2 S_{z x}^{2}}, \quad N=\frac{Z^{2}}{2 T_{x y}^{2}} .
\]

If \(F=G=H\), and, \(L=M=N=3 F\), the Hill criterion reduces to the Von-Mises criterion.

The strain hardening in this model can either defined by the load curve or by Swift's exponential hardening equation: \(\sigma_{\text {yield }}=k(\varepsilon+0.01)^{n}\).
2. Applications. This material model is suitable for metal forming application using solid elements to account for anisotropic plasticity. NUMISHEET conferences have provided material constants of Hill's 1948 yield for many commonly used materials.

It can also be applied to multi-scale simulations of fiberglass and laminated materials, according to CYBERNET SYSTEMS CO., LTD. The elastic coefficients can be calibrated analytically by a homogenization method with tensile tests in the three orthogonal directions and three pure shear tests in the three orthogonal planes.
3. Material Parameter Calibration. The six material parameters required can be calibrated with nonlinear regression analysis (such as those available through LS-OPT) through a series of tensile tests in three orthogonal directions and three shear tests in three orthogonal planes.

\section*{Revision information:}

This material model is available for explicit dynamics in both SMP and MPP starting in Revision 86100 and is available for implicit dynamics in both SMP and MPP starting in Revision 104178. It also supports temperature dependent Young's/shear modulus, Poisson ratios, and Hill parameters.

\section*{*MAT_HILL_3R_TABULATED}

This is Material Type 122. This is Hill's 1948 planar anisotropic material model with 3 R values and yield curves defined in 3 directions as well as biaxial or shear yield. It is implemented for shell elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & HR & & & \\
Type & A & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R00 & R45 & R90 & LC00 & ICONV & LC90 & LC45 & LCEX \\
Type & F & F & F & I & I & I & I & I \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus, \(E\)
Poisson's ratio, \(v\)
Hardening rule:
EQ.1.0: Not applicable
EQ.2.0: Not applicable
EQ.3.0: Load curve
\(R_{00}\), Lankford parameter determined from experiments
\(R_{45}\), Lankford parameter determined from experiments
\(R_{90}\), Lankford parameter determined from experiments

Load curve ID for the yield curve in the \(0^{\circ}\) direction
Convexity option:
EQ.0.0: Convexity of the yield surface is not enforced.
EQ.1.0: Convexity of the yield surface is enforced.
Load curve ID for the yield curve in the \(90^{\circ}\) direction
Load curve ID for the yield curve in the \(45^{\circ}\) direction
Absolute value is load curve ID for the yield curve in shear or biaxial:

GT.0.0: Shear yield is provided.
LT.O.O: Biaxial yield is provided.
Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

VARIABLE

XP YP ZP \(\quad\) Coordinates of point \(p\) for \(\mathrm{AOPT}=1\)
A1 A2 A3 Components of vector a for \(\mathrm{AOPT}=2\)
V1 V2 V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1 D2 D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
BETA Material angle in degrees for AOPT \(=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{*MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY_\{OPTION\}}

This is Material Type 123, which is an elasto-plastic material supporting an arbitrary stress as a function of strain curve as well as arbitrary strain rate dependency. This model is available for shell and solid elements. *MAT_PIECEWISE_LINEAR_PLASTICITIY is similar but lacks the enhanced failure criteria. Failure is based on effective plastic strain, thinning strain, the major principal in plane strain component, or a minimum time step size.

Available options include:
<BLANK>
LOG_INTERPOLATION
PRESTRAIN (for shells only)
RATE
RTCL
STOCHASTIC (for shells only)
The LOG_INTERPOLATION keyword option interpolates the strain rate effect in table LCSS with logarithmic interpolation.

The PRESTRAIN option is used to include prestrain when checking for major strain failure. The RATE option is used to account for rate dependence of thinning failure or to invoke viscoelasticiy (LCEMOD). The RTCL option is used to activate RTCL damage (see Remark 1). One additional card is needed with any of these options.

The STOCHASTIC keyword option allows spatially varying yield and failure behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & ETAN & FAIL & TDEL \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(C\) & \(P\) & LCSS & LCSR & VP & EPSTHIN & EPSMAJ & NUMINT \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
\hline
\end{tabular}

Card 5. This card included for the PRESTRAIN, RATE, and RTCL keyword options.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCTSRF & EPSO & TRIAX & IPS & LCEMOD & BETA & RFILTF & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & \(10^{20}\) & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Yield stress
ETAN Tangent modulus, ignored if LCSS >0
FAIL Failure flag:
LT.O.O: User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure.
EQ.O.O: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

VARIABLE
TDEL

DESCRIPTION
Minimum time step size for automatic element deletion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & VP & EPSTHIN & EPSMAJ & NUMINT \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

C

P

LCSS Load curve ID or Table ID.
Load Curve. When LCSS is a Load curve ID, it is taken as defining effective stress versus effective plastic strain. If defined EPS1 - EPS8 and ES1 - ES8 are ignored.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress versus effective plastic strain for that rate, See Figure M24-1. When the strain rate falls below the minimum value, the stress versus effective plastic strain curve for the lowest value of strain rate is used. Likewise, when the strain rate exceeds the maximum value the stress versus effective plastic strain curve for the highest value of strain rate is used. Fields C, P, LCSR, EPS1 - EPS8, and ES1 - ES8 are ignored if a Table ID is defined. Linear interpolation between the discrete strain rates is used by default; logarithmic interpolation is used when the LOG_INTERPOLATION option is invoked.
Logarithmically Defined Tables. An alternative way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate

\section*{VARIABLE}

LCSR Load curve ID defining strain rate scaling effect on yield stress
VP Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation (recommended)
EPSTHIN Thinning strain at failure. To specify thinning strain to failure as a function of plastic strain rate, see LCTSRF.

GT.0.0: Total thinning strain (as in ISTUPD \(=1\); see \({ }^{*} \mathrm{CON}\) TROL_SHELL)

LT.0.0: Plastic thinning strain |EPSTHIN| (as in ISTUPD = 4)
EPSMAJ Major in plane strain at failure for shells (or) major principal strain at failure for solids (see Remark 1).

LT.O: EPSMAJ = |EPSMAJ \(\mid\) and filtering is activated. The last twelve values of the major strain are stored at each integration point and the average value is used to determine failure.

Number of integration points, which must fail before the element is deleted. (If zero, all points must fail.) For fully integrated shell formulations, each of the \(4 \times\) NIP integration points is counted individually in determining a total for failed integration points. NIP is the number of through-thickness integration points. As NUMINT approaches the total number of integration points (NIP for under-integrated shells, \(4 \times\) NIP for fully integrated shells), the chance of instability increases.

LT.O.O: |NUMINT| is the percentage of integration points/layers which must fail before the shell element fails. For fully integrated shells, a methodology is used where a layer fails if one integration point fails and then the given percentage of layers must fail before the element fails. Only available for shells.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPS1 & EPS2 & EPS3 & EPS4 & EPS5 & EPS6 & EPS7 & EPS8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

EPS1 - EPS8

\section*{DESCRIPTION}

Effective plastic strain values. At least 2 points should be defined. The first point must be zero corresponding to the initial yield stress. If this option is used, SIGY and ETAN are ignored. WARNING: If the first point is nonzero, the yield stress is extrapolated to determine the initial yield.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ES1 & ES2 & ES3 & ES4 & ES5 & ES6 & ES7 & ES8 \\
Type & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

ES1 - ES8

\section*{DESCRIPTION}

Corresponding yield stress values to EPS1 - EPS8

RTCL/Rate Card. Required if the PRESTRAIN, RATE, or RTCL option is active.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCTSRF & EPSO & TRIAX & IPS & LCEMOD & BETA & RFILTF & \\
Type & I & F & F & I & I & F & F & \\
Default & 0 & 0.0 & 0.0 & 0 & 0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

\author{
LCTSRF
}

EPS0

TRIAX

IPS

\section*{LCEMOD}

BETA

RFILTF

Load curve ID defining Young's modulus as function of effective strain rate. LCEMOD \(\neq 0\) activates viscoelasticity. See *MAT_187L for details. The parameters BETA and RFILTF have to be defined too.
(If LCEMOD \(\neq 0\) is used, \(\mathrm{VP}=1\) should be defined and failure options EPSTHIN, EPSMAJ, NUMINT, and RTCL are currently not available. See *DEFINE_ELEMENT_EROSION to define the number of integration points for failure.)

Decay constant in viscoelastic law. BETA has the unit [1/time]. If LCEMOD > 0 is used, a non-zero value for BETA is mandatory.

Smoothing factor on the effective strain rate (default is 0.95). The filtered strain rate is used for the viscoelasticity (LCEMOD > 0).
\[
\dot{\varepsilon}_{n}^{\mathrm{avg}}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
\]

\section*{Remarks:}
1. Major principal strain failure. The EPSMAJ parameter is compared to the major principal strain in the following senses:
a) For shells it is the maximum eigenvalue of the in-plane strain tensor that is incremented by the strain increments. If IPS \(=1\), then prestrain set with *INITIAL_STRAIN_SHELL is also included in the strain measure for shells.
b) For solid elements it is calculated as the maximum eigenvalue to the logarithmic strain tensor
\[
\varepsilon=\frac{1}{2} \ln \left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)
\]
where \(\mathbf{F}\) is the global deformation gradient.
In sum, both element types use a natural strain measure for determining failure. The major strain calculated in this way is output as history variable \#7.
2. RTCL damage. With the RTCL option, an RTCL damage is calculated and elements are deleted when the damage function exceeds 1.0. During each solution cycle, if the plastic strain increment is greater than zero, an increment of RTCL damage is calculated by
\[
\Delta f_{\text {damage }}=\frac{1}{\varepsilon_{0}} f\left(\frac{\sigma_{H}}{\bar{\sigma}}\right)_{\mathrm{RTCL}} d \bar{\varepsilon}^{p}
\]
where
\[
f\left(\frac{\sigma_{H}}{\bar{\sigma}}\right)_{\text {RTCL }}=\left\{\begin{array}{lr}
0 & \frac{\sigma_{H}}{\bar{\sigma}} \leq-\frac{1}{3} \\
2 \frac{1+\frac{\sigma_{H}}{\bar{\sigma}} \sqrt{12-27\left(\frac{\sigma_{H}}{\bar{\sigma}}\right)^{2}}}{3 \frac{\sigma_{H}}{\bar{\sigma}}+\sqrt{12-27\left(\frac{\sigma_{H}}{\bar{\sigma}}\right)^{2}}} & -\frac{1}{3}<\frac{\sigma_{H}}{\bar{\sigma}}<\frac{1}{3} \\
\frac{1}{1.65} \exp \left(\frac{3 \sigma_{H}}{2 \bar{\sigma}}\right) & \frac{\sigma_{H}}{\bar{\sigma}} \geq \frac{1}{3}
\end{array}\right.
\]
and,
\(\varepsilon_{0}=\) uniaxial fracture strain / critical damage value
\(\sigma_{H}=\) hydrostatic stress
\(\bar{\sigma}=\) effective stress
\(d \bar{\varepsilon}^{p}=\) effective plastic strain increment
The increments are summed through time and the element is deleted when \(f_{\text {damage }} \geq 1.0\). For \(0.0<f_{\text {damage }}<1.0\), the element strength will not be degraded.

The value of \(f_{\text {damage }}\) is stored as history variable \#9 and can be fringe plotted from d3plot files if the number of extra history variables requested is \(\geq 9\) on *DATABASE_EXTENT_BINARY.

The optional TRIAX parameter can be used to prevent excessive RTCL damage growth and element erosion for badly shaped elements that might show unrealistically high values for the triaxiality. The triaxiality, \(\frac{\sigma_{H}}{\bar{\sigma}}\), is stored as history variable \#11.
3. Instability indicator. To get an idea about the probability of failure, an indicator \(D\) is computed internally:
\[
D=\max \left(\frac{\bar{\varepsilon}^{p}}{\text { FAIL }}, \frac{-\varepsilon_{3}}{\text { EPSTHIN }}, \frac{\varepsilon_{I}}{\text { EPSMAJ }}\right)
\]
and stored as history variable \#10. \(D\) ranges from 0 (intact) to 1 (failed). \(\bar{\varepsilon}^{p},-\varepsilon_{3}\), and \(\varepsilon_{I}\) are current values of effective plastic strain, thinning strain, and major in plane strain. This instability measure, including the RTCL damage, can also be retrieved from requesting material histories
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & Attributes & Description \\
\hline Instability & - - - & Failure indicator \(\max \left(D, f_{\text {damage }}\right)\) \\
\hline Plastic Strain Rate & - - - - & Effective plastic strain rate \(\dot{\varepsilon}_{\text {eff }}^{p}\) \\
\hline
\end{tabular}
4. Implicit calculations. For implicit calculations with this material involving severe nonlinear hardening, the radial return method may result in inaccurate stress-strain response. Setting IACC \(=1\) on *CONTROL_ACCURACY activates a fully iterative plasticity algorithm, which will remedy this. This is not to be confused with the MITER flag on *CONTROL_SHELL, which governs the treatment of the plane stress assumption for shell elements. If any failure model is applied with this option, incident failure will initiate damage, and the stress will continuously degrade to zero before erosion for a deformation of \(1 \%\) plastic strain. For instance, if the failure strain is FAIL \(=0.05\), then the element is eroded when \(\bar{\varepsilon}^{p}=0.06\) and the material goes from intact to completely damaged between \(\bar{\varepsilon}^{p}=0.05\) and \(\bar{\varepsilon}^{p}=0.06\). The reason is to enhance implicit performance by maintaining continuity in the internal forces.

\section*{*MAT_PLASTICITY_COMPRESSION_TENSION}

This is Material Type 124. An isotropic elastic-plastic material where unique yield stress as a function of plastic strain curves can be defined for compression and tension. Also, failure can occur based on a plastic strain or a minimum time step size. Rate effects on the yield stress are modeled either by using the Cowper-Symonds strain rate model or by using two load curves that scale the yield stress values in compression and tension, respectively. Material rate effects, which are independent of the plasticity model, are based on a 6-term Prony series Maxwell mode that generates an additional stress tensor. The viscous stress tensor is superimposed on the stress tensor generated by the plasticity.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & C & \(P\) & FAIL & TDEL \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCIDC & LCIDT & LCSRC & LCSRT & SRFLAG & LCFAIL & EC & RPCT \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PC & PT & PCUTC & PCUTT & PCUTF & & & SRFILT \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline K & & & & & & & \\
\hline
\end{tabular}

Card 5. Include up to 6 instances of this card. The next keyword ("*") card terminates this input.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{Gi} i\) & \(\mathrm{BETA} i\) & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & C & P & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & 0.0 & 0.0 & \(10^{20}\) & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

RO Mass density
E Young's modulus
PR Poisson's ratio
C Strain rate parameter, C. See Remark 1.
\(P \quad\) Strain rate parameter, \(P\). See Remark 1.
FAIL Failure flag:
LT.O.O: User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure.

EQ.O.O: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL
Minimum time step size for automatic deletion of shell elements
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDC & LCIDT & LCSRC & LCSRT & SRFLAG & LCFAIL & EC & RPCT \\
Type & I & 1 & 1 & 1 & F & 1 & F & F \\
Default & 0 & 0 & 0 & 0 & 0.0 & 0 & optional & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDC

\section*{DESCRIPTION}

Load curve ID defining effective stress as a function of effective plastic strain in compression. Enter positive yield stress and plastic strain values when defining this curve.

\section*{VARIABLE}

LCIDT

LCSRC

LCSRT

SRFLAG

LCFAIL

EC Optional Young's modulus for compression, \(>0\).
RPCT Fraction of PT and PC, used to define mean stress at which Young's modulus is E and EC, respectively. Young's modulus is E when mean stress \(>\) RPCT \(\times\) PT, and EC when mean stress \(<-\) RPCT \(\times\) PC. If the mean stress falls between \(-\mathrm{RPCT} \times \mathrm{PC}\) and \(\mathrm{RPCT} \times \mathrm{PT}\), a linearly interpolated value is used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PC & PT & PCUTC & PCUTT & PCUTF & & & SRFILT \\
Type & F & F & F & F & F & & & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

PC

PT Tensile mean stress at which the yield stress follows load curve ID, LCIDT

PCUTC Pressure cut-off in compression (PCUTC must be greater than or equal to zero). PCUTC (and PCUTT) apply only to element types that use a 3D stress update, such as solids, tshell formulations 3 and 5 , and SPH. When the pressure cut-off is reached the deviatoric stress tensor is set to zero and the pressure remains at its compressive value. Like the yield stress, PCUTC is scaled to account for rate effects.

PCUTT Pressure cut-off in tension (PCUTT must be less than or equal to zero). When the pressure cut-off is reached, the deviatoric stress tensor and tensile pressure is set to zero. Like the yield stress, PCUTT is scaled to account for rate effects.

PCUTF Pressure cut-off flag activation:
EQ.0.0: Inactive
EQ.1.0: Active

SRFILT Strain rate filtering parameter in exponential moving average with admissible values ranging from 0 to 1 (available for LCSRC \(\neq 0\) or LCSRT \(\neq 0\) with SRFLAG \(=0\) or 1):
\[
\dot{\varepsilon}_{n}^{\mathrm{avg}^{\text {an }}=\operatorname{SRFILT} \times \dot{\varepsilon}_{n-1}^{\mathrm{avg}}+(1-\text { SRFILT }) \times \dot{\varepsilon}_{n} .}
\]
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

VARIABLE
K

DESCRIPTION
Optional bulk modulus for the viscoelastic material. If nonzero, a Kelvin type behavior will be obtained. Generally, \(K\) is set to zero.

Viscoelastic Constant Cards. Up to 6 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETA \(i\) & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Gi
BETA \(i\)
Optional shear decay constant for the \(i^{\text {th }}\) term

\section*{Remarks:}
1. Stress-Strain Behavior. The stress-strain behavior follows a different curve in compression than it does in tension. Tension is determined by the sign of the mean stress where a positive mean stress (meaning a negative pressure) is indicative of tension. Two curves must be defined giving the yield stress as a function of effective plastic strain for both the tension and compression regimes.

Mean stress is an invariant which can be expressed as \(\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / 3\). PC and PT define a range of mean stress values within which interpolation is done between the tensile yield surface and compressive yield surface. PC and PT are not true material properties but are just a numerical convenience so that the transition from one yield surface to the other is not abrupt as the sign of the mean stress changes. Both PC and PT are input as positive values as it is implied that PC is a compressive mean stress value and PT is tensile mean stress value.

Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor:
\[
1+\left[\frac{\dot{\varepsilon}}{C}\right]^{1 / p} .
\]

If \(\operatorname{SRFLAG}=0, \dot{\varepsilon}\) is the total strain rate,
\[
\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}} .
\]
2. LCFAIL. The LCFAIL field is only applicable when at least one of the following four conditions are met:
a) \(\operatorname{SRFLAG}=2\)
b) LCSRC is nonzero
c) LCSRT is nonzero
d) Gi and BETA \(i\) values are provided.

\section*{*MAT_KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC_\{OPTION\}}

This is Material Type 125. This material model combines Yoshida and Uemori's nonlinear kinematic hardening rule with material type 37. Yoshida and Uemori's theory uses two surfaces to describe the hardening rule: the yield surface and the bounding surface. In the forming process, the yield surface does not change in size, but its center translates with deformation; the bounding surface changes in both size and location. In addition, the change of Young's modulus can be a function of effective plastic strain, as proposed by Yoshida and Uemori [2002]. This material type is available for shells, thick shells, and solid elements.

Available options include:
<BLANK>
NLP
The NLP option estimates necking failure using the Formability Index (F.I.), which accounts for the non-linear strain paths seen in metal forming applications (see A Failure Criterion for Nonlinear Strain Paths (NLP) in the remarks section). When using this option, specify IFLD in Card 3. Since the NLP option also works with a linear strain path, it is recommended to be used as the default failure criterion in metal forming. The NLP option is also available for *MAT_036, *MAT_037, and *MAT_226.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & RBAR & HLCID & OPT & \\
Type & A & F & F & F & F & I & I & \\
Default & none & none & none & none & none & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CB & Y & \(\mathrm{SC1}\) & K & RSAT & SB & H & \(\mathrm{SC2}\) \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EA & COE & IOPT & C1 & C2 & IFLD & & \\
Type & F & F & I & F & F & I & & \\
Default & none & none & 0 & none & none & none & & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
EO & Mass density \\
PR & Young's Modulus
\end{tabular}

RBAR Plastic anisotropic parameter \(\bar{r}\) (Lankford coefficient), also commonly referred to as "r-bar value" in sheet metal forming literature. For shell elements, \(\bar{r}=R_{00}=R_{45}=R_{90}\) is assumed in the plane of the shell.

HLCID

OPT Error calculation flag. The default value of " 0 " is recommended.
EQ.2: LS-DYNA will perform the error calculation based on the true stress-strain curve from uniaxial tension, specified by HLCID. The corrections will be made to the cyclic load curve, both in the loading and unloading portions. Since, in some cases where loading is more complex, the accumulated plastic strain could be large (say more than 30\%), the input uniaxial stress-strain curve must have enough strain range to cover the maximum expected plastic strain. Note that this variable must be set to a value of " 2 " if HLCID is specified and a stress-strain curve is used.

CB The uppercase \(B\) defined in Yoshida \& Uemori's equations.

C1, C2
IOPT

Hardening parameter appearing in Yoshida \& Uemori's equations.
The lowercase \(c_{2}\) defined in Yoshida \& Uemori's equations. Note the equation below from the paper:
\[
c= \begin{cases}c_{1} & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ c_{2} & \text { otherwise }\end{cases}
\]

See more details in About SC1 and SC2 in the remarks section.
Hardening parameter appearing in Yoshida \& Uemori's equations.
Hardening parameter, \(R_{\text {sat }}\), appearing in Yoshida \& Uemori's equations.

The lowercase \(b\) appearing in Yoshida \& Uemori's equations.
Anisotropic parameter associated with work-hardening stagnation.

The lowercase \(c_{1}\) defined in the Yoshida and Uemori's equations. Note the equation below from the paper:
\[
c= \begin{cases}c_{1} & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ c_{2} & \text { otherwise }\end{cases}
\]

See more details in About SC1 and SC2 in the remarks section. If SC2 equals 0.0, is left blank, or equals SC1, then it turns into the basic model (the one c model).

Variable controlling the change of Young's modulus, \(E^{A}\) in the following equations.

Variable controlling the change of Young's modulus, \(\zeta\) in the following equations.

Modified kinematic hardening rule flag:
EQ.0: Original Yoshida \& Uemori formulation,
EQ.1: Modified formulation. Define C1 and C2 below.

Constants used to modify \(\dot{R}\), so strain hardening will not saturate:
\[
\dot{R}=\operatorname{RSAT} \times\left[\left(C_{1}+\bar{\varepsilon}^{p}\right)^{c_{2}}-C_{1}{ }^{c_{2}}\right]
\]

Note that these variables are not the material parameter \(c\) that controls the rate of the kinematic hardening in the original Yoshida \& Uemori paper.

IFLD ID of a load curve defining Forming Limit Diagram (FLD) under linear strain paths. In the load curve, abscissas represent minor strains, while ordinates represent major strains. Define only when the option NLP is used.

Figure M125-1. Schematic illustration of the two-surface model. \(O\) is the original center of the yield surface; \(\alpha\) is the current center for the yield surface; \(\beta\) is the center of the bounding surface; and \(\alpha_{*}\) represents the relative position of the centers of the two surfaces. \(Y\) is the size of the yield surface and is constant throughout the deformation process. \(B+R\) represents the size of the bounding surface, with \(R\) being associated with isotropic hardening. Reproduced from Yoshida and Uemori's original paper.

Figure M125-2. Change in bounding surface (reproduced from Yoshida and Uemori's original paper).

\section*{The Yoshida \& Uemori Kinematic Hardening Model:}

The following equations give the two-surface model from Yoshida and Uemori [2]:
\[
\begin{aligned}
\alpha_{*} & =\alpha-\beta \\
\alpha_{*} & =c\left[\left(\frac{a}{Y}\right)(\sigma-\alpha)-\sqrt{\frac{a}{\overline{\alpha_{*}}}} \alpha_{*}\right] \bar{\varepsilon}^{p} \\
a & =B+R-Y
\end{aligned}
\]

Figure M125-1 illustrates these variables. The anisotropic hardening parameter, \(\dot{R}\), depends on IOPT. The original Yoshida and Uemori model includes saturation in strain hardening \((\mathrm{IOPT}=0)\) [1, 2]. A modified version includes continuous hardening (IOPT = 1). \(\dot{R}\) changes as follows:
\[
\begin{array}{ll}
\dot{R}=k\left(R_{\text {sat }}-R\right) \dot{\bar{\varepsilon}}^{p} & \text { if IOPT }=0 \\
\dot{R}=R_{\text {sat }} \times\left[\left(C_{1}+\bar{\varepsilon}^{p}\right)^{c_{2}}-C_{1}^{c_{2}}\right] & \text { if IOPT }=1
\end{array}
\]

The following equations define the change of size and location for the bounding surface, with variable descriptions shown in Figure M125-2,
\[
\begin{aligned}
\stackrel{o}{\beta^{\prime}} & =k\left(\frac{2}{3} b D-\beta^{\prime \epsilon^{p}}\right) \\
\sigma_{\text {bound }} & =B+R+\beta
\end{aligned}
\]

The unloading process, which follows, includes work-hardening stagnation:
\[
\begin{aligned}
g_{\sigma}\left(\sigma^{\prime}, q^{\prime}, r^{\prime}\right) & =\frac{3}{2}\left(\sigma^{\prime}-q^{\prime}\right):\left(\sigma^{\prime}-q^{\prime}\right)-r^{2} \\
o q^{\prime} & =\mu\left(\beta^{\prime}-q^{\prime}\right) \\
r & =h \Gamma
\end{aligned}
\]
\[
\Gamma=\frac{3\left(\beta^{\prime}-q^{\prime}\right):{\stackrel{o}{\beta^{\prime}}}^{2 r}}{2}
\]

The change in Young's modulus is defined as a function of effective plastic strain,
\[
E=E_{0}-\left(E_{0}-E_{A}\right)\left[1-\exp \left(-\zeta \bar{\varepsilon}^{p}\right)\right] .
\]

\section*{About SC1 and SC2:}

Yoshida and Uemori's paper includes a modification for the material parameter \(c\), which controls the rate of the kinematic hardening, to describe more accurately the forward and reverse deformations of the cyclic plasticity curve in the vicinity of the initial yield. The paper gives modification of the parameter \(c\) as:
\[
c= \begin{cases}c_{1} & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ c_{2} & \text { otherwise }\end{cases}
\]
which corresponds to:
\[
c= \begin{cases}\mathrm{SC} 2 & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ \mathrm{SC} 1 & \text { otherwise }\end{cases}
\]

Here \(\alpha_{*}\) is the backstress evolution, \(\max \left(\bar{\alpha}_{*}\right)\) is the maximum value of \(\bar{\alpha}_{*}\), and
\[
\bar{\alpha}_{*}=\sqrt{\frac{3}{2} \alpha_{*}: \alpha_{*}} .
\]

\section*{A Failure Criterion for Nonlinear Strain Paths (NLP):}

The manual pages for *MAT_036 and *MAT_037 describe the NLP failure criterion and corresponding post-processing procedures. The history variables for every element stored in d3plot files include:
1. Formability Index (F.I.): \#1 (\#24 after Revision 113708)
2. Strain ratio \(\beta\) (in-plane minor strain increment/major strain increment): \#2 (\#25 after Revision 113708)
3. Effective strain from the planar isotropic assumption: \#3 (\#26 after Revision 113708)

To enable the output of these history variables to the d3plot files, NEIPS on the *DATABASE_EXTENT_BINARY card must be set to at least 3 .

\section*{References:}
[1] Shi, M.F., Zhu, X.H., Xia, Z.C. \& Stoughton, T.B. (2008). Determination of nonlinear isotropic/kinematic hardening constitutive parameters for AHSS using tension and compression tests. NUMISHEET. 2008. 137-142.
[2] Yoshida, Fusahito \& Uemori, Takeshi. (2002). A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. International Journal of Plasticity. 18. 661686. 10.1016/S0749-6419(01)00050-X.

\section*{*MAT_MODIFIED_HONEYCOMB}

This is Material Type 126. This material model is usually used for aluminum honeycomb crushable foam materials with anisotropic behavior. Three yield surfaces are available. The first yield surface defines the nonlinear elastoplastic material behavior separately for all normal and shear stresses, which are considered fully uncoupled. The second yield surface considers the effects of off-axis loading. It is transversely isotropic. However, because of this definition of the second yield surface, the material can collapse in a shear mode due to low shear resistance. There was no obvious way of increasing the shear resistance without changing the behavior in purely uniaxial compression. Therefore, with the third yield surface, the model has been modified so that the material's shear and hydrostatic resistance can be prescribed without affecting the uniaxial behavior. The sign of the first load curve ID, LCA, flags the choice of the second yield surface. The third yield surface is flagged by the sign of ECCU, which becomes the initial stress yield limit in simple shear. A description is given below.

The development of the second and third yield surfaces is based on experimental test results of aluminum honeycomb specimens at Toyota Motor Corporation.

The default element for this material is solid type 0 , a nonlinear spring-type solid element. The recommended hourglass control is the type 2 viscous formulation for one-point integrated solid elements. When used with this constitutive model, the hourglass control's stiffness form can lead to nonphysical results since it can inhibit strain localization in the shear modes.

This material is available for solid elements and thick shell formulations 3, 5, and 7 .

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & VF & MU & BULK \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCA & LCB & LCC & LCS & LCAB & LCBC & LCCA & LCSR \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EAAU & EBBU & ECCU & GABU & GBCU & GCAU & AOPT & MACF \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & RFAC & PRU \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D1 & D2 & D3 & TSEF & SSEF & VREF & TREF & SHDFLG \\
\hline
\end{tabular}

Card 6. Include this card if AOPT \(=3\) or 4 (see Card 3).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & & & & & \\
\hline
\end{tabular}

Card 7. Include this card if \(\operatorname{LCSR}=-1\) (see Card 2).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCSRA & LCSRB & LCSRC & LCSRAB & LCSRBC & LCSCA & LCSRA & LCSRB \\
\hline
\end{tabular}

Card 8. Include this card if PRU \(=2\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PRUAB & PRUAC & PRUBC & PRUBA & PRUCA & PRUCB & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & VF & MU & BULK \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & none & .05 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus for compacted honeycomb material
PR Poisson's ratio for compacted honeycomb material
SIGY Yield stress for fully compacted honeycomb
VF Relative volume at which the honeycomb is fully compacted. This field is ignored for corotational solid elements, types 0 and 9.
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MU & \begin{tabular}{l}
Material viscosity coefficient, \(\mu\). The default value of 0.05 is recom- \\
mended.
\end{tabular} \\
\begin{tabular}{l}
Bulk viscosity flag: \\
EQ.0.0: Bulk viscosity is not used. This is recommended. \\
EQ.1.0: Bulk viscosity is active and \(\mu=0\). This will give results \\
identical to previous versions of LS-DYNA.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCA & LCB & LCC & LCS & LCAB & LCBC & LCCA & LCSR \\
Type & I & 1 & 1 & 1 & 1 & 1 & 1 & F \\
Default & none & LCA & LCA & LCA & LCS & LCS & LCS & optional \\
\hline
\end{tabular}

VARIABLE
LCA

\section*{DESCRIPTION}

Load curve ID (see *DEFINE_CURVE):
LT.0: Yield stress as a function of the angle off the material axis in degrees
GT.0: \(\sigma_{a a}\) as a function of normal strain component aa, \(\varepsilon_{a a}\). Normal strain rate effect can be considered when LCA is defined as a table, see LCSS of MAT_024 for details. Both compressive normal strain and rate are considered positive when defining the curve or table. For the corotational solid elements, types 0 and 9, engineering strain is expected, but for all other solid and thick shell element formulations a logarithmic strain is expected. See Remarks 1 and 3.

Note that LCA \(<0\) flags using the second yield surface (the transversely isotropic surface) and determines the definition for LCB, LCC, LCS, LCAB, LCBC, and LCCA.

LCB Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Strong axis hardening stress as a function of the volumetric strain

LCA.GT.0: \(\sigma_{b b}\) as a function of normal strain component \(\mathrm{bb}, \varepsilon_{b b}\).

\section*{VARIABLE}

\section*{DESCRIPTION}

Normal strain rate effect can be considered when LCB is defined as a table, see LCSS of MAT_024 for details. Both compressive normal strain and rate are considered positive when defining the curve or table. For the corotational solid elements, types 0 and 9, engineering strain is expected, but for all other solid and thick shell element formulations a logarithmic strain is expected. See Remarks 1 and 3.

LCC Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Weak axis hardening stress as a function of the volumetric strain

LCA.GT.O: \(\sigma_{c c}\) as a function of normal strain component cc, \(\varepsilon_{c c}\). Normal strain rate effect can be considered when LCC is defined as a table, see LCSS of MAT_024 for details. Both compressive normal strain and rate are considered positive when defining the curve or table. For the corotational solid elements, types 0 and 9, engineering strain is expected, but for all other solid and thick shell element formulations a logarithmic strain is expected. See Remarks 1 and 3.

LCS Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Damage curve giving the shear stress multiplier as a function of the shear strain component. This curve definition is optional and may be used if damage is desired. IF SHDFLG \(=0\) (the default), the damage value multiplies the stress every time step and the stress is updated incrementally. The damage curve should be set to unity until failure begins. After failure the value should drop to 0.999 or 0.99 or any number between zero and one depending on how many steps are needed to zero the stress. Alternatively, if SHDFLG \(=1\), the damage value is treated as a factor that scales the shear stress compared to the undamaged value.
LCA.GT.0: Shear stress as a function of shear strain. For the corotational solid elements, types 0 and 9, engineering strain is expected, but for all other solid and thick shell element formulations a shear strain based on the deformed configuration is used. Each

\section*{VARIABLE}

LCAB Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Damage curve giving shear \(a b\)-stress multiplier as a function of the ab-shear strain component. This curve definition is optional and may be used if damage is desired. See LCS above.
LCA.GT.0: \(\sigma_{a b}\) as a function of the absolute value of shear strain\(a b, \varepsilon_{a b}\). Shear strain rate effect can be considered when LCAB is defined as a table, see LCSS of MAT_024 for details. For the corotational solid elements, types 0 and 9 , engineering strain is expected, but for all other solid and thick shell element formulations a shear strain based on the deformed configuration is used. See Remarks 1 and 3.

LCBC Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Damage curve giving \(b c\)-shear stress multiplier as a function of the ab-shear strain component. This curve definition is optional and may be used if damage is desired. See LCS above.

LCA.GT.O: \(\sigma_{b c}\) as a function of the absolute value of shear strain\(b c, \varepsilon_{b c}\). Shear strain rate effect can be considered when LCBC is defined as a table, see LCSS of MAT_024 for details. For the corotational solid elements, types 0 and 9 , engineering strain is expected, but for all other solid and thick shell element formulations a shear strain based on the deformed configuration is used. See Remarks 1 and 3.

LCCA Load curve ID (see *DEFINE_CURVE):
LCA.LT.O: Damage curve giving ca-shear stress multiplier as a function of the ca-shear strain component. This curve definition is optional and may be used if damage is desired. See LCS above.
LCA.GT.0: \(\sigma_{c a}\) as a function of the absolute value of shear strain\(c a, \varepsilon_{c a}\). Shear strain rate effect can be considered when LCCA is defined as a table, see LCSS of *MAT_024 for details. For the corotational solid elements, types 0 and 9, engineering strain is

\section*{VARIABLE}

LCSR

\section*{DESCRIPTION}
expected, but for all other solid and thick shell element formulations a shear strain based on the deformed configuration is used. See Remarks 1 and 3.

Load curve ID (see *DEFINE_CURVE) for strain-rate effects defining the scale factor as a function of effective strain rate \(\dot{\bar{\varepsilon}}=\) \(\sqrt{\frac{2}{3}\left(\dot{\varepsilon}^{\prime}{ }_{i j} \dot{\varepsilon}^{\prime}{ }_{i j}\right)}\). This is optional. The curves defined above are scaled using this curve. Set LCSR \(=-1\) to define a scale factor in each direction using Card 7 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EAAU & EBBU & ECCU & GABU & GBCU & GCAU & AOPT & MACF \\
Type & F & F & F & F & F & F & F & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

EAAU

EBBU

ECCU Elastic modulus \(E_{c c u}\) in uncompressed configuration.
LT.0.0: \(|\mathrm{ECCU}|\) is the initial stress limit (yield) in simple shear, \(\sigma_{d}^{Y}\). ECCU \(<0\) activates the third yield surface if LCA < 0 .

GABU Shear modulus \(G_{a b u}\) in uncompressed configuration.
LCA.LT.O: Strong-weak shear modulus in uncompressed configuration

GBCU Shear modulus \(G_{b c u}\) in uncompressed configuration.
LCA.LT.O: Weak-weak shear modulus in uncompressed configuration

\section*{VARIABLE}

GCAU

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):
EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

MACF

\section*{DESCRIPTION}

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF to obtain the final material axes. BETA on *ELEMENT_SOLID_\{OPTION\} is used to rotate the axes. The BETA rotation is optional.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & RFAC & PRU \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

XP YP ZP
A1 A2 A3
RFAC
PRU

\section*{DESCRIPTION}

Coordinates of point \(p\) for AOPT \(=1\) and 4
Components of vector a for AOPT \(=2\)
Filtering factor for strain rate effects, see MAT_089 for details.
Poisson effect option for the uncompacted status:
EQ.O: No Poisson's effect.
EQ.1: The Poisson's ratio ramps from 0., when an element is in its un-deformed state, to PR when it is fully compacted.
EQ.2: Poisson's ratios are input on Card 8.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & D3 & TSEF & SSEF & VREF & TREF & SHDFLG \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
D1 D2 D3
TSEF

SSEF Shear strain at element failure (element will erode)
GT.O.0: Constant value
LT.O.O: |SSEF | is a load curve ID for the curve that defines shear failure strain as a function of the ratio of compressive to tensile strain.

VREF This is an optional input parameter for solid element types 1, 2, 3, 4 , and 10 and thick shell formulations 3,5 , and 7 . Relative volume at which the reference geometry is stored. At this time, the element behaves like a nonlinear spring. If TREF, below, is reached first, VREF has no effect.

TREF

SHDFLG

This is an optional input parameter for solid element types 1, 2, 3, 4 , and 10 and thick shell formulations 3,5 , and 7 . Element time step size at which the reference geometry is stored. When this time step size is reached, the element behaves like a nonlinear spring. If VREF, above, is reached first, TREF has no effect.

Flag defining treatment of damage from curves LCS, LCAB, LCBC, and LCCA (relevant only when LCA <0):

EQ.O.0: Damage reduces shear stress every time step,
EQ.1.0: Damage \(=(\) shear stress \() /(\) undamaged shear stress \()\)

Additional card for \(\mathrm{AOPT}=3\) or \(\mathrm{AOPT}=4\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1 V2 V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4

Additional card for LCSR \(=-1.0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCSRA & LCSRB & LCSRC & LCSRAB & LCSRBC & LCSCA & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCSRA

LCSRB

LCSRC

\section*{DESCRIPTION}

Optional load curve ID if LCSR \(=-1\) (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the a-direction as a function of the natural logarithm of the absolute value of deviatoric strain rate in the \(a\)-direction. The scale factor for the lowest value of strain rate defined by the curve is used if the strain rate is zero. The scale factor for the highest value of strain rate defined by the curve also defines the upper limit of the scale factor.

Optional load curve ID if LCSR \(=-1\) (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the \(b\)-direction as a function of the natural logarithm of the absolute value of deviatoric strain rate in the \(b\)-direction. The scale factor for the lowest value of strain rate defined by the curve is used if the strain rate is zero. The scale factor for the highest value of strain rate defined by the curve also defines the upper limit of the scale factor.

Optional load curve ID if LCSR \(=-1\) (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the c-direction as a function of the natural logarithm of the absolute

\section*{VARIABLE}

LCSRAB Optional load curve ID if LCSR \(=-1\) (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the ab-direction as a function of the natural logarithm of the absolute value of strain rate in the \(a b\)-direction. The scale factor for the lowest value of strain rate defined by the curve is used if the strain rate is zero. The scale factor for the highest value of strain rate defined by the curve also defines the upper limit of the scale factor.

Optional load curve ID if LCSR = -1 (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the \(b c\)-direction as a function of the natural logarithm of the absolute value of strain rate in the \(b c\)-direction. The scale factor for the lowest value of strain rate defined by the curve is used if the strain rate is zero. The scale factor for the highest value of strain rate defined by the curve also defines the upper limit of the scale factor.

LCSRCA Optional load curve ID if LCSR =-1 (see *DEFINE_CURVE) for strain rate effects defining the scale factor for the yield stress in the ca-direction as a function of the natural logarithm of the absolute value of strain rate in the \(c a\)-direction. The scale factor for the lowest value of strain rate defined by the curve is used if the strain rate is zero. The scale factor for the highest value of strain rate defined by the curve also defines the upper limit of the scale factor.

Additional card for PRU \(=2.0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRUAB & PRUAC & PRUBC & PRUBA & PRUCA & PRUCB & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PRUij

\section*{DESCRIPTION}

Poisson's ratios on the \(i-j\) plane during uncompacted status. The \(j\) direction is the direction of transverse strain when the element is stressed in the \(i\)-direction.

\section*{Remarks:}
1. Load curves and efficiency. For efficiency, the load curves, LCA, LCB, LCC, LCS, LCAB, LCBC, and LCCA, are strongly recommended to contain exactly the same number of points with corresponding strain values on the abscissa. If this recommendation is followed, the cost of the table lookup is insignificant. Conversely, the cost increases significantly if the abscissa strain values are inconsistent between load curves.
2. Elastic moduli. For solid element formulations 1 and 2 and thick shell formulations 3,5 , and 7 , the behavior before compaction is orthotropic, where the components of the stress tensor are uncoupled, meaning a component of strain will generate resistance in the local \(a\)-direction with no coupling to the local \(b\) and \(c\) directions. The elastic moduli vary from their initial values to the fully compacted values linearly with the relative volume:
\[
\begin{array}{ll}
E_{a a}=E_{a a u}+\beta\left(E-E_{a a u}\right) & G_{a b}=E_{a b u}+\beta\left(G-G_{a b u}\right) \\
E_{b b}=E_{b b u}+\beta\left(E-E_{b b u}\right) & G_{b c}=G_{b c u}+\beta\left(G-G_{b c u}\right) \\
E_{c c}=E_{c c u}+\beta\left(E-E_{c c u}\right) & G_{c a}=G_{c a u}+\beta\left(G-G_{c a u}\right)
\end{array}
\]
where
\[
\beta=\max \left[\min \left(\frac{1-V}{1-V_{f}}, 1\right), 0\right]
\]
and \(G\) is the elastic shear modulus for the fully compacted honeycomb material
\[
G=\frac{E}{2(1+v)} .
\]

The relative volume, \(V\), is defined as the ratio of the current volume over the initial volume, and typically, \(V=1\) at the beginning of a calculation.

For corotational solid elements, types 0 and 9, the components of the stress tensor remain uncoupled, and the uncompressed elastic moduli are used; that is, the fully compacted elastic moduli are ignored. However, calculating the element time step size still requires the Young's modulus and Poisson's ratio input on Card 1.
3. Stress update for uncompacted material. The load curves define the magnitude of the stress as the material undergoes deformation. The first value in the curve should be less than or equal to zero, corresponding to tension, and increase to full compaction. Care should be taken when defining the curves so the extrapolated values do not lead to negative yield stresses.

At the beginning of the stress update, we transform each element's stresses and strain rates into the local element coordinate system. After completing the stress update, we transform the stresses back to the global configuration. For the

Figure M126-1. Stress as a function of strain. Note that the "yield stress" at a strain of zero is nonzero. In the load curve definition the "time" value is the directional strain and the "function" value is the yield stress. Note that for element types 0 and 9 engineering strains are used, but for all other element types the rates are integrated in time.
uncompacted material, the trial stress components are updated using the elastic interpolated moduli according to:
\[
\begin{aligned}
& \sigma_{a a}^{n++^{\text {trial }}}=\sigma_{a a}^{n}+E_{a a} \Delta \varepsilon_{a a} \\
& \sigma_{c c}^{n+t^{\text {trial }}}=\sigma_{c c}^{n}+E_{c c} \Delta \varepsilon_{c c} \\
& \sigma_{b b}^{n+1^{\text {trial }}}=\sigma_{b b}^{n}+E_{b b} \Delta \varepsilon_{b b}
\end{aligned}
\]
\[
\begin{aligned}
& \sigma_{a b}^{n+1^{\text {tial }}}=\sigma_{a b}^{n}+2 G_{a b} \Delta \varepsilon_{a b} \\
& \sigma_{b c}^{n+1^{\text {trial }}}=\sigma_{b c}^{n}+2 G_{b c} \Delta \varepsilon_{b c} \\
& \sigma_{c a}^{n+1^{\text {trial }}}=\sigma_{c a}^{n}+2 G_{c a} \Delta \varepsilon_{c a}
\end{aligned}
\]

If LCA \(>0\), each component of the updated stress tensor is checked to ensure that it does not exceed the permissible value determined from the load curves; for example, if
\[
\left|\sigma_{i j}^{n+1^{\text {trial }}}\right|>\lambda \sigma_{i j}\left(\varepsilon_{i j}\right),
\]
then
\[
\sigma_{i j}^{n+1}=\sigma_{i j}\left(\varepsilon_{i j}\right) \frac{\lambda \sigma_{i j}^{n+1^{\text {trial }}}}{\left|\sigma_{i j}^{n+1^{\text {trial }}}\right|}
\]

On Card \(3 \sigma_{i j}\left(\varepsilon_{i j}\right)\) is defined in the load curve specified in columns 31-40 for the aa stress component, 41-50 for the bb component, 51-60 for the cc component, and \(61-70\) for the \(\mathrm{ab}, \mathrm{bc}, \mathrm{cb}\) shear stress components. The parameter \(\lambda\) is either unity or a value taken from the load curve number, LCSR, that defines \(\lambda\) as a
function of strain rate. Strain rate is defined here as the Euclidean norm of the deviatoric strain-rate tensor.

If LCA \(<0\), a transversely isotropic yield surface is obtained where the uniaxial limit stress, \(\sigma^{y}\left(\varphi, \varepsilon^{\mathrm{vol}}\right)\), can be defined as a function of angle \(\varphi\) with the strong axis and volumetric strain, \(\varepsilon^{\mathrm{vol}}\). To facilitate the input of data to such a limit stress surface, the limit stress is written as:
\[
\sigma^{y}\left(\varphi, \varepsilon^{\mathrm{vol}}\right)=\sigma^{b}(\varphi)+(\cos \varphi)^{2} \sigma^{s}\left(\varepsilon^{\mathrm{vol}}\right)+(\sin \varphi)^{2} \sigma^{w}\left(\varepsilon^{\mathrm{vol}}\right)
\]
where the functions \(\sigma^{b}, \sigma^{s}\), and \(\sigma^{w}\) are represented by load curves LCA, LCB, LCC, respectively. The latter two curves can be used to include the stiffening effects that are observed as the foam material crushes to the point where it begins to lock up. To ensure that the limit stress decreases with respect to the off-angle, the curves should be defined such that the following equations hold:
\[
\frac{\partial \sigma^{b}(\varphi)}{\partial \varphi} \leq 0
\]
and
\[
\sigma^{s}\left(\varepsilon^{\mathrm{vol}}\right)-\sigma^{w}\left(\varepsilon^{\mathrm{vol}}\right) \geq 0
\]

A drawback of this implementation was that the material often collapsed in shear mode due to low shear resistance. There was no way of increasing the shear resistance without changing the behavior in pure uniaxial compression. We have, therefore, modified the model so that the user can optionally prescribe the shear and hydrostatic resistance in the material without affecting the uniaxial behavior. We introduce the parameters \(\sigma_{p}^{\Upsilon}\left(\varepsilon^{\mathrm{vol}}\right)\) and \(\sigma_{d}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)\) as the hydrostatic and shear limit stresses, respectively. These are functions of the volumetric strain and are assumed to be given by
\[
\begin{aligned}
& \sigma_{p}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)=\sigma_{p}^{Y}+\sigma^{s}\left(\varepsilon^{\mathrm{vol}}\right) \\
& \sigma_{d}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)=\sigma_{d}^{Y}+\sigma^{s}\left(\varepsilon^{\mathrm{vol}}\right)
\end{aligned}
\]
where we have reused the densification function \(\sigma^{s}\). The new parameters are the initial hydrostatic and shear limit stress values, \(\sigma_{p}^{Y}\) and \(\sigma_{d}^{Y}\), and are provided by the user as GCAU and |ECCU|, respectively. The negative sign of ECCU flags the third yield surface option whenever LCA \(<0\). The effect of the third formulation is that (i) for a uniaxial stress the stress limit is given by \(\sigma^{Y}\left(\phi, \varepsilon^{\mathrm{vol}}\right)\), (ii) for a pressure the stress limit is given by \(\sigma_{p}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)\), and (iii) for a simple shear the stress limit is given by \(\sigma_{d}^{\Upsilon}\left(\varepsilon^{\mathrm{vol}}\right)\). Experiments have shown that the model may give noisy responses and inhomogeneous deformation modes if parameters are not carefully chosen. We, therefore, recommend (i) avoiding large slopes in the function \(\sigma^{P}\), (ii) letting the functions \(\sigma^{s}\) and \(\sigma^{w}\) be slightly increasing, and (iii) avoiding large differences between the stress limit values \(\sigma^{y}\left(\varphi, \varepsilon^{\mathrm{vol}}\right), \sigma_{p}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)\), and \(\sigma_{d}^{Y}\left(\varepsilon^{\mathrm{vol}}\right)\). These guidelines are likely to contradict how one would interpret
test data, and it is up to the user to find a reasonable trade-off between matching experimental results and avoiding the mentioned numerical side effects.
4. Stress update for fully compacted material. As in the uncompacted case, we transform each element's stresses and strain rates into the local element coordinate system. For fully compacted material (element formulations 1 and 2), we assume that the material behavior is elastic-perfectly plastic and updated the stress components according to:
\[
s_{i j}^{\mathrm{trial}}=s_{i j}^{n}+2 G \Delta \varepsilon_{i j}^{d e v^{n+1 / 2}}
\]
where the deviatoric strain increment is defined as
\[
\Delta \varepsilon_{i j}^{d e v}=\Delta \varepsilon_{i j}-\frac{1}{3} \Delta \varepsilon_{k k} \delta_{i j}
\]

We now check to see if the yield stress for the fully compacted material is exceeded by comparing
\[
s_{\text {eff }}^{\text {trial }}=\left(\frac{3}{2} s_{i j}^{\text {trial }} s_{i j}^{\text {trial }}\right)^{1 / 2}
\]
the effective trial stress to the yield stress, \(\sigma_{y}\) (Card 1, field 41-50). If the effective trial stress exceeds the yield stress, we scale back the stress components to the yield surface
\[
s_{i j}^{n+1}=\frac{\sigma_{y}}{s_{\text {eff }}^{\text {trial }}} s_{i j}^{\text {trial }}
\]

We can now update the pressure using the elastic bulk modulus, \(K\)
\[
\begin{aligned}
p^{n+1} & =p^{n}-K \Delta \varepsilon_{k k}^{n+1 / 2} \\
K & =\frac{E}{3(1-2 v)}
\end{aligned}
\]
and obtain the final value for the Cauchy stress
\[
\sigma_{i j}^{n+1}=s_{i j}^{n+1}-p^{n+1} \delta_{i j}
\]

After completing the stress update, we transform the stresses back to the global configuration.
5. Failure. For *CONSTRAINED_TIED_NODES_WITH_FAILURE, the failure is based on the volumetric strain instead of the plastic strain.

\section*{*MAT_ARRUDA_BOYCE_RUBBER}

This is Material Type 127. This material model provides a hyperelastic rubber model (see [Arruda and Boyce 1993]) combined optionally with linear viscoelasticity as outlined by [Christensen 1980].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & K & G & N & & & \\
Type & A & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID & TRAMP & NT & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

Viscoelastic Constant Cards. Up to 6 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETA \(i\) & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
K Bulk modulus, \(K\)
G Shear modulus, G
N \(\quad\) Number of statistical links, \(N\)

\section*{VARIABLE}

LCID

TRAMP Optional ramp time for loading
NT Number of Prony series terms in optional fit. If zero, the default is 6. Currently, the maximum number is 6 . Values less than 6 , possibly 3-5 are recommended, since each term used adds significantly to the cost. Caution should be exercised when taking the results from the fit. Always check the results of the fit in the output file. Preferably, all generated coefficients should be positive. Negative values may lead to unstable results. Once a satisfactory fit has been achieved, it is recommended that the coefficients which are written into the output file be input in future runs.

Gi Optional shear relaxation modulus for the \(i^{\text {th }}\) term.
BETA \(i \quad\) Optional decay constant if \(i^{\text {th }}\) term.

\section*{Remarks:}

Rubber is generally considered to be fully incompressible since the bulk modulus greatly exceeds the shear modulus in magnitude. To model the rubber as an unconstrained material, a hydrostatic work term, \(W_{H}(J)\), is included in the strain energy functional which is function of the relative volume, \(J\), [Ogden 1984]:
\[
\begin{aligned}
W\left(J_{1}, J\right)=G[& \left.\frac{1}{2}\left(J_{1}-3\right)+\frac{1}{20 N}\left(J_{1}^{2}-9\right)+\frac{11}{1050 N^{2}}\left(J_{1}^{3}-27\right)\right] \\
& +G\left[\frac{19}{7000 N^{3}}\left(J_{1}^{4}-81\right)+\frac{519}{673750 N^{4}}\left(J_{1}^{5}-243\right)\right]+W_{H}(J),
\end{aligned}
\]
where the hydrostatic work term is in terms of the bulk modulus, \(K\), and \(J\) as:
\[
W_{H}(J)=\frac{K}{2}(J-1)^{2}
\]

Rate effects are taken into account through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
or in terms of the second Piola-Kirchhoff stress, \(S_{i j}\), and Green's strain tensor, \(E_{i j}\),
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial E_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by up to six terms from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta_{m} t}
\]
given by,
\[
g(t)=\sum_{i=1}^{n} G_{i} e^{-\beta_{i} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). The viscoelastic behavior is optional and an arbitrary number of terms may be used.

\section*{*MAT_HEART_TISSUE}

This is Material Type 128. This material model provides a heart tissue model described in the paper by Walker et al [2005] as interpreted by Kay Sun. It is backward compatible with an earlier heart tissue model described in the paper by Guccione, McCulloch, and Waldman [1991]. Both models are transversely isotropic.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & C & B1 & B2 & B3 & P & B \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Skip to Card 3 to activate older Guccione, McCulloch, and Waldman [1991] model.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & L0 & CAOMAX & LR & M & BB & CAO & TMAX & TACT \\
Type & F & I & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & MACF & & & & & & \\
Type & F & I & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
MID

RO

C

B1
B2
B3
P
B
L0

LR
M

TACT

CA0MAX \(\quad\left(C a_{0}\right)_{\text {max }}\), maximum peak intracellular calcium concentrate. Omit for the earlier model.

TMAX \(\quad T_{\text {max }}\), maximum isometric tension achieved at the longest sarcomere length. Omit for the earlier model.

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Diastolic material coefficient
\(b_{1}\), diastolic material coefficient
\(b_{2}\), diastolic material coefficient
\(b_{3}\), diastolic material coefficient
Pressure in the muscle tissue
Systolic material coefficient. Omit for the earlier model.
\(l_{0}\), sarcomere length at which no active tension develops. Omit for the earlier model.
\(l_{R}\), Stress-free sarcomere length. Omit for the earlier model.
Systolic material coefficient. Omit for the earlier model.
Systolic material coefficient. Omit for the earlier model.
\(C a_{0}\), peak intracellular calcium concentration. Omit for the earlier model. \(t_{\text {act }}\), time at which active contraction initiates. Omit for the earlier model

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation

VARIABLE

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\) and 4
A1, A2, A3
D1, D2, D3
V1, V2, V3
BETA

\section*{DESCRIPTION}

EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 5 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

Components of vector a for \(\mathrm{AOPT}=2\)
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4

Material angle in degrees for \(\mathrm{AOPT}=3\). BETA may be overridden on the element card; see *ELEMENT_SOLID_ORTHO.

\section*{Remarks:}
1. Tissue Model. The tissue model is described in terms of the energy functional that is transversely isotropic with respect to the local fiber direction,
\[
\begin{aligned}
W & =\frac{C}{2}\left(e^{Q}-1\right) \\
Q & =b_{f} E_{11}^{2}+b_{t}\left(E_{22}^{2}+E_{33}^{2}+E_{23}^{2}+E_{32}^{2}\right)+b_{f s}\left(E_{12}^{2}+E_{21}^{2}+E_{13}^{2}+E_{31}^{2}\right)
\end{aligned}
\]

Here \(C, b_{f}, b_{t}\), and \(b_{f s}\) are material parameters and \(\mathbf{E}\) is the Lagrange-Green strain.
The systolic contraction is modeled as the sum of the passive stress derived from the strain energy function and an active fiber directional component, \(T_{0}\), which is a function of time, \(t\),
\[
\begin{aligned}
& \mathbf{S}=\frac{\partial W}{\partial \mathbf{E}}-p J \mathbf{C}^{-1}+T_{0}\left\{t, C a_{0}, l\right\} \\
& \boldsymbol{\sigma}=\frac{1}{J} \mathbf{F S F}^{T}
\end{aligned}
\]
with S, the second Piola-Kirchoff stress tensor; C, the right Cauchy-Green deformation tensor; \(J\), the Jacobian of the deformation gradient tensor \(\mathbf{F}\); and \(\sigma\), the Cauchy stress tensor.

The active fiber directional stress component is defined by a time-varying elastance model, which at end-systole, is reduced to
\[
T_{0}=T_{\max } \frac{C a_{0}^{2}}{C a_{0}^{2}+E C a_{50}^{2}} C_{t}
\]

Here, \(T_{\max }\) is the maximum isometric tension achieved at the longest sarcomere length and maximum peak intracellular calcium concentration. The length-dependent calcium sensitivity and internal variable is given by,
\[
\begin{aligned}
E C a_{50} & =\frac{\left(C a_{0}\right)_{\max }}{\sqrt{\exp \left[B\left(l-l_{0}\right]-1\right.}} \\
C_{t} & =1 / 2(1-\cos w) \\
l & =l_{R} \sqrt{2 E_{11}+1} \\
w & =\pi \frac{0.25+t_{r}}{t_{r}} \\
t_{r} & =m l+b b
\end{aligned}
\]

A cross-fiber, in-plane stress equivalent to \(40 \%\) of that along the myocardial fiber direction is added.
2. Older Tissue Model. The earlier tissue model is described in terms of the energy functional in terms of the Green strain components, \(E_{i j}\),
\[
\begin{aligned}
W(E) & =\frac{C}{2}\left(e^{Q}-1\right)+\frac{1}{2} P\left(I_{3}-1\right) \\
Q & =b_{1} E_{11}^{2}+b_{2}\left(E_{22}^{2}+E_{33}^{2}+E_{23}^{2}+E_{32}^{2}\right)+b_{3}\left(E_{12}^{2}+E_{21}^{2}+E_{13}^{2}+E_{31}^{2}\right)
\end{aligned}
\]

The Green components are modified to eliminate any effects of volumetric work following the procedures of Ogden. See the paper by Guccione et al [1991] for more detail.

\section*{*MAT_LUNG_TISSUE}

This is Material Type 129. This material model provides a hyperelastic model for heart tissue, see [Vawter 1980] combined optionally with linear viscoelasticity as outlined by [Christensen 1980].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & K & C & DELTA & ALPHA & BETA & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & LCID & TRAMP & NT & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

Viscoelastic Constant Cards. Up to 6 cards may be input. A keyword card (with a "*" in column 1) terminates this input if less than 6 cards are used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GI & BETAI & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
K Bulk modulus
C Material coefficient.
DELTA \(\quad \Delta\), material coefficient.
ALPHA \(\quad \alpha\), material coefficient.
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
BETA & \begin{tabular}{l}
C1 material coefficient. \\
C2
\end{tabular} \\
Material coefficient. \\
Material coefficient. \\
TRAMP & \begin{tabular}{l}
Optional load curve ID of relaxation curve \\
If constants \(G_{i}\) and \(\beta_{i}\) are determined via a least squares fit. This \\
relaxation curve is shown in Figure M76-1. This model ignores the \\
constant stress.
\end{tabular} \\
& \begin{tabular}{l}
Optional ramp time for loading.
\end{tabular} \\
& \begin{tabular}{l}
Number of Prony series terms in optional fit. If zero, the default is \\
6. Currently, the maximum number is 6. Values less than 6, possi- \\
bly 3 - 5 are recommended, since each term used adds significantly \\
to the cost. Caution should be exercised when taking the results \\
from the fit. Always check the results of the fit in the output file. \\
Preferably, all generated coefficients should be positive. Negative \\
values may lead to unstable results. Once a satisfactory fit has been
\end{tabular} \\
achieved it is recommended that the coefficients which are written \\
into the output file be input in future runs.
\end{tabular}

\section*{Remarks:}

The material is described by a strain energy functional expressed in terms of the invariants of the Green Strain:
\[
\begin{gathered}
W\left(I_{1}, I_{2}\right)=\frac{C}{2 \Delta} e^{\left(\alpha I_{1}^{2}+\beta I_{2}\right)}+\frac{12 C_{1}}{\Delta\left(1+C_{2}\right)}\left[A^{\left(1+C_{2}\right)}-1\right] \\
A^{2}=\frac{4}{3}\left(I_{1}+I_{2}\right)-1
\end{gathered}
\]
where the hydrostatic work term is in terms of the bulk modulus, \(K\), and the third invariant, \(J\), as:
\[
W_{H}(J)=\frac{K}{2}(J-1)^{2}
\]

Rate effects are taken into account through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
or in terms of the second Piola-Kirchhoff stress, \(S_{i j}\), and Green's strain tensor, \(E_{i j}\),
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial E_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta t}
\]
given by,
\[
g(t)=\sum_{i=1}^{n} G_{i} e^{-\beta_{i} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). The viscoelastic behavior is optional and an arbitrary number of terms may be used.

\section*{*MAT_SPECIAL_ORTHOTROPIC}

This is Material Type 130. This model is available for Belytschko-Tsay and C0 triangular shell elements. It is based on a resultant stress formulation. In-plane behavior is treated separately from bending in order to model perforated materials, such as television shadow masks. If other shell formulations are specified, the formulation will be automatically switched to Belytschko-Tsay. As implemented, this material model cannot be used with user defined integration rules.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & YS & EP & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11P & E22P & V12P & V21P & G12P & G23P & G31P & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11B & E22B & V12B & V21B & G12B & AOPT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
MID

RO
YS

EP
E11P

E22P
V12P

V11P
G12P

G23P
G31P

E11B
E22B
V12B
V21B
G12B
AOPT Material axes option (see MAT_\{OPTION\}TROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by

\section*{VARIABLE}

\section*{DESCRIPTION}
element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
\begin{tabular}{cl}
A1, A2, A3 & Components of vector \(\mathbf{a}\) for AOPT \(=2\) \\
D1, D2, D3 & Components of vector \(\mathbf{d}\) for AOPT \(=2\) \\
V1,V2, V3 & Components of vector \(\mathbf{v}\) for AOPT \(=3\) \\
BETA & \begin{tabular}{l}
Material angle in degrees for AOPT \(=0\) and 3. It may be overridden \\
on the element card; see *ELEMENT_SHELL_BETA.
\end{tabular}
\end{tabular}

\section*{Remarks:}

The in-plane elastic matrix for in-plane, plane stress behavior is given by:
\[
\mathbf{C}_{\text {in plane }}=\left[\begin{array}{cllll}
Q_{11 p} & Q_{12 p} & 0 & 0 & 0 \\
Q_{12 p} & Q_{22 p} & 0 & 0 & 0 \\
0 & 0 & Q_{44 p} & 0 & 0 \\
0 & 0 & 0 & Q_{55 p} & 0 \\
0 & 0 & 0 & 0 & Q_{66 p}
\end{array}\right]
\]

The terms \(Q_{i j p}\) are defined as:
\[
\begin{aligned}
& Q_{11 p}=\frac{E_{11 p}}{1-v_{12 p} v_{21 p}} \\
& Q_{22 p}=\frac{E_{22 p}}{1-v_{12 p} v_{21 p}} \\
& Q_{12 p}=\frac{v_{21 p} E_{11 p}}{1-v_{12 p} v_{21 p}} \\
& Q_{44 p}=G_{12 p} \\
& Q_{55 p}=G_{23 p} \\
& Q_{66 p}=G_{31 p}
\end{aligned}
\]

The elastic matrix for bending behavior is given by:
\[
\mathbf{C}_{\text {bending }}=\left[\begin{array}{ccc}
Q_{11 b} & Q_{12 b} & 0 \\
Q_{12 b} & Q_{22 b} & 0 \\
0 & 0 & Q_{44 b}
\end{array}\right]
\]

The terms \(Q_{i j b}\) are similarly defined.
Because this is a resultant formulation, nothing is written to the six stress slots of d3plot. Resultant forces and moments may be written to elout and to dynain in place of the six stresses. The first two extra history variables may be used to complete output of the eight resultants to elout and dynain.

\section*{*MAT_ISOTROPIC_SMEARED_CRACK}

This is Material Type 131. This model was developed by Lemmen and Meijer [2001] as a smeared crack model for isotropic materials. This model is available of solid elements only and is restricted to cracks in the \(x y\)-plane. Users should choose other models unless they have the report by Lemmen and Meijer [2001].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & ISPL & SIGF & GK & SR \\
Type & A & F & F & F & I & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E
PR Poisson's ratio
ISPL Failure option:
EQ.0: Maximum principal stress criterion
EQ.5: Smeared crack model
EQ.6: Damage model based on modified von Mises strain
SIGF Peak stress
GK Critical energy release rate
SR

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Young's modulus

Strength ratio

\section*{Remarks:}

The following documentation is taken nearly verbatim from the documentation of Lemmen and Meijer [2001].

Three methods are offered to model progressive failure. The maximum principal stress criterion detects failure if the maximum (most tensile) principal stress exceeds \(\sigma_{\max }\). Upon failure, the material can no longer carry stress.

The second failure model is the smeared crack model with linear softening stress-strain using equivalent uniaxial strains. Failure is assumed to be perpendicular to the principal strain directions. A rotational crack concept is employed in which the crack directions are related to the current directions of principal strain. Therefore, crack directions may rotate in time. Principal stresses are expressed as
\[
\left(\begin{array}{l}
\sigma_{1} \tag{131.1}\\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)=\left[\begin{array}{lll}
\overline{\mathrm{E}}_{1} & 0 & 0 \\
0 & \overline{\mathrm{E}}_{2} & 0 \\
0 & 0 & \overline{\mathrm{E}}_{3}
\end{array}\right]\left(\begin{array}{l}
\tilde{\varepsilon}_{1} \\
\tilde{\varepsilon}_{2} \\
\tilde{\varepsilon}_{3}
\end{array}\right)=\left(\begin{array}{l}
\overline{\mathrm{E}}_{1} \tilde{\varepsilon}_{1} \\
\overline{\mathrm{E}}_{2} \tilde{\varepsilon}_{2} \\
\overline{\mathrm{E}}_{3} \tilde{\varepsilon}_{3}
\end{array}\right)
\]
with \(\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}\) and \(\overline{\mathrm{E}}_{3}\) as secant stiffness in the terms that depend on internal variables.
In the model developed for DYCOSS it has been assumed that there is no interaction between the three directions in which case stresses simply follow from
\[
\sigma_{j}\left(\tilde{\varepsilon}_{j}\right)=\left\{\begin{array}{lll}
\mathrm{E} \tilde{\varepsilon}_{j} & \text { if } & 0 \leq \tilde{\varepsilon}_{j} \leq \tilde{\varepsilon}_{j, \text { ini }} \tag{131.2}\\
\bar{\sigma}\left(1-\frac{\tilde{\varepsilon}_{j}-\tilde{\varepsilon}_{j, \text { ini }}}{\tilde{\varepsilon}_{j, \text { ult }}-\tilde{\varepsilon}_{j, \text { ini }}}\right) & \text { if } & \tilde{\varepsilon}_{j, \text { ini }}<\tilde{\varepsilon}_{j} \leq \tilde{\varepsilon}_{j, \text { ult }} \\
0 & \text { if } & \tilde{\varepsilon}_{j}>\tilde{\varepsilon}_{j, \text { ult }}
\end{array}\right.
\]
with \(\bar{\sigma}\) the ultimate stress, \(\tilde{\varepsilon}_{j, \text { ini }}\) the damage threshold, and \(\tilde{\varepsilon}_{j, \text { ult }}\) the ultimate strain in \(j\) direction. The damage threshold is defined as
\[
\begin{equation*}
\tilde{\varepsilon}_{j, \text { ini }}=\frac{\bar{\sigma}}{\mathrm{E}} . \tag{131.3}
\end{equation*}
\]

The ultimate strain is obtained by relating the crack growth energy and the dissipated energy
\[
\begin{equation*}
\iint \bar{\sigma} d \tilde{\varepsilon}_{j, \mathrm{ult}} d V=G A \tag{131.4}
\end{equation*}
\]
with \(G\) as the energy release rate, \(V\) as the element volume and \(A\) as the area perpendicular to the principal strain direction. The one point elements in LS-DYNA have a single integration point and the integral over the volume may be replaced by the volume. For linear softening it follows
\[
\begin{equation*}
\tilde{\varepsilon}_{j, \mathrm{ult}}=\frac{2 G A}{V \bar{\sigma}} . \tag{131.5}
\end{equation*}
\]

The above formulation may be regarded as a damage equivalent to the maximum principle stress criterion.

The third model is a damage model represented by Brekelmans et. al [1991]. Here the Cauchy stress tensor, \(\sigma\), is expressed as
\[
\begin{equation*}
\sigma=(1-D) \mathrm{E} \varepsilon \tag{131.6}
\end{equation*}
\]
where \(D\) represents the current damage and the factor \(1-D\) is the reduction factor caused by damage. The scalar damage variable is expressed as function of a so-called damage equivalent strain \(\varepsilon_{d}\)
\[
\begin{equation*}
D=D\left(\varepsilon_{d}\right)=1-\frac{\varepsilon_{\mathrm{ini}}\left(\varepsilon_{\mathrm{ult}}-\varepsilon_{d}\right)}{\varepsilon_{d}\left(\varepsilon_{\mathrm{ult}}-\varepsilon_{\mathrm{ini}}\right)} \tag{131.7}
\end{equation*}
\]
where
\[
\begin{equation*}
\varepsilon_{d}=\frac{k-1}{2 k(1-2 v)} J_{1}+\frac{1}{2 k} \sqrt{\left(\frac{k-1}{1-2 v} J_{1}\right)^{2}+\frac{6 k}{(1+v)^{2}} J_{2}} . \tag{131.8}
\end{equation*}
\]

Here the constant \(k\) represents the ratio of the strength in tension over the strength in compression
\[
\begin{equation*}
k=\frac{\sigma_{\text {ult ,tension }}}{\sigma_{\text {ult, compression }}} \tag{131.9}
\end{equation*}
\]
\(J_{1}\) and \(J_{2}\) are the first and second invariant of the strain tensor representing the volumetric and the deviatoric straining, respectively
\[
\begin{align*}
& J_{1}=\operatorname{tr}(\varepsilon) \\
& J_{2}=\operatorname{tr}(\varepsilon \cdot \varepsilon)-\frac{1}{3}[\operatorname{tr}(\varepsilon)]^{2} \tag{131.10}
\end{align*}
\]

If the compression and tension strength are equal, the dependency on the volumetric strain vanishes in (131.8) and failure is shear dominated. If the compressive strength is much larger than the strength in tension, \(k\) becomes small and the \(J_{1}\) terms in (131.8) dominate the behavior.

\section*{*MAT_ORTHOTROPIC_SMEARED_CRACK}

This is Material Type 132. This material is a smeared crack model for orthotropic materials. It is available for solid elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & UINS & UISS & CERRMI & CERRMIII & IND & ISD & & \\
Type & F & F & F & F & I & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AOPT & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MACF & \\
Type & F & F & F & F & F & F & I & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.
EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, AOPT \(=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

XP YP ZP \(\quad\) Define coordinates of point \(P\) for AOPT \(=1\) and 4.
A1 A2 A3 Define components of vector \(\boldsymbol{a}\) for AOPT \(=2\).
MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation

\section*{VARIABLE}

V1 V2 V3 Define components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4.
D1 D2 D3 Define components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\) :
BETA

REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On

\section*{Remarks:}

This is an orthotropic material with optional delamination failure for brittle composites. The elastic formulation is identical to the DYNA3D model that uses total strain formulation. The constitutive matrix \(C\) that relates to global components of stress to the global components of strain is defined as:
\[
\mathrm{C}=\mathrm{T}^{T} \mathrm{C}_{L} \mathrm{~T}
\]
where T is the transformation matrix between the local material coordinate system and the global system and \(C_{L}\) is the constitutive matrix defined in terms of the material constants of the local orthogonal material axes \(a, b\), and \(c\) (see DYNA3D use manual).

Failure is described using linear softening stress strain curves for the interlaminar normal and interlaminar shear directions. The current implementation for failure is essentially two-dimensional. Damage can occur in the interlaminar normal direction and a single
interlaminar shear direction. The orientation of these directions with respect to the principal material directions must be specified by the user.

Based on specified values for the ultimate stress and the critical energy release rate bounding surfaces are defined as
\[
\begin{aligned}
& f_{n}=\sigma_{n}-\bar{\sigma}_{n}\left(\varepsilon_{n}\right) \\
& f_{s}=\sigma_{s}-\bar{\sigma}_{s}\left(\varepsilon_{s}\right)
\end{aligned}
\]
where the subscripts \(n\) and \(s\) refer to the normal and shear component. If stresses exceed the bounding surfaces, inelastic straining occurs. The ultimate strain is obtained by relating the crack growth energy and the dissipated energy. For solid elements with a single integration point it can be derived to obtain
\[
\varepsilon_{i, \mathrm{ult}}=\frac{2 G_{i} A}{V \sigma_{i, \mathrm{ult}}}
\]
with \(G_{i}\) as the critical energy release rate, \(V\) as the element volume, \(A\) as the area perpendicular to the active normal direction and \(\sigma_{i, \text { ult }}\) as the ultimate stress. For the normal component failure can only occur under tensile loading. For the shear component the behavior is symmetric around zero. The resulting stress bounds are depicted in Figure M132-1. Unloading is modeled with a Secant stiffness.

Figure M132-1. Shows stress bounds for the active normal component (left) and the archive shear component (right).

\section*{*MAT_BARLAT_YLD2000}

This is Material Type 133. This model was developed by Barlat et al. [2003] to overcome some shortcomings of the six parameter Barlat model implemented as material 33 (MAT_BARLAT_YLD96) in LS-DYNA. This model is available for shell, thick shell, and solid elements. Support for solid elements started with R12 but only for explicit analysis. The model for solid elements is based on the approach by Dunand et al. [2012].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & FIT & BETA & ITER & ISCALE \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(K\) & EO & N & C & P & HARD & A & \\
\hline
\end{tabular}

Card 2.1. This card is included if \(\mathrm{A}<0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CRC1 & CRA1 & CRC2 & CRA2 & CRC3 & CRA3 & CRC4 & CRA4 \\
\hline
\end{tabular}

Card 3a. This card is included if \(\mathrm{FIT}=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
\hline
\end{tabular}

Card 3b.1. This card is included if FIT \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIG00 & SIG45 & SIG90 & R00 & R45 & R90 & & \\
\hline
\end{tabular}

Card 3b.2. This card is included if FIT \(=1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SIGXX & SIGYY & SIGXY & DXX & DYY & DXY & & \\
\hline
\end{tabular}

Card 4.1. This card is included if HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CP & T0 & TREF & TAO & & & & \\
\hline
\end{tabular}

Card 4.2. This card is included if HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(D\) & \(P\) & \(Q\) & EOMART & VM0 \\
\hline
\end{tabular}

Card 4.3. This card is included if HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AHS & BHS & M & N & EPS0 & HMART & K1 & K2 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & OFFANG & P4 & HTFLAG & HTA & HTB & HTC & HTD \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & USRFAlL & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & FIT & BETA & ITER & ISCALE \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E Young's modulus
LE.O: -E is either a load curve ID for Young's modulus as a function of plastic strain or a table ID for Young's modulus as a function of plastic strain and temperature.

PR Poisson's ratio
LE.0: -PR is a load curve ID for Poisson's ratio as a function of temperature.

Material parameter fit flag:
EQ.0.0: Material parameters are used directly on Card 3a.
EQ.1.0: Material parameters are determined from test data on Cards 3b. 1 and 3b.2.

\section*{VARIABLE}

BETA

ITER Plastic iteration flag:
EQ.0.0: Plane stress algorithm for stress return
EQ.1.0: Secant iteration algorithm for stress return
ITER provides an option of using three secant iterations for determining the thickness strain increment as experiments have shown that this leads to a more accurate prediction of shell thickness changes for rapid processes. A significant increase in computation time is incurred with this option so it should be used only for applications associated with high rates of loading and/or for implicit analysis.

ISCALE Yield locus scaling flag:
EQ.O.O: Scaling on - reference direction is the rolling direction (default)
EQ.1.0: Scaling off - reference direction arbitrary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & E0 & N & C & P & HARD & A & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

K

E0 Material parameter:
HARD.EQ.1.0: \(e_{0}\), strain at yield for exponential hardening

\section*{DESCRIPTION}

HARD.EQ.2.0: \(b\) in Voce hardening law
HARD.EQ.4.0: \(\varepsilon_{0}\), strain at yield for Gosh hardening
HARD.EQ.5.0: \(b\) in Hocket-Sherby hardening law

N

C

HARD Hardening law:
EQ.1.0: Exponential hardening: \(\sigma_{y}=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}\)
EQ.2.0: Voce hardening: \(\sigma_{y}=a-b e^{-c \varepsilon_{p}}\)
EQ.3.0: Hansel hardening (see Remark 4)
EQ.4.0: Gosh hardening: \(\sigma_{y}=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}-p\)
EQ.5.0: Hocket-Sherby hardening: \(\sigma_{y}=a-b e^{-c \varepsilon_{p}^{q}}\)
LT.O.O: Absolute value defines load curve ID, table ID or 3D table ID. If it is a load curve, then yield stress is a function of plastic strain. If it is a table, then yield stress is a function of either plastic strain and plastic strain rate in case of a 2D table, or, a function of plastic strain, plastic strain rate, and temperature in case of a 3D table.

A
Flow potential exponent. For face centered cubic (FCC) materials \(A=8\) is recommended and for body centered cubic (BCC) materials \(A=6\) may be used. If the input is negative, then an extra card for Chaboche-Roussilier kinematic hardening is read, the flow potential exponent is taken as the absolute value of what is input, and BETA above is ignored.

Chaboche-Roussilier Card. Additional Card for A < 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CRC1 & CRA1 & CRC2 & CRA2 & CRC3 & CRA3 & CRC4 & CRA4 \\
Type & F & F & F & F & F & F & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

CRCn

CRAn

\section*{DESCRIPTION}

Chaboche-Rousselier kinematic hardening parameters; see Remark 3.

Chaboche-Rousselier kinematic hardening parameters; see Remark 3.

Direct Material Parameter Card. Additional card for FIT \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & ALPHA2 & ALPHA3 & ALPHA4 & ALPHA5 & ALPHA6 & ALPHA7 & ALPHA8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

ALPHA \(i\)

\section*{DESCRIPTION}
\(\alpha_{i}\), see Remark 2. If ALPHA1 is input as a negative number, then the absolute value is the ID of a load curve giving \(\alpha_{1}\) as a function of temperature. With this choice, all ALPHAi must be negative and given by curves.

Test Data Card 1. Additional card for \(\mathrm{FIT}=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIG00 & SIG45 & SIG90 & R00 & R45 & R90 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

Test Data Card 2. Additional Card for \(\mathrm{FIT}=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGXX & SIGYY & SIGXY & DXX & DYY & DXY & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline \multirow[t]{2}{*}{SIG00} & Yield stress in 00 direction \\
\hline & LT.0.0: -SIG00 is load curve ID, defining this stress as a function of temperature. \\
\hline \multirow[t]{2}{*}{SIG45} & Yield stress in 45 direction \\
\hline & LT.0.0: -SIG45 is load curve ID, defining this stress as a function of temperature. \\
\hline \multirow[t]{2}{*}{SIG90} & Yield stress in 90 direction \\
\hline & LT.0.0: -SIG90 is load curve ID, defining this stress as a function of temperature. \\
\hline \multirow[t]{2}{*}{R00} & \(R\)-value in 00 direction \\
\hline & LT.O.O: -R00 is load curve ID, defining this value as a function of temperature. \\
\hline \multirow[t]{2}{*}{R45} & \(R\)-value in 45 direction \\
\hline & LT.O.0: -R45 is load curve ID, defining this value as a function of temperature. \\
\hline \multirow[t]{2}{*}{R90} & \(R\)-value in 90 direction \\
\hline & LT.0.0: -R90 is load curve ID, defining this value as a function of temperature. \\
\hline SIGXX & \(x x\)-component of stress on yield surface (see Remark 2). \\
\hline SIGYY & \(y y\)-component of stress on yield surface (see Remark 2). \\
\hline SIGXY & \(x y\)-component of stress on yield surface (see Remark 2). \\
\hline DXX & \(x x\)-component of tangent to yield surface (see Remark 2). \\
\hline
\end{tabular}

\section*{VARIABLE}

DYY
DXY

\section*{DESCRIPTION}
\(y y\)-component of tangent to yield surface (see Remark 2).
\(x y\)-component of tangent to yield surface (see Remark 2).

Hansel Hardening Card 1. Additional card for HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP & TO & TREF & TAO & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

CP

T0

TREF

TA0

Initial temperature \(T_{0}\) of the material if adiabatic temperature calculation is enabled

Reference temperature for output of the yield stress as history variable

Reference temperature \(T_{A 0}\), the absolute zero for the used temperature scale, such as -273.15 if the Celsius scale is used and 0.0 if the Kelvin scale is used.

Hansel Hardening Card 2. Additional card for HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & C & D & P & Q & EOMART & VM0 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

A

\section*{DESCRIPTION}

Martensite rate equation parameter \(A\), see Remark 4.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline B & Martensite rate equation parameter B, see Remark 4. \\
\hline C & Martensite rate equation parameter C, see Remark 4. \\
\hline D & Martensite rate equation parameter \(D\), see Remark 4. \\
\hline P & Martensite rate equation parameter \(p\), see Remark 4. \\
\hline Q & Martensite rate equation parameter \(Q\), see Remark 4. \\
\hline E0MART & Martensite rate equation parameter \(E_{0 \text { (mart) }}\), see Remark 4. \\
\hline VM0 & The initial volume fraction of martensite \(0.0<V_{m 0}<1.0\) may be initialized using two different methods: \\
\hline & GT.0.0: \(V_{m 0}\) is set to VM0. \\
\hline & LT.O.O: Can be used only when there are initial plastic strains \(\varepsilon^{p}\) present, such as when using *INITIAL_STRESS_SHELL. The absolute value of VM0 is then the load curve ID for a function, \(f\), that sets \(V_{m 0}=f\left(\varepsilon^{p}\right)\). The function \(f\) must be a monotonically nondecreasing function of \(\varepsilon^{p}\). \\
\hline
\end{tabular}

Hansel Hardening Card 3. Additional card for HARD \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AHS & BHS & M & N & EPSO & HMART & K1 & K2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

AHS Hardening law parameter \(A_{\mathrm{HS}}\), see Remark 4.
BHS Hardening law parameter \(B_{\mathrm{HS}}\), see Remark 4.
M Hardening law parameter \(m\), see Remark 4 .
\(\mathrm{N} \quad\) Hardening law parameter \(n\), see Remark 4.
EPS0
HMART Hardening law parameter \(\Delta H_{\gamma \rightarrow \alpha^{\prime}}\), see Remark 4.

\section*{VARIABLE}

K1
K2

\section*{DESCRIPTION}

Hardening law parameter \(K_{1}\), see Remark 4.
Hardening law parameter \(K_{2}\), see Remark 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & OFFANG & P4 & HTFLAG & HTA & HTB & HTC & HTD \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for more details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes as shown in Figure M133-1. Nodes 1, 2, and 4 of an element are identical to the nodes used for the definition of a coordinate system as by *DEFINE_COORDINATE_NODES.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by offsetting the material axes by an angle, OFFANG, from a line determined by taking the cross product of the vector \(v\) with the normal to the plane of the element.
LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

OFFANG \(\quad\) Offset angle for \(A O P T=3\)
P4 Material parameter:
HARD.EQ.4.0: \(p\) in Gosh hardening law
HARD.EQ.5.0: \(q\) in Hocket-Sherby hardening law

\section*{VARIABLE}

HTFLAG

\section*{DESCRIPTION}

Heat treatment flag (see Remark 5):
EQ.0: Preforming stage
EQ.1: Heat treatment stage
EQ.2: Postforming stage
Load curve or table ID for postforming parameter \(a\)
Load curve or table ID for postforming parameter \(b\)
Load curve or table ID for postforming parameter \(c\)
Load curve or table ID for postforming parameter \(d\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

A1, A2, A3 Components of vector a for AOPT \(=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & USRFAIL & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3
Components of vector \(\mathbf{d}\) for AOPT \(=2\)
User defined failure flag:
EQ.O: No user subroutine is called.
EQ.1: User subroutine matusr_24 in dyn21.f is called.

\section*{Remarks:}
1. Cowper - Symonds Strain Rate. Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}_{p}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}_{p}\) is the plastic strain rate. To ignore strain rate effects set both C and P to zero.
2. Yield Condition. The yield condition for this material can be written as
\[
\begin{aligned}
& f\left(\sigma, \alpha, \varepsilon_{p}\right)=\sigma_{\mathrm{eff}}\left(\sigma_{x x}-2 \alpha_{x x}-\alpha_{y y}, \sigma_{y y}-2 \alpha_{y y}-\alpha_{x x}, \sigma_{x y}-\alpha_{x y}\right) \\
&-\sigma_{Y}^{t}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}, \beta\right) \leq 0
\end{aligned}
\]
where
\[
\begin{aligned}
\sigma_{\mathrm{eff}}\left(s_{x x}, s_{y y}, s_{x y}\right) & =\left[\frac{1}{2}\left(\varphi^{\prime}+\varphi^{\prime \prime}\right)\right]^{1 / a} \\
\varphi^{\prime} & =\left|X_{1}^{\prime}-X_{2}^{\prime}\right|^{a} \\
\varphi^{\prime \prime} & =\left|2 X_{1}^{\prime \prime}+X_{2}^{\prime \prime}\right|^{a}+\left|X_{1}^{\prime \prime}+2 X_{2}^{\prime \prime}\right|^{a}
\end{aligned}
\]

The \(X^{\prime}{ }_{i}\) and \(X^{\prime \prime}{ }_{i}\) are eigenvalues of \(X^{\prime}{ }_{i j}\) and \(X^{\prime \prime}{ }_{i j}\) and are given by
\[
\begin{aligned}
& X_{1}^{\prime}=\frac{1}{2}\left(X_{11}^{\prime}+X_{22}^{\prime}+\sqrt{\left(X_{11}^{\prime}-X_{22}^{\prime}\right)^{2}+4 X_{12}^{\prime}}{ }^{2}\right) \\
& X_{2}^{\prime}=\frac{1}{2}\left(X_{11}^{\prime}+X_{22}^{\prime}-\sqrt{\left(X_{11}^{\prime}-X_{22}^{\prime}\right)^{2}+4 X_{12}^{\prime}}{ }^{2}\right)
\end{aligned}
\]
and
\[
\begin{aligned}
& X_{1}^{\prime \prime}=\frac{1}{2}\left(X_{11}^{\prime \prime}+X_{22}^{\prime \prime}+\sqrt{\left(X_{11}^{\prime \prime}-X_{22}^{\prime \prime}\right)^{2}+4 X_{12}^{\prime \prime 2}}\right) \\
& X_{2}^{\prime}=\frac{1}{2}\left(X_{11}^{\prime \prime}+X_{22}^{\prime \prime}-\sqrt{\left(X_{11}^{\prime \prime}-X_{22}^{\prime \prime}\right)^{2}+4{X_{12}^{\prime \prime}}^{2}}\right)
\end{aligned}
\]
respectively. The \(X^{\prime}{ }_{i j}\) and \(X^{\prime \prime}{ }_{i j}\) are given by
\[
\begin{aligned}
& \left(\begin{array}{l}
X_{11}^{\prime} \\
X_{22}^{\prime} \\
X_{12}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
L_{11}^{\prime} & L_{12}^{\prime} & 0 \\
L_{21}^{\prime} & L_{22}^{\prime} & 0 \\
0 & 0 & L_{33}^{\prime}
\end{array}\right)\left(\begin{array}{l}
s_{x x} \\
s_{y y} \\
s_{x y}
\end{array}\right) \\
& \left(\begin{array}{lll}
X_{11}^{\prime \prime} \\
X_{22}^{\prime \prime} \\
X_{12}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{lll}
L_{11}^{\prime \prime} & L_{12}^{\prime \prime} & 0 \\
L_{21}^{\prime \prime} & L_{22}^{\prime \prime} & 0 \\
0 & 0 & L_{33}^{\prime \prime}
\end{array}\right)\left(\begin{array}{l}
s_{x x} \\
s_{y y} \\
s_{x y}
\end{array}\right)
\end{aligned}
\]
where,
\[
\begin{aligned}
& \left(\begin{array}{l}
L_{11}^{\prime} \\
L_{12}^{\prime} \\
L_{21}^{\prime} \\
L_{22}^{\prime} \\
L_{33}^{\prime}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{7}
\end{array}\right) \\
& \left(\begin{array}{l}
L_{11}^{\prime \prime} \\
L_{12}^{\prime \prime} \\
L_{21}^{\prime \prime} \\
L_{22}^{\prime \prime} \\
L_{33}^{\prime \prime}
\end{array}\right)=\frac{1}{9}\left(\begin{array}{rrrrr}
-2 & 2 & 8 & -2 & 0 \\
1 & -4 & -4 & 4 & 0 \\
4 & -4 & -4 & 1 & 0 \\
-2 & 8 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 9
\end{array}\right)\left(\begin{array}{l}
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{8}
\end{array}\right)
\end{aligned}
\]

The parameters \(\alpha_{1}\) to \(\alpha_{8}\) are the parameters that determines the shape of the yield surface. \(s_{x x}, s_{y y}\), and \(s_{x y}\) do not denote the deviatoric stress components but the arguments are used in the \(\sigma_{\text {eff }}\) function.

The material parameters can be determined from three uniaxial tests and a more general test. From the uniaxial tests the yield stress and R-values are used and from the general test an arbitrary point on the yield surface is used given by the stress components in the material system as
\[
\boldsymbol{\sigma}=\left(\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right)
\]
together with a tangent of the yield surface in that particular point. For the latter the tangential direction should be determined so that
\[
d_{x x} \dot{\varepsilon}_{x x}^{p}+d_{y y} \dot{\varepsilon}_{y y}^{p}+2 d_{x y} \dot{\varepsilon}_{x y}^{p}=0
\]

The biaxial data can be set to zero in the input deck for LS-DYNA to just fit the uniaxial data.

The effective stress (excluding back stress) can be output to the d3plot database through *DEFINE_MATERIAL_HISTORIES.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & Attributes & Description \\
\hline Effective Stress & & Effective stress \(\sigma_{\text {eff }}\left(\sigma_{x x}, \sigma_{y y}, \sigma_{x y}\right)\), see above \\
\hline
\end{tabular}
3. Kinematic Hardening Model. A kinematic hardening model is implemented following the works of Chaboche and Roussilier. A back stress, \(\alpha\), is introduced such that the effective stress is computed as
\[
\sigma_{\mathrm{eff}}=\sigma_{\mathrm{eff}}\left(\sigma_{11}-2 \alpha_{11}-\alpha_{22}, \sigma_{22}-2 \alpha_{22}-\alpha_{11}, \sigma_{12}-\alpha_{12}\right)
\]

The back stress is the sum of up to four terms according to
\[
\alpha_{i j}=\sum_{k=1}^{4} \alpha_{i j}^{k}
\]
and the evolution of each back stress component is as follows
\[
\delta \alpha_{i j}^{k}=C_{k}\left(a_{k} \frac{s_{i j}-\alpha_{i j}}{\sigma_{\mathrm{eff}}}-\alpha_{i j}^{k}\right) \delta \varepsilon_{p}
\]
where \(C_{k}\) and \(a_{k}\) are material parameters, \(s_{i j}\) is the deviatoric stress tensor, \(\sigma_{\text {eff }}\) is the effective stress and \(\varepsilon_{p}\) is the effective plastic strain. The yield condition for this case is modified according to
\[
\begin{aligned}
f\left(\sigma, \alpha, \varepsilon_{p}\right)= & \sigma_{\text {eff }}\left(\sigma_{x x}-2 \alpha_{x x}-\alpha_{y y}, \sigma_{y y}-2 \alpha_{y y}-\alpha_{x x}, \sigma_{x y}-\alpha_{x y}\right) \\
& -\left\{\sigma_{Y}^{t}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}, 0\right)-\sum_{k=1}^{4} a_{k}\left[1-\exp \left(-C_{k} \varepsilon_{p}\right)\right]\right\} \leq 0
\end{aligned}
\]
in order to get the expected stress strain response for uniaxial stress.
4. Hansel Hardening Law. The Hansel hardening law is the same as in material 113 but is repeated here for the sake of convenience.

The hardening is temperature dependent and therefore this material model must be run either in a coupled thermo-mechanical solution, using prescribed temperatures or using the adiabatic temperature calculation option. Setting the parameter \(C P\) to the specific heat \(C_{p}\) of the material activates the adiabatic temperature calculation that calculates the temperature rate from the equation
\[
\dot{T}=\sum_{i, j} \frac{\sigma_{\mathrm{ij}} D_{i j}^{\mathrm{p}}}{\rho C_{p}}
\]
where \(\sigma\) : \(\mathbf{D}^{p}\) (the numerator) is the plastically dissipated heat. Using the Kelvin scale is recommended, even though other scales may be used without problems.

The hardening behaviour is described by the following equations. The martensite rate equation is
\[
\begin{aligned}
& \frac{\partial V_{m}}{\partial \bar{\varepsilon}^{p}} \\
& = \begin{cases}0 & \varepsilon<E_{0(\mathrm{mart})} \\
\frac{B}{A} V_{m}^{p}\left(\frac{1-V_{m}}{V_{m}}\right)^{\frac{B+1}{B}} \frac{[1-\tanh (C+\mathrm{D} \times T)]}{2} \exp \left(\frac{Q}{T-T_{A 0}}\right) & \bar{\varepsilon}^{p} \geq E_{0(\mathrm{mart})}\end{cases}
\end{aligned}
\]
where \(\bar{\varepsilon}^{p}\) is the effective plastic strain and \(T\) is the temperature. The martensite fraction is integrated from the above rate equation:
\[
V_{m}=\int_{0}^{\varepsilon} \frac{\partial V_{m}}{\partial \bar{\varepsilon}^{p}} d \bar{\varepsilon}^{p} .
\]

It always holds that \(0.0<V_{m}<1.0\). The initial martensite content is \(V_{m 0}\) and must be greater than zero and less than 1.0. Note that \(V_{m 0}\) is not used during a restart or when initializing the \(V_{m}\) history variable using *INITIAL_STRESS_SHELL.

The yield stress \(\sigma_{y}\) is
\[
\sigma_{y}=\left\{B_{H S}-\left(B_{H S}-A_{H S}\right) \exp \left(-m\left[\bar{\varepsilon}^{p}+\varepsilon_{0}\right]^{n}\right)\right\}\left(K_{1}+K_{2} T\right)+\Delta H_{\gamma \rightarrow \alpha^{\prime}} V_{m}
\]

The parameters P and B should fulfill the following condition
\[
\frac{1+B}{B}<p .
\]

If not fulfilled, the martensite rate will approach infinity as \(V_{m}\) approaches zero. A value between 0.001 and 0.02 is recommended for \(\varepsilon_{0}\).

Apart from the effective true strain a few additional history variables are output as described in the table below.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History Vari- \\
able \#
\end{tabular} & \multicolumn{1}{c|}{ Description } \\
\hline \hline 26 & \begin{tabular}{l}
Yield stress of material at temperature TREF. This \\
variable is useful when evaluating the strength of \\
the material after, for example, a simulated form- \\
ing operation. \\
Volume fraction martensite, \(V_{m}\)
\end{tabular} \\
27 & \begin{tabular}{l}
If CP \(=0.0\), it is not used. If CP > 0.0, then it is the \\
temperature from the adiabatic temperature calcu- \\
lation.
\end{tabular} \\
\hline
\end{tabular}
5. Heat Treatment. Heat treatment for increasing the formability of prestrained aluminum sheets can be simulated through the use of HTFLAG, where the intention is to run a forming simulation in steps involving preforming, springback, heat treatment, and postforming. In each step the history is transferred to the next using a dynain file (see *INTERFACE_SPRINGBACK). The first two steps are performed with HTFLAG \(=0\) according to standard procedures, resulting in a plastic strain field \(\varepsilon_{p}^{0}\) corresponding to the prestrain. The heat treatment step is performed using HTFLAG \(=1\) in a coupled thermomechanical simulation, where the blank is heated. The coupling between thermal and mechanical processes is only through the maximum temperature \(T^{0}\) being stored as a history variable in the material model, corresponding to the heat treatment temperature. Here it is important to export all history variables to the dynain file for the
postforming step. In the final postforming step, HTFLAG \(=2\), the yield stress is then augmented by the Hocket-Sherby like term
\[
\Delta \sigma=b-(b-a) \exp \left[-c\left(\varepsilon_{p}-\varepsilon_{p}^{0}\right)^{d}\right]
\]
where \(a, b, c\), and \(d\) are given as tables as functions of the heat treatment temperature \(T^{0}\) and prestrain \(\varepsilon_{p}^{0}\). That is, in the table definitions each load curve corresponds to a given prestrain and the load curve value is with respect to the heat treatment temperature,
\[
a=a\left(T^{0}, \varepsilon_{p}^{0}\right), \quad b=b\left(T^{0}, \varepsilon_{p}^{0}\right), \quad c=c\left(T^{0}, \varepsilon_{p}^{0}\right), \quad d=d\left(T^{0}, \varepsilon_{p}^{0}\right)
\]

The effect of heat treatment is that the material strength decreases but hardening increases, thus typically,
\[
a \leq 0, \quad b \geq a, \quad c>0, \quad d>0
\]

\section*{*MAT_VISCOELASTIC_FABRIC}

This is Material Type 134. The viscoelastic fabric model is a variation on the general viscoelastic model of material 76. This model is valid for 3 and 4 node membrane elements only and is strongly recommended for modeling isotropic viscoelastic fabrics where wrinkling may be a problem. For thin fabrics, buckling can result in an inability to support compressive stresses; thus, a flag is included for this option. If bending stresses are important use a shell formulation with model 76.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & BULK & & & & CSE & \\
\hline
\end{tabular}

Card 2. If fitting is done from a relaxation curve, specify fitting parameters on this card, otherwise if constants are set on Card 3, LEAVE THIS CARD BLANK.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
\hline
\end{tabular}

Card 3. This card is not needed if Card 2 is defined (not blank). Up to 6 of this card may be input. If fewer than 6 cards are used, then the next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GI & BETAI & KI & BETAKI & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & BULK & & & & CSE & \\
Type & I & F & F & & & & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID
RO Mass density.
BULK Elastic constant bulk modulus. If the bulk behavior is viscoelastic, then this modulus is used in determining the contact interface stiffness only.

\section*{VARIABLE}

CSE

\section*{DESCRIPTION}

Compressive stress flag (default \(=0.0\)):
EQ.O.O: Don't eliminate compressive stresses.
EQ.1.0: Eliminate compressive stresses.

Relaxation Curve Card. If fitting is done from a relaxation curve, specify fitting parameters on card 2, otherwise if constants are set on Viscoelastic Constant Cards LEAVE THIS CARD BLANK.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
Type & F & I & F & F & F & I & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID

NT

BSTART

TRAMP
LCIDK

NTK

BSTARTK

TRAMPK

\section*{DESCRIPTION}

Load curve ID if constants, \(G_{i}\), and \(\beta_{i}\) are determined using a least squares fit. See Figure M134-1.

Number of terms in shear fit. If zero, the default is 6 . Currently, the maximum number is set to 6 .

In the fit, \(\beta_{1}\) is set to zero, \(\beta_{2}\) is set to BSTART, \(\beta_{3}\) is 10 times \(\beta_{2}, \beta_{4}\) is 10 times \(\beta_{3}\), and so on. If zero, BSTART \(=0.01\).

Optional ramp time for loading.
Load curve ID for bulk behavior if constants, \(K_{i}\) and \(\beta_{\kappa_{i}}\) are determined using a least squares fit. See Figure M134-1.

Number of terms desired in bulk fit. If zero, the default is 6 . Currently, the maximum number is set to 6 .

In the fit, \(\beta_{\kappa_{1}}\) is set to zero, \(\beta_{\kappa_{2}}\) is set to BSTARTK, \(\beta_{\kappa_{3}}\) is 10 times \(\beta_{\kappa_{2}}, \beta_{\kappa_{4}}\) is 10 times \(\beta_{\kappa_{3}}\) and so on. If zero, BSTARTK \(=0.01\).

Optional ramp time for bulk loading

Viscoelastic Constant Cards. Up to 6 cards may be input. A keyword ("*") card terminates this input if fewer than 6 cards are used. These cards are not needed if relaxation data is defined. The number of terms for the shear behavior may differ from that for the bulk behavior: simply insert zero if a term is not included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETA \(i\) & Ki & BETAK \(i\) & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

GI Optional shear relaxation modulus for the \(i^{\text {th }}\) term
BETAI Optional shear decay constant for the \(i^{\text {th }}\) term
KI Optional bulk relaxation modulus for the \(i^{\text {th }}\) term
BETAKI Optional bulk decay constant for the \(i^{\text {th }}\) term

\section*{Remarks:}

Rate effects are taken into accounted through linear viscoelasticity through a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau
\]
where \(g_{i j k l}(t-\tau)\) is the relaxation function. If we wish to include only simple rate effects for the deviatoric stresses, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\sum_{m=1}^{N} G_{m} e^{-\beta_{m} t}
\]

We characterize this function by the input shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). An arbitrary number of terms, up to 6 , may be used when applying the viscoelastic model.

For volumetric relaxation, the relaxation function is also represented by the Prony series in terms of bulk moduli:
\[
k(t)=\sum_{m=1}^{N} K_{m} e^{-\beta_{\kappa_{m}} t} .
\]

Figure M134-1. Stress Relaxation Curve
For an example of a stress relaxation curve see Figure M134-1. This curve defines stress as a function of time where time is defined on a logarithmic scale. For best results, the points defined in the load curve should be equally spaced on the logarithmic scale. Furthermore, the load curve should be smooth and defined in the positive quadrant. If nonphysical values are determined by least squares fit, LS-DYNA will terminate with an error message after the initialization phase is completed. If the ramp time for loading is included, then the relaxation which occurs during the loading phase is taken into account. This effect may or may not be important.

\section*{*MAT_WTM_STM}

This is Material Type 135. This anisotropic-viscoplastic material model adopts two yield criteria for metals with orthotropic anisotropy proposed by Barlat and Lian [1989] (Weak Texture Model) and Aretz [2004] (Strong Texture Model).

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & E & PR & NUMFI & EPSC & WC & TAUC \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SIGMA0 & QR1 & CR1 & QR2 & CR2 & K & LC & FLG \\
\hline
\end{tabular}

Card 3a. This card is included if and only if \(\mathrm{FLG}=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 \\
\hline
\end{tabular}

Card 3 b . This card is included if and only if \(\mathrm{FLG}=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline S00 & S45 & S90 & SBB & R00 & R45 & R90 & RBB \\
\hline
\end{tabular}

Card 3c. This card is included if and only if \(\mathrm{FLG}=2\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline A & C & H & P & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QX1 & CX1 & QX2 & CX2 & EDOT & M & EMIN & S100 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & BETA & & & & & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & NUMFI & EPSC & WC & TAUC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
NUMFI Number of through thickness integration points that must fail before the element is deleted (remember to change this number if switching between full and reduced integration type of elements).

EPSC Critical value \(\varepsilon_{t C}\) of the plastic thickness strain (used in the CTS fracture criterion).

WC Critical value \(W_{c}\) for the Cockcroft-Latham fracture criterion
TAUC Critical value \(\tau_{c}\) for the Bressan-Williams shear fracture criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGMA0 & QR1 & CR1 & QR2 & CR2 & K & LC & FLG \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{DESCRIPTION}

SIGMA0 Initial mean value of yield stress \(\sigma_{0}\) :
GT.0.0: Constant value
LT.O.O: Load curve ID = -SIGMA0 which defines yield stress as a function of plastic strain. Hardening parameters QR1,

\section*{DESCRIPTION}

CR1, QR2, and CR2 are ignored in that case.
QR1
Isotropic hardening parameter \(Q_{R 1}\)
CR1 Isotropic hardening parameter \(C_{R 1}\)
QR2 Isotropic hardening parameter \(Q_{R 2}\)
CR2 Isotropic hardening parameter \(C_{R 2}\)
K \(\quad k\), equals half YLD2003 exponent \(m\). Recommended value for FCC materials is \(m=8\), that is, \(k=4\).

LC Load curve ID giving the relation between the pre-strain and the yield stress \(\sigma_{0}\). Similar curves for \(Q_{R 1}, C_{R 1}, Q_{R 2}, C_{R 2}\), and \(W_{c}\) must follow consecutively from this number.

FLG Flag to determine the card for defining yield:
EQ.0: Use Card 3a for YLD2003 (STM).
EQ.1: Use Card 3b for yield surface (STM - alternative input).
EQ.2: Use Card 3c forYLD89 (WTM).

YLD2003 Card. This card 3 format is used when FLG \(=0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

A1 \(\quad\) YLD2003 parameter \(a_{1}\)
A2 \(\quad\) YLD2003 parameter \(a_{2}\)
A3 \(\quad\) YLD2003 parameter \(a_{3}\)
A4 \(\quad\) YLD2003 parameter \(a_{4}\)
A5
A6
A
YLD2003 parameter \(a_{5}\)
YLD2003 parameter \(a_{6}\)

\section*{DESCRIPTION}

\section*{VARIABLE}

\section*{DESCRIPTION}

A7
YLD2003 parameter \(a_{7}\)
A8
YLD2003 parameter \(a_{8}\)
Yield Surface Card. This card 3 format is used when FLG \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S00 & S45 & S90 & SBB & R00 & R45 & R90 & RBB \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

S00

R00 R-ratio in \(0^{\circ}\) direction
R45 R-ratio in \(45^{\circ}\) direction
R90
RBB

S45 Yield stress in \(45^{\circ}\) direction
S90 Yield stress in \(90^{\circ}\) direction
SBB Balanced biaxial flow stress

\section*{DESCRIPTION}

Yield stress in \(0^{\circ}\) direction

R-ratio in \(90^{\circ}\) direction
Balance biaxial flow ratio

YLD89 Card. This card 3 format used when FLG \(=2\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & C & H & P & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

A
YLD89 parameter \(a\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIAB & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline C & & \multicolumn{7}{|l|}{YLD89 parameter \(c\)} \\
\hline H & & \multicolumn{7}{|l|}{YLD89 parameter \(h\)} \\
\hline P & & \multicolumn{7}{|l|}{YLD89 parameter \(p\)} \\
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & QX1 & CX1 & QX2 & CX2 & EDOT & M & EMIN & S100 \\
\hline Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE \\ DESCRIPTION \\ CX1 \\ QX2 \\ CX2 \\ EDOT \\ M}

EMIN Lower limit of the isotropic hardening rate \(\frac{d R}{d \bar{\varepsilon}}\). This feature is included to model a non-zero and linear/exponential isotropic work hardening rate at large values of effective plastic strain. If the isotropic work hardening rate predicted by the utilized Voce-type work hardening rule falls below the specified value it is substituted by the prescribed value or switched to a power-law hardening if S100 \(\neq 0\). This option should be considered for problems involving extensive plastic deformations. If process dependent material characteristics are prescribed, that is, if LC \(>0\) the same minimum tangent modulus is assumed for all the prescribed work hardening curves. If instead EMIN \(<0\) then -EMIN defines the plastic strain value at which the linear or power-law hardening approximation commences.

S100 Yield stress at 100\% strain for using a power-law approximation beyond the strain defined by EMIN.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & BETA & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by an angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector v with the element normal
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR). Available in R3 version of 971 and later.

BETA Material angle in degrees for AOPT \(=0\) or 3. It may be overwritten on the element card; see *ELEMENT_SHELL_BETA.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
A1 A2 A3 Components of vector a for AOPT \(=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1 V2 V3
Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1 D2 D3 Components of vector \(\mathbf{d}\) for AOPT \(=2\)

\section*{Remarks:}
1. Material model. The yield condition for this material can be written
\[
t\left(\sigma, \alpha, \varepsilon^{p}, \dot{\varepsilon}^{p}\right)=\sigma_{\mathrm{eff}}(\sigma, \alpha)-\sigma_{Y}\left(\varepsilon^{p}, \dot{\varepsilon}^{p}\right)
\]

The yield stress is defined as
\[
\sigma_{Y}=\left[\sigma_{0}+R\left(\varepsilon^{p}\right)\right]\left(1+\frac{\dot{\varepsilon}^{p}}{\dot{\varepsilon}_{0}}\right)^{C}
\]
where the isotropic hardening reads
\[
R\left(\dot{\varepsilon}^{p}\right)=Q_{R 1}\left[1-\exp \left(-C_{R 1} \varepsilon^{p}\right)\right]+Q_{R 2}\left[1-\exp \left(-C_{R 2} \varepsilon^{p}\right)\right] .
\]

For the Weak Texture Model the yield function is defined as
\[
\sigma_{\text {eff }}=\left[\frac{1}{2}\left\{a\left(k_{1}+k_{2}\right)^{m}+a\left(k_{1}-k_{2}\right)^{m}+C\left(2 k_{2}\right)^{m}\right\}\right]^{1 / m}
\]
where
\[
\begin{aligned}
& k_{1}=\frac{\sigma_{x}+h \sigma_{y}}{2} \\
& k_{2}=\sqrt{\left(\frac{\sigma_{x}+h \sigma_{y}}{2}\right)^{2}+\left(p \sigma_{x y}\right)^{2}}
\end{aligned}
\]

For the Strong Texture Model the yield function is defined as
\[
\sigma_{\mathrm{eff}}=\left\{\frac{1}{2}\left[\left(\sigma_{+}^{\prime}\right)^{m}+\left(\sigma_{-}^{\prime}\right)^{m}+\left(\sigma_{+}^{\prime \prime}-\sigma_{-}^{\prime \prime}\right)^{m}\right]\right\}^{\frac{1}{m}}
\]
where
\[
\begin{aligned}
& \sigma_{ \pm}^{\prime}=\frac{a_{8} \sigma_{x}+a_{1} \sigma_{y}}{2} \pm \sqrt{\left(\frac{a_{2} \sigma_{x}-a_{3} \sigma_{y}}{2}\right)^{2}+a_{4}^{2} \sigma_{x y}^{2}} \\
& \sigma_{ \pm}^{\prime \prime}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{a_{5} \sigma_{x}-a_{6} \sigma_{y}}{2}\right)^{2}+a_{7}^{2} \sigma_{x y}}
\end{aligned}
\]

Kinematic hardening can be included by
\[
\alpha=\sum_{R=1}^{2} \alpha_{R}
\]
where each of the kinematic hardening variables \(\alpha_{R}\) is independent and obeys a nonlinear evolutionary equation in the form
\[
\dot{\alpha}_{R}=C_{\alpha i}\left(Q_{\alpha i} \frac{\tau}{\sigma}-\alpha_{R}\right) \dot{\varepsilon}^{p}
\]

The effective stress \(\bar{\sigma}\) is defined as
\[
\bar{\sigma}=\sigma_{\mathrm{eff}}(\tau)
\]
where
\[
\tau=\sigma-\alpha
\]

Critical thickness strain failure in a layer is assumed to occur when
\[
\varepsilon_{t} \leq \varepsilon_{t c}
\]
where \(\varepsilon_{t c}\) is a material parameter. It should be noted that \(\varepsilon_{t c}\) is a negative number (meaning failure is assumed to occur only in the case of thinning).

Cockcraft and Latham fracture is assumed to occur when
\[
W=\int \max \left(\sigma_{1}, 0\right) d \varepsilon^{p} \geq W_{C}
\]
where \(\sigma_{1}\) is the maximum principal stress and \(W_{C}\) is a material parameter.
2. Yield surface parameters. If \(\mathrm{FLG}=1\), that is, if the yield surface parameters \(a_{1}\) through \(a_{8}\) are identified on the basis of prescribed material data internally in the material routine, files with point data for plotting of the identified yield surface, along with the predicted directional variation of the yield stress and plastic flow are generated in the directory where the LS-DYNA analysis is run. Four different files are generated for each specified material.

These files are named according to the scheme:
a) Contour_1\#
b) Contour_2\#
c) Contour_3\#
d) R_and_S\#
where \# is a value starting at 1.
The first three files contain contour data for plotting of the yield surface as shown in Figure M135-2. To generate these plots a suitable plotting program should be adopted and for each file/plot, column A should be plotted as a function of column B. Figure M135-3 further shows a plot generated from the final file named R_and_S\# showing the directional dependency of the normalized yield stress (column A vs. B) and plastic strain ratio (column B vs. C).
3. History variables. The following additional history variables can be included in the output d3plot file.
\begin{tabular}{c|l}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & \multicolumn{1}{|c}{ Description } \\
\hline \hline 1 & Isotropic hardening value \(R_{1}\) \\
2 & Isotropic hardening value \(R_{2}\) \\
3 & Increment in effective plastic strain \(\Delta \bar{\varepsilon}\) \\
4 & Not defined, for internal use in the material model \\
5 & Not defined, for internal use in the material model \\
7 & \begin{tabular}{l}
Not defined, for internal use in the material model \\
Failure in integration point \\
EQ.0: No failure \\
EQ.1: Failure due to EPSC, i.e. \(\varepsilon_{t} \geq \varepsilon_{t c}\). \\
EQ.2: Failure due to WC, i.e. \(W \geq W\) \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
EQ.3: Failure due to TAUC, i.e. \(\tau \geq \tau_{c}\) \\
Sum of incremental strain in local element \(x\)-direction: \(\varepsilon_{x x}=\) \\
\(\sum \Delta \varepsilon_{x x}\) \\
Sum of incremental strain in local element \(y\)-direction: \(\varepsilon_{y y}=\) \\
\(\sum \Delta \varepsilon_{y y}\) \\
10
\end{tabular} & \begin{tabular}{l}
Value of the Cockcroft-Latham failure parameter \(W=\sum \sigma_{1} \Delta p\) \\
Plastic strain component in thickness direction \(\varepsilon_{t}\) \\
Mean value of increments in plastic strain through the thickness.
\end{tabular} \\
11 & \begin{tabular}{l}
For use with the non-local instability criterion. Note that con- \\
stant lamella thickness is assumed, and the instability criterion \\
can give unrealistic results if used with a user-defined integra- \\
tion rule with varying lamella thickness.)
\end{tabular} \\
\hline 12
\end{tabular}
\begin{tabular}{c|l}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & \multicolumn{1}{c}{ Description } \\
\hline \hline 13 & Not defined, for internal use in the material model \\
14 & Nonlocal value \(\rho=\frac{\Delta \varepsilon_{3}}{\Delta \varepsilon_{3}^{\Omega}}\) \\
\hline
\end{tabular}

Table M135-1.

(A)

(B)

(C)

Figure M135-2. Contour plots of the yield surface generated from the files (a) 'Contour_1<\#>, (b) Contour_2<\#>, and (c) Contour_3<\#>.

Figure M135-3. Predicted directional variation of the yield stress and plastic flow generated from the file \(R\) _and_S<\#>.

\section*{*MAT_WTM_STM_PLC}

This is Material Type 135. This anisotropic material adopts the yield criteria proposed by Aretz [2004]. The material strength is defined by McCormick's constitutive relation for materials exhibiting negative steady-state Strain Rate Sensitivity (SRS). McCormick [1998] and Zhang, McCormick and Estrin [2001].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & NUMFI & EPSC & WC & TAUC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGMA0 & QR1 & CR1 & QR2 & CR2 & K & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S & H & OMEGA & TD & ALPHA & EPSO & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & BETA & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

RO Mass density
E Young's modulus
PR Poisson's ratio
NUMFI Number of through thickness integration points that must fail before the element is deleted (remember to change this number if switching between full and reduced integration type of elements)

EPSC Critical value, \(\varepsilon_{t C}\), of the plastic thickness strain
WC Critical value, \(W_{c}\), for the Cockcroft-Latham fracture criterion.
TAUC Critical value, \(\tau_{c}\), for the shear fracture criterion.
SIGMA0 Initial yield stress, \(\sigma_{0}\)
QR1 Isotropic hardening parameter, \(Q_{R 1}\)
CR1 Isotropic hardening parameter, \(C_{R 1}\)
QR2 Isotropic hardening parameter, \(Q_{R 2}\)
CR2 Isotropic hardening parameter, \(C_{R 2}\)

\section*{VARIABLE}

K
A1
A2
A3
A4
A5
A6
A7
A8
S
H
OMEGA
TD
ALPHA
EPS0
AOPT

\section*{DESCRIPTION}
\(k\) equals half the exponent \(m\) for the yield criterion
Yld2003 parameter, \(a_{1}\)
Yld2003 parameter, \(a_{2}\)
Yld2003 parameter, \(a_{3}\)
Yld2003 parameter, \(a_{4}\)
Yld2003 parameter, \(a_{5}\)
Yld2003 parameter, \(a_{6}\)
Yld2003 parameter, \(a_{7}\)
Yld2003 parameter, \(a_{8}\)
Dynamic strain aging parameter, \(S\)
Dynamic strain aging parameter, \(H\)
Dynamic strain aging parameter, \(\Omega\)
Dynamic strain aging parameter, \(t_{d}\)
Dynamic strain aging parameter, \(\alpha\)
Dynamic strain aging parameter, \(\dot{\varepsilon}_{0}\)
Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1, and then rotated about the shell element normal by the angle BETA. Nodes 1, 2 and 4 of an element are identical to the nodes used for the definition of a coordinate system as by *DEFINE_COORDINATE_NODES.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by offsetting the material axes by an angle, BETA, from a line determined by taking the cross product of the vector \(\mathbf{v}\)

\section*{VARIABLE}

\section*{DESCRIPTION}
with the normal to the plane of the element.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

BETA Material angle in degrees for AOPT \(=0\) and 3. BETA may be overwritten on the element card; see *ELEMENT_SHELL_BETA.
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

\section*{Remarks:}

The yield function is defined as
\[
f=\sigma_{\mathrm{eq}}(\sigma)-\left[\sigma_{Y}\left(t_{a}\right)+R\left(\varepsilon_{p}\right)+\sigma_{v}\left(\dot{\varepsilon}^{p}\right)\right]
\]
where the equivalent stress \(\sigma_{\text {eq }}\) is defined as by an anisotropic yield criterion
\[
\sigma_{\mathrm{eq}}=\left[\frac{1}{2}\left(\left|\sigma_{1}^{\prime}\right|^{m}+\left|\sigma_{2}^{\prime}\right|^{m}+\left|\sigma_{1}^{\prime \prime}-\sigma_{2}^{\prime \prime}\right|\right)\right]^{\frac{1}{m}}
\]

Here
\[
\left\{\begin{array}{l}
\sigma_{1}^{\prime} \\
\sigma_{2}^{\prime}
\end{array}\right\}=\frac{a_{8} \sigma_{x x}+a_{1} \sigma_{y y}}{2} \pm \sqrt{\left(\frac{a_{2} \sigma_{x x}-a_{3} \sigma_{y y}}{2}\right)^{2}+a_{4}^{2} \sigma_{x y}^{2}}
\]
and
\[
\left\{\begin{array}{l}
\sigma^{\prime \prime}{ }_{1}{ }_{1}^{\prime \prime}{ }_{2}
\end{array}\right\}=\frac{\sigma_{x x}+\sigma_{y y}}{2} \pm \sqrt{\left(\frac{a_{5} \sigma_{x x}-a_{6} \sigma_{y y}}{2}\right)^{2}+a_{7}^{2} \sigma_{x y}^{2}} .
\]

The strain hardening function, \(R\), is defined by the extended Voce law
\[
R\left(\varepsilon^{p}\right)=\sum_{i=1}^{2} Q_{R i}\left(1-\exp \left(-C_{R i} \varepsilon^{p}\right)\right)
\]
where \(\varepsilon^{p}\) is the effective (or accumulated) plastic strain, and \(Q_{R i}\) and \(C_{R i}\) are strain hardening parameters.

Viscous stress, \(\sigma_{v}\), is given by
\[
\sigma_{v}=\left(\dot{\varepsilon}^{p}\right)=s \ln \left(1+\frac{\dot{\varepsilon}^{p}}{\dot{\varepsilon}_{0}}\right),
\]
where \(s\) represents the instantaneous strain rate sensitivity (SRS) and \(\dot{\varepsilon}_{0}\) is a reference strain rate. In this model the yield strength, including the contribution from dynamic strain aging (DSA) is defined as
\[
\sigma_{Y}\left(t_{a}\right)=\sigma_{0}+\mathrm{SH}\left[1-\exp \left\{-\left(\frac{t_{a}}{t_{d}}\right)^{\alpha}\right\}\right]
\]
where \(\sigma_{0}\) is the yield strength for vanishing average waiting time, \(t_{a}\) (meaning at high strain rates). \(H, \alpha\), and \(t_{d}\) are material constants linked to dynamic strain aging. It is noteworthy that \(\sigma_{Y}\) is an increasing function of \(t_{a}\). The average waiting time is defined by the evolution equation
\[
\dot{t}_{a}=1-\frac{t_{a}}{t_{a, s s}},
\]
where the quasi-steady waiting time \(t_{a, s s}\) is given as
\[
t_{a, s s}=\frac{\Omega}{\dot{\varepsilon}^{p}} .
\]

Here \(\Omega\) is the strain produced by all mobile dislocations moving to the next obstacle on their path.

\section*{*MAT_VEGTER}

This is Material Type 136 (formerly named *MAT_CORUS_VEGTER), a plane stress orthotropic material model for metal forming. Yield surface construction is based on the interpolation by second-order Bezier curves, and model parameters are determined directly from a set of mechanical tests conducted for several directions. For each direction, four mechanical tests are carried out: a uniaxial, an equi-biaxial, a plane strain tensile test and a shear test. These test results are used to determine the coefficients of the Fourier directional dependency field. For a more detailed description please see Vegter and Boogaard [2006].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & E & PR & N & FBI & RBIO & LCID \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SYS & SIP & SHS & SHL & ESH & EO & ALPHA & LCID2 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & & & & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline XP & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 6. Include \(\mathrm{N}+1\) of this card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FUN- \(i\) & RUN- \(i\) & FPS1- \(i\) & FPS2- \(i\) & FSH- \(i\) & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & N & FBI & RBIO & LCID \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E
PR
N

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see \({ }^{*}\) PART).

Material density
Elastic Young's modulus
Poisson's ratio
\(|\mathrm{N}|\) is the order of the Fourier series (meaning number of test groups minus one). The minimum number for \(|\mathrm{N}|\) is 2 , and the maximum is 10 .

GE.0.0: Explicit cutting-plane return mapping algorithm

\section*{LT.0.0: Fully implicit return mapping algorithm (more robust)}

FBI Normalized yield stress \(\sigma_{\text {bi }}\) for equi-biaxial test
RBI0 Strain ratio \(\sigma_{\text {bi }}\left(0^{\circ}\right)=\dot{\varepsilon}_{2}\left(0^{\circ}\right) / \dot{\varepsilon}_{1}\left(0^{\circ}\right)\) for equi-biaxial test in the rolling direction

LCID Load curve ID or Table ID. If defined, SYS, SIP, SHS, SHL, ESH, and E0 are ignored.
Load Curve. When LCID is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain.
Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that strain rate. Linear interpolation between the discrete strain rates is used by default.
Logarithmically Defined Tables. A way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate.

\section*{DESCRIPTION}

There is some additional computational cost associated with invoking logarithmic interpolation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SYS & SIP & SHS & SHL & ESH & E0 & ALPHA & LCID2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

SYS
SIP
SHS
SHL
ESH
E0
ALPHA

LCID2

\section*{DESCRIPTION}

Static yield stress, \(\sigma_{0}\)
Stress increment parameter, \(\Delta \sigma_{m}\)
Strain hardening parameter for small strain, \(\beta\)
Strain hardening parameter for larger strain, \(\Omega\)
Exponent for strain hardening, \(n\)
Initial plastic strain, \(\varepsilon_{0}\)
Distribution of hardening used in the curve-fitting, \(\alpha . \alpha=0\) is pure kinematic hardening while \(\alpha=1\) provides pure isotropic hardening.

Curve ID. The curve defines Young's modulus scaling factor with respect to the plastic strain. By default, the Young's modulus is assumed to remain constant. Effective value is between 0 and 1 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

AOPT

DESCRIPTION
Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by the angle BETA

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

DESCRIPTION
XP, YP, ZP Coordinates of point \(p\) for AOPT \(=1\)
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for AOPT \(=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3
Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)

Figure M136-1. Bézier interpolation curve.

\section*{VARIABLE}

D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. BETA may be overwritten on the element card; see *ELEMENT_SHELL_BETA.

Experimental Data Cards. The next N+1 cards (see N on Card 1) contain experimental data obtained from four mechanical tests for a group of equidistantly placed directions \(\theta_{i}=\frac{i \pi}{2 N}, i=0,1,2, \ldots, N\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FUN- \(i\) & RUN- \(i\) & FPS1- \(i\) & FPS2- \(i\) & FSH- \(i\) & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

FUN- \(i\)
Normalized yield stress \(\sigma_{\text {un }}\) for uniaxial test for the \(i^{\text {th }}\) direction
RUN-i Strain ratio (R-value) for uniaxial test for the \(i^{\text {th }}\) direction
FPS1- \(i \quad\) First normalized yield stress \(\sigma_{\mathrm{ps} 1}\) for plain strain test for the \(i^{\text {th }}\) direction

Figure M136-2. Vegter yield surface.

\section*{VARIABLE}

FPS2-i

\section*{DESCRIPTION}

Second normalized yield stress \(\sigma_{\mathrm{ps} 2}\) for plain strain test for the \(i^{\text {th }}\) direction

FSH- \(i \quad\) First normalized yield stress \(\sigma_{\text {sh }}\) for pure shear test for the \(i^{\text {th }}\) direction

\section*{Remarks:}

The Vegter yield locus is section-wise defined by quadratic Bézier interpolation functions. Each individual curve uses 2 reference points and a hinge point in the principal plane stress space; see Figure M136-1.

The mathematical description of the Bézier interpolation is given by:
\[
\binom{\sigma_{1}}{\sigma_{2}}=\binom{\sigma_{1}}{\sigma_{2}}_{0}+2 \mu\left[\binom{\sigma_{1}}{\sigma_{2}}_{1}-\binom{\sigma_{1}}{\sigma_{2}}_{0}\right]+\mu^{2}\left[\binom{\sigma_{1}}{\sigma_{2}}_{2}+\binom{\sigma_{1}}{\sigma_{2}}_{0}-2\binom{\sigma_{1}}{\sigma_{2}}_{1}\right]
\]
where \(\left(\sigma_{1}, \sigma_{2}\right)_{0}\) is the first reference point, \(\left(\sigma_{1}, \sigma_{2}\right)_{1}\) is the hinge point, and \(\left(\sigma_{1}, \sigma_{2}\right)_{2}\) is the second reference point. \(\mu\) is a parameter which determines the location on the curve (\(0 \leq\) \(\mu \leq 1\)).

Four characteristic stress states are selected as reference points: the equi-biaxial point (\(\sigma_{b i}, \sigma_{b i}\)), the plane strain point \(\left(\sigma_{p s 1}, \sigma_{p s 2}\right)\), the uniaxial point \(\left(\sigma_{u n}, 0\right)\) and the pure shear point (\(\sigma_{\text {sh }},-\sigma_{s h}\)); see Figure M136-2. Between the 4 stress points, 3 Bézier curves are used to interpolate the yield locus. Symmetry conditions are used to construct the complete surface. The yield locus in Figure M136-2 shows the reference points of experiments for one specific direction. The reference points can also be determined for other angles to the rolling direction (planar angle \(\theta\)). For example, if \(\mathrm{N}=2\) is chosen, normalized yield stresses for directions \(0^{\circ}, 45^{\circ}\), and \(90^{\circ}\) should be defined. A Fourier series is used to interpolate intermediate angles between the measured points.

The Vegter yield function with isotropic hardening (ALPHA \(=1\)) is given as:
\[
\phi=\sigma_{e q}\left(\sigma_{1}, \sigma_{2}, \theta\right)-\sigma_{y}\left(\bar{\varepsilon}^{p}\right)
\]
with the equivalent stress \(\sigma_{e q}\) obtained from the appropriate Bézier function related to the current stress state. The uniaxial yield stress \(\sigma_{y}\) can be defined as stress-strain curve LCID or alternatively as a functional expression:
\[
\sigma_{y}=\sigma_{0}+\Delta \sigma_{m}\left[\beta\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)+\left(1-e^{-\Omega\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)}\right)^{n}\right]
\]

In case of kinematic hardening (ALPHA \(<1\)), the standard stress tensor is replaced by a relative stress tensor, defined as the difference between the stress tensor and a back stress tensor.

To determine the yield stress or reference points of the Vegter yield locus, four mechanical tests have to be performed for different directions. A good description about the material characterization procedure can be found in Vegter et al. (2003).

\section*{*MAT_VEGTER_STANDARD}

This is Material Type 136_STD, a plane stress orthotropic material model for metal forming. Yield surface construction is based on the interpolation by second-order Bezier curves, and model parameters are determined directly from a set of mechanical tests conducted for a number of directions. For each direction, four mechanical tests are carried out: a uniaxial, an equi-biaxial, a plane strain tensile test and a shear test. The material formulation is equivalent to MAT_VEGTER, except it requires different parameters for the plane strain tensile test and can use the Bergström-Van Liempt equation to deal with strain rate effects. These test results are used to determine the coefficients of the Fourier directional dependency field. For a more detailed description please see Vegter and Boogaard [2006].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & E & PR & N & FBI & RBIO & LCID \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SYS & SIP & SHS & SHL & ESH & E0 & ALPHA & LCID2 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & & DYS & RATEN & SRN0 & EXSR & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & \(Y P\) & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 6. Include \(\mathrm{N}+1\) of this card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FUN- \(i\) & RUN- \(i\) & FPS1- \(i\) & ALPS- \(i\) & FSH- \(i\) & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & N & FBI & RBIO & LCID \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E
PR
\(\mathrm{N} \quad\) Order of the Fourier series (meaning number of test groups minus one). The minimum number for N is 2 , and the maximum is 10 .

FBI Normalized yield stress \(\sigma_{\mathrm{bi}}\) for equi-biaxial test
RBI0 Strain ratio \(\sigma_{\mathrm{bi}}\left(0^{\circ}\right)=\dot{\varepsilon}_{2}\left(0^{\circ}\right) / \dot{\varepsilon}_{1}\left(0^{\circ}\right)\) for equi-biaxial test in the rolling direction

LCID Load curve ID or table ID. If defined, SYS, SIP, SHS, SHL, ESH, E0, DYS, RATEN, SRN0, and EXSR are ignored.
Load Curve. When LCID is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that strain rate. Linear interpolation between the discrete strain rates is used by default.

Logarithmically Defined Tables. A way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. There is some additional computational cost associated with invoking logarithmic interpolation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SYS & SIP & SHS & SHL & ESH & E0 & ALPHA & LCID2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
SYS
SIP Stress increment parameter, \(\Delta \sigma_{m}\)
SHS \(\quad\) Strain hardening parameter for small strain, \(\beta\)
SHL Strain hardening parameter for larger strain, \(\Omega\)
ESH Exponent for strain hardening, \(n\)
E0 Initial plastic strain, \(\varepsilon_{0}\)
ALPHA Distribution of hardening used in the curve-fitting, \(\alpha . \alpha=0\) is pure kinematic hardening while \(\alpha=1\) provides pure isotropic hardening.

LCID2

\section*{DESCRIPTION}

Static yield stress, \(\sigma_{0}\)

Curve ID. The curve defines Young's modulus scaling factor with respect to the plastic strain. By default, the Young's modulus is assumed to remain constant. Effective value is between 0 and 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & DYS & RATEN & SRNO & EXSR & & \\
Type & F & & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by the angle BETA

\section*{VARIABLE}

\section*{DESCRIPTION}

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

DYS Limit dynamic flow stress \(\sigma_{0}^{*}\)
RATEN Ratio \(r_{\text {enth }}\) of Boltzman constant \(k\) (8.617E-5 eV/K) and maximum activation enthalpy \(\Delta \mathrm{G}_{0}\) (in eV): \(r_{\text {enth }}=\frac{k}{\Delta G_{0}}\)

SRN0 Limit strain rate \(\dot{\varepsilon_{0}}\)
EXSR \(\quad\) Exponent \(m\) for strain rate behavior
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\)
A1, A2, A3 Components of vector a for AOPT \(=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
Components of vector \(\mathbf{d}\) for AOPT \(=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. BETA may be overwritten on the element card; see *ELEMENT_SHELL_BETA.

Experimental Data Cards. The next \(\mathrm{N}+1\) cards (see N on Card 1) contain experimental data obtained from four mechanical tests for a group of equidistantly placed directions \(\theta_{i}=i \pi /(2 N), i=0,1,2, \ldots, N\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FUN- \(i\) & RUN- \(i\) & FPS1- \(i\) & ALPS- \(i\) & FSH- \(i\) & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FUN-i
RUN-i

FSH- \(i\)

FPS1- \(i \quad\) First normalized yield stress \(\sigma_{\mathrm{ps} 1}\) for plain strain test for the \(i^{\text {th }}\) direction

ALPS- \(i \quad\) Normalized distance \(\alpha_{\mathrm{ps}}\) of second component of plain stress point between the hinge points on both sides for the \(i^{\text {th }}\) direction. See Remarks for details.

\section*{DESCRIPTION}

Normalized yield stress \(\sigma_{\text {un }}\) for uniaxial test for the \(i^{\text {th }}\) direction
Strain ratio (R-value) for uniaxial test for the \(i^{\text {th }}\) direction

First normalized yield stress \(\sigma_{\text {sh }}\) for pure shear test for the \(i^{\text {th }}\) direction

\section*{Remarks:}
1. Yield Locus. The yield locus description of this material is the same as for *MAT_VEGTER. The materials share the same Bézier interpolation for the sec-tion-wise definition of the yield locus and also use the same four characteristic stress states as reference points. They only differ in the plane-strain point definition in the input. This material MAT_VEGTER_STANDARD does not expect the direct input of the two components \(\left(\sigma_{\mathrm{ps} 1}, \sigma_{\mathrm{ps} 2}\right)\), but only of the first component \(\sigma_{\mathrm{ps} 1}\). The second component is assumed to be at a fixed distance between

Figure M136-1. Vegter yield surface
the hinge points on both sides. This distance is defined by factor \(\alpha_{\mathrm{ps}}=\alpha_{1} / \alpha_{2}\), as shown in Figure M136-1. This approach is favored in most publications and has for example been discussed in the PhD-thesis of Pijlman, H. H. (2001).

To determine the yield stress or reference points of the Vegter yield locus, four mechanical tests must be performed for different directions. A good description about the material characterization procedure can be found in Vegter et al. (2003).
2. Strain Hardening. The Vegter yield function with isotropic hardening (ALPHA \(=1\)) is given as:
\[
\phi=\sigma_{\mathrm{eq}}\left(\sigma_{1}, \sigma_{2}, \theta\right)-\sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\bar{\varepsilon}}^{p}, \dot{\varepsilon}\right)
\]
with the equivalent stress \(\sigma_{\text {eq }}\) obtained from the appropriate Bézier function related to the current stress state. The uniaxial yield stress \(\sigma_{y}\) can be defined as a yield stress curve, \(\sigma_{y}\left(\bar{\varepsilon}^{p}\right)\), or a yield stress surface, \(\sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\varepsilon}\right)\), with LCID. In contrast to *MAT_VEGTER, this material also provides the Bergström-Van Liempt equation as a third alternative:
\[
\begin{aligned}
\sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\bar{\varepsilon}}^{p}\right)=\sigma_{0}+\Delta \sigma_{m}\left[\beta\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)+(1\right. & \left.\left.-e^{-\Omega\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)}\right)^{n}\right] \\
& +\sigma_{0}^{*}\left[1+r_{\text {enth }} \ln \left(\frac{\dot{\bar{\varepsilon}}^{p}}{\bar{\varepsilon}_{0}}\right)\right]^{m}
\end{aligned}
\]

In the case of kinematic hardening (ALPHA \(<1\)), the standard stress tensor is replaced by a relative stress tensor, defined as the difference between the stress tensor and a back stress tensor.

\section*{*MAT_VEGTER_2017}

This is Material Type 136_2017, a plane stress orthotropic material model for metal forming. It features the advanced Vegter yield locus based on the interpolation by secondorder Bezier curves. Model parameters are determined from uniaxial test data at \(0^{\circ}, 45^{\circ}\) and \(90^{\circ}\) to the rolling direction. Therefore, the same mechanical tests must be carried out as for Hill's 1948 planar anisotropic material model. For a more detailed description of the yield locus, please see Vegter and Boogaard [2006]. The relationships between the results of uniaxial testing and the advanced yield locus are introduced and discussed in Abspoel et al [2017].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & & FBI & RBIO & LCID \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SYS & SIP & SHS & SHL & ESH & E0 & ALPHA & LCID2 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & & DYS & RATEN & SRN0 & EXSR & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline RM-0 & RM-45 & RM-90 & AG-0 & AG-45 & AG90 & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline R00 & R45 & R90 & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & FBI & RBIO & LCID \\
Type & A & F & F & F & & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E
PR Poisson's ratio
FBI Normalized yield stress \(\sigma_{\mathrm{bi}}\) for equi-biaxial test. If this value is not defined in the input, it will be approximated based on the uniaxial test result.

RBI0 Strain ratio \(\sigma_{\mathrm{bi}}\left(0^{\circ}\right)=\dot{\varepsilon}_{2}\left(0^{\circ}\right) / \dot{\varepsilon}_{1}\left(0^{\circ}\right)\) for equi-biaxial test in the rolling direction. If this value is not defined in the input, it will be approximated based on the uniaxial test result.

LCID Load curve ID or Table ID. If defined, SYS, SIP, SHS, SHL, ESH, E0, DYS, RATEN, SRN0, and EXSR are ignored.
Load Curve. When LCID is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that strain rate. Linear interpolation between the discrete strain rates is used by default.
Logarithmically Defined Tables. A way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. There is some additional computational cost associated with invoking logarithmic interpolation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SYS & SIP & SHS & SHL & ESH & E0 & ALPHA & LCID2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

SYS Static yield stress, \(\sigma_{0}\)
SIP Stress increment parameter, \(\Delta \sigma_{m}\)
SHS Strain hardening parameter for small strain, \(\beta\)
SHL Strain hardening parameter for larger strain, \(\Omega\)
ESH Exponent for strain hardening, \(n\)
E0 Initial plastic strain, \(\varepsilon_{0}\)
ALPHA Distribution of hardening used in the curve-fitting, \(\alpha . \alpha=0\) is pure kinematic hardening while \(\alpha=1\) provides pure isotropic hardening.

LCID2
Curve ID. The curve defines Young's modulus scaling factor with respect to the plastic strain. By default, the Young's modulus is assumed to remain constant. Effective value is between 0 and 1 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & DYS & RATEN & SRNO & EXSR & & \\
Type & F & & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES and then rotated about the shell element normal by the angle BETA

\section*{VARIABLE}

RATEN

\section*{DESCRIPTION}

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

DYS Limit dynamic flow stress, \(\sigma_{0}^{*}\)
Ratio, \(r_{\text {enth }}\), of the Boltzmann constant, \(k\), (8.617E-5 eV/K) and maximum activation enthalpy, \(\Delta \mathrm{G}_{0}\), (in eV):
\[
r_{\mathrm{enth}}=\frac{k}{\Delta G_{0}}
\]

SRN0 Limit strain rate, \(\dot{\varepsilon_{0}}\)
EXSR Exponent, \(m\), for strain rate behavior
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\)
A1, A2, A3
Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)

D1, D2, D3
BETA

Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. BETA may be overwritten on the element card; see *ELEMENT_SHELL_BETA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RM-0 & RM-45 & RM-90 & AG-0 & AG-45 & AG90 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

RM-i
Tensile strength for uniaxial testing at \(i^{\circ}\) to rolling direction
AG-i
Uniform elongation for uniaxial testing at \(i^{\circ}\) to rolling direction
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R00 & R45 & R90 & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

R00
Lankford parameter \(R_{00}\)
R45
Lankford parameter \(R_{45}\)
R90
Lankford parameter \(R_{90}\)

\section*{Remarks:}
1. Yield Locus. The yield locus description of this material is the same as for *MAT_VEGTER. The materials share the same Bézier interpolation for the sec-tion-wise definition of the yield locus.

The four characteristics stress states are predicted based on standard parameters from uniaxial tensile tests. This approach has been presented by Abspoel et al. (2017). Test data for \(0^{\circ}, 45^{\circ}\), and \(90^{\circ}\) to rolling direction must be given to account for anisotropic behavior of the material. The resulting formulation is then equivalent with *MAT_VEGTER_STANDARD and \(\mathrm{N}=2\).
2. Strain Hardening. The Vegter yield function with isotropic hardening (ALPHA \(=1\)) is given as:
\[
\phi=\sigma_{\mathrm{eq}}\left(\sigma_{1}, \sigma_{2}, \theta\right)-\sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\bar{\varepsilon}}^{p}, \dot{\varepsilon}\right)
\]
with the equivalent stress \(\sigma_{\text {eq }}\) obtained from the appropriate Bézier function related to the current stress state. The uniaxial yield stress \(\sigma_{y}\) can be defined as yield stress curve \(\sigma_{y}\left(\bar{\varepsilon}^{p}\right)\) with LCID or as \(\sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\varepsilon}\right)\) with table LCID. In contrast to *MAT_VEGTER, this material also provides the Bergström-Van Liempt equation as third alternative:
\[
\begin{aligned}
& \sigma_{y}\left(\bar{\varepsilon}^{p}, \dot{\bar{\varepsilon}}^{p}\right)=\sigma_{0}+\Delta \sigma_{m}\left[\beta\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)+\left(1-e^{-\Omega\left(\bar{\varepsilon}^{p}+\varepsilon_{0}\right)}\right)^{n}\right] \\
&+\sigma_{0}^{*}\left[1+r_{\mathrm{enth}} \ln \left(\frac{\dot{\bar{\varepsilon}}^{p}}{\bar{\varepsilon}_{0}}\right)\right]^{m}
\end{aligned}
\]

In case of kinematic hardening (ALPHA \(<1\)), the standard stress tensor is replaced by a relative stress tensor, defined as the difference between the stress tensor and a back stress tensor.

\section*{*MAT_COHESIVE_MIXED_MODE}

This is Material Type 138. This model is a simplification of *MAT_COHESIVE_GENERAL, restricted to linear softening. It includes a bilinear traction-separation law with a quadratic mixed-mode delamination criterion and a damage formulation. This material model can only be used with cohesive element formulations; see the variable ELFORM in *SECTION_SOLID and *SECTION_SHELL.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & ROFLG & INTFAIL & EN & ET & GIC & GIIC \\
Type & A & F & I & F & F & F & F & F \\
Default & none & none & 0 & 0.0 & none & none & none & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XMU & T & S & UND & UTD & GAMMA & & \\
Type & F & F & F & F & F & F & & \\
Default & none & 0.0 & 0.0 & none & none & 1.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
ROFLG

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see*PART).

Mass density
Flag stating whether density is specified per unit area or volume:
EQ.0: Specified density is per unit volume (default).
EQ.1: Specified density is per unit area for controlling the mass of cohesive elements with an initial volume of zero.

INTFAIL The number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 , with 1 being the recommended value. This field also determines the integration scheme.

LT.0.0: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration points have failed.
EQ.0.0: Employs a Newton-Cotes integration scheme. The element will not be deleted even if it satisfies the failure criterion.

GT.0.0: Employs a Gauss integration scheme. The element will be deleted when INTFAIL integration points have failed.

EN The stiffness (units of stress / length) normal to the plane of the cohesive element

ET The stiffness (units of stress / length) in the plane of the cohesive element

GIC Energy release rate for mode I (units of stress \(\times\) length).
LT.O.O: Load curve ID = (-GIC), which defines the energy release rate for mode I as a function of element size.

GIIC Energy release rate for mode II (units of stress \(\times\) length).
LT.O.O: Load curve ID \(=(-G I I C)\), which defines the energy release rate for mode II as a function of element size.

XMU Exponent of the mixed mode criteria (see Remark 2)
Peak traction (stress units) in the normal direction.
LT.O.O: Load curve ID \(=(-T)\), which defines peak traction in the normal direction as a function of element size. See Remark 4.

EQ.0.0: See Remark 1.
GT.0.0: Peak traction in the normal direction, \(T\)
S
Peak traction (stress units) in the tangential direction.
LT.0.0: Load curve ID \(=(-S)\), which defines peak traction in the tangential direction as a function of element size. See Remark 4.

EQ.0.0: See Remark 1.
GT.0.0: Peak traction in the tangential direction, \(S\)

Figure M138-1. Mixed-mode traction-separation law
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } UND & \\
UTD & Ultimate displacement in the normal direction \\
GAMMA & Additional exponent for Benzeggagh-Kenane law (default \(=1.0\))
\end{tabular}

\section*{Remarks:}
1. Ultimate Displacements. The ultimate displacements in the normal and tangential directions are the displacements at the time when the material has entirely failed; that is, the tractions are zero. The linear stiffness for loading followed by the linear softening during the damage provides a straightforward relationship among the energy release rates, peak tractions, and ultimate displacements:
\[
\begin{aligned}
\mathrm{GIC} & =T \times \frac{\mathrm{UND}}{2} \\
\mathrm{GIIC} & =S \times \frac{\mathrm{UTD}}{2}
\end{aligned}
\]

If the peak tractions are not specified, LS-DYNA calculates them from the ultimate displacements. See Fiolka and Matzenmiller [2005] and Gerlach, Fiolka and Matzenmiller [2005].
2. Mixed-Mode Relative Displacement. In this cohesive material model, the total mixed-mode relative displacement, \(\delta_{m}\), is defined as \(\delta_{m}=\sqrt{\delta_{I}^{2}+\delta_{I I}^{2}}\), where \(\delta_{I}=\) \(\delta_{3}\) is the separation in the normal direction (mode I) and \(\delta_{I I}=\sqrt{\delta_{1}^{2}+\delta_{2}^{2}}\) is the
separation in the tangential direction (mode II). The mixed-mode damage initiation displacement \(\delta^{0}\) (onset of softening) is given by
\[
\delta^{0}=\delta_{I}^{0} \delta_{I I}^{0} \sqrt{\frac{1+\beta^{2}}{\left(\delta_{I I}^{0}\right)^{2}+\left(\beta \delta_{I}^{0}\right)^{2}}}
\]
where \(\delta_{I}^{0}=T / E N\) and \(\delta_{I I}^{0}=S / E T\) are the single mode damage initiation separations and \(\beta=\delta_{I I} / \delta_{I}\) is the "mode mixity" (see Figure M138-1). The ultimate mixed-mode displacement \(\delta^{F}\) (total failure) for the power law (\(\mathrm{XMU}>0\)) is:
\[
\delta^{F}=\frac{2\left(1+\beta^{2}\right)}{\delta^{0}}\left[\left(\frac{\mathrm{EN}}{\mathrm{GIC}}\right)^{\mathrm{XMU}}+\left(\frac{\mathrm{ET} \times \beta^{2}}{\mathrm{GIIC}}\right)^{\mathrm{XMU}}\right]^{-1 / \mathrm{XMU}}
\]
and, alternatively, for the Benzeggagh-Kenane law [1996] (XMU < 0):
\[
\begin{aligned}
\delta^{F}= & \frac{2}{\delta^{0}\left(\frac{1}{1+\beta^{2}} \mathrm{EN}^{\gamma}+\frac{\beta^{2}}{1+\beta^{2}} \mathrm{ET}^{\gamma}\right)^{1 / \gamma}}[\mathrm{GIC} \\
& \left.\quad+(\mathrm{GIIC}-\mathrm{GIC})\left(\frac{\beta^{2} \times \mathrm{ET}}{\mathrm{EN}+\beta^{2} \times \mathrm{ET}}\right)^{\mid \mathrm{XMU}}\right]
\end{aligned}
\]

A reasonable choice for the exponent \(\gamma\) would be GAMMA \(=1.0\) (default) or GAMMA \(=2.0\).
3. Interface Damage. This model considers damage to the interface. The model enforces irreversible conditions with loading/unloading paths coming from/pointing to the origin.
4. Peak Tractions as Load Curves. Peak tractions \(T\) and/or \(S\) can be defined as functions of characteristic element length (square root of mid-surface area) using a load curve. This option helps obtain the same global responses (e.g., loaddisplacement curve) with coarse meshes compared to the solution with a fine mesh. In general, lower peak traction values are needed for coarser meshes.
5. Error Checks of Material Data. We have implemented three error checks for this material model to ensure proper material data. Since the traction as a function of displacement curve is fairly simple (triangular shaped), we can check to ensure that the displacement, \(L\), at the peak load (QMAX), is smaller than the ultimate distance for failure, \(u\). See Figure M138-2 for the used notation.

As shown in Figure M138-2,
\[
\mathrm{GC}=\frac{1}{2} u \times \mathrm{QMAX}
\]
and

Figure M138-2. Bilinear traction-separation
\[
L=\frac{\mathrm{QMAX}}{E}
\]

To ensure the peak is not past the failure point, \(u / L\) must be larger than 1. Here,
\[
u=\frac{2 G C}{E L},
\]
where GC is the energy release rate. This gives
\[
\frac{u}{L}=\frac{2 \mathrm{GC}}{\mathrm{EL} \times L}=\frac{2 \mathrm{GC}}{E\left(\frac{\mathrm{QMAX}}{E}\right)^{2}}>1
\]

Based on this, LS-DYNA performs three error checks, one for tension, one for pure shear, and one for mixed modes:
\[
\begin{aligned}
& \frac{u}{L}=\frac{\delta_{I}^{F}}{\delta_{I}^{0}}=\frac{2 \mathrm{GIC}}{\mathrm{EN}\left(\frac{T}{\mathrm{EN}}\right)^{2}}>1 \\
& \frac{u}{L}=\frac{\delta_{I I}^{F}}{\delta_{I I}^{0}}=\frac{2 \mathrm{GIIC}}{\mathrm{ET}\left(\frac{S}{\mathrm{ET}}\right)^{2}}>1 \\
& \frac{u}{L}=\frac{\delta^{F}}{\delta^{0}}
\end{aligned}
\]

In this last equation, we did not perform the substitution as the equations are complicated and depend on the sign of XMU (see Remark 2). The value of XMU significantly affects \(\delta^{F}\) and should be chosen carefully. Because this check occurs during initialization, LS-DYNA computes the mode-mixity, \(\beta\), using the displacements at failure given in input. Thus, it does not reflect any specific loading scenario.

\section*{*MAT_MODIFIED_FORCE_LIMITED}

This is Material Type 139. This material which is for the Belytschko-Schwer resultant beam is an extension of MAT_029. In addition to the original plastic hinge and collapse mechanisms of MAT_029, yield moments may be defined as a function of axial force. After a hinge forms, the moment transmitted by the hinge is limited by a moment-plastic rotation relationship.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & DF & IAFLC & YTFLAG & ASOFT \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M1 & M2 & M3 & M4 & M5 & M6 & M7 & M8 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LC1 & LC2 & LC3 & LC4 & LC5 & LC6 & LC7 & LC8 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPS1 & SFS1 & LPS2 & SFS2 & YMS1 & YMS2 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LPT1 & SFT1 & LPT2 & SFT2 & YMT1 & YMT2 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LPR & SFR & YMR & & & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LYS1 & SYS1 & LYS2 & SYS2 & LYT1 & SYT1 & LYT2 & SYT2 \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|c|c|l|l|l|l|l|l|}
\hline LYR & SYR & & & & & & \\
\hline
\end{tabular}

Card 9. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HMS1_1 & HMS1_2 & HMS1_3 & HMS1_4 & HMS1_5 & HMS1_6 & HMS1_7 & HMS1_8 \\
\hline
\end{tabular}

Card 10. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPMS1_1 & LPMS1_2 & LPMS1_3 & LPMS1_4 & LPMS1_5 & LPMS1_6 & LPMS1_7 & LPMS1_8 \\
\hline
\end{tabular}

Card 11. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HMS2_1 & HMS2_2 & HMS2_3 & HMS2_4 & HMS2_5 & HMS2_6 & HMS2_7 & HMS2_8 \\
\hline
\end{tabular}

Card 12. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPMS2_1 & LPMS2_2 & LPMS2_3 & LPMS2_4 & LPMS2_5 & LPMS2_6 & LPMS2_7 & LPMS2_8 \\
\hline
\end{tabular}

Card 13. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HMT1_1 & HMT1_2 & HMT1_3 & HMT1_4 & HMT1_5 & HMT1_6 & HMT1_7 & HMT1_8 \\
\hline
\end{tabular}

Card 14. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPMT1_1 & LPMT1_2 & LPMT1_3 & LPMT1_4 & LPMT1_5 & LPMT1_6 & LPMT1_7 & LPMT1_8 \\
\hline
\end{tabular}

Card 15. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HMT2_1 & HMT2_2 & HMT2_3 & HMT2_4 & HMT2_5 & HMT2_6 & HMT2_7 & HMT2_8 \\
\hline
\end{tabular}

Card 16. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPMT2_1 & LPMT2_2 & LPMT2_3 & LPMT2_4 & LPMT2_5 & LPMT2_6 & LPMT2_7 & LPMT2_8 \\
\hline
\end{tabular}

Card 17. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HMR_1 & HMR_2 & HMR_3 & HMR_4 & HMR_5 & HMR_6 & HMR_7 & HMR_8 \\
\hline
\end{tabular}

Card 18. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LPMR_1 & LPMR_2 & LPMR_3 & LPMR_4 & LPMR_5 & LPMR_6 & LPMR_7 & LPMR_8 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & DF & IAFLC & YTFLAG & ASOFT \\
Type & A & F & F & F & F & I & F & F \\
Default & none & none & none & none & 0.0 & 0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio

IAFLC Axial load curve option:

ASOFT

DF Damping factor; see Remark 2. A proper control for the timestep must be maintained by the user.

EQ.0: Axial load curves are force as a function of strain.
EQ.1: Axial load curves are force as a function of change in length.

YTFLAG Flag to allow beam to yield in tension:
EQ.0.0: Beam does not yield in tension.
EQ.1.0: Beam can yield in tension.

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified.

Axial elastic softening factor applied once hinge has formed. When a hinge has formed, the stiffness is reduced by this factor. If zero, this factor is ignored.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M1 & M2 & M3 & M4 & M5 & M6 & M7 & M8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
M1, M2, ..., M8

\section*{DESCRIPTION}

Applied end moment for force as a function of strain/change in length curve. At least one moment must be defined with a maximum of 8. The values should be in ascending order.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LC1 & LC2 & LC3 & LC4 & LC5 & LC6 & LC7 & LC8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & none & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LC1, LC2, ..., LC8

\section*{DESCRIPTION}

Load curve ID (see *DEFINE_CURVE) defining axial force as a function of strain/change in length (see IAFLC) for the corresponding applied end moment. Define the same number as end moments. Each curve must contain the same number of points.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPS1 & SFS1 & LPS2 & SFS2 & YMS1 & YMS2 & & \\
Type & I & F & I & F & F & F & & \\
Default & 0 & 1.0 & LPS1 & 1.0 & \(10^{20}\) & YMS1 & & \\
\hline
\end{tabular}

\section*{VARIABLE \\ LPS1}

SFS1

LPS2 Load curve ID for plastic moment as a function of rotation about the s-axis at node 2. The default is LPS1.

Scale factor for plastic moment as a function of rotation curve about the \(s\)-axis at node 2. Default: SFS1.

Yield moment about the \(s\)-axis at node 1 for interaction calculations (default set to \(10^{20}\) to prevent interaction)

Yield moment about the \(s\)-axis at node 2 for interaction calculations (default set to YMS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPT1 & SFT1 & LPT2 & SFT2 & YMT1 & YMT2 & & \\
Type & I & F & I & F & F & F & & \\
Default & 0 & 1.0 & LPT1 & 1.0 & \(10^{20}\) & YMT1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LPT1

SFT1

LPT2

SFT2

YMT1 Yield moment about the \(t\)-axis at node 1 for interaction calculations (default set to \(10^{20}\) to prevent interactions)

\section*{VARIABLE}

YMT2

\section*{DESCRIPTION}

Yield moment about the \(t\)-axis at node 2 for interaction calculations (default set to YMT1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPR & SFR & YMR & & & & & \\
Type & I & F & F & & & & & \\
Default & 0 & 1.0 & \(10^{20}\) & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LPR

SFR

YMR Torsional yield moment for interaction calculations (default set to \(10^{20}\) to prevent interaction)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LYS1 & SYS1 & LYS2 & SYS2 & LYT1 & SYT1 & LYT2 & SYT2 \\
Type & I & F & I & F & I & F & I & F \\
Default & 0 & 1.0 & 0 & 1.0 & 0 & 1.0 & 0 & 1.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LYS1

SYS1
LYS2

\section*{DESCRIPTION}

ID of curve defining yield moment as a function of axial force for the \(s\)-axis at node 1

Scale factor applied to load curve LYS1
ID of curve defining yield moment as a function of axial force for the \(s\)-axis at node 2

\section*{VARIABLE}

SYS2

SYT1
LYT2

SYT2

LYT1 ID of curve defining yield moment as a function of axial force for the \(t\)-axis at node 1

\section*{DESCRIPTION}

Scale factor applied to load curve LYS2 Scale factor applied to load curve LYT1

ID of curve defining yield moment as a function of axial force for the \(t\)-axis at node 2

Scale factor applied to load curve LYT2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LYR & SYR & & & & & & \\
Type & I & F & & & & & & \\
Default & 0 & 1.0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LYR

SYR

\section*{DESCRIPTION}

ID of curve defining yield moment as a function of axial force for the torsional axis.

Scale factor applied to load curve LYR.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HMS1_1 & HMS1_2 & HMS1_3 & HMS1_4 & HMS1_5 & HMS1_6 & HMS1_7 & HMS1_8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
HMS1_n

\section*{DESCRIPTION}

Hinge moment for the \(s\)-axis at node 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPMS1_1 & LPMS1_2 & LPMS1_3 & LPMS1_4 & LPMS1_5 & LPMS1_6 & LPMS1_7 & LPMS1_8 \\
Type & I & I & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
LPMS1_n

\section*{DESCRIPTION}

ID of curve defining plastic moment as a function of plastic rotation for the \(s\)-axis at node 1 for hinge moment HMS1_n
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HMS2_1 & HMS2_2 & HMS2_3 & HMS2_4 & HMS2_5 & HMS2_6 & HMS2_7 & HMS2_8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
HMS2_n

\section*{DESCRIPTION}

Hinge moment for the \(s\)-axis at node 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPMS2_1 & LPMS2_2 & LPMS2_3 & LPMS2_4 & LPMS2_5 & LPMS2_6 & LPMS2_7 & LPMS2_8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
LPMS2_n

\section*{DESCRIPTION}

ID of curve defining plastic moment as a function of plastic rotation for the \(s\)-axis at node 2 for hinge moment HMS2_n
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 13 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HMT1_1 & HMT1_2 & HMT1_3 & HMT1_4 & HMT1_5 & HMT1_6 & HMT1_7 & HMT1_8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
HMT1_n

DESCRIPTION
Hinge moment for the \(t\)-axis at node 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 14 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPMT1_1 & LPMT1_2 & LPMT1_3 & LPMT1_4 & LPMT1_5 & LPMT1_6 & LPMT1_7 & LPMT1_8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LPMT1_n

\section*{DESCRIPTION}

ID of curve defining plastic moment as a function of plastic rotation for the \(t\)-axis at node 1 for hinge moment HMT1_n
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 15 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HMT2_1 & HMT2_2 & HMT2_3 & HMT2_4 & HMT2_5 & HMT2_6 & HMT2_7 & HMT2_8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{DESCRIPTION}

HMT2_n Hinge moment for the \(t\)-axis at node 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 16 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPMT2_1 & LPMT2_2 & LPMT2_3 & LPMT2_4 & LPMT2_5 & LPMT2_6 & LPMT2_7 & LPMT2_8 \\
Type & I & I & I & I & I & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
LPMT2_n

\section*{DESCRIPTION}

ID of curve defining plastic moment as a function of plastic rotation for the \(t\)-axis at node 2 for hinge moment HMT2_n
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 17 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HMR_1 & HMR_2 & HMR_3 & HMR_4 & HMR_5 & HMR_6 & HMR_7 & HMR_8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

HMR \(_\)n Hinge moment for the torsional axis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 18 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LPMR_1 & LPMR_2 & LPMR_3 & LPMR_4 & LPMR_5 & LPMR_6 & LPMR_7 & LPMR_8 \\
Type & I & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
LPMR_n

\section*{DESCRIPTION}

ID of curve defining plastic moment as a function of plastic rotation for the torsional axis for hinge moment HMR \(_n\)

\section*{Remarks:}
1. Load Curves. This material model is available for the Belytschko resultant beam element only. Plastic hinges form at the ends of the beam when the moment reaches the plastic moment. The plastic moment as a function of rotation relationship is specified by the user in the form of a load curve and scale factor. The points of the load curve are (plastic rotation in radians, plastic moment). Both quantities should be positive for all points, with the first point being (zero, initial plastic moment). Within this constraint any form of characteristic may be used, including flat or falling curves. Different load curves and scale factors may be specified at each node and about each of the local \(s\) and \(t\) axes.

Axial collapse occurs when the compressive axial load reaches the collapse load. Collapse load as a function of collapse deflection is specified in the form of a load curve. The points of the load curve are either (true strain, collapse force) or (change in length, collapse force). Both quantities should be entered as positive for all points and will be interpreted as compressive. The first point should be (zero, initial collapse load).

The collapse load may vary with end moment as well as with deflections. In this case several load-deflection curves are defined, each corresponding to a different end moment. Each load curve should have the same number of points and the same deflection values. The end moment is defined as the average of the absolute moments at each end of the beam and is always positive.
2. Damping. Stiffness-proportional damping may be added using the damping factor \(\lambda\). This is defined as follows:
\[
\lambda=\frac{2 \times \xi}{\omega}
\]
where \(\xi\) is the damping factor at the reference frequency \(\omega\) (in radians per second). For example, if \(1 \%\) damping at 2 Hz is required
\[
\lambda=\frac{2 \times 0.01}{2 \pi \times 2}=0.001592
\]

If damping is used, a small time step may be required. LS-DYNA does not check this so to avoid instability it may be necessary to control the time step using a load curve. As a guide, the time step required for any given element is multiplied by \(0.3 L / c \lambda\) when damping is present \((L=\) element length, \(c=\) sound speed \()\).
3. Moment Interaction. Plastic hinges can form due to the combined action of moments about the three axes. This facility is activated only when yield moments are defined in the material input. A hinge forms when the following condition is first satisfied.

Figure M139-1. The force magnitude is limited by the applied end moment. For an intermediate value of the end moment LS-DYNA interpolates between the curves to determine the allowable force value.
\[
\left(\frac{M_{r}}{M_{r \text { yield }}}\right)^{2}+\left(\frac{M_{s}}{M_{s \text { yield }}}\right)^{2}+\left(\frac{M_{t}}{M_{t \text { yield }}}\right)^{2} \geq 1
\]
where
\[
\begin{aligned}
M_{r}, M_{s}, M_{t} & =\text { current moment } \\
M_{r_{\text {yield }}} & M_{s_{\text {yield }}}, M_{t_{\text {yield }}}
\end{aligned}=\text { yield moment }
\]

Note that scale factors for hinge behavior defined in the input will also be applied to the yield moments: for example, \(M_{s_{\text {yield }}}\) in the above formula is given by the input yield moment about the local axis times the input scale factor for the local \(s\)-axis. For strain-softening characteristics, the yield moment should generally be set equal to the initial peak of the moment-rotation load curve.

On forming a hinge, upper limit moments are set. These are given by
\[
M_{r_{\text {upper }}}=\max \left(M_{r}, \frac{M_{r_{\text {yield }}}}{2}\right)
\]
with similar conditions holding for \(M_{s_{\text {upper }}}\) and \(M_{t_{\text {upper }}}\). Thereafter the plastic moments will be given by
\[
M_{r_{p}}=\min \left(M_{r_{\text {upper }}} M_{r_{\text {curve }}}\right)
\]
where \(M_{r_{p}}\) is the current plastic moment and \(M_{r_{\text {curve }}}\) is the moment from the load curve at the current rotation scaled by the scale factor. \(M_{s_{p}}\) and \(M_{t_{p}}\) satisfy similar conditions. \(M_{s p}\) and \(M_{t p}\) satisfy similar conditions.

This provides an upper limit to the moment that can be generated; it represents the softening effect of local buckling at a hinge site. Thus, if a member is bent about the local \(s\)-axis, it will then be weaker in torsion and about its local \(t\)-axis. For moments-softening curves, the effect is to trim off the initial peak (although if the curves subsequently harden, the final hardening will also be trimmed off).

It is not possible to make the plastic moment vary with the current axial load, but it is possible to make hinge formation a function of axial load and subsequent plastic moment a function of the moment at the time the hinge formed. This is discussed in Remark 4.
4. Independent Plastic Hinge Formation. In addition to the moment interaction equation, Cards 7 through 18 allow plastic hinges to form independently for the \(s\)-axis and \(t\)-axis at each end of the beam as well as for the torsional axis. A plastic hinge is assumed to form if any component of the current moment exceeds the yield moment as defined by the yield moment as a function axial force curves input on cards 7 and 8 . If any of the 5 curves is omitted, a hinge will not form for that component. The curves can be defined for both compressive and tensile axial forces. If the axial force falls outside the range of the curve, the first or last point in the curve will be used. A hinge forming for one component of moment does not affect the other components.

Upon forming a hinge, the magnitude of that component of moment will not be permitted to exceed the current plastic moment. The current plastic moment is obtained by interpolating between the plastic moment as a function of plastic rotation curves input on cards \(10,12,14,16\), or 18 . Curves may be input for up to 8 hinge moments, where the hinge moment is defined as the yield moment at the time that the hinge formed. Curves must be input in order of increasing hinge moment and each curve should have the same plastic rotation values. The first or last curve will be used if the hinge moment falls outside the range of the curves. If no curves are defined, the plastic moment is obtained from the curves
on cards 4 through 6 . The plastic moment is scaled by the scale factors on lines 4 to 6 .

A hinge will form if either the independent yield moment is exceeded or if the moment interaction equation is satisfied. If both are true, the plastic moment will be set to the minimum of the interpolated value and \(M_{r_{p}}\).

\section*{*MAT_VACUUM}

This is Material Type 140. This model is a dummy material representing a vacuum in a multi-material Euler/ALE model. Instead of using ELFORM = 12 (under *SECTION_SOLID), it is better to use ELFORM \(=11\) with the void material defined as the vacuum material.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RH0 & & & & & & \\
Type & A & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RHO

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Estimated material density. This is used only as a stability check.

\section*{Remarks:}

The vacuum density is estimated. It should be small relative compared to air in the model (possibly at least order of magnitude \(10^{3}\) to \(10^{6}\) lighter than air).

\section*{*MAT_RATE_SENSITIVE_POLYMER}

This is Material Type 141. This model, called the modified Ramaswamy-Stouffer model, is for the simulation of an isotropic ductile polymer with strain rate effects. See references; Stouffer and Dame [1996] and Goldberg and Stouffer [1999]. Uniaxial test data is used to fit the material parameters. This material model was implemented by Professor Ala Tabiei.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & Do & N & Z0 & Q \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & OMEGA & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see*PART).
\end{tabular} \\
RO & Mass density \\
E & Elastic modulus \\
PR & Poisson's ratio \\
Do & Reference strain rate \((=1000 \times\) max strain rate used in the test) \\
N & Exponent (see inelastic strain rate equation below) \\
ZO & Initial hardness of material, \(Z_{o}\) \\
Q & Material constant, \(q\) (see equations below) \\
OMEGA & Maximum internal stress, \(\Omega_{m}\)
\end{tabular}

\section*{Remarks:}

The inelastic strain rate is defined as:
\[
\dot{\varepsilon}_{i j}^{I}=D_{o} \exp \left[-0.5\left(\frac{Z_{o}^{2}}{3 K_{2}}\right)^{\mathrm{N}}\right]\left(\frac{S_{i j}-\Omega_{i j}}{\sqrt{K_{2}}}\right)
\]
where the \(K_{2}\) term is given as:
\[
K_{2}=0.5\left(S_{i j}-\Omega_{i j}\right)\left(S_{i j}-\Omega_{i j}\right)
\]
and represents the second invariant of the overstress tensor. The elastic components of the strain are added to the inelastic strain to obtain the total strain. The following relationship defines the back stress variable rate:
\[
\Omega_{i j}=\frac{2}{3} q \Omega_{m} \dot{\varepsilon}_{i j}^{I}-q \Omega_{i j} \dot{\varepsilon}_{e}^{I}
\]
where \(q\) is a material constant, \(\Omega_{m}\) is a material constant that represents the maximum value of the internal stress, and \(\dot{\varepsilon}_{e}^{I}\) is the effective inelastic strain rate.

\section*{*MAT_TRANSVERSELY_ISOTROPIC_CRUSHABLE_FOAM}

This is Material Type 142. This model is for an extruded foam material that is transversely isotropic, crushable, and of low density with no significant Poisson effect. This material is used in energy-absorbing structures to enhance automotive safety in low velocity (bumper impact) and medium high velocity (interior head impact and pedestrian safety) applications. The formulation of this foam is due to Hirth, Du Bois, and Weimar and is documented by Du Bois [2001].

This material is not wholly isotropic since the extrusion direction is preferred. The properties in directions orthogonal to the extrusion direction are, however, the same. In other words, the material is isotropic in all transversal directions to extrusion.

This material is available for solid elements and thick shell formulations 3,5 and 7 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E11 & E22 & E12 & E23 & G & K \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & 111 & 122 & 112 & 123 & IAA & NSYM & ANG & MU \\
Type & I & I & I & I & I & I & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & ISCL & BETA & MACF & & & & \\
Type & F & I & F & I & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & D3 & V1 & V2 & V3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E11
E22
E12
E23
G
K
I11

I22

I12

I23

IAA Load curve ID (optional) for nominal stress as a function of volumetric strain for load at angle, ANG, relative to the material \(a\)-axis

NSYM

ANG Angle corresponding to load curve ID, IAA

\section*{VARIABLE}

MU

AOPT

DESCRIPTION
Damping coefficient for tensor viscosity which acts in both tension and compression. Recommended values vary between 0.05 to 0.10 . If zero, bulk viscosity is used instead of tensor viscosity. Bulk viscosity creates a pressure as the element compresses that is added to the normal stresses which can have the effect of creating transverse deformations when none are expected.

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.

\section*{VARIABLE}

ISCL Load curve ID for the strain rate scale factor as a function of the volumetric strain rate. The yield stress is scaled by the value specified by the load curve.

BETA

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 3 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

XP YP ZP Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
A1 A2 A3 Components of vector a for \(\mathrm{AOPT}=2\)
D1 D2 D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
V1 V2 V3 Define components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4

\section*{Remarks:}

This model behaves in a more physical way for off axis loading the material than, for example, *MAT_HONEYCOMB which can exhibit nonphysical stiffening for loading

Figure M142-1. Differences between options NSYM \(=1\) and NSYM \(=0\).
conditions that are off axis. The curves given for I11, I22, I12 and I23 are used to define a yield surface of Tsai-Wu-type that bounds the deviatoric stress tensor. Hence the elastic parameters E11, E12, E22 and E23 as well as G and K must be defined in a consistent way.

For the curve definitions volumetric strain \(\varepsilon_{v}=1-V / V_{0}\) is used as the abscissa parameter. If the symmetric option (\(\mathrm{NSYM}=1\)) is used, a curve must be provided for the first quadrant, but may also be defined in both the first and second quadrants. If NSYM \(=0\) is chosen, the curve definitions for I11, I22, I12 and I23 (and IAA) must be in the first and second quadrant as shown in Figure M142-1.

Tensor viscosity, which is activated by a nonzero value for MU, is generally more stable than bulk viscosity. A damping coefficient less than 0.01 has little effect, and a value greater than 0.10 may cause numerical instabilities.

\section*{*MAT_WOOD_\{OPTION\}}

This is Material Type 143. This is a transversely isotropic material. It is available for solid elements, thick shell formulations 3,5, and 7, and SPH elements. You have the option of inputting your own material properties (<BLANK>) or requesting default material properties for Southern yellow pine (PINE) or Douglas fir (FIR). This model was developed by Murray [2002] under a contract from the FHWA.

Available options include:
<BLANK>
PINE
FIR

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & NPLOT & ITERS & IRATE & GHARD & IFAIL & IVOL \\
\hline
\end{tabular}

Card 2a. This card is included if the keyword option is set to FIR or PINE.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MOIS & TEMP & QUAL_T & QUAL_C & UNITS & IQUAL & & \\
\hline
\end{tabular}

Card 2b.1. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EL & ET & GLT & GTR & PR & & & \\
\hline
\end{tabular}

Card 2b.2. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X T\) & \(X C\) & YT & YC & SXY & SYZ & & \\
\hline
\end{tabular}

Card 2b.3. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GF1II & GF2II & BFIT & DMAXII & GF1 \(\perp\) & GF2 \(\perp\) & DFIT & DMAX \(\perp\) \\
\hline
\end{tabular}

Card 2b.4. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FLPAR & FLPARC & POWPAR & FLPER & FLPERC & POWPER & & \\
\hline
\end{tabular}

Card 2b.5. This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline NPAR & CPAR & NPER & CPER & & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AOPT & MACF & BETA & & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D1 & D2 & D3 & V1 & V2 & V3 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & NPLOT & ITERS & IRATE & GHARD & IFAIL & IVOL \\
Type & A & F & 1 & 1 & 1 & F & I & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
NPLOT

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see*PART).

Mass density
Controls what is written as component 7 to the d3plot database.
LS-PrePost always blindly labels this component as effective plastic strain.

EQ.1: Parallel damage (default)
EQ.2: Perpendicular damage
ITERS Number of plasticity algorithm iterations. The default is one iteration.

GE.0: Original plasticity iteration developed by Murray [2002]
LT.O: Plasticity iteration (return mapping) with non-associated flow direction for perpendicular yielding. The absolute value of ITERS is used as number of plasticity algorithm iterations.

\section*{VARIABLE}

IRATE

GHARD

IFAIL Erosion perpendicular to the grain:
EQ.O: No (default)
EQ.1: Yes (not recommended except for debugging)
Flag to invoke erosion based on negative volume or strain increments greater than 0.01:

EQ.0: No, do not apply erosion criteria.
EQ.1: Yes, apply erosion criteria.

This card is included for the PINE and FIR keyword options.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MOIS & TEMP & QUAL_T & QUAL_C & UNITS & IQUAL & & \\
Type & F & F & F & F & I & I & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MOIS

TEMP

\section*{DESCRIPTION}

Percent moisture content. If left blank, the moisture content defaults to saturated at \(30 \%\).

Temperature in \({ }^{\circ} \mathrm{C}\). If left blank, the temperature defaults to room temperature at \(20^{\circ} \mathrm{C}\)

QUAL_C User defined quality factor in compression (see Remark 1). This input value is used if QUAL_T > 0 . Values between 0 and 1 are expected. Values greater than one are allowed but may not be realistic. If left blank, a default value of QUAL_C = QUAL_T is used.

UNITS

IQUAL Apply quality factors perpendicular to the grain:
EQ.0: Yes (default)
EQ.1: No

This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EL & ET & GLT & GTR & PR & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } EL & & Parallel normal modulus \\
ET & & Perpendicular normal modulus \\
GLT & & Parallel shear modulus (GLT \(=\) GLR) \\
GTR & & Perpendicular shear modulus \\
PR & & Parallel major Poisson's ratio
\end{tabular}

This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XT & XC & YT & YC & SXY & SYZ & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } & & Parallel tensile strength \\
XC & & Parallel compressive strength \\
YT & & Perpendicular tensile strength \\
YC & & Perpendicular compressive strength \\
SXY & & Parallel shear strength \\
SYZ & & Perpendicular shear strength
\end{tabular}

This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GF1II & GF2II & BFIT & DMAXII & GF1 \(\perp\) & GF2 \(\perp\) & DFIT & DMAX \(\perp\) \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

XT
GF1||
GF2|| Parallel fracture energy in shear
BFIT Parallel softening parameter
DMAX|| Parallel maximum damage
GF1 \(\perp\) Perpendicular fracture energy in tension
GF2 \(\perp\) Perpendicular fracture energy in shear
DFIT Perpendicular softening parameter

This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FLPAR & FLPARC & POWPAR & FLPER & FLPERC & POWPER & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FLPAR

\section*{DESCRIPTION}

Rate effects parameter:
IRATE.EQ.0: Ignored
IRATE.EQ.1: Parallel fluidity parameter for tension and shear
IRATE.EQ.2: Dimensionless parallel strain rate parameter for tension and shear (see Remark 2)

FLPARC Rate effects parameter:

IRATE.EQ.0: Ignored
IRATE.EQ.1: Parallel fluidity parameter for compression
IRATE.EQ.2: Dimensionless parallel strain rate parameter for compression (see Remark 2)

POWPAR Rate effects parameter:
IRATE.EQ.0: Ignored
IRATE.EQ.1: Parallel power
IRATE.EQ.2: Quasi-static threshold strain rate value in the parallel direction (see Remark 2)

FLPER Rate effects parameter:
IRATE.EQ.0: Ignored
IRATE.EQ.1: Perpendicular fluidity parameter for tension and shear

IRATE.EQ.2: Dimensionless perpendicular strain rate parameter for tension and shear (see Remark 2)

FLPERC Rate effects parameter:
IRATE.EQ.0: Ignored
IRATE.EQ.1: Perpendicular fluidity parameter for compression
IRATE.EQ.2: Dimensionless perpendicular strain rate parameter for compression (see Remark 2)

POWPER Rate effects parameter:
IRATE.EQ.0: Ignored
IRATE.EQ.1: Perpendicular power
IRATE.EQ.2: Quasi-static threshold strain rate value in the perpendicular direction (see Remark 2)

This card is included if the keyword option is unset (<BLANK>).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & NPAR & CPAR & NPER & CPER & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VARIAB & & \multicolumn{7}{|c|}{DESCRIPTION} \\
\hline \multicolumn{2}{|l|}{NPAR} & \multicolumn{7}{|l|}{Parallel hardening initiation} \\
\hline \multicolumn{2}{|l|}{CPAR} & \multicolumn{7}{|l|}{Parallel hardening rate} \\
\hline \multicolumn{2}{|l|}{NPER} & \multicolumn{7}{|l|}{Perpendicular hardening initiation} \\
\hline \multicolumn{2}{|l|}{CPER} & \multicolumn{7}{|l|}{Perpendicular hardening rate} \\
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & MACF & BETA & & & & & \\
\hline Type & F & I & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between

\section*{VARIABLE}
the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 3 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

BETA
Material angle in degrees for AOPT = 3. It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO and *ELEMENT_TSHELL_BETA.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XP YP ZP Coordinates of point \(p\) for AOPT \(=1\) and 4
A1 A2 A3 Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & D1 & D2 & D3 & V1 & V2 & V3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

VARIABLE
D1 D2 D3
V1 V2 V3 Define components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4

\section*{Remarks:}
1. Quality factors. Material property data is for clear wood (small samples without defects like knots), whereas real structures are composed of graded wood. Clear wood is stronger than graded wood. Quality factors (strength reduction factors) are applied to the clear wood strengths to account for reductions in strength as a function of grade. One quality factor (QUAL_T) is applied to the tensile and shear strengths. A second quality factor (QUAL_C) is applied to the compressive strengths. As an option, predefined quality factors are provided based on correlations between LS-DYNA calculations and test data for pine and fir posts impacted by bogie vehicles. By default, quality factors are applied to both the parallel and perpendicular to the grain strengths. An option is available (IQUAL) to eliminate application perpendicular to the grain.
2. Johnson-Cook-like logarithmic rate dependence. A Johnson-Cook-like logarithmic rate dependence can be invoked by IRATE \(=2\) when the keyword option is unset and ITERS \(<0\). In that case, the strength parameters are:
\[
\begin{aligned}
& \hat{X}_{T}=X_{T}\left(1+\text { FLPAR } \times \ln \left(1+\frac{\dot{\bar{\varepsilon}}}{\text { POWPAR }}\right)\right) \\
& \hat{X}_{C}=X_{C}\left(1+\text { FLPARC } \times \ln \left(1+\frac{\bar{\varepsilon}}{\text { POWPAR }}\right)\right) \\
& \hat{Y}_{T}=Y_{T}\left(1+\text { FLPER } \times \ln \left(1+\frac{\overline{\bar{\varepsilon}}}{\text { POWPER }}\right)\right) \\
& \hat{Y}_{C}=Y_{C}\left(1+\text { FLPERC } \times \ln \left(1+\frac{\overline{\bar{\varepsilon}}}{\text { POWPER }}\right)\right) \\
& \hat{S}_{X Y}=S_{X Y}\left(1+\text { FLPAR } \times \ln \left(1+\frac{\overline{\bar{\varepsilon}}}{\text { POWPAR }}\right)\right) \\
& \hat{S}_{Y Z}=S_{Y Z}\left(1+\text { FLPER } \times \ln \left(1+\frac{\bar{\varepsilon}}{\text { POWPER }}\right)\right)
\end{aligned}
\]

The strain rate parameters, FLPAR, FLPARC, FLPER, and FLPERC, are dimensionless (factors \(\geq 0\) that quantify the strain rate dependence). POWPAR and POWPER are quasi-static threshold strain rate values in the parallel and perpendicular directions with the units of [time] \({ }^{-1}\). Variable \(\dot{\bar{\varepsilon}}\) is an effective strain rate.

\section*{*MAT_PITZER_CRUSHABLE_FOAM}

This is Material Type 144. This model is for the simulation of isotropic crushable forms with strain rate effects. Uniaxial and triaxial test data have to be used. For the elastic response, the Poisson ratio is set to zero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & G & PR & TY & SRTV & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCPY & LCUYS & LCSR & VC & DFLG & & & \\
Type & I & I & I & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
K

G
PR
TY
SRTV
LCPY Load curve ID giving pressure as a function of volumetric strain; see Figure M75-1.

LCUYS

LCSR

Load curve ID giving uniaxial stress as a function of volumetric strain; see Figure M75-1.

Load curve ID giving strain rate scale factor as a function of volumetric strain rate

Viscous damping coefficient (. \(05<\) recommended value \(<.50\))
DFLG Density flag:
EQ.0.0: Use initial density.
EQ.1.0: Use current density (larger step size with less mass scaling).

\section*{Remarks:}

The logarithmic volumetric strain is defined in terms of the relative volume, \(V\), as:
\[
\gamma=-\ln (V)
\]

When defining the curves, the stress and strain pairs should be positive values starting with a volumetric strain value of zero.

\section*{*MAT_SCHWER_MURRAY_CAP_MODEL}

This is Material Type 145. *MAT_145 is a Continuous Surface Cap Model and is a three invariant extension of *MAT_GEOLOGIC_CAP_MODEL (\({ }^{*} \mathrm{MAT}\) _025) that includes viscoplasticity for rate effects and damage mechanics to model strain softening. The primary references for the model are Schwer and Murray [1994], Schwer [1994], and Murray and Lewis [1994]. *MAT_145 was developed for geomaterials including soils, concrete, and rocks. We recommend using an updated version of a Continuous Surface Cap Model, *MAT_CSCM (*MAT_159), rather than this model, *MAT_SCHWER_MURRAY_CAP_MODEL (*MAT_145).

WARNING: No default input parameter values are assumed, but recommendations for the more obscure parameters are provided in the descriptions that follow.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline MID & RO & SHEAR & BULK & GRUN & SHOCK & PORE & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ALPHA & THETA & GAMMA & BETA & EFIT & FFIT & ALPHAN & CALPHA \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R0 & XO & IROCK & SECP & AFIT & BFIT & RDAMO & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(W\) & D1 & D2 & NPLOT & EPSMAX & CFIT & DFIT & TFAIL \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FAILFL & DBETA & DDELTA & VPTAU & & & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA1 & THETA1 & GAMMA1 & BETA1 & ALPHA2 & THETA2 & GAMMA2 & BETA2 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & SHEAR & BULK & GRUN & SHOCK & PORE & \\
Type & A & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
SHEAR Shear modulus, G
BULK Bulk modulus, \(K\)
GRUN Gruneisen ratio (typically \(=0\)), \(\Gamma\)
SHOCK \(\quad\) Shock velocity parameter (typically 0), \(S_{l}\)
PORE Flag for pore collapse
EQ.0.0: Pore collapse
EQ.1.0: Constant bulk modulus (typical)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & THETA & GAMMA & BETA & EFIT & FFIT & ALPHAN & CALPHA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

ALPHA Shear failure parameter, \(\alpha\)
THETA Shear failure parameter, \(\theta\)
GAMMA Shear failure parameter, \(\gamma\)

\section*{VARIABLE}

BETA

EFIT
FFIT
ALPHAN
CALPHAN

\section*{DESCRIPTION}

Shear failure parameter, \(\beta\)
\[
\sqrt{J^{\prime}}=F_{e}\left(J_{1}\right)=\alpha-\gamma \exp \left(-\beta J_{1}\right)+\theta J_{1}
\]

Dilation damage mechanics parameter (no damage \(=1\))
Dilation damage mechanics parameter (no damage \(=0\))
Kinematic strain hardening parameter, \(N^{\alpha}\)
Kinematic strain hardening parameter, \(c^{\alpha}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R0 & X0 & IROCK & SECP & AFIT & BFIT & RDAMO & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
R0
X0
IROCK

SECP
AFIT Ductile damage mechanics parameter (=1 no damage)
BFIT Ductile damage mechanics parameter (=0 no damage)
RDAM0 Ductile damage mechanics parameter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & W & D1 & D2 & NPLOT & EPSMAX & CFIT & DFIT & TFAIL \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

NPLOT History variable post-processed as effective plastic strain. (See Ta-

VARIABLE
W
D1

D2

EPSMAX

CFIT
DFIT
TFAIL

\section*{DESCRIPTION}

Plastic Volume Strain parameter, W
Plastic Volume Strain parameter, \(D_{1}\)
Plastic Volume Strain parameter, \(D_{2}\)
\[
\varepsilon_{V}^{P}=W\left\{1-\exp \left\{-D_{1}\left[X(\kappa)-X\left(\kappa_{0}\right)\right]-D_{2}\left[\left(X(\kappa)-X\left(\kappa_{0}\right)\right]^{2}\right\}\right\}\right.
\] ble M145-1 for history variables available for plotting.)

Maximum permitted strain increment:
EQ.0.0: \(\Delta \varepsilon_{\max }=0.05\left(\alpha-N^{\alpha}-\gamma\right) \min \left(\frac{1}{G^{\prime}} \frac{R}{9 K}\right) \quad\) (calculated default)

Brittle damage mechanics parameter (= 1 no damage)
Brittle damage mechanics parameter (= 0 no damage)
Tensile failure stress
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FAILFL & DBETA & DDELTA & VPTAU & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

FAILFL
Flag controlling element deletion and effect of damage on stress (see Remark 1):

EQ.1: \(\sigma_{i j}\) reduces with increasing damage; element is deleted when fully damaged (default).

\section*{DESCRIPTION}

EQ.-1: \(\sigma_{i j}\) reduces with increasing damage; element is not deleted.

EQ.2: \(S_{i j}\) reduces with increasing damage; element is deleted when fully damaged.

EQ.-2: \(S_{i j}\) reduces with increasing damage; element is not deleted.

DBETA \(\quad\) Rounded vertices parameter, \(\Delta \beta_{0}\)
DDELTA Rounded vertices parameter, \(\delta\)
VPTAU Viscoplasticity relaxation time parameter, \(\tau\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & THETA1 & GAMMA1 & BETA1 & ALPHA2 & THETA2 & GAMMA2 & BETA2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
ALPHA1 Torsion scaling parameter, \(\alpha_{1}\)
LT.O.O: |ALPHA1| is the friction angle in degrees.
THETA1 Torsion scaling parameter, \(\theta_{1}\)
GAMMA1 Torsion scaling parameter, \(\gamma_{1}\)
BETA1 Torsion scaling parameter, \(\beta_{1}\)
\[
Q_{1}=\alpha_{1}-\gamma_{1} \exp \left(-\beta_{1} J_{1}\right)+\theta_{1} J_{1} \theta_{2}
\]

ALPHA2 Tri-axial extension scaling parameter, \(\alpha_{2}\)
THETA2 Tri-axial extension scaling parameter, \(\theta_{2}\)
GAMMA2 Tri-axial extension scaling parameter, \(\gamma_{2}\)
BETA2 Tri-axial extension scaling parameter, \(\beta_{2}\)
\[
Q_{2}=\alpha_{2}-\gamma_{2} \exp \left(-\beta_{2} J_{1}\right)+\theta_{2} J_{1}
\]

\section*{Remarks:}
1. Damage Accumulation and Element Deletion. FAILFL controls whether the damage accumulation applies to either the total stress tensor, \(\sigma_{i j}\), or the deviatoric stress tensor, \(S_{i j}\). When FAILFL \(=2\), damage does not diminish the ability of the material to support hydrostatic stress.

FAILFL also serves as a flag to control element deletion. Fully damaged elements are deleted only if FAILFL is a positive value. When *MAT_145 is used with the ALE or EFG solvers, failed elements should not be eroded and so a negative value of FAILFL should be used.
2. History Variables. All the output parameters listed in Table M145-1 are available for post-processing using LS-PrePost and its displayed list of history variables. The LS-DYNA input parameter NEIPH should be set to 22 on *DATABASE_EXTENT_BINARY.
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & Function & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & \(X(\kappa)\) & \(J_{1}\) intercept of cap surface \\
2 & \(L(\kappa)\) & \(J_{1}\) value at cap-shear surface intercept \\
3 & \(R\) & Cap surface ellipticity \\
4 & \(\tilde{R}\) & Rubin function \\
5 & \(\varepsilon_{v}^{p}\) & Plastic volume strain \\
6 & & Yield flag (=0 elastic) \\
7 & & Number of strain sub-increments \\
8 & \(G^{\alpha}\) & Kinematic hardening parameter \\
9 & \(J_{2}^{\alpha}\) & Kinematic hardening back stress \\
10 & & Effective strain rate \\
11 & & Ductile damage \\
12 & & Ductile damage threshold \\
13 & & Strain energy \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & Function & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 14 & & Brittle damage \\
15 & & Brittle damage threshold \\
16 & & Brittle energy norm \\
17 & & \(J_{1}\) (without visco-damage/plastic) \\
18 & & \(J_{2}^{\prime}\) (without visco-damage/plastic) \\
19 & & \(J_{3}^{\prime}\) (without visco-damage/plastic) \\
20 & & \(\hat{J}_{3}\) (without visco-damage/plastic) \\
21 & \(\beta\) & Lode angle \\
22 & \(d\) & Maximum damage parameter \\
\hline
\end{tabular}

Table M145-1. Output variables for post-processing using NPLOT parameter.
3. Sample Input for Concrete. Gran and Senseny [1996] report the axial stress as a function of strain response for twelve unconfined compression tests of concrete, used in scale-model reinforced-concrete wall tests. The Schwer \& Murray Cap Model parameters provided below were used, see Schwer [2001], to model the unconfined compression test stress-strain response for the nominal 40 MPa strength concrete reported by Gran and Senseny. The basic units for the provided parameters are length in millimeters (mm), time in milliseconds (msec), and mass in grams (g). This base unit set yields units of force in Newtons (N) and pressure in Mega-Pascals (MPa).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{*MAT_SCHWER_MURRAT_CAP_MODEL} \\
\hline \$ & MID & RO & SHEAR & BULK & GRUN & SHOCK & PORE & \\
\hline & 1 & 2.3E-3 & 1.048E4 & 1.168E4 & 0.0 & 0.0 & 1.0 & \\
\hline \multirow[t]{2}{*}{\$} & ALPHA & THETA & GAMMA & BETA & EFIT & FFIT & ALPHAN & CALPHA \\
\hline & 190.0 & 0.0 & 184.2 & 2.5E-3 & 0.999 & 0.7 & 2.5 & 2.5 E 3 \\
\hline \multirow[t]{2}{*}{\$} & R0 & X0 & IROCK & SECP & AFIT & BFIT & RDAMO & \\
\hline & 5.0 & 100.0 & 1.0 & 0.0 & 0.999 & 0.3 & 0.94 & \\
\hline \multirow[t]{2}{*}{\$} & W & D1 & D2 & NPLOT & EPSMAX & CFIT & DFIT & TFAIL \\
\hline & 5.0E-2 & 2.5E-4 & 3.5E-7 & 23.0 & 0.0 & 1.0 & 300.0 & 7.0 \\
\hline \multirow[t]{2}{*}{\$} & FAILFG & DBETA & DDELTA & VPTAU & & & & \\
\hline & 1.0 & 0.0 & 0.0 & 0.0 & & & & \\
\hline \multirow[t]{2}{*}{\$} & ALPHA1 & THETA1 & GAMMA1 & BETA1 & ALPHA2 & THETA2 & GAMMA2 & BETA2 \\
\hline & 0.747 & 3.3E-4 & 0.17 & 5.0E-2 & 0.66 & 4.0E-4 & 0.16 & 5.0E-2 \\
\hline
\end{tabular}
4. User Input Parameters and System of Units. Consider the following basic units:

Length: L (e.g. millimeters - mm)

Mass: \(\quad \mathrm{M}\) (e.g. grams - g)
Time: \(\quad \mathrm{T}\) (e.g. milliseconds - ms)
The following consistent unit systems can then be derived using Newton's Law, \(F=M a\) :

Force: \(\quad F=M L / T^{2}\left[g-\mathrm{mm} / \mathrm{ms}^{2}=\mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}=\right.\) Newton -N\(]\)
Stress: \(\quad \sigma=F / \mathrm{L}^{2}\left[\mathrm{~N} / \mathrm{mm}^{2}=10^{6} \mathrm{~N} / \mathrm{m}^{2}=10^{6}\right.\) Pascals \(\left.=\mathrm{MPa}\right]\)
Density: \(\rho=\mathrm{M} / \mathrm{L}^{3}\left[\mathrm{~g} / \mathrm{mm}^{3}=10^{6} \mathrm{Kg} / \mathrm{m}^{3}\right]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Variable & MID & RO & SHEAR & BULK & GRUN & SHOCK & PORE & \\
\hline Units & & Density: \(\mathrm{M} / \mathrm{L}^{3}\) & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & & & & \\
\hline Variable & ALPHA & THETA & GAMMA & BETA & EFIT & FFIT & ALPHAN & CALPHA \\
\hline Units & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & \[
\begin{gathered}
\text { Stress }^{-1}: \\
\mathrm{L}^{2} / \mathrm{F}
\end{gathered}
\] & & Stress \({ }^{-1 / 2}\) :
\[
\mathrm{L} / \mathrm{F}^{1 / 2}
\] & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & \begin{tabular}{l}
Stress: \\
F/L \({ }^{2}\)
\end{tabular} \\
\hline Variable & R0 & X0 & IROCK & SECP & AFIT & BFIT & RDAM0 & \\
\hline Units & & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & & & & \begin{tabular}{l}
Stress \({ }^{-1 / 2}\) : \\
\(\mathrm{L} / \mathrm{F}^{1 / 2}\)
\end{tabular} & Stress \({ }^{1 / 2}\) :
\[
\mathrm{F}^{1 / 2} / \mathrm{L}
\] & \\
\hline Variable & W & D1 & D2 & NPLOT & MAXEPS & CFIT & DFIT & TFAIL \\
\hline Units & & \[
\begin{gathered}
\text { Stress }^{-1}: \\
\mathrm{L}^{2} / \mathrm{F}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Stress }^{-2}: \\
& \mathrm{L}^{4} / \mathrm{F}^{2}
\end{aligned}
\] & & & & \begin{tabular}{l}
Stress \({ }^{-1 / 2}\) : \\
\(\mathrm{L} / \mathrm{F}^{1 / 2}\)
\end{tabular} & \begin{tabular}{l}
Stress: \\
F/L \({ }^{2}\)
\end{tabular} \\
\hline Variable & FAILFG & DBETA & DDELTA & VPTAU & & & & \\
\hline Units & & \begin{tabular}{l}
Angle: \\
degrees
\end{tabular} & & Time: T & & & & \\
\hline Variable & ALPHA1 & THETA1 & GAMMA1 & BETA1 & ALPHA2 & THETA2 & GAMMA2 & BETA2 \\
\hline Units & \begin{tabular}{l}
Stress: \\
F/L \({ }^{2}\)
\end{tabular} & & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & \[
\begin{gathered}
\text { Stress }^{-1}: \\
\mathrm{L}^{2} / \mathrm{F}
\end{gathered}
\] & \begin{tabular}{l}
Stress: \\
F/L \({ }^{2}\)
\end{tabular} & & Stress:
\[
\mathrm{F} / \mathrm{L}^{2}
\] & Stress \({ }^{-1}\) :
\[
\mathrm{L}^{2} / \mathrm{F}
\] \\
\hline
\end{tabular}

\section*{*MAT_1DOF_GENERALIZED_SPRING}

This is Material Type 146. This is a linear spring or damper that allows different degrees-of-freedom at two nodes to be coupled.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & C & SCLN1 & SCLN2 & D0FN1 & D0FN2 \\
Type & A & F & F & F & F & F & I & 1 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CID1 & CID2 & & & & & & \\
Type & 1 & 1 & & & & & & \\
\hline
\end{tabular}

DOFN2

\section*{VARIABLE}

MID

RO Mass density; see also volume in *SECTION_BEAM definition.
K
C Damping constant

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Spring stiffness

Scale factor on force at node 1. Default =1.0.
SCLN2 Scale factor on force at node 2. Default \(=1.0\).
DOFN1 Active degree-of-freedom at node 1, a number between 1 to 6 where 1,2 and 3 are the \(x, y\), and \(z\)-translations and 4,5 , and 6 are where 1,2 and 3 are the \(x, y\), and \(z\)-translations and 4,5 , and 6 are
the \(x, y\), and \(z\)-rotations. If this parameter is defined in the \(*\) SECTION_BEAM definition or on the *ELEMENT_BEAM_SCALAR card, then the value here, if defined, is ignored.

Active degree-of-freedom at node 2, a number between 1 to 6 where 1,2 and 3 are the \(x, y\), and \(z\)-translations and 4,5 , and 6 are the \(x, y\), and \(z\)-rotations. If this parameter is defined in the *SECTION_BEAM definition or on the *ELEMENT_BEAM_SCALAR card, then the value here, if defined, is ignored.

\section*{VARIABLE}

CID1

CID2

\section*{DESCRIPTION}

Local coordinate system at node 1. This coordinate system can be overwritten by a local system specified on the *ELEMENT_BEAM_SCALAR or *SECTION_BEAM keyword input. If no coordinate system is specified, the global system is used. Local coordinate system at node 2 . If CID2 \(=0\), CID2 \(=\) CID1.

\section*{*MAT_FHWA_SOIL}

This is Material Type 147. This is an isotropic material with damage and is available for solid elements. The model has a modified Mohr-Coulomb surface to determine the pressure dependent peak shear strength. It was developed for applications involving roadbase soils by Lewis [1999] for the FHWA, who extended the work of Abbo and Sloan [1995] to include excess pore water effects.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & NPLOT & SPGRAV & RHOWAT & VN & GAMMAR & ITERMX \\
Type & A & F & I & F & F & F & F & 1 \\
Default & none & none & 1 & none & 1.0 & 0.0 & 0.0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & G & PHIMAX & AHYP & COH & ECCEN & AN & ET \\
Type & F & F & F & F & F & F & & \\
Default & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MCONT & PWD1 & PWKSK & PWD2 & PHIRES & DINT & VDFM & DAMLEV \\
Type & \(F\) \\
Default & none & none & none & none & 0.0 & none & none & none \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPSMAX & & & & & & & \\
Type & F & & & & & & & \\
Default & none & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
NPLOT Controls what is written as component 7 to the d3plot database.
LS-PrePost always blindly labels this component as effective plastic strain.

EQ.1: Effective strain
EQ.2: Damage criterion threshold
EQ.3: Damage (diso)
EQ.4: Current damage criterion
EQ.5: Pore water pressure
EQ.6: Current friction angle (phi)

SPGRAV
RHOWAT

GAMMAR
ITERMX

PHIMAX

VN Viscoplasticity parameter (strain-rate enhanced strength)

K Bulk modulus (non-zero)
G Shear modulus (non-zero)
Specific gravity of soil used to get porosity.
Density of water in model units - used to determine air void strain (saturation)

Viscoplasticity parameter (strain-rate enhanced strength)
Maximum number of plasticity iterations (default 1)

Peak shear strength angle (friction angle in radians)

\section*{VARIABLE}

AHYP
COH
ECCEN
AN
ET
MCONT

PWD1
PWKSK

PWD2

PHIRES

DINT Volumetric strain at initial damage threshold
VDFM Void formation energy (like fracture energy)
DAMLEV
EPSMAX
DESCRIPTION
Coefficient A for modified Drucker-Prager Surface
Cohesion \(\tilde{n}\) shear strength at zero confinement (overburden)
Eccentricity parameter for third invariant effects
Strain hardening percent of PHIMAX where non-linear effects start
Strain hardening amount of non-linear effects
Moisture content of soil. It determines the amount of air voids and should be a value between 0.0 and 1.0.

Parameter for pore water effects on bulk modulus
Skeleton bulk modulus. Pore water parameter, \(\tilde{n}\), set to zero to eliminate effects.

Parameter for pore water effects on the effective pressure (confinement)

The minimum internal friction angle in radians (residual shear strength)

Level of damage that will cause element deletion (0.0-1.00)
Maximum principle failure strain

\section*{*MAT_FHWA_SOIL_NEBRASKA}

This is an option to use the default properties determined for soils used at the University of Nebraska (Lincoln). The default units used for this material are millimeter, millisecond, and kilograms. If different units are desired, the conversion factors must be input.

This is Material Type 147. This is an isotropic material with damage and is available for solid elements. The model has a modified Mohr-Coulomb surface to determine the pressure dependent peak shear strength. It was developed for applications involving road base soils.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & FCTIM & FCTMAS & FCTLEN & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & none & none & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

FCTIM
FCTMAS Factor to multiply kilograms by to get desired mass units
FCTLEN \(\quad\) Factor to multiply millimeters by to get desired length units

\section*{Remarks:}

As an example, if units of seconds are desired for time, then FCTIM \(=0.001\).

\section*{*MAT_GAS_MIXTURE}

This is Material Type 148. This model is for the simulation of thermally equilibrated ideal gas mixtures. This model only works with the multi-material ALE formulation (ELFORM = 11 in *SECTION_SOLID). This keyword must be used together with *INITIAL_GAS_MIXTURE for the initialization of gas densities and temperatures. When applied in the context of ALE airbag modeling, the injection of inflator gas is done with a *SECTION_POINT_SOURCE_MIXTURE command which controls the injection process. *MAT_ALE_GAS_MIXTURE (*MAT_ALE_02) is identical to this model and is another name for this material model.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline MID & IADIAB & RUNIV & & & & & \\
\hline
\end{tabular}

Card 2a.1. This card is included if and only if RUNIV is blank or zero.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CVmass1 & CVmass2 & CVmass3 & CVmass4 & CVmass5 & CVmass6 & CVmass7 & CVmass8 \\
\hline
\end{tabular}

Card 2a.2. This card is included if and only if RUNIV is blank or zero.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CPmass1 & CPmass2 & CPmass3 & CPmass4 & CPmass5 & CPmass6 & CPmass7 & CPmass8 \\
\hline
\end{tabular}

Card 2b.1. This card is included if and only if RUNIV is nonzero.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MOLWT1 & MOLWT2 & MOLWT3 & MOLWT4 & MOLWT5 & MOLWT6 & MOLWT7 & MOLWT8 \\
\hline
\end{tabular}

Card 2b.2. This card is included if and only if RUNIV is nonzero.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CPmole1 & CPmole2 & CPmole3 & CPmole4 & CPmole5 & CPmole6 & CPmole7 & CPmole8 \\
\hline
\end{tabular}

Card 2b.3. This card is included if and only if RUNIV is blank nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
\hline
\end{tabular}

Card 2 b .4 . This card is included if and only if RUNIV is blank nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C3 & C4 & C5 & C6 & C7 & C8 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & IADIAB & RUNIV & & & & & \\
Type & A & I & F & & & & & \\
Default & none & 0 & 0.0 & & & & & \\
\hline
\end{tabular}

VARIABLE
MID

IADIAB

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

This flag is used to turn ON/OFF adiabatic compression logics for an ideal gas. See Remark 5.

EQ.0: Off (default)
EQ.1: On

RUNIV

Universal gas constant in per-mole unit (8.31447 J/(mole \(\times\) K)). See Remark 1.

Card 2 for Per Mass Calculation. Method (A) RUNIV = blank or 0.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CVmass1 & CVmass2 & CVmass3 & CVmass4 & CVmass5 & CVmass6 & CVmass7 & CVmass8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Card 3 for Per Mass Calculation. Method (A) RUNIV = blank or 0.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2a.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPmass1 & CPmass2 & CPmass3 & CPmass4 & CPmass5 & CPmass6 & CPmass7 & CPmass8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

CVmass1 -
CVmass8
CPmass1 CPmass8

\section*{DESCRIPTION}

Heat capacity at constant volume for up to eight different gases in per-mass unit.

Heat capacity at constant pressure for up to eight different gases in per-mass unit.

Card 2 for Per Mole Calculation. Method (B) RUNIV is nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MOLWT1 & MOLWT2 & M0LWT3 & MOLWT4 & MOLWT5 & M0LWT6 & M0LWT7 & MOLWT8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Card 3 for Per Mole Calculation. Method (B) RUNIV is nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPmole1 & CPmole2 & CPmole3 & CPmole4 & CPmole5 & CPmole6 & CPmole7 & CPmole8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Card 4 for Per Mole Calculation. Method (B) RUNIV is nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Card 5 for Per Mole Calculation. Method (B) RUNIV is nonzero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2b.4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MOLWT1 -
MOLWT8
CPmole1 -
CPmole8

C1-C8

B1 - B8 First order coefficient for a temperature dependent heat capacity at constant pressure for up to eight different gases. These are denoted by the variable \(B\) in the equation in Remark 2.

\section*{DESCRIPTION}

Molecular weight of each ideal gas in the mixture (massunit/mole). See Remark 2.

Heat capacity at constant pressure for up to eight different gases in per-mole unit. These are nominal heat capacity values typically at STP. These are denoted by the variable \(A\) in the equation in \(\mathrm{Re}-\) mark 2.

Second order coefficient for a temperature dependent heat capacity at constant pressure for up to eight different gases. These are denoted by the variable \(C\) in the equation in Remark 2.

\section*{Remarks:}
1. Methods for Defining Gas Properties. There are 2 methods of defining the gas properties for the mixture. If RUNIV is BLANK or ZERO, Method (A) is used to define constant heat capacities where per-mass unit values of \(C_{v}\) and \(C_{p}\) are input. Only Cards 2a. 1 and 2a. 2 are required for this method. Method (B) is used to define constant or temperature dependent heat capacities where permole unit values of \(C_{p}\) are input. Cards 2 b .1 through 2 b .4 are required for this method.
2. Temperature Dependent Heat Capacity. The per-mass-unit, temperature-dependent, constant-pressure heat capacity is
\[
C_{p}(T)=\frac{\left[\text { CPmole }+B \times T+C \times T^{2}\right]}{\text { MOLWT }}
\]

See Table M148-1.
\begin{tabular}{|c|c|c|c|}
\hline\(C_{p}(T)\) & CPmole & \(B\) & \(C\) \\
\hline\(\frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{~K}}\) & \(\frac{\mathrm{~J}}{\text { mole K }}\) & \(\frac{\mathrm{J}}{\text { mole K }}\) & \\
\hline
\end{tabular}

Table M148-1. Standard SI units
3. Initial Temperature and Density. The initial temperature and the density of the gas species present in a mesh or part at time zero is specified by the keyword *INITIAL_GAS_MIXTURE.
4. Temperature and Energy Conservation. The ideal gas mixture is assumed to be thermal equilibrium, that is, all species are at the same temperature (\(T\)). The gases in the mixture are also assumed to follow Dalton's Partial Pressure Law, \(P=\sum_{i}^{\text {ngas }} P_{i}\). The partial pressure of each gas is then \(P_{i}=\rho_{i} R_{\text {gas }_{i}} T\) where \(R_{\text {gas }_{i}}=\) \(\frac{R_{\text {univ }}}{M W}\). The individual gas species temperature equals the mixture temperature. The temperature is computed from the internal energy where the mixture internal energy per unit volume is used,
\[
\begin{gathered}
e_{V}=\sum_{i}^{\text {ngas }} \rho_{i} C_{V_{i}} T_{i}=\sum_{i}^{\text {ngas }} \rho_{i} C_{V_{i}} T \\
T=T_{i}=\frac{e_{V}}{\sum_{i}^{\text {ngas }} \rho_{i} C_{V_{i}}}
\end{gathered}
\]

In general, the advection step conserves momentum and internal energy, but not kinetic energy. This can result in energy lost in the system and lead to a pressure drop. In *MAT_GAS_MIXTURE the dissipated kinetic energy is automatically converted into heat (internal energy). Thus, in effect the total energy is conserved instead of conserving just the internal energy. This numerical scheme has been shown to improve accuracy in some cases. However, the user should always be vigilant and check the physics of the problem closely.
5. IADIAB. As an example, consider an airbag surrounded by ambient air. As the inflator gas flows into the bag, the ALE elements cut by the airbag fabric shell elements will contain some inflator gas inside and some ambient air outside. The multi-material element treatment is not perfect. Consequently the temperature of the outside air may be made artificially high after the multi-material element treatment. To prevent the outside ambient air from getting artificially high \(T\), set IADIAB = 1 for the ambient air outside. A simple adiabatic compression equation is then assumed for the outside air. The use of this flag may be needed, but only when that air is modeled by the *MAT_GAS_MIXTURE card.

\section*{Example:}

Consider a tank test model where the Lagrangian tank (Part S1) is surrounded by an ALE air mesh (Part H4 = AMMGID 1). There are 2 ALE parts which are defined but initially have no corresponding mesh: part 5 (\(\mathrm{H} 5=\) AMMGID 2) is the resident gas inside the tank at \(t=0\), and part \(6(\mathrm{H6}=\) AMMGID 2) is the inflator gas(es) which is injected into the tank when \(t>0\). AMMGID stands for ALE Multi-Material Group ID. Please see the figure and input below. The *MAT_GAS_MIXTURE input defines the gas properties of

ALE parts H5 \& H6. The *MAT_GAS_MIXTURE card input for both methods (A) and (B) are shown below.

The *INITIAL_GAS_MIXTURE keyword input is also shown below. It basically specifies that "AMMGID 2 may be present in part or mesh H4 at \(t=0\), and the initial density of this gas is defined in the rho1 position which corresponds to the \(1^{\text {st }}\) material in the mixture (or H5, the resident gas)."

\section*{Example Configuration:}

\section*{Sample Input:}

\section*{*MAT_EMMI}

This is Material Type 151. The Evolving Microstructural Model of Inelasticity (EMMI) is a temperature and rate-dependent state variable model developed to represent the large deformation of metals under diverse loading conditions [Marin et al. 2006]. It includes various state variables to characterize effects of microstructural features, such as dislocation creation or annihilation. This model is available for 3D solid elements, 2D solid elements and thick shell forms 3 and 5.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RH0 & E & PR & & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline RGAS & BVECT & D0 & QD & CV & ADRAG & BDRAG & DMTHTA \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DMPHI & DNTHTA & DNPHI & THETAO & THETAM & BETAO & BTHETA & DMR \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DNUC1 & DNUC2 & DNUC3 & DNUC4 & DM1 & DM2 & DM3 & DM4 \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DM5 & Q1ND & Q2ND & Q3ND & Q4ND & CALPHA & CKAPPA & C1 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C2ND & C3 & C4 & C5 & C6 & C7ND & C8ND & C9ND \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C10 & A1 & A2 & A3 & A4 & A_XX & A_YY & A_ZZ \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A_XY & A_YZ & A_XZ & ALPHXX & ALPHYY & ALPHZZ & ALPHXY & ALPHYZ \\
\hline
\end{tabular}

Card 9. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHXZ & DKAPPA & PHIO & PHICR & DLBDAG & FACTOR & RSWTCH & DMGOPT \\
\hline
\end{tabular}

Card 10. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DELASO & DIMPLO & ATOL & RTOL & DINTER & & & \\
\hline
\end{tabular}

Card 11. This card is required. Leave this card blank.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RH0 & E & PR & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RHO Material density
E Young's modulus
PR Poisson's ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RGAS & BVECT & D0 & QD & CV & ADRAG & BDRAG & DMTHTA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

RGAS Universal gas constant
BVECT Burger's vector
D0 Pre-exponential diffusivity coefficient
QD Activation energy

\section*{*MAT_EMMI \\ VARIABLE \\ CV}
\begin{tabular}{ll}
ADRAG & Drag intercept \\
BDRAG & Drag coefficient
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DMPHI & DNTHTA & DNPHI & THETAO & THETAM & BETAO & BTHETA & DMR \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

DMPHI

DNTHTA

DNPHI
THETA0
THETAM

BETA0
BTHETA
DMR

DMTHTA Shear modulus temperature coefficient

\section*{DESCRIPTION}

Specific heat at constant volume
Drag intercept
Drag coefficient

\section*{VARIABLE}

DNUC2
DNUC3
DNUC4
DM1 Coefficient of yield temperature dependence
DM2 Coefficient of yield temperature dependence
DM3 Coefficient of yield temperature dependence
DM4 Coefficient of yield temperature dependence
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DM5 & Q1ND & Q2ND & Q3ND & Q4ND & CALPHA & CKAPPA & C1 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

DM5
Q1ND
Dimensionless activation energy, \(Q_{1}\), for \(f\)
Q2ND Dimensionless activation energy, \(Q_{2}\), for \(r_{d}\)
Q3ND Dimensionless activation energy, \(Q_{3}\), for \(R_{d}\)
Q4ND Dimensionless activation energy, \(Q_{4}\), for \(R_{s}\)
CALPHA Coefficient for backstress, \(\alpha\)
CKAPPA Coefficient for internal stress, \(\kappa\)
C1 Parameter, \(c_{1}\), for flow rule exponent, \(n\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C2ND & C3 & C4 & C5 & C6 & C7ND & C8ND & C9ND \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
C2ND

C3

C4
C5
C6

C7ND

C8ND
C9ND

\section*{DESCRIPTION}

Parameter, \(c_{2}\), for transition rate \(f\)
Parameter, \(c_{3}\), for alpha dynamic recovery, \(r_{d}\)
Parameter, \(c_{4}\), for alpha hardening, \(h\)
Parameter, \(c_{5}\), for kappa dynamic recovery, \(R_{d}\)
Parameter, \(c_{6}\), for kappa hardening, \(H\)
Parameter, \(c_{7}\), kappa static recovery, \(R_{s}\)
Parameter, \(c_{8}\), for yield
Parameter, \(c_{9}\), for temperature dependence of flow rule exponent, n
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C10 & A1 & A2 & A3 & A4 & A_XX & A_YY & A_ZZ \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

C10
A1

A2

A3
A4
A_XX

Initial structure tensor component

\section*{VARIABLE}

\section*{DESCRIPTION}

A_YY Initial structure tensor component
A_ZZ Initial structure tensor component
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A_XY & A_YZ & A_XZ & ALPHXX & ALPHYY & ALPHZZ & ALPHXY & ALPHYZ \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

A_XY Initial structure tensor component
A_YZ Initial structure tensor component
A_XZ
Initial structure tensor component

ALPHXX Initial backstress component
ALPHYY Initial backstress component
ALPHZZ Initial backstress component
ALPHXY Initial backstress component
ALPHYZ Initial backstress component
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHXZ & DKAPPA & PHIO & PHICR & DLBDAG & FACTOR & RSWTCH & DMGOPT \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
ALPHXZ
DKAPPA Initial isotropic internal stress
PHI0 Initial isotropic porosity

\section*{VARIABLE}

PHICR
DLBDAG
FACTOR

RSWTCH

DMGOPT

\section*{DESCRIPTION}

Critical cutoff porosity
Slip system geometry parameter
Fraction of plastic work converted to heat, adiabatic
Rate sensitivity switch
Damage model option parameter:
EQ.1.0: Pressure independent Cocks/Ashby 1980
EQ.2.0: Pressure dependent Cocks/Ashby 1980
EQ.3.0: Pressure dependent Cocks 1989
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DELASO & DIMPLO & ATOL & RTOL & DINTER & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DELASO

DIMPLO Implementation option flag:
EQ.1.0: Combined viscous drag and thermally activated dislocation motion

EQ.2.0: Separate viscous drag and thermally activated dislocation motion

ATOL Absolute error tolerance for local Newton iteration
RTOL Relative error tolerance for local Newton iteration
DNITER Maximum number of iterations for local Newton iteration

Leave this card blank (but include it!).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & & \\
Type & & & & & & & & \\
\hline
\end{tabular}

\section*{Remarks:}
1. EMMI Plasticity Model. The following equations summarize the evolution equations and material functions for the EMMI model. See [Marin et al 2006] for more details.
\[
\begin{gathered}
\stackrel{\nabla}{\alpha}=h \mathbf{d}^{p}-r_{d} \dot{\bar{\varepsilon}}^{p} \bar{\alpha} \boldsymbol{\alpha} \\
\dot{\kappa}=\left(H-R_{d} \kappa\right) \dot{\bar{\varepsilon}}^{p}-R_{s} \kappa \sinh \left(Q_{s} \kappa\right) \\
\mathbf{d}^{p}=\sqrt{\frac{3}{2}} \dot{\bar{\varepsilon}}^{p} \mathbf{n}, \dot{\bar{\varepsilon}}^{p}=f \sinh ^{n}\left[\left\langle\frac{\bar{\sigma}}{\kappa+Y}-1\right\rangle\right]
\end{gathered}
\]
\begin{tabular}{|c|c|c|}
\hline\(\dot{\bar{\varepsilon}}^{p}-\) equation & \(\alpha\) - equation & \(\kappa\) - equation \\
\hline\(f=c_{2} \exp \left(\frac{Q_{1}}{\theta}\right)\) & \(r_{d}=c_{3} \exp \left(\frac{-Q_{2}}{\theta}\right)\) & \(R_{d}=c_{5} \exp \left(\frac{-Q_{3}}{\theta}\right)\) \\
\(n=\frac{c_{9}}{\theta}-c_{1}\) & \(h=c_{4} \hat{\mu}(\theta)\) & \(H=c_{6} \hat{\mu}(\theta)\) \\
\(Y=c_{8} \hat{Y}(\theta)\) & \(R_{s}=c_{7} \exp \left(\frac{-Q_{4}}{\theta}\right)\) \\
& & \(Q_{s}=c_{10} \exp \left(\frac{-Q_{5}}{\theta}\right)\) \\
\hline
\end{tabular}

Table M151-1. Plasticity Material Functions of EMMI Model.
2. Void Growth. The following equations extend the EMMI material model for void growth. See [Marin et al 2006] for more details
\[
\begin{gathered}
\dot{\varphi}=\frac{3}{\sqrt{2}}(1-\varphi) \hat{G}\left(\bar{\sigma}_{e q}, \bar{p}, \varphi\right) \dot{\varepsilon}^{p} \\
\hat{G}\left(\bar{\sigma}_{e q}, \bar{p}_{\tau}, \varphi\right)=\frac{3}{\sqrt{3}}\left[\frac{1}{(1-\varphi) m+1}-1\right] \sinh \left[\frac{2(2 m-1)}{2 m+1} \frac{\langle\bar{p}\rangle}{\bar{\sigma}_{e q}}\right]
\end{gathered}
\]

\section*{*MAT_DAMAGE_3}

This is Material Type 153. This model has up to 10 back stress terms for kinematic hardening combined with isotropic hardening and a damage model for modeling low cycle fatigue and failure. The model is based on Huang [2009]. It is available for solid, shell, thick shell, and beam elements. This model is supported for both explicit and implicit analysis. For beams the model is restricted to 3 back stress terms, temperature independent data and \(K H F L G=0\); while for solids, shells, and thick shells up to 10 back stress terms can be used, including temperature effects and parameter fit from uniaxial cyclic stress-strain tests (KHFLG > 0).

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & HARDI & BETA & LCSS \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HARDK1 & GAMMA1 & HARDK2 & GAMMA2 & SRC & SRP & HARDK3 & GAMMA3 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IDAM & IDS & IDEP & EPSD & S & T & DC & KHFLG \\
\hline
\end{tabular}

Card 4a. This card is only read when \(K H F L G=0\). It is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HARDK4 & GAMMA4 & & & & & & \\
\hline
\end{tabular}

Card 4b. This card is included if KHFLG \(>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCKH & NKH & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & HARDI & BETA & LCSS \\
Type & A & F & F & F & F & F & F & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label must be specified (see *PART). \\
\hline RO & Mass density, \(\rho\) \\
\hline E & Young's modulus, \(E\) \\
\hline & LT.0: -E gives the curve ID for \(E\) as a function of temperature. \\
\hline PR & Poisson's ratio, \(v\) \\
\hline & LT.0: -PR gives the curve ID for \(v\) as a function of temperature. \\
\hline SIGY & Initial yield stress, \(\sigma_{y 0}(\) ignored if \(\mathrm{LCSS}>0)\) \\
\hline HARDI & Isotropic hardening modulus, \(H\) (ignored if LCSS > 0) \\
\hline BETA & Isotropic hardening parameter, \(\beta\). Set \(\beta=0\) for linear isotropic hardening. (Ignored if LCSS \(>0\) or if \(\mathrm{HARDI}=0\).) \\
\hline LCSS & Load curve or table ID defining effective stress as a function of effective plastic strain (and temperature in the table case) for isotropic hardening. For a table each curve corresponds to a temperature. The first abscissa value (effective plastic strain) in each curve must be zero corresponding to the initial yield stress. The first ordinate value in each curve is the initial yield stress. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HARDK1 & GAMMA1 & HARDK2 & GAMMA2 & SRC & SRP & HARDK3 & GAMMA3 \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

HARDK \(j\)

\section*{DESCRIPTION}

Kinematic hardening modulus, \(C_{j}\)
LT.O: -HARDK \(j\) gives the curve ID for \(C_{j}\) as a function of temperature.

GAMMA \(j \quad\) Kinematic hardening parameter, \(\gamma_{j}\). Set \(\gamma_{j}=0\) for linear kinematic hardening. Ignored if \(\mathrm{HARDK} j=0\).

\section*{VARIABLE}

SRC

SRP

\section*{DESCRIPTION}

LT.O: -GAMMA \(j\) gives the curve ID for \(\gamma_{j}\) as a function of temperature.

Strain rate parameter, \(C\), for Cowper Symonds strain rate model; see remarks below. If zero, rate effects are not considered.

LT.O: -SRC gives the curve ID for \(C\) as a function of temperature.
Strain rate parameter, \(p\), for Cowper Symonds strain rate model; see remarks below. If zero, rate effects are not considered.

LT.0: -SRP gives the curve ID for \(p\) as a function of temperature.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & IDAM & IDS & IDEP & EPSD & S & T & DC & KHFLG \\
Type & I & I & I & F & F & F & F & I \\
\hline
\end{tabular}

VARIABLE
IDAM

IDS

IDEP Damaged plastic strain:
EQ.0: Plastic strain is accumulated, \(r=\int \dot{\bar{\varepsilon}}^{p l}\).
EQ.1: Damaged plastic strain is accumulated, \(r=\int(1-D) \dot{\bar{\varepsilon}}^{p l}\).
EPSD Damage threshold, \(r_{d}\). Damage accumulation begins when \(r>r_{d}\).
S Damage material constant, \(S\). Default \(=\sigma_{y 0} / 200\).
T
Output stress flag:
EQ.O: Undamaged stress, \(\tilde{\sigma}\), is output.
EQ.1: Damaged stress, \(\tilde{\sigma}(1-D)\), is output.

Damage material constant, \(t\). Default \(=1\).

\section*{VARIABLE}

DC

KHFLG Kinematic hardening flag:
EQ.O: Use kinematic hardening parameters HARDKj and GAMMA \(j\) (default).
EQ.1: Kinematic hardening parameters \(\left(C_{j}, \gamma_{j}\right)\) given by load curve or table if temperature is considered. NKH data points used (with a maximum of 10) in each curve. HARDK \(j\) and GAMMAj fields are ignored.
EQ.2: Fits NKH kinematic hardening parameters (\(C_{j}, \gamma_{j}\)) to uniaxial stress-strain data at constant temperature for a halfcycle, meaning it fits
\[
\sigma_{i}=\sigma_{y}\left(\varepsilon_{i}^{p}\right)+\sum_{j=1}^{N K H} \frac{C_{j}}{\gamma_{j}}\left(1-\exp \left(-\gamma_{j} \varepsilon_{i}^{p}\right)\right)
\]
to stress as a function of plastic strain data. The stress, \(\sigma_{i}\), can be given in field LCKH as a function of strain, \(\varepsilon_{i}^{p}\), in a load curve or as a function of strain and temperature, \(T\), in a table. HARDK \(j\) and GAMMA \(j\) fields are ignored.
EQ.3: Fits NKH kinematic hardening parameters (\(C_{j}, \gamma_{j}\)) to uniaxial stress-strain data for the tensile part of a stabilized cycle, meaning it fits
\[
\sigma_{i}=\frac{\sigma_{1}+\sigma_{N}}{2}+\sum_{j=1}^{N K H} \frac{C_{j}}{\gamma_{j}}\left(1-2 \exp \left(-\gamma_{j} \varepsilon_{i}^{p}\right)\right)
\]
to \(N\) stress as a function of plastic strain data. This data is given by LCKH as either a load curve or table depending on if temperature is included. Here the first data point is chosen such that \(\varepsilon_{1}^{p}=0\). HARDK \(j\) and GAMMA \(j\) fields are ignored.
EQ.4: Fits NKH kinematic hardening parameters (\(C_{j}, \gamma_{j}\)) to uniaxial stress-strain data for different stabilized cycles, that is, it fits
\[
\sigma_{i}=\sigma_{y}\left(\varepsilon_{i}^{p}\right)+\sum_{j=1}^{N K H} \frac{C_{j}}{\gamma_{j}} \tanh \left(\gamma_{j} \varepsilon_{i}^{p}\right),
\]
to max stress as a function of max plastic strain data over \(N\) cycles. This data is given by LCKH as either a load

\section*{DESCRIPTION}
curve or table depending on if temperature is defined. HARDK \(j\) and GAMMAj fields are ignored.

\section*{Optional Card 4 (read only if KHFLG = 0)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HARDK4 & GAMMA4 & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

VARIABLE
HARDK4

GAMMA4

\section*{DESCRIPTION}

Kinematic hardening modulus, \(C_{4}\)
LT.O: -HARDK4 gives the curve ID for \(C_{4}\) as a function of temperature.

Kinematic hardening parameter, \(\gamma_{4}\). Set \(\gamma_{4}=0\) for linear kinematic hardening. Ignored if \(\mathrm{HARDK} 4=0\).

LT.O: -GAMMA4 gives the curve ID for \(\gamma_{4}\) as a function of temperature.

Card 4 (included if and only if KHFLG > 0)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCKH & NKH & & & & & & \\
Type & I & 1 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCKH

\section*{DESCRIPTION}

Load curve or table ID defining kinematic hardening when KHFLG \(>0\). A table is used when temperature dependence is considered. Depending on KHFLG, it gives either \(\left(C_{j}, \gamma_{j}\right)\) values or stress as a function of plastic strain with optional temperature dependence.

NKH Number of kinematic hardening parameters when KHFLG > 0. Up to 10 back stresses can be used.

\section*{Model Description:}

This model is based on the work of Lemaitre [1992], and Dufailly and Lemaitre [1995]. It is a pressure-independent plasticity model with the yield surface defined by the function
\[
F=\bar{\sigma}-\sigma_{y}=0,
\]
where \(\sigma_{y}\) is uniaxial yield stress,
\[
\sigma_{y}=\sigma_{y 0}+\frac{H}{\beta}[1-\exp (-\beta r)] .
\]

By setting \(\beta=0\), a linear isotropic hardening is obtained
\[
\sigma_{y}=\sigma_{y 0}+H r
\]
where \(\sigma_{y 0}\) is the initial yield stress. In the above, \(\bar{\sigma}\) is the equivalent von Mises stress, with respect to the deviatoric effective stress,
\[
\mathrm{s}_{\mathrm{e}}=\operatorname{dev}[\widetilde{\sigma}]-\alpha=\mathrm{s}-\alpha
\]

Here \(\boldsymbol{s}\) is deviatoric stress and \(\alpha\) is the back stress, which is the sum of up to four terms according to:
\[
\alpha=\sum_{j} \alpha_{j}
\]
\(\widetilde{\sigma}\) is effective stress (undamaged stress), based on Continuum Damage Mechanics model [Lemaitre 1992],
\[
\widetilde{\sigma}=\frac{\sigma}{1-D} .
\]

Here \(D\) is the isotropic damage scalar, which is bounded by 0 and 1
\[
0 \leq D \leq 1
\]
\(D=0\) represents a damage-free material RVE (representative volume element), while \(D=1\) represents a fully broken material RVE in two parts. In fact, fracture occurs when \(D=D_{c}<1\), modeled as element removal. The evolution of the isotropic damage value related to ductile damage and fracture (the case where the plastic strain or dissipation is much larger than the elastic one, [Lemaitre 1992]) is defined as
\[
\dot{D}=\left\{\begin{array}{cl}
\left(\frac{Y}{S}\right)^{t} \dot{\bar{\varepsilon}}^{\mathrm{pl}} & \text { when } r>r_{d} \text { and } \frac{\sigma_{m}}{\sigma_{\mathrm{eq}}}>-\frac{1}{3} \\
0 & \text { otherwise }
\end{array}\right.
\]
where \(\sigma_{m} / \sigma_{e q}\) is the stress triaxiality, \(r_{d}\) is damage threshold, \(S\) is a material constant, and \(Y\) is strain energy density release rate:
\[
Y=\frac{1}{2} \varepsilon^{\mathrm{el}}: \mathbf{D}^{\mathrm{el}}: \varepsilon^{\mathrm{el}}
\]

Here \(\mathbf{D}^{\mathrm{el}}\) represents the fourth-order elasticity tensor and \(\varepsilon^{\text {el }}\) is elastic strain. In the above, \(t\) is a material constant, introduced by Dufailly and Lemaitre [1995], to provide an
additional degree of freedom for modeling low-cycle fatigue (\(t=1\) in Lemaitre [1992]). Dufailly and Lemaitre [1995] also proposed a simplified method to fit experimental results and get \(S\) and \(t\).

The equivalent Mises stress is defined as
\[
\bar{\sigma}\left(\mathbf{s}_{e}\right)=\sqrt{\frac{3}{2} \mathbf{s}_{e}: \mathbf{s}_{e}}=\sqrt{\frac{3}{2}}\left\|\mathbf{s}_{e}\right\| .
\]

The model assumes associated plastic flow
\[
\dot{\varepsilon}^{\mathrm{pl}}=\frac{\partial F}{\partial \sigma} d \lambda=\frac{3}{2} \frac{\mathbf{s}_{e}}{\bar{\sigma}} d \lambda,
\]
where \(d \lambda\) is the plastic consistency parameter. The evolution of the kinematic component of the model is defined as [Armstrong and Frederick 1966]:
\[
\dot{\alpha}_{j}= \begin{cases}\frac{2}{3} C_{j} \dot{\varepsilon}^{\mathrm{pl}}-\gamma_{j} \alpha_{j} \dot{\bar{\varepsilon}}^{\mathrm{pl}} & \text { if IDEP }=0 \\ (1-D)\left(\frac{2}{3} C_{j} \dot{\varepsilon}^{\mathrm{pl}}-\gamma_{j} \alpha_{j} \dot{\varepsilon}^{\mathrm{pl}}\right) & \text { if IDEP }=1\end{cases}
\]

The damaged plastic strain is accumulated as
\[
r= \begin{cases}\int \dot{\bar{\varepsilon}}^{\mathrm{pl}} & \text { if IDEP }=0 \\ \int(1-D) \dot{\bar{\varepsilon}}^{\mathrm{pl}} & \text { if IDEP }=1\end{cases}
\]
where \(\dot{\bar{\varepsilon}}^{\mathrm{pl}}\) is the equivalent plastic strain rate
\[
\dot{\bar{\varepsilon}}^{\mathrm{pl}}=\sqrt{\frac{2}{3} \dot{\varepsilon}^{\mathrm{pl}}: \dot{\varepsilon}^{\mathrm{pl}}} .
\]
\(\dot{\varepsilon}^{\mathrm{pl}}\) represents the rate of plastic flow.
Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate.

\section*{Uniaxial cyclic tension and compression:}

This material can be used to model cyclic hardening plasticity, including effects known as plastic shakedown and strain racheting. To understand how the plasticity parameters qualitatively influence the behavior in uniaxial tension and compression, we restrict ourselves to a discussion concerning linear isotropic hardening with initial yield \(\sigma_{Y}\) and hardening modulus \(H\). We also only include two kinematic hardening terms. For the
kinematic part, we use one linear term with hardening \(C_{0}\) (and decay coefficient \(\gamma_{0}=0\)) and one combined term with hardening \(C\) and decay coefficient \(\gamma\). The elastic Young's modulus is denoted \(E\), and we neglect any forms of temperature or rate effects.

While this is merely an attempt to explain the phenomena, estimating the parameters that reflect the actual behavior of the physical material may be difficult. Because of this, we recommend the fitting options provided by KHFLG, where even the effects of temperature can be accounted for.

\section*{Strain induced deformation}

Consider the cyclic deformation depicted in Figure M153-1 in which the uniaxial strain ranges between \(\underline{\varepsilon}\) and \(\bar{\varepsilon}\). Two subsequent stress-strain cycles are shown.

If the isotropic hardening modulus \(H=0\), then the cycles are identical. For nonzero hardening \(H\), the stress level increases with each cycle and the strain width indicated by \(\overleftrightarrow{\varepsilon}\) decreases. As the yield surface expands, the isotropic hardening effect diminishes, and we tend towards a stable cycle; this phenomenon is called plastic shakedown.

If both \(H\) and \(C_{0}\) are zero, then the end of each cycle tends towards ideal plastic since the presence of a nonzero \(\gamma\) saturates the level of back stress and consequently the stress \(\sigma\) itself. This physical phenomenon is unlikely. Therefore, we recommend having at least one linear kinematic hardening term present in combination with some isotropic hardening for a realistic behavior.

\section*{Stress induced deformation}

For stress induced deformation, we impose a cyclic stress between \(\underline{\sigma}\) and \(\bar{\sigma}\) as shown in Figure M153-2 and investigate two subsequent stress-strain cycles. In this case a combination of isotropic hardening and nonlinear kinematic hardening may cause a drift in strain. This drift is referred to as ratcheting strain and may be considered a creep phenomenon. Even without the isotropic hardening \(H\), a nonzero mean stress, \((\bar{\sigma}+\underline{\sigma}) / 2\), in the cycle causes a ratcheting effect. We again recommend using combinations of isotropic, linear and nonlinear kinematic hardening for accurate predictions of this creep behavior.

Figure M153-1. Schematic of Uniaxial Plastic Shakedown Phenomenon

Strain ratcheting caused by nonlinear kinematic hardening

Figure M153-2. Schematic of Uniaxial Strain Ratcheting Phenomenon

\section*{Material Model Comparison:}

Table M153-1 below shows the difference between MAT 153 (for KHFLG = 0) and MAT 104/105. MAT 153 is less computationally expensive than MAT 104/105. Kinematic hardening, which already exists in MAT 103, is included in MAT 153 but not in MAT 104/105.
\begin{tabular}{|c|c|c|c|}
\hline & MAT 153 & MAT 104 & MAT 105 \\
\hline Computational cost & 1.0 & 3.0 & 3.0 \\
\hline Isotropic hardening & One component & Two components & One component \\
\hline Kinematic hardening & Four components & N/A & N/A \\
\hline Output stress & \[
\begin{aligned}
& \operatorname{IDS}=0 \Rightarrow \tilde{\sigma} \\
& \operatorname{IDS}=1 \Rightarrow \tilde{\sigma}(1-D)
\end{aligned}
\] & \(\tilde{\sigma}(1-D)\) & \(\tilde{\sigma}(1-D)\) \\
\hline Damaged plastic strain & \[
\begin{gathered}
\hline \text { IDEP }=0 \Rightarrow \\
r=\int \dot{\bar{\varepsilon}}^{\mathrm{pl}} \\
\mathrm{IDEP}=1 \Rightarrow \\
r=\int(1-D) \dot{\bar{\varepsilon}}^{\mathrm{pl}}
\end{gathered}
\] & \(r=\int(1-D) \dot{\bar{\varepsilon}}^{\mathrm{pl}}\) & \(r=\int(1-D) \dot{\bar{\varepsilon}}^{\mathrm{pl}}\) \\
\hline Accumulation when & \(\frac{\sigma_{m}}{\sigma_{e q}}>-\frac{1}{3}\) & \(\sigma_{1}>0\) & \(\sigma_{1}>0\) \\
\hline Isotropic plasticity & Yes & Yes & Yes \\
\hline Anisotropic plasticity & No & Yes & No \\
\hline Isotropic damage & Yes & Yes & Yes \\
\hline Anisotropic damage & No & Yes & No \\
\hline
\end{tabular}

Table M153-1. Differences between MAT 153 and MAT 104/105

\section*{History Variables:}

Additional history variables, which can be written by using variables NEIPH and NEIPS in *DATABASE_EXTENT_BINARY, are as follows:
\begin{tabular}{|c|l|}
\hline History Variable \# & Description \\
\hline \hline 1 & Damage, \(D\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 2 & Back stress term 1 in the 11-direction \\
\hline 3 & Back stress term 1 in the 22-direction \\
\hline 4 & Back stress term 1 in the 12-direction \\
\hline 5 & Back stress term 1 in the 23-direction \\
\hline 6 & Back stress term 1 in the 31-direction \\
\hline 7 & Back stress term 2 in the 11-direction \\
\hline 8 & Back stress term 2 in the 22-direction \\
\hline 9 & Back stress term 2 in the 12-direction \\
\hline 10 & Back stress term 2 in the 23-direction \\
\hline 11 & Back stress term 2 in the 31-direction \\
\hline 12 & Back stress term 3 in the 11-direction \\
\hline 13 & Back stress term 3 in the 22-direction \\
\hline 14 & Back stress term 3 in the 12-direction \\
\hline 15 & Back stress term 3 in the 23-direction \\
\hline 16 & Back stress term 3 in the 31-direction \\
\hline 17 & Back stress term 4 in the 11-direction \\
\hline 18 & Back stress term 4 in the 22-direction \\
\hline 19 & Back stress term 4 in the 12-direction \\
\hline 20 & Back stress term 4 in the 23-direction \\
\hline 21 & Back stress term 4 in the 31-direction \\
\hline
\end{tabular}

\section*{*MAT_DESHPANDE_FLECK_FOAM}

This is Material Type 154 for solid elements. This material is for modeling aluminum foam used as a filler material in aluminum extrusions to enhance the energy absorbing capability of the extrusion. Such energy absorbers are used in vehicles to dissipate energy during impact. This model was developed by Reyes, Hopperstad, Berstad, and Langseth [2002] and is based on the foam model by Deshpande and Fleck [2000].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RH0 & E & PR & ALPHA & GAMMA & & \\
Type & A & F & F & F & F & F & & \\
Default & none & none & none & none & none & none & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPSD & ALPHA2 & BETA & SIGP & DERFI & CFAIL & PFAIL & NUM \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & 1 \\
Default & none & none & none & none & none & \(\downarrow\) & \(\downarrow\) & 1000 \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
E & Mass density \\
PR & Young's modulus \\
ALPHA & Coisson's ratio \\
GAMMA & Material parameter, \(\gamma ;\) see Remarks. \\
EPSD & Densification strain
\end{tabular}

\section*{VARIABLE}

ALPHA2 Material parameter, \(\alpha_{2}\); see Remarks.
BETA Material parameter, \(\beta\); see Remarks.
SIGP Material parameter, \(\sigma_{p}\); see Remarks.
DERFI Type of derivation used in material subroutine:
EQ.O: Numerical derivation
EQ.1: Analytical derivation
CFAIL Tensile volumetric strain at failure. Default is no failure due to tensile volumetric strain.

PFAIL Maximum principal stress at failure. Must be sustained NUM (\(>0\)) timesteps to fail element. Default is no failure due to maximum principal stress.

NUM Number of timesteps at or above PFAIL to trigger element failure

\section*{Remarks:}

The yield stress function, \(\Phi\), is defined by:
\[
\Phi=\hat{\sigma}-\sigma_{y}
\]

The equivalent stress, \(\hat{\sigma}\), is given by:
\[
\hat{\sigma}^{2}=\frac{\sigma_{V M}^{2}+\alpha^{2} \sigma_{m}^{2}}{1+\left(\frac{\alpha}{3}\right)^{2}}
\]
where, \(\sigma_{V M}\), is the von Mises effective stress:
\[
\sigma_{V M}=\sqrt{\frac{2}{3} \sigma^{\mathrm{dev}}: \sigma^{\mathrm{dev}}}
\]

In this equation \(\sigma_{m}\) and \(\sigma^{\operatorname{dev}}\) are the mean and deviatoric stress:
\[
\sigma^{\mathrm{dev}}=\sigma-\sigma_{m} \mathrm{I}
\]

The yield stress, \(\sigma_{y}\), can be expressed as:
\[
\sigma_{y}=\sigma_{p}+\gamma \frac{\hat{\varepsilon}}{\varepsilon_{D}}+\alpha_{2} \ln \left[\frac{1}{1-\left(\frac{\hat{\varepsilon}}{\varepsilon_{D}}\right)^{\beta}}\right] .
\]

Here, \(\sigma_{p}, \alpha_{2}, \gamma\), and \(\beta\) are material parameters. The densification strain \(\varepsilon_{D}\) is defined as:
\[
\varepsilon_{D}=-\ln \left(\frac{\rho_{f}}{\rho_{f 0}}\right)
\]
where \(\rho_{f}\) is the foam density and \(\rho_{f 0}\) is the density of the virgin material.

\section*{*MAT_PLASTICITY_COMPRESSION_TENSION_EOS}

This is Material Type 155. An isotropic elastic-plastic material where unique yield stress as a function of plastic strain curves can be defined for compression and tension. Also, failure can occur based on a plastic strain or a minimum time step size. Rate effects on the yield stress are modeled either by using the Cowper-Symonds strain rate model or by using two load curves that scale the yield stress values in compression and tension, respectively. Material rate effects, which are independent of the plasticity model, are based on a 6-term Prony series Maxwell mode that generates an additional stress tensor. The viscous stress tensor is superimposed on the stress tensor generated by the plasticity. Pressure is defined by an equation of state, which is required to utilize this model. This model is applicable to solid elements and SPH.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & \(E\) & PR & C & \(P\) & FAIL & TDEL \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCIDC & LCIDT & LCSRC & LCSRT & SRFLAG & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PC & PT & PCUTC & PCUTT & PCUTF & SCALEP & SCALEE & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline K & & & & & & & \\
\hline
\end{tabular}

Card 5. This card is optional. Up to six cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{G} i\) & BETA & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & C & P & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & 0.0 & 0.0 & \(10^{20}\) & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
C Strain rate parameter, C; see Remarks below.
P Strain rate parameter, \(p\); see Remarks below.
FAIL Failure flag:
LT.O.O: User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure

EQ.0.0: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL Minimum time step size for automatic element deletion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCIDC & LCIDT & LCSRC & LCSRT & SRFLAG & & & \\
Type & 1 & 1 & 1 & 1 & F & & & \\
Default & 0 & 0 & 0 & 0 & 0.0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCIDC

LCIDT

LCSRC Optional load curve ID defining strain rate scaling effect on yield stress when the material is in compression (compressive yield stress scaling factor as a function of strain rate).

LCSRT Optional load curve ID defining strain rate scaling effect on yield stress when the material is in tension (tensile yield stress scaling factor as a function of strain rate).

SRFLAG Formulation for rate effects:
EQ.0.0: Total strain rate
EQ.1.0: Deviatoric strain rate
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PC & PT & PCUTC & PCUTT & PCUTF & SCALEP & SCALEE & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

VARIABLE
PC

PT Tensile mean stress at which the yield stress follows load curve ID LCIDT.

Pressure cut-off in compression. When the pressure cut-off is reached, the deviatoric stress tensor is set to zero. The compressive pressure is not, however, limited to PCUTC. Like the yield stress, PCUTC is scaled to account for rate effects.

Pressure cut-off in tension. When the pressure cut-off is reached, the deviatoric stress tensor and tensile pressure is set to zero. Like the yield stress, PCUTT is scaled to account for rate effects.

Pressure cut-off flag:
EQ.0.0: inactive
EQ.1.0: active
Scale factor applied to the yield stress after the pressure cut-off is reached in either compression or tension. If SCALEP \(=0.0\) (default), the deviatoric stress is set to zero after the cut-off is reached.

SCALEE Scale factor applied to the yield stress after the strain exceeds the failure strain set by FAIL. If SCALEE \(=0.0\) (default), the deviatoric strain is set to zero if the failure strain is exceeded. If both SCALEP > 0 and SCALEE \(>0\) and both failure conditions are met, then the minimum scale factor is used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

VARIABLE
K

\section*{DESCRIPTION}

Optional bulk modulus for the viscoelastic material. If nonzero a Kelvin type behavior will be obtained. Generally, K is set to zero.

Viscoelastic Constant Cards. Card format for viscoelastic constants. Up to 6 cards may be input. The next keyword ("*") cards terminates this input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETA \(i\) & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Gi
BETA \(i \quad\) Optional shear decay constant for the \(i^{i \text { th }}\) term

\section*{Remarks:}

The effective yield stress as a function of effective plastic strain behavior follows a different curve in compression than it does in tension. Tension is determined by the sign of the mean stress where a positive mean stress (meaning a negative pressure) is indicative of tension. Two curves must be defined giving the yield stress as a function of effective plastic strain. One curve is for the tensile regime and the other curve is for the compressive regime.

Mean stress is an invariant which can be expressed as \(\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / 3\). PC and PT define a range of mean stress values within which interpolation is done between the tensile yield surface and compressive yield surface. PC and PT are not true material properties but are just a numerical convenience so that the transition from one yield surface to the other is not as abrupt as the sign of the mean stress changes. Both PC, PT, PCUTC, and PCUTT may all be input as positive values. It is implied that PC and PCUTC are compressive values and that PT and PCUTT are tensile values. The algebraic sign given these variables by the user is inconsequential.

Strain rate may be accounted for by using either two curves of yield stress scaling factor as a function of strain rate or a Cowper and Symonds model. The two curves in the former approach are used directly, that is, the curves are not rediscretized before being used by the material model. The Cowper and Symonds model scales the yield stress with the factor:
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate,
\[
\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}} .
\]

\section*{History Variables:}
\begin{tabular}{|c|l|}
\hline History Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline 4 & \begin{tabular}{l}
Tensile pressure cutoff (set to zero if \\
tensile or compressive failure occurs) \\
The cutoff flag, initially equals 1; set to \\
0 if tensile or compressive failure oc- \\
curs. \\
The failure mode flag \\
6
\end{tabular} \\
\multicolumn{3}{|c|}{\begin{tabular}{c}
EQ.0: No failure \\
EQ.1: Compressive failure \\
EQ.2: Tensile failure
\end{tabular}} \\
7 & EQ.3: Failure by plastic strain \\
\hline
\end{tabular}

\section*{*MAT_MUSCLE}

This is Material Type 156 for truss elements. This material is a Hill-type muscle model with activation and a parallel damper. Also, see *MAT_SPRING_MUSCLE (*MAT_S15) where a description of the theory is available.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & SNO & SRM & PIS & SSM & CER & DMP \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALM & SFR & SVS & SVR & SSP & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 1.0 & 1.0 & 1.0 & 0.0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
SNO

SRM
PIS

SSM

CER Constant, governing the exponential rise of SSP. Required if SSP = 0.0.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline DMP & Damping constant (stress \(\times\) time units) \\
\hline ALM & Activation level as a function of time: \\
\hline & LT.0.0: Absolute value gives load curve ID. \\
\hline & GE.0.0: Constant value of ALM is used. \\
\hline SFR & Scale factor for strain rate maximum as a function of activation level, \(a(t)\) : \\
\hline & LT.0.0: Absolute value gives load curve ID. \\
\hline & GE.0.0: Constant value of 1.0 is used. \\
\hline SVS & Active dimensionless tensile stress as a function of the stretch ratio, \(l / l_{\text {orig }}\) : \\
\hline
\end{tabular}

LT.0.0: Absolute value gives load curve ID.
GE.0.0: Constant value of 1.0 is used.

SVR Active dimensionless tensile stress as a function of the normalized strain rate, \(\dot{\bar{\varepsilon}}\) :

LT.0.0: Absolute value gives load curve ID.
GE.0.0: Constant value of 1.0 is used.
SSP Isometric dimensionless stress as a function of the stretch ratio, \(l / l_{\text {orig }}\), for the parallel elastic element:

LT.0.0: Absolute value gives load curve ID or table ID (see Remarks).

EQ.0.0: Exponential function is used (see Remarks).
GT.0.0: Constant value of 0.0 is used.

\section*{Remarks:}

The material behavior of the muscle model is adapted from *MAT_S15 (the spring muscle model) and treated here as a standard material. The initial length of muscle is calculated automatically. The force, relative length and shortening velocity are replaced by stress, strain, and strain rate. A new parallel damping element is added.

The strain \(\varepsilon\) and normalized strain rate \(\dot{\bar{\varepsilon}}\) are defined respectively as
\[
\begin{aligned}
\varepsilon & =\frac{l}{l_{\text {orig }}}-1 \\
& =\mathrm{SNO} \times \frac{l}{l_{0}}-1
\end{aligned}
\]
and,
\[
\begin{aligned}
\dot{\bar{\varepsilon}} & =\frac{l}{l_{\text {orig }}} \frac{\dot{\varepsilon}}{\dot{\varepsilon}_{\max }} \\
& =\mathrm{SNO} \times \frac{l}{l_{0}} \times \frac{\dot{\varepsilon}}{\mathrm{SFR} \times \mathrm{SRM}}
\end{aligned}
\]
where \(\dot{\varepsilon}=\Delta \varepsilon / \Delta t\) (current strain increment divided by current time step), \(l\) is the current muscle length, and \(l_{\text {orig }}\) is the original muscle length.

From the relation above, it is known:
\[
l_{\text {orig }}=\frac{l_{0}}{1+\varepsilon_{0}}
\]
where \(\varepsilon_{0}=\mathrm{SNO}-1\) and \(l_{0}\) is the muscle length at \(t=0\).
Stress of Contractile Element is:
\[
\sigma_{1}=\sigma_{\max } a(t) f\left(\frac{l}{l_{\text {orig }}}\right) g(\dot{\bar{\varepsilon}})
\]
where \(\sigma_{\max }=\) PIS, \(a(t)=\) ALM,\(f\left(l / l_{\text {orig }}\right)=\) SVS, and \(g(\dot{\bar{\varepsilon}})=\mathrm{SVR}\).
Stress of Passive Element is:
\[
\sigma_{2}= \begin{cases}\sigma_{\max } h\left(\frac{l}{l_{\text {orig }}}\right) & \text { for curve } \\ \sigma_{\max } h\left(\dot{\bar{\varepsilon}}, \frac{l}{l_{\text {orig }}}\right) & \text { for table }\end{cases}
\]
where \(h=\) SSP. For SSP \(<0\), the absolute value gives a load curve ID or table ID. The load curve defines isometric dimensionless stress \(h\) as a function of stretch ratio \(l / l_{\text {orig }}\). The table defines for each normalized strain rate \(\dot{\bar{\varepsilon}}\) a load curve giving the isometric dimensionless stress \(h\) as a function of stretch ratio \(l / l_{\text {orig }}\) for that rate.

For the exponential relationship \((\mathrm{SSP}=0)\) :
\[
h\left(1 / l_{\text {orig }}\right)=\left\{\begin{array}{lll}
0 & 1 / l_{\text {orig }}<1 \\
\frac{1}{\exp (\mathrm{CER})-1}\left[\exp \left(\frac{\mathrm{CER}}{\mathrm{SSM}} \varepsilon\right)-1\right] & 1 / l_{\text {orig }} \geq 1 \quad \text { CER } \neq 0 \\
\frac{\varepsilon}{\mathrm{SSM}} & 1 / l_{\text {orig }} \geq 1 \quad \text { CER }=0
\end{array}\right.
\]

Stress of Damping Element is:
\[
\sigma_{3}=\mathrm{DMP} \times \frac{l}{l_{\text {orig }}} \dot{\varepsilon}
\]

Total Stress is:
\[
\sigma=\sigma_{1}+\sigma_{2}+\sigma_{3}
\]

\section*{*MAT_ANISOTROPIC_ELASTIC_PLASTIC}

This is Material Type 157. This material model is a combination of the anisotropic elastic material model (*MAT_002) and the anisotropic plastic material model (*MAT_103_P). Brittle orthotropic failure based on a phenomenological Tsai-Wu or Tsai-Hill criterion can be defined. This material is available for solid, shell, and thick shell (formulations 1, 2, and 6) elements.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & SIGY & LCSS & QR1 & CR1 & QR2 & CR2 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C11 & C12 & C13 & C14 & C15 & C16 & C22 & C23 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C24 & C25 & C26 & C33 & C34 & C35 & C36 & C44 \\
\hline
\end{tabular}

Card 4a. Include this card if the element type is shells or thick shells.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C45 & C46 & C55 & C56 & C66 & R00 & R45 & R90 \\
\hline
\end{tabular}

Card 4b. Include this card if the element type is solids.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C45 & C46 & C55 & C56 & C66 & F & G & H \\
\hline
\end{tabular}

Card 5a. Include this card if the element type is shells or thick shells.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline S11 & S22 & S33 & S12 & AOPT & VP & & \\
\hline
\end{tabular}

Card 5b. Include this card if the element type is solids.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline L & M & N & & AOPT & VP & & MACF \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & \(Y P\) & \(Z P\) & A1 & A2 & A3 & ID3UPD & EXTRA \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & IHIS \\
\hline
\end{tabular}

Card 8. Include this card if EXTRA \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline XT & XC & YT & YC & SXY & FF12 & & NCFAIL \\
\hline
\end{tabular}

Card 9. Include this card if EXTRA \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ZT & ZC & SYZ & SZX & FF23 & FF31 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & SIGY & LCSS & QR1 & CR1 & QR2 & CR2 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
SIGY Initial yield stress
LCSS Load curve ID or Table ID:
Load Curve. When LCSS is a load curve ID, it is taken as defining effective stress as a function of effective plastic strain. If defined, QR1, CR1, QR2, and CR2 are ignored.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate. See Figure M24-1. When the strain rate falls below the minimum value, the load curve for the lowest value of strain rate is used. Likewise, when the strain rate exceeds the maximum value, the load curve for the highest value of strain rate is used.
Logarithmically Defined Tables. An alternative way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate

\section*{VARIABLE}

QR1
CR1 Isotropic hardening parameter
QR2 Isotropic hardening parameter
CR2 Isotropic hardening parameter
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 11 & C 12 & C 13 & C 14 & C 15 & C 16 & C 22 & C 23 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 24 & C 25 & C 26 & C 33 & C 34 & C 35 & C 36 & C 44 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

Cij

\section*{DESCRIPTION}

The \(i j^{\text {th }}\) term in the \(6 \times 6\) anisotropic constitutive matrix. Note that 1 corresponds to the \(a\) material direction, 2 to the \(b\) material direction, and 3 to the \(c\) material direction.

Anisotropic Constants Card for Shells. Include this card if the element type is shells or thick shells.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C45 & C46 & C55 & C56 & C66 & R00 & R45 & R90 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

Cij
R00
R45
R90

\section*{DESCRIPTION}

The \(i j^{\text {th }}\) term in the \(6 \times 6\) anisotropic constitutive matrix
\(R_{00}\) for shell (default \(=1.0\))
\(R_{45}\) for shell (default \(=1.0\))
\(R_{90}\) for shell (default \(=1.0\))

Anisotropic Constants Card for Solids. Include this card if the element type is solids.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C45 & C46 & C55 & C56 & C66 & F & G & H \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

Cij
F \(\quad F\) for solid (default \(=1 / 2\))
G \(\quad G\) for solid \((\) default \(=1 / 2)\)
H \(\quad H\) for solid (default \(=1 / 2\))

Shell Yield Stress Card. Include this card if the element type is shells or thick shells.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S11 & S22 & S33 & S12 & AOPT & VP & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

S11

S22

\section*{DESCRIPTION}

Yield stress in local- \(x\) direction (shells only). This input is ignored when R00, R45, and R90 are greater than 0 .

Yield stress in local- \(y\) direction (shells only). This input is ignored when R00, R45, and R90 are greater than 0 .

\section*{VARIABLE}

S33

S12

AOPT
Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

VP Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation

Anisotropic Constants Card for Solids. Include this card if the element type is solids.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & L & M & N & & AOPT & VP & & MACF \\
Type & F & F & F & & F & F & & F \\
\hline
\end{tabular}

\section*{VARIABLE}

L

M
N
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

VP

MACF

\section*{DESCRIPTION}

Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation
Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 7 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & ID3UPD & EXTRA \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP
A1, A2, A3
EXTRA

\section*{DESCRIPTION}

Coordinates of point \(p\) for AOPT = 1 and 4
Components of vector a for AOPT \(=2\)
Flag to input further data to include failure with Cards 8 and 9:
EQ.1.0: Tsai-Wu (stress-based) parameters. See Remark 3.
EQ.2.0: Tsai-Hill (stress-based) parameters See Remark 4.
EQ.3.0: Tsai-Wu (strain-based) parameters. See Remark 5.

VARIABLE

ID3UPD

DESCRIPTION
EQ.4.0: Tsai-Hill (strain-based) parameters. See Remark 6.

Flag for transverse through-thickness strain update (thin shells only):

EQ.0.0: Reflects \(R\)-values by splitting the strain tensor into elastic and plastic components
EQ.1.0: Elastic update using total strain tensor
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & IHIS \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

IHIS

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for AOPT \(=0\) (shells and tshells only) and \(\mathrm{AOPT}=3\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA and *ELEMENT_SOLID_ORTHO.

Flag for material properties initialization:
EQ.0: Material properties defined in Cards 1-5 are used
GE.1: Use *INITIAL_STRESS_SOLID/SHELL to initialize material properties on an element-by-element basis for solid or shell elements, respectively (see Remarks 1 and 2 below).

Two additional cards for EXTRA \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XT & XC & YT & YC & SXY & FF 12 & & NCFAIL \\
Type & F & F & F & F & F & F & & 1 \\
Default & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & 0.0 & & 10 \\
\hline
\end{tabular}

\section*{VARIABLE}

XT

XC Longitudinal compressive strength, \(a\)-axis, for EXTRA \(=1\) and 2 or longitudinal compressive strain at failure, \(a\)-axis, for EXTRA \(=3\) and 4 :

GT.0.0: Constant value
LT.O.O: Load curve ID \(=(-X C)\) which defines either the longitudinal compressive strength (EXTRA = 1 and 2) or the longitudinal compressive strain at failure (EXTRA \(=3\) and 4) as a function of strain rate. If the first strain rate value in the curve is negative, it is assumed that all strain rate values are given as a natural logarithm of the strain rate.

Longitudinal compressive strengths and longitudinal compressive strains at failure should be positive.

YT Transverse tensile strength, \(b\)-axis, for EXTRA \(=1\) and 2 or transverse tensile strain at failure, \(b\)-axis, for EXTRA \(=3\) and 4 :

GT.0.0: Constant value
LT.O.O: Load curve ID = (-YT) which defines either the transverse tensile strength (EXTRA =1 and 2) or the

SXY Shear strength, \(a b\)-plane, for EXTRA \(=1\) and 2 or shear strain at failure, \(a b\)-plane, for EXTRA \(=3\) and 4 :

GT.0.0: Constant value
LT.O.O: Load curve ID = (-SXY) which defines the shear strength (EXTRA = 1 and 2) or the shear strain at failure (EXTRA \(=3\) and 4) as a function of strain rate. If the first strain rate value in the curve is negative, it is assumed that all strain rate values are given as a natural logarithm of the strain rate.

FF12

NCFAIL Number of time steps to reduce stresses until element deletion.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ZT & ZC & SYZ & SZX & FF23 & FF31 & & \\
Type & F & F & F & F & F & F & & \\
Default & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

ZC This field applies to solid elements only. Transverse compressive strength, \(c\)-axis, for EXTRA \(=1\) and 2 or transverse compressive strain at failure, \(c\)-axis, for EXTRA \(=3\) and 4:

GT.0.0: Constant value
LT.0.0: Load curve ID \(=(-\mathrm{ZC})\) which defines either the transverse compressive strength (EXTRA = 1 and 2) or the transverse compressive strain at failure (EXTRA \(=3\) and 4) as a function of strain rate. If the first strain rate value in the curve is negative, all strain rate values are assumed to be given as a natural logarithm of the strain rate.

Transverse compressive strengths and transverse compressive strains at failure should be positive.

SYZ This field applies to solid elements only. Shear strength, bc-plane, for EXTRA \(=1\) and 2 or shear strain at failure, \(b c\)-plane, for EXTRA \(=3\) and 4:

GT.0.0: Constant value
LT.0.0: Load curve ID = (-SYZ) which defines the shear strength

\section*{VARIABLE}

FF23

FF31

SZX This field applies to solid elements only. Shear strength, ca-plane, for EXTRA \(=1\) and 2 or shear strain at failure, \(c a\)-plane, for EXTRA \(=3\) and 4 :

GT.0.0: Constant value
LT.O.O: Load curve ID \(=(-S Z X)\) which defines the shear strength (EXTRA \(=1\) and 2) or the shear strain at failure (EXTRA \(=3\) and 4) as a function of strain rate. If the first strain rate value in the curve is negative, it is assumed that all strain rate values are given as a natural logarithm of the strain rate.

\section*{DESCRIPTION}
(EXTRA \(=1\) and 2) or the shear strain at failure (EXTRA \(=3\) and 4) as a function of strain rate. If the first strain rate value in the curve is negative, it is assumed that all strain rate values are given as a natural logarithm of the strain rate.

Scale factor between -1 and +1 for interaction term F23. See Remark 3. This field applies to solid elements only. It applies for EXTRA \(=1\) and 3 .

Scale factor between -1 and +1 for interaction term F31. See Remark 3. This field applies to solid elements only. It applies for EXTRA \(=1\) and 3 .

\section*{Remarks:}
1. Description of IHIS (Solid Elements). Several of this material's parameters may be overwritten on an element-by-element basis through history variables using the *INITIAL_STRESS_SOLID keyword. Bitwise (binary) expansion of IHIS determines which material properties are to be read:
\[
\text { IHIS }=a_{4} \times 16+a_{3} \times 8+a_{2} \times 4+a_{1} \times 2+a_{0}
\]
where each \(a_{i}\) is a binary flag set to either 1 or 0 . The \(a_{i}\) are interpreted according to the following table.
\begin{tabular}{lllr}
\hline Flag & Description & Variables & \(\#\) \\
\hline\(a_{0}\) & Material directions & \(q_{11}, q_{12}, q_{13}, q_{31}, q_{32}, q_{33}\) & 6 \\
\(a_{1}\) & Anisotropic stiffness & C \(i j\) & 21 \\
\(a_{2}\) & Anisotropic constants & F, G, H, L, M,N & 6 \\
\hline
\end{tabular}
\begin{tabular}{cllr}
\hline Flag & Description & Variables & \(\#\) \\
\hline\(a_{3}\) & Stress-strain curve & LCSS & 1 \\
\(a_{4}\) & Strength limits & XT, XC, YT, YC, ZT, ZC, SXY, SYZ, SZX & 9 \\
\hline
\end{tabular}

The NHISV field on *INITIAL_STRESS_SOLID must be set equal to the sum of the number of variables to be read in, which depends on IHIS (and the \(a_{i}\)):
\[
\text { NHISV }=6 a_{0}+21 a_{1}+6 a_{2}+a_{3}+9 a_{4} .
\]

Then, in the following order, *INITIAL_STRESS_SOLID processes the history variables, HISV \(i\), as:
a) 6 material direction parameters when \(a_{0}=1\)
b) 21 anisotropic stiffness parameters when \(a_{1}=1\)
c) 6 anisotropic constants when \(a_{2}=1\)
d) 1 parameter when \(a_{3}=1\)
e) 9 strength parameters when \(a_{4}=1\)

The \(q_{i j}\) terms are the first and third rows of a rotation matrix for the rotation from a co-rotational element's system and the \(a-b-c\) material directions. The \(c_{i j}\) terms are the upper triangular terms of the symmetric stiffness matrix, \(c_{11}, c_{12}, c_{13}, c_{14}\), \(c_{15}, c_{16}, c_{22}, c_{23}, c_{24}, c_{25}, c_{26}, c_{33}, c_{34}, c_{35}, c_{36}, c_{44}, c_{45}, c_{46}, c_{55}, c_{56}\), and \(c_{66}\).
2. Description of IHIS (Shell Elements). Several of this material's parameters may be overwritten on an element-by-element basis through history variables using the *INITIAL_STRESS_SHELL keyword. Bitwise (binary) expansion of IHIS determines which material properties are to be read:
\[
\text { IHIS }=a_{4} \times 16+a_{3} \times 8+a_{2} \times 4+a_{1} \times 2+a_{0}
\]
where each \(a_{i}\) is a binary flag set to either 1 or 0 . The \(a_{i}\) are interpreted according to the following table.
\begin{tabular}{lllr}
\hline Flag & Description & Variables & \(\#\) \\
\hline\(a_{0}\) & Material directions & \(q_{1}, q_{2}\) & 2 \\
\(a_{1}\) & Anisotropic stiffness & \(\mathrm{C} i j\) & 21 \\
\(a_{2}\) & Anisotropic constants & \(r_{00}, r_{45}, r_{90}\) & 3 \\
\(a_{3}\) & Stress-strain curve & LCSS & 1 \\
\(a_{4}\) & Strength limits & \(\mathrm{XT}, \mathrm{XC}, \mathrm{YT}, \mathrm{YC}, \mathrm{SXY}\) & 5 \\
\hline
\end{tabular}

The NHISV field on *INITIAL_STRESS_SHELL must be set equal to the sum of the number of variables to be read in, which depends on IHIS (and the \(a_{i}\)):
\[
\text { NHISV }=2 a_{0}+21 a_{1}+3 a_{2}+a_{3}+5 a_{4}
\]

Then, in the following order, *INITIAL_STRESS_SHELL processes the history variables, HISV \(i\), as:
a) 2 material direction parameters when \(a_{0}=1\)
b) 21 anisotropic stiffness parameters when \(a_{1}=1\)
c) 3 anisotropic constants when \(a_{2}=1\)
d) 1 parameter when \(a_{3}=1\)
e) 5 strength parameters when \(a_{4}=1\)

The \(q_{i}\) terms are the material direction cosine and sine for the rotation from a corotational element's system to the \(a-b-c\) material directions. The \(c_{i j}\) terms are the upper triangular terms of the symmetric stiffness matrix, \(c_{11}, c_{12}, c_{13}, c_{14}, c_{15}, c_{16}\), \(c_{22}, c_{23}, c_{24}, c_{25}, c_{26}, c_{33}, c_{34}, c_{35}, c_{36}, c_{44}, c_{45}, c_{46}, c_{55}, c_{56}\), and \(c_{66}\).
3. Tsai-Wu failure criterion (EXTRA \(=\mathbf{1}\), stress-based). EXTRA \(=1\) with the definition of corresponding parameters on Cards 8 and 9 invokes brittle failure with different strengths in tension and compression in all main material directions. The model used is the phenomenological Tsai-Wu failure criterion which requires that
\[
\begin{aligned}
\left(\frac{1}{\mathrm{XT}}-\frac{1}{\mathrm{XC}}\right) \sigma_{a a} & +\left(\frac{1}{\mathrm{YT}}-\frac{1}{\mathrm{YC}}\right) \sigma_{b b}+\left(\frac{1}{\mathrm{ZT}}-\frac{1}{\mathrm{ZC}}\right) \sigma_{c c}+\frac{1}{\mathrm{XT} \times \mathrm{XC}} \sigma_{a a}^{2} \\
& +\frac{1}{\mathrm{YT} \times \mathrm{YC}} \sigma_{b b}^{2}+\frac{1}{\mathrm{ZT} \times \mathrm{ZC}} \sigma_{c c}^{2}+\frac{1}{\mathrm{SXY}^{2}} \sigma_{a b}^{2}+\frac{1}{\mathrm{SYZ}^{2}} \sigma_{b c}^{2}+\frac{1}{\mathrm{SZX}^{2}} \sigma_{c a}^{2} \\
& +2 \times F_{12} \times \sigma_{a a} \sigma_{b b}+2 \times F_{23} \times \sigma_{b b} \sigma_{c c}+2 \times F_{31} \times \sigma_{c c} \sigma_{a a}<1
\end{aligned}
\]
for the 3-dimensional case (solid elements) with three planes of symmetry with respect to the material coordinate system. The interaction terms \(F_{12}, F_{23}\), and \(F_{31}\) are given by
\[
\begin{aligned}
& F_{12}=\mathrm{FF} 12 \times \sqrt{\frac{1}{\mathrm{XT} \times \mathrm{XC} \times \mathrm{YT} \times \mathrm{YC}}} \\
& F_{23}=\mathrm{FF} 23 \times \sqrt{\frac{1}{\mathrm{YT} \times \mathrm{YC} \times \mathrm{ZT} \times \mathrm{ZC}}} \\
& F_{31}=\mathrm{FF} 31 \times \sqrt{\frac{1}{\mathrm{ZT} \times \mathrm{ZC} \times \mathrm{XT} \times \mathrm{XC}}}
\end{aligned}
\]

For the 2-dimensional case of plane stress (shell elements), this expression reduces to:
\[
\begin{aligned}
\left(\frac{1}{\mathrm{XT}}-\frac{1}{\mathrm{XC}}\right) \sigma_{a a}+\left(\frac{1}{\mathrm{YT}}-\frac{1}{\mathrm{YC}}\right) \sigma_{b b} & +\frac{1}{\mathrm{XT} \times \mathrm{XC}} \sigma_{a a}^{2}+\frac{1}{\mathrm{YT} \times \mathrm{YC}} \sigma_{b b}^{2} \\
& +\frac{1}{\mathrm{SXY}}{ }^{2} \sigma_{a b}^{2}+2 \times F_{12} \times \sigma_{a a} \sigma_{b b}<1
\end{aligned}
\]

If these conditions are violated, then the stress tensor reduces to zero over NCFAIL time steps, and then the element erodes. A small value for NCFAIL (\(<50\)) is recommended to avoid unphysical behavior; the default is 10 .
4. Tsai-Hill failure criterion (EXTRA = 2, stress-based). EXTRA \(=2\) with the definition of corresponding parameters on Cards 8 and 9 (FF12, FF23, and FF31 are not used in this model) invokes brittle failure with different strengths in tension and compression in all main material directions. The model is based on the HILL criterion which can be written as
\[
\begin{gathered}
(G+H) \sigma_{a a}^{2}+(F+H) \sigma_{b b}^{2}+(F+G) \sigma_{c c}^{2}-2 H \sigma_{a a} \sigma_{b b} \\
-2 F \sigma_{b b} \sigma_{c c}-2 G \sigma_{c c} \sigma_{a a}+2 N \sigma_{a b}^{2}+2 L \sigma_{b c}^{2}+2 M \sigma_{c a}^{2}<1
\end{gathered}
\]
for the 3-dimensional case. The constants \(H, F, G, N, L\), and \(M\) can be expressed in terms of the strength limits (which then becomes the TSAI-HILL criterion) as
\[
\begin{array}{lll}
G+H=\frac{1}{X_{i}^{2}} & 2 N=\frac{1}{\mathrm{SXY}^{2}} & H=0.5 \times\left(\frac{1}{X_{i}^{2}}+\frac{1}{Y_{i}^{2}}-\frac{1}{Z_{i}^{2}}\right) \\
F+H=\frac{1}{Y_{i}^{2}} & 2 L=\frac{1}{\mathrm{SYZ}^{2}} & F=0.5 \times\left(\frac{1}{Y_{i}^{2}}+\frac{1}{Z_{i}^{2}}-\frac{1}{X_{i}^{2}}\right) \\
F+G=\frac{1}{Z_{i}^{2}} & 2 M=\frac{1}{\mathrm{SZX}^{2}} & G=0.5 \times\left(\frac{1}{X_{i}^{2}}+\frac{1}{Z_{i}^{2}}-\frac{1}{Y_{i}^{2}}\right)
\end{array}
\]
where the current stress state defines whether the compressive or the tensile strength limit will enter into the equation:
\[
\begin{aligned}
& X_{i}=\left\{\begin{array}{lll}
\mathrm{XT} & \text { if } & \sigma_{a a}>0 \\
\mathrm{XC} & \text { if } & \sigma_{a a}<0
\end{array}\right. \\
& Y_{i}=\left\{\begin{array}{lll}
\mathrm{YT} & \text { if } & \sigma_{b b}>0 \\
\mathrm{YC} & \text { if } & \sigma_{b b}<0
\end{array}\right. \\
& \mathrm{Z}_{i}=\left\{\begin{array}{lll}
\mathrm{ZT} & \text { if } & \sigma_{c c}>0 \\
\mathrm{ZC} & \text { if } & \sigma_{c c}<0
\end{array}\right.
\end{aligned}
\]

For the 2-dimensional case of plane stress (shell elements) the TSAI-HILL criterion reduces to:
\[
(G+H) \sigma_{a a}^{2}+(F+H) \sigma_{b b}^{2}-2 H \sigma_{a a} \sigma_{b b}+2 N \sigma_{a b}^{2}<1
\]
with
\[
\begin{aligned}
G+H & =\frac{1}{X_{i}^{2}} \\
F+H & =\frac{1}{Y_{i}^{2}} \\
H & =0.5 \times \frac{1}{X_{i}^{2}} \\
2 N & =\frac{1}{S X Y^{2}}
\end{aligned}
\]

If these conditions are violated, then the stress tensor will be reduced to zero over NCFAIL time steps and the element will be eroded. A small value for NCFAIL (\(<50\)) is recommended to avoid unphysical behavior; the default is 10 .
5. Tsai-Wu failure criterion (EXTRA = 3, strain-based). EXTRA \(=3\) invokes brittle failure with different strain limits in tension and compression in all main material directions. The failure criterion is like that of EXTRA \(=1\) as described in Remark 3, but instead of using the stress tensor, the criterion is evaluated based on the current strain tensor. Consequently, the material parameters XT, XC, YT, ... give the limit strains at failure in the various directions.
6. Tsai-Hill failure criterion (EXTRA =4, strain-based). EXTRA \(=4\) invokes brittle failure with different strain limits in tension and compression in all main material directions. The failure criterion is like that of EXTRA \(=2\) as described in Remark 4, but instead of using the stress tensor, the criterion is evaluated based on the current strain tensor. Consequently, the material parameters \(\mathrm{XT}, \mathrm{XC}, \mathrm{YT}\), ... give the limit strains at failure in the various directions.

\section*{*MAT_RATE_SENSITIVE_COMPOSITE_FABRIC}

This is Material Type 158. Depending on the type of failure surface, this model may be used to model rate sensitive composite materials with unidirectional layers, complete laminates, and woven fabrics. A viscous stress tensor, based on an isotropic Maxwell model with up to six terms in the Prony series expansion, is superimposed on the rate independent stress tensor of the composite fabric. The viscous stress tensor approach should work reasonably well if the stress increases due to rate affects are up to \(15 \%\) of the total stress. This model is implemented for both shell and thick shell elements. The viscous stress tensor is effective at eliminating spurious stress oscillations.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & EA & EB & (EC) & PRBA & TAU1 & GAMMA1 \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAB & GBC & GCA & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & TSIZE & ERODS & SOFT & FS & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & \(Y P\) & ZP & A1 & A2 & A3 & PRCA & PRCB \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline E11C & E11T & E22C & E22T & GMS & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline XC & XT & YC & YT & SC & & & \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline K & & & & & & & \\
\hline
\end{tabular}

Card 9. Include up to 6 of this card. This input ends with the next keyword ("*") card.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{G} i\) & BETA \(i\) & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EA & EB & (EC) & PRBA & TAU1 & GAMMA1 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EA \(\quad E_{a}\), Young's modulus - longitudinal direction
EB \(\quad E_{b}\), Young's modulus - transverse direction
(EC) \(\quad E_{c}\), Young's modulus - normal direction (not used)
PRBA \(\quad v_{b a}\), Poisson's ratio \(b a\)
TAU1 \(\quad \tau_{1}\), stress limit of the first slightly nonlinear part of the shear stress as a function of shear strain curve. The values \(\tau_{1}\) and \(\gamma_{1}\) are used to define a curve of shear stress as a function of shear strain. These values are input if FS , defined in Card 3 , is set to -1 .

GAMMA1 \(\quad \gamma_{1}\), strain limit of the first slightly nonlinear part of the shear stress as a function of shear strain curve
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & SLIMT1 & SLIMC1 & SLIMT2 & SLIMC2 & SLIMS \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

GAB
GBC \(\quad G_{b c}\), shear modulus \(b c\)
GCA
SLIMT1

SLIMC1

SLIMC2

SLIMS

SLIMT2 Factor to determine the minimum stress limit after stress maximum (matrix tension)

DESCRIPTION
\(G_{a b}\), shear modulus \(a b\)
\(G_{c a}\), shear modulus \(c a\)
Factor to determine the minimum stress limit after stress maximum (fiber tension)

Factor to determine the minimum stress limit after stress maximum (fiber compression)

Factor to determine the minimum stress limit after stress maximum (matrix compression)

Factor to determine the minimum stress limit after stress maximum (shear)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & TSIZE & ERODS & SOFT & FS & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle (BETA) from a line in the plane of the element

\section*{VARIABLE}

TSIZE Time step for automatic element deletion
ERODS Maximum effective strain for element layer failure. A value of unity would equal 100\% strain.

SOFT Softening reduction factor for strength in the crashfront.
FS Failure surface type:
EQ.1.0: Smooth failure surface with a quadratic criterion for both the fiber (a) and transverse (b) directions. This option can be used with complete laminates and fabrics.
EQ.0.0: Smooth failure surface in the transverse (b) direction with a limiting value in the fiber (a) direction. This model is appropriate for unidirectional (UD) layered composites only.

EQ.-1: Faceted failure surface. When the strength values are reached, then damage evolves in tension and compression for both the fiber and transverse direction. Shear behavior is also considered. This option can be used with complete laminates and fabrics.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & PRCA & PRCB \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP \(\quad\) Coordinates of point \(p\) for AOPT \(=1\)
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)

\section*{VARIABLE}

DESCRIPTION
PRCA
\(v_{c a}\) Poisson's ratio \(c a(\) default \(=\) PRBA \()\)
PRCB \(\quad v_{c b}\), Poisson's ratio \(c b(\) default \(=\) PRBA \()\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11C & E11T & E22C & E22T & GMS & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{c}
VARIABLE \\
\hline E11C \\
E11T \\
E22C \\
E22T \\
GMS
\end{tabular}

\section*{DESCRIPTION}

Strain at longitudinal compressive strength, \(a\)-axis
Strain at longitudinal tensile strength, \(a\)-axis
Strain at transverse compressive strength, \(b\)-axis
Strain at transverse tensile strength, \(b\)-axis
Strain at shear strength, \(a b\)-plane
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XC & XT & YC & YT & SC & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XC
XT
YC

YT
SC

\section*{DESCRIPTION}

Longitudinal compressive strength; see Remark 2 of *MAT_058.
Longitudinal tensile strength; see Remark 2 of *MAT_058.
Transverse compressive strength, \(b\)-axis, see Remark 2 of *MAT_058.

Transverse tensile strength, \(b\)-axis; see Remark 2 of *MAT_058.
Shear strength, \(a b\)-plane; see Remark 2 of *MAT_058.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

K

\section*{DESCRIPTION}

Optional bulk modulus for the viscoelastic material. If nonzero, a Kelvin type behavior will be obtained. Generally, K is set to zero.

Viscoelastic Cards. Up to 6 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETA \(i\) & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

BETA \(i \quad\) Optional shear decay constant for the \(i^{\text {th }}\) term

\section*{Remarks:}
1. Related material. See the Remarks for material type 58, *MAT_LAMINATED_COMPOSITE_FABRIC, for the treatment of the composite material.
2. Rate effects. Rate effects are taken into account through a Maxwell model using linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
where \(g_{i j k l(t-\tau)}\) is the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional. Since we wish to include only simple rate effects, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\sum_{m=1}^{N} G_{m} e^{-\beta_{m} t}
\]

We characterize this in the input by the shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). An arbitrary number of terms, not exceeding 6 , may be used when applying the viscoelastic model. The composite failure is not directly affected by the presence of the viscous stress tensor.

\section*{*MAT_CSCM_\{OPTION\}}

This is Material Type 159. This material model is a smooth or continuous surface cap model and is available for solid elements in LS-DYNA. The user has the option of inputting his own material properties (<BLANK> option) or requesting default material properties for normal strength concrete (CONCRETE). See [Murray 2007] for a more complete model description.

Available options include:
<BLANK>
CONCRETE

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & NPLOT & INCRE & IRATE & ERODE & RECOV & ITRETRC \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PRED & & & & & & & \\
\hline
\end{tabular}

Card 3. This card is included if and only if the CONCRETE keyword option is used.
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline FPC & DAGG & UNITS & & & & & \\
\hline
\end{tabular}

Card 4. This card is included if and only if the keyword option is unused (<OPTION \(>\)).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline G & K & ALPHA & THETA & LAMBDA & BETA & NH & CH \\
\hline
\end{tabular}

Card 5. This card is included if and only if the keyword option is unused (<OPTION>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA1 & THETA1 & LAMBDA1 & BETA1 & ALPHA2 & THETA2 & LAMBDA2 & BETA2 \\
\hline
\end{tabular}

Card 6. This card is included if and only if the keyword option is unused (<OPTION>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(R\) & X0 & W & D1 & D2 & & & \\
\hline
\end{tabular}

Card 7. This card is included if and only if the keyword option is unused (<OPTION \(>\)).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B & GFC & D & GFT & GFS & PWRC & PWRT & PMOD \\
\hline
\end{tabular}

Card 8. This card is included if and only if the keyword option is unused (<OPTION>).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ETAOC & NC & ETAOT & NT & OVERC & OVERT & SRATE & REPOW \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & NPLOT & INCRE & IRATE & ERODE & RECOV & ITRETRC \\
Type & A & F & I & F & I & F & F & I \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
NPLOT Controls what is written as component 7 to the d3plot database. LS-PrePost always labels this component as effective plastic strain:
EQ.1: Maximum of brittle and ductile damage (default)
EQ.2: Maximum of brittle and ductile damage, with recovery of brittle damage

EQ.3: Brittle damage
EQ.4: Ductile damage
EQ.5: \(\kappa\) (intersection of cap with shear surface)
EQ.6: \(X_{0}\) (intersection of cap with pressure axis)
EQ.7: \(\varepsilon_{\mathrm{v}}^{\mathrm{p}}\) (plastic volume strain).

INCRE

IRATE Rate effects options:
EQ.O: Rate effects model turned off (default).
EQ.1: Rate effects model turned on.
ERODE
Maximum strain increment for subincrementation. If left blank, a default value is set during initialization based upon the shear strength and stiffness.

Elements erode when damage exceeds 0.99 and the maximum principal strain exceeds ERODE - 1.0. For erosion that is independent of strain, set ERODE equal to 1.0. Erosion does not occur if ERODE is less than 1.0.

\section*{VARIABLE}

RECOV

\section*{DESCRIPTION}

The modulus is recovered in compression when RECOV is equal to 0.0 (default). The modulus remains at the brittle damage level when RECOV is equal to 1.0. Partial recovery is modeled for values of RECOV between 0.0 and 1.0. Two options are available:
1. If RECOV is a value between 0.0 and 1.0, then recovery is based upon the sign of the pressure invariant only.
2. If RECOV is a value between 10.0 and 11.0, then recovery is based upon the sign of both the pressure and volumetric strain. In this case, RECOV \(=\) RECOV -10 , and a flag is set to request the volumetric strain check.

IRETRC Cap retraction option:
EQ.O: Cap does not retract (default).
EQ.1: Cap retracts.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRED & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PRED

\section*{DESCRIPTION}

Pre-existing damage (\(0 \leq\) PRED \(<1\)). If left blank, the default is zero (no pre-existing damage).

Concrete Properties Card. This card is included if and only if the CONCRETE keyword option is used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FPC & DAGG & UNITS & & & & & \\
Type & F & F & I & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FPC

\section*{DESCRIPTION}

Unconfined compression strength, \(f_{c}^{\prime}\). Material parameters are internally fit to data for unconfined compression strengths between about 20 and 58 MPa (2,901 to \(8,412 \mathrm{psi}\)), with emphasis on the midrange between 28 and 48 MPa (4,061 and 6,962 psi). If left blank, the default for FPC is 30 MPa .

DAGG Maximum aggregate size, \(D_{\text {agg. }}\). Softening is fit to data for aggregate sizes between 8 and 32 mm (0.3 and 1.3 inches). If left blank, the default for DAGG is 19 mm (\(3 / 4\) inch).

UNITS Units options:
EQ.0: GPa, mm, msec, \(\mathrm{kg} / \mathrm{mm}^{3}\), kN
EQ.1: \(\mathrm{MPa}, \mathrm{mm}, \mathrm{msec}, \mathrm{g} / \mathrm{mm}^{3}, \mathrm{~N}\)
EQ.2: \(\mathrm{MPa}, \mathrm{mm}, \mathrm{sec}, \mathrm{Mg} / \mathrm{mm}^{3}\), N
EQ.3: Psi, inch, sec, lbf-s \({ }^{2} /\) in \(^{4}\), lbf
EQ.4: \(\mathrm{Pa}, \mathrm{m}, \mathrm{sec}, \mathrm{kg} / \mathrm{m}^{3}, \mathrm{~N}\)

User Defined Properties Card. This card is included if and only if the keyword option is left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G & K & ALPHA & THETA & LAMBDA & BETA & NH & CH \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 2 } G & \\
K & Shear modulus \\
ALPHA & Tri-axial compression surface constant term, \(\alpha\) \\
THETA & Tri-axial compression surface linear term, \(\theta\) \\
LAMBDA & Tri-axial compression surface nonlinear term, \(\lambda\) \\
BETA & Tri-axial compression surface exponent, \(\beta\) \\
NH & Hardening initiation, \(N_{H}\)
\end{tabular}

\section*{VARIABLE}

CH

\section*{DESCRIPTION}

Hardening rate, \(C_{H}\)

User Defined Properties Card. This card is included if and only if the keyword option is left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA1 & THETA1 & LAMBDA1 & BETA1 & ALPHA2 & THETA2 & LAMBDA2 & BETA2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

ALPHA1
THETA1
LAMBDA1
BETA1
ALPHA2
THETA2
LAMBDA2
BETA2

\section*{DESCRIPTION}

Torsion surface constant term, \(\alpha_{1}\)
Torsion surface linear term, \(\theta_{1}\)
Torsion surface nonlinear term, \(\lambda_{1}\)
Torsion surface exponent, \(\beta_{1}\)
Tri-axial extension surface constant term, \(\alpha_{2}\)
Tri-axial extension surface linear term, \(\theta_{2}\)
Tri-axial extension surface nonlinear term, \(\lambda_{2}\)
Tri-axial extension surface exponent, \(\beta_{2}\)

User Defined Properties Card. This card is included if and only if the keyword option is left blank.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R & X0 & W & D1 & D2 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

R

\section*{DESCRIPTION}

Cap aspect ratio, \(R\)

\section*{VARIABLE}

X0
W
D1
D2

\section*{DESCRIPTION}

Cap initial location, \(X_{0}\)
Maximum plastic volume compaction, \(W\)
Linear shape parameter, \(D_{1}\)
Quadratic shape parameter, \(D_{2}\)

User Defined Properties Card. This card is included if and only if the keyword option is left blank.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B & GFC & D & GFT & GFS & PWRC & PWRT & PMOD \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
B
GFC
D
GFT
GFS
PWRC Shear-to-compression transition parameter
PWRT Shear-to-tension transition parameter
PMOD Modify moderate pressure softening parameter

User Defined Properties Card. This card is included if and only if the keyword option is left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ETAOC & NC & ETAOT & NT & OVERC & OVERT & SRATE & REPOW \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

ETA0C

NC Rate effects power for uniaxial compressive stress, \(N_{c}\)
ETA0T
NT

OVERC
OVERT
SRATE Ratio of effective shear stress to tensile stress fluidity parameters

REPOW Power which increases fracture energy with rate effects

\section*{Remarks:}
1. Model Overview. This is a cap model with a smooth intersection between the shear yield surface and hardening cap, as shown in Figure M159-1. The initial damage surface coincides with the yield surface. Rate effects are modeled with viscoplasticity. For a complete theoretical description, with references and example problems see [Murray 2007] and [Murray, Abu-Odeh and Bligh 2007].
2. Stress Invariants. The yield surface is formulated in terms of three stress invariants: \(J_{1}\) which is the first invariant of the stress tensor, \(J_{2}^{\prime}\) which is the second invariant of the deviatoric stress tensor, and \(J_{3}^{\prime}\) which is the third invariant of the deviatoric stress tensor. The invariants are defined in terms of the deviatoric stress tensor, \(S_{i j}\), and pressure, \(P\), as follows:

Figure M159-1. General shape of concrete model yield surface in two dimensions.
\[
\begin{aligned}
J_{1} & =3 P \\
J_{2}^{\prime} & =\frac{1}{2} S_{i j} S_{i j} \\
J_{3}^{\prime} & =\frac{1}{3} S_{i j} S_{i k} S_{k i}
\end{aligned}
\]
3. Plasticity Surface. The three invariant yield function is based on these three invariants, and the cap hardening parameter, \(\kappa\), as follows:
\[
f\left(J_{1}, J_{2}^{\prime}, J_{3}^{\prime}, \kappa\right)=J_{2}^{\prime}-\mathfrak{R}^{2} F_{f}^{2} F_{c} .
\]

Here \(F_{\mathrm{f}}\) is the shear failure surface, \(F_{\mathrm{c}}\) is the hardening cap, and \(\mathfrak{R}\) is the Rubin three-invariant reduction factor. The cap hardening parameter \(\kappa\) is the value of the pressure invariant at the intersection of the cap and shear surfaces.

Trial elastic stress invariants are temporarily updated using the trial elastic stress tensor, \(\sigma^{T}\). These are denoted \(J_{1}^{T}, J_{2}^{\prime T}\), and \(J_{3}^{\prime T}\). Elastic stress states are modeled when \(f\left(J_{1}^{T}, J_{2}^{\prime T}, J_{3}^{\prime T}, \kappa^{T}\right) \leq 0\). Elastic-plastic stress states are modeled when \(f\left(J_{1}^{T}, J_{2}^{\prime T}, J_{3}^{\prime T}, \kappa^{T}\right) \leq 0\). In this case, the plasticity algorithm returns the stress state to the yield surface such that \(f\left(J_{1}^{P}, J_{2}^{\prime P}, J_{3}^{\prime P}, \kappa^{P}\right)=0\). This is accomplished by enforcing the plastic consistency condition with associated flow.
4. Shear Failure Surface. The strength of concrete is modeled by the shear surface in the tensile and low confining pressure regimes:
\[
F_{f}\left(J_{1}\right)=\alpha-\lambda \exp \left(-\beta J_{1}\right)+\theta J_{1} .
\]

Here the values of \(\alpha, \beta, \lambda\), and \(\theta\) are selected by fitting the model surface to strength measurements from triaxial compression (TXC) tests conducted on plain concrete cylinders.
5. Rubin Scaling Function. Concrete fails at lower values of \(\sqrt{3 J_{2}^{\prime}}\) (principal stress difference) for triaxial extension (TXE) and torsion (TOR) tests than it does for TXC tests conducted at the same pressure. The Rubin scaling function, \(\mathfrak{R}\), determines the strength of concrete for any state of stress relative to the strength for TXC, using \(\Re F_{\mathrm{f}}\). Strength in torsion is modeled as \(Q_{1} F_{\mathrm{f}}\). Strength in TXE is modeled as \(Q_{2} F_{f}\), where:
\[
\begin{aligned}
& Q_{1}=\alpha_{1}-\lambda_{1} \exp \left(-\beta_{1} J_{1}\right)+\theta_{1} J_{1} \\
& Q_{2}=\alpha_{2}-\lambda_{2} \exp \left(-\beta_{2} J_{1}\right)+\theta_{2} J_{1}
\end{aligned}
\]
6. Cap Hardening Surface. The strength of concrete is modeled by a combination of the cap and shear surfaces in the low to high confining pressure regimes. The cap is used to model plastic volume change related to pore collapse (although the pores are not explicitly modeled). The isotropic hardening cap is a two-part function that is either unity or an ellipse:
\[
F_{c}\left(J_{1}, \kappa\right)=1-\frac{\left[J_{1}-L(\kappa)\right]\left[\left|J_{1}-L(\kappa)\right|+J_{1}-L(\kappa)\right]}{2[X(\kappa)-L(\kappa)]^{2}},
\]
where \(L(\kappa)\) is defined as:
\[
L(\kappa)= \begin{cases}\kappa & \text { if } \kappa>\kappa_{0} \\ \kappa_{0} & \text { otherwise }\end{cases}
\]

The equation for \(F_{c}\) is equal to unity for \(J_{1} \leq L(\kappa)\). It describes the ellipse for \(J_{1}>L(\kappa)\). The intersection of the shear surface and the cap is at \(J_{1}=\kappa . \kappa_{0}\) is the value of \(J_{1}\) at the initial intersection of the cap and shear surfaces before hardening is engaged (before the cap moves). The equation for \(L(\kappa)\) restrains the cap from retracting past its initial location at \(\kappa_{0}\).

The intersection of the cap with the \(J_{1}\) axis is at \(J_{1}=X(\kappa)\). This intersection depends upon the cap ellipticity ratio \(R\), where \(R\) is the ratio of its major to minor axes:
\[
X(\kappa)=L(\kappa)+R F_{f}[L(\kappa)] .
\]

The cap moves to simulate plastic volume change. The cap expands (\(X(\kappa)\) and \(\kappa\) increase) to simulate plastic volume compaction. The cap contracts (\(X(\kappa)\) and \(\kappa\) decrease) to simulate plastic volume expansion, called dilation. The motion (expansion and contraction) of the cap is based upon the hardening rule:
\[
\varepsilon_{v}^{p}=W\left[1-e^{-D_{1}\left(X-X_{0}\right)-D_{2}\left(X-X_{0}\right)^{2}}\right] .
\]

Here \(\varepsilon_{v}^{p}\) is the plastic volume strain, \(W\) is the maximum plastic volume strain, and \(D_{1}\) and \(D_{2}\) are model input parameters. \(X_{0}\) is the initial location of the cap when \(\kappa=\kappa_{0}\).

The five input parameters \(\left(X_{0}, W, D_{1}, D_{2}\right.\), and \(\left.R\right)\) are obtained from fits to the pressure-volumetric strain curves in isotropic compression and uniaxial strain. \(X_{0}\) determines the pressure at which compaction initiates in isotropic
compression. \(R\), combined with \(X_{0}\), determines the pressure at which compaction initiates in uniaxial strain. \(D_{1}\) and \(D_{2}\) determine the shape of the pressurevolumetric strain curves. \(W\) determines the maximum plastic volume compaction.
7. Shear Hardening Surface. In unconfined compression, the stress-strain behavior of concrete exhibits nonlinearity and dilation prior to the peak. Such behavior is modeled with an initial shear yield surface, \(N_{H} F_{\mathrm{f}}\), which hardens until it coincides with the ultimate shear yield surface, \(F_{\mathrm{f}}\). Two input parameters are required. One parameter, \(N_{H}\), initiates hardening by setting the location of the initial yield surface. A second parameter, \(C_{H}\), determines the rate of hardening (amount of nonlinearity).
8. Damage. Concrete exhibits softening in the tensile and low to moderate compressive regimes.
\[
\sigma_{i j}^{\mathrm{d}}=(1-d) \sigma_{i j}^{\mathrm{vp}}
\]

A scalar damage parameter, \(d\), transforms the viscoplastic stress tensor without damage, denoted \(\sigma^{\mathrm{vp}}\), into the stress tensor with damage, denoted \(\sigma^{\mathrm{d}}\). Damage accumulation is based upon two distinct formulations, which we call brittle damage and ductile damage. The initial damage threshold is coincident with the shear plasticity surface, so the threshold does not have to be specified by the user.
a) Ductile Damage. Ductile damage accumulates when the pressure, \(P\), is compressive and an energy-type term, \(\tau_{c}\), exceeds the damage threshold, \(\tau_{0 c}\). Ductile damage accumulation depends upon the total strain components, \(\varepsilon_{i j}\), as follows:
\[
\tau_{\mathrm{c}}=\sqrt{\frac{1}{2} \sigma_{i j} \varepsilon_{i j}}
\]

The stress components, \(\sigma_{i j}\) are the elasto-plastic stresses (with kinematic hardening) calculated before application of damage and rate effects.
b) Brittle Damage. Brittle damage accumulates when the pressure is tensile and an energy-type term, \(\tau_{t}\), exceeds the damage threshold, \(\tau_{0 t}\). Brittle damage accumulation depends upon the maximum principal strain, \(\varepsilon_{\max }\), as follows:
\[
\tau_{\mathrm{t}}=\sqrt{E \varepsilon_{\max }^{2}}
\]

As damage accumulates, the damage parameter, \(d\), increases from an initial value of zero, towards a maximum value of one, using the following formulations:
\[
\begin{array}{ll}
\text { Brittle Damage: } & d\left(\tau_{t}\right)=\frac{0.999}{D}\left[\frac{1+D}{1+D e^{-C\left(\tau_{t}-\tau_{0 t}\right)}}-1\right] \\
\text { Ductile Damage: } & d\left(\tau_{c}\right)=\frac{d_{\max }}{B}\left[\frac{1+B}{1+B e^{-A\left(\tau_{c}-\tau_{0 c}\right)}}-1\right]
\end{array}
\]

The damage parameter that is applied to the six stresses is equal to the current maximum of the brittle or ductile damage parameter. The parameters \(A\) and \(B\) or \(C\) and \(D\) set the shape of the softening curve plotted as stress-displacement or stress-strain. The parameter \(d_{\text {max }}\) is the maximum damage level that can be attained. It is internally calculated and is less than one at moderate confining pressures. See [Murray 2007] for a description of how \(d_{\max }\) is calculated for different loading regimes. The compressive softening parameter, \(A\), may also be reduced with confinement, using the input field PMOD, as follows:
\[
A=A\left(d_{\max }+0.001\right)^{\mathrm{PMOD}}
\]
9. Regulating Mesh Size Sensitivity. The concrete model maintains constant fracture energy, regardless of element size. The fracture energy is defined here as the area under the stress-displacement curve from peak strength to zero strength. This is done by internally formulating the softening parameters \(A\) and \(C\) (see Remark 8) in terms of the element length, \(l\) (cube root of the element volume), the fracture energy, \(G_{f}\), the initial damage threshold, \(\tau_{0 t}\) or \(\tau_{0 c}\), and the softening shape parameters, \(D\) or \(B\).

The fracture energy is calculated from up to five user-specified input fields: GFC, GFS, GFT, PWRC, and PWRT. The user specifies three distinct fracture energy values. These are the fracture energy in uniaxial tensile stress, GFT; pure shear stress, GFS; and uniaxial compressive stress, GFC. The model internally selects the fracture energy from equations which interpolate between the three fracture energy values as a function of the stress state (expressed using two stress invariants). The interpolation equations depend upon the user-specified input powers PWRC and PWRT, as follows:
\[
\begin{aligned}
& \text { Tensile Pressure: } \quad G_{f}=\mathrm{GFS}+\overbrace{\left(\frac{-J_{1}}{\sqrt{3 J_{2}^{\prime}}}\right)^{\mathrm{PWRT}}}^{k_{t}} \quad[\mathrm{GFT}-\mathrm{GFS}] \\
& \text { Compressive Pressure: } \quad G_{f}=\mathrm{GFS}+\overbrace{\left(\frac{J_{1}}{\sqrt{3 J_{c}^{\prime}}}\right)^{\mathrm{PWRC}}} \quad[\mathrm{GFC}-\mathrm{GFS}]
\end{aligned}
\]

The internal parameters \(k_{c}\) and \(k_{t}\) are restricted to the interval \([0,1]\).
10. Element Erosion. An element loses all strength and stiffness as \(d \rightarrow 1\). To prevent computational difficulties with very low stiffness, element erosion is
available as a user option. An element erodes when \(d>0.99\) and the maximum principal strain is greater than a user supplied input value, ERODE - 1.0.
11. Viscoplastic Rate Effects. At each time step, the viscoplastic algorithm interpolates between the elastic trial stress, \(\sigma_{i j}^{\mathrm{T}}\), and the inviscid stress (without rate effects), \(\sigma_{i j}^{\mathrm{p}}\), to set the viscoplastic stress (with rate effects), \(\sigma_{i j}^{\mathrm{vp}}\) :
\[
\sigma_{i j}^{\mathrm{vp}}=(1-\gamma) \sigma_{i j}^{\mathrm{T}}+\gamma \sigma_{i j}^{\mathrm{p}}
\]
where
\[
\gamma=\frac{\Delta t / \eta}{1+\Delta t / \eta} .
\]

This interpolation depends upon the effective fluidity coefficient, \(\eta\), and the time step, \(\Delta t\). The effective fluidity coefficient is internally calculated from five usersupplied input parameters and interpolation equations:
\[
\begin{aligned}
\text { Tensile Pressure: } & \eta=\eta_{s}+\left(\frac{-J_{1}}{\sqrt{3 J_{2}^{\prime}}}\right)^{\mathrm{PWRT}}\left[\eta_{t}-\eta_{s}\right] \\
\text { Compressive Pressure: } & \eta=\eta_{s}+\left(\frac{J_{1}}{\sqrt{3 J_{2}^{\prime}}}\right)^{\mathrm{PWRC}}\left[\eta_{c}-\eta_{s}\right]
\end{aligned}
\]
where
\[
\begin{aligned}
& \eta_{s}=\mathrm{SRATE} \times \eta_{t} \\
& \eta_{t}=\frac{\mathrm{ETAOT}}{\dot{\varepsilon}^{\mathrm{NT}}} \\
& \eta_{c}=\frac{\mathrm{ETAOC}}{\dot{\varepsilon}^{\mathrm{NC}}}
\end{aligned}
\]

The input parameters are ETA0T and NT for fitting uniaxial tensile stress data, ETA0X and NC for fitting the uniaxial compressive stress data, and SRATE for fitting shear stress data. The effective strain rate is \(\dot{\varepsilon}\).

This viscoplastic model may predict substantial rate effects at high strain rates (\(\dot{\varepsilon}>100\)). To limit rate effects at high strain rates, the user may input overstress limits in tension OVERT and compression OVERC. These input fields limit calculation of the fluidity parameter, as follows:
\[
\text { if } E \dot{\varepsilon} \eta>\text { OVER, then } \eta=\frac{m}{E \dot{\varepsilon}}
\]

Here \(m=\) OVERT when the pressure is tensile and \(m=\) OVERC when the pressure is compressive.

The user has the option of increasing the fracture energy as a function of effective strain rate using the REPOW input parameter, as follows:
\[
G_{f}^{\text {rate }}=G_{f}\left[1+\frac{E \dot{\varepsilon} \eta}{r^{s} \sqrt{E}}\right]^{\text {REPOW }}
\]

Here \(G_{\mathrm{f}}^{\text {rate }}\) is the fracture energy enhanced by rate effects, and \(r^{s}\) is an internally calculated damage threshold determined before applying viscoplasticity (see [Murray 2007] for more details). The term in brackets is only applied if it is greater than or equal to one and is the approximate ratio of the dynamic to static strength.

\section*{*MAT_ALE_INCOMPRESSIBLE}

This is Material Type 160. This material is for modeling incompressible flows with the ALE solver. It should be used with solid element formulations 6 or 12 (see *SECTION_SOLID). A projection method enforces the incompressibility condition.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & PC & MU & & & & \\
Type & A & F & F & F & & & & \\
Default & none & none & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TOL & DTOUT & NCG & METH & & & & \\
Type & F & F & 1 & 1 & & & & \\
Default & \(10^{-8}\) & \(10^{10}\) & 50 & -7 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
PC
MU
TOL
DTOUT
NCG
METH

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART)

Material density
Pressure cutoff (\(\leq 0.0\))
Dynamic viscosity coefficient
Tolerance for the convergence of the conjugate gradient
Time interval between screen outputs
Maximum number of loops in the conjugate gradient
Conjugate gradient methods:
EQ.-6: Solves Poisson's equation for the pressure.

\section*{DESCRIPTION}

EQ.-7: Solves Poisson's equation for the pressure increment.

\section*{*MAT_COMPOSITE_MSC_\{OPTION\}}

Available options include:

\author{
<BLANK> \\ DMG
}

These are Material Types 161 and 162. These models may be used to model the progressive failure analysis for composite materials consisting of unidirectional and woven fabric layers. The progressive layer failure criteria have been established by adopting the methodology developed by Hashin [1980] with a generalization to include the effect of highly constrained pressure on composite failure. These failure models can be used to effectively simulate fiber failure, matrix damage, and delamination behavior under all conditions - opening, closing, and sliding of failure surfaces. The model with the DMG keyword option (material 162) is a generalization of the basic layer failure model of Material 161 by adopting the damage mechanics approach for characterizing the softening behavior after damage initiation. These models require an additional license from Materials Sciences Corporation, which developed and supports these models. These models are supported for solid elements.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|l|l|l|}
\hline GAB & GBC & GCA & AOPT & MACF & & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(X P\) & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SAT & SAC & SBT & SBC & SCT & SFC & SFS & SAB \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SBC & SCA & SFFC & AMODEL & PHIC & E_LIMT & S_DELM & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline OMGMX & ECRSH & EEXPN & CERATE1 & AM1 & & & \\
\hline
\end{tabular}

Card 8. This card is included if the DMG keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AM2 & AM3 & AM4 & CERATE2 & CERATE3 & CERATE4 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EA \(\quad E_{a}\), Young's modulus - longitudinal direction
EB \(\quad E_{b}\), Young's modulus - transverse direction
EC \(\quad E_{c}\), Young's modulus - through thickness direction
PRBA \(\quad v_{b a}\), Poisson's ratio ba
PRCA \(\quad v_{c a}\), Poisson's ratio \(c a\)
PRCB \(\quad v_{c b}\), Poisson's ratio \(c b\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & AOPT & MACF & & & \\
Type & F & F & F & F & I & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

GAB
GBC \(\quad G_{b c}\), shear modulus \(b c\)
GCA
AOPT
\(G_{a b}\), shear modulus \(a b\)
\(G_{c a}\), shear modulus \(c a\)

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES..

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, AOPT \(=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about c by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

\section*{VARIABLE}

MACF

\section*{DESCRIPTION}

Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

XP, YP, ZP Coordinates of point \(p\) for AOPT \(=1\) and 4
A1, A2, A3

\section*{DESCRIPTION}

Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4
D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Layer in-plane rotational angle in degrees. It may be override
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SAT & SAC & SBT & SBC & SCT & SFC & SFS & SAB \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

SAT Longitudinal tensile strength
SAC Longitudinal compressive strength
SBT Transverse tensile strength
SBC Transverse compressive strength
SCT Through thickness tensile strength
SFC Crush strength
SFS Fiber mode shear strength
SAB Matrix mode shear strength, \(a b\) plane; see remarks.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SBC & SCA & SFFC & AMODEL & PHIC & E_LIMT & S_DELM & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

SBC

SCA

\section*{DESCRIPTION}

Matrix mode shear strength, bc plane; see remarks.
Matrix mode shear strength, ca plane; see remarks.

\section*{VARIABLE}

SFFC

AMODEL

\section*{DESCRIPTION}

Scale factor for residual compressive strength
Material models:
EQ.1.0: Unidirectional layer model
EQ.2.0: Fabric layer model
Coulomb friction angle for matrix and delamination failure,\(<90\)
E_LIMT Element eroding axial strain
S_DELM Scale factor for delamination criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & OMGMX & ECRSH & EEXPN & CERATE1 & AM1 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{DESCRIPTION}

Limit damage parameter for elastic modulus reduction
Limit compressive volume strain for element eroding
Limit tensile volume strain for element eroding
CERATE1 Coefficient for strain rate dependent strength properties
AM1 Coefficient for strain rate softening property for fiber damage in \(a-\) direction

Failure Card. Additional card for DMG keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AM2 & AM3 & AM4 & CERATE2 & CERATE3 & CERATE4 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

VARIABLE
AM2

AM3

AM4

CERATE2
CERATE3
CERATE4

\section*{DESCRIPTION}

Coefficient for strain rate softening property for fiber damage in \(b\) direction

Coefficient for strain rate softening property for fiber crush and punch shear damage

Coefficient for strain rate softening property for matrix and delamination damage

Coefficient for strain rate dependent axial moduli
Coefficient for strain rate dependent shear moduli
Coefficient for strain rate dependent transverse moduli

\section*{Material Models:}

The unidirectional and fabric layer failure criteria and the associated property degradation models for material 161 are described as follows. All the failure criteria are expressed in terms of stress components based on ply level stresses (\(\sigma_{a}, \sigma_{b}, \sigma_{c}, \tau_{a b}, \tau_{b c}, \tau_{c a}\)) and the associated elastic moduli are \(\left(E_{a}, E_{b}, E_{c}, G_{a b}, G_{b c}, G_{c a}\right)\). Note that for the unidirectional model, \(a, b\) and \(c\) denote the fiber, in-plane transverse and out-of-plane directions, respectively, while for the fabric model, \(a, b\) and \(c\) denote the in-plane fill, in-plane warp and out-of-plane directions, respectively.

\section*{Unidirectional Lamina Model:}

Three criteria are used for fiber failure, one in tension/shear, one in compression and another one in crush under pressure. They are chosen in terms of quadratic stress forms as follows:
1. Tensile/shear fiber mode:
\[
f_{1}=\left(\frac{\left\langle\sigma_{a}\right\rangle}{S_{a T}}\right)^{2}+\left(\frac{\tau_{a b}^{2}+\tau_{c a}^{2}}{S_{F S}^{2}}\right)-1=0
\]
2. Compression fiber mode:
\[
f_{2}=\left(\frac{\left\langle\sigma_{a}^{\prime}\right\rangle}{S_{a C}}\right)^{2}-1=0, \quad \sigma_{a}^{\prime}=-\sigma_{a}+\left\langle-\frac{\sigma_{b}+\sigma_{c}}{2}\right\rangle
\]
3. Crush mode:
\[
f_{3}=\left(\frac{\langle p\rangle}{S_{F C}}\right)^{2}-1=0, \quad p=-\frac{\sigma_{a}+\sigma_{b}+\sigma_{c}}{3}
\]

Here \(\langle\quad\rangle\) are Macaulay brackets, \(S_{a T}\) and \(S_{a C}\) are the tensile and compressive strengths in the fiber direction, and \(S_{F S}\) and \(S_{F C}\) are the layer strengths associated with the fiber shear and crush failure, respectively.

Matrix mode failures must occur without fiber failure, and hence they will be on planes parallel to fibers. For simplicity, only two failure planes are considered: one is perpendicular to the planes of layering and the other one is parallel to them. The matrix failure criteria for the failure plane perpendicular and parallel to the layering planes, respectively, have the forms:
1. Perpendicular matrix mode:
\[
f_{4}=\left(\frac{\left\langle\sigma_{b}\right\rangle}{S_{b T}}\right)^{2}+\left(\frac{\tau_{b c}}{S_{b c}^{\prime}}\right)^{2}+\left(\frac{\tau_{a b}}{S_{a b}}\right)^{2}-1=0
\]
2. Parallel matrix mode (Delamination):
\[
f_{5}=S^{2}\left\{\left(\frac{\left\langle\sigma_{c}\right\rangle}{S_{b T}}\right)^{2}+\left(\frac{\tau_{b c}}{S_{b c}^{\prime \prime}}\right)^{2}+\left(\frac{\tau_{c a}}{S_{c a}}\right)^{2}\right\}-1=0
\]

Here \(S_{b T}\) is the transverse tensile strength. Based on the Coulomb-Mohr theory, the shear strengths for the transverse shear failure and the two axial shear failure modes are assumed to be the forms,
\[
\begin{aligned}
S_{a b} & =S_{a b}^{(0)}+\tan (\varphi)\left\langle-\sigma_{b}\right\rangle \\
S_{b c}^{\prime} & =S_{b c}^{(0)}+\tan (\varphi)\left\langle-\sigma_{b}\right\rangle \\
S_{c a} & =S_{c a}^{(0)}+\tan (\varphi)\left\langle-\sigma_{c}\right\rangle \\
S_{b c}^{\prime \prime} & =S_{b c}^{(0)}+\tan (\varphi)\left\langle-\sigma_{c}\right\rangle
\end{aligned}
\]
where \(\varphi\) is a material constant as \(\tan (\varphi)\) is similar to the coefficient of friction, and \(S_{a b}^{(0)}\), \(S_{c a}^{(0)}\) and \(S_{b c}^{(0)}\) are the shear strength values of the corresponding tensile modes.

Failure predicted by the criterion of \(f_{4}\) can be referred to as transverse matrix failure, while the matrix failure predicted by \(f_{5}\), which is parallel to the layer, can be referred as the delamination mode when it occurs within the elements that are adjacent to the ply interface. Note that a scale factor \(S\) is introduced to provide better correlation of delamination area with experiments. The scale factor \(S\) can be determined by fitting the analytical prediction to experimental data for the delamination area.

When fiber failure in tension/shear mode is predicted in a layer by \(f_{1}\), the load carrying capacity of that layer is completely eliminated. All the stress components are reduced to zero instantaneously (100 time steps to avoid numerical instability). For compressive fiber failure, the layer is assumed to carry a residual axial load, while the transverse load carrying capacity is reduced to zero. When the fiber compressive failure mode is reached due to \(f_{2}\), the axial layer compressive strength stress is assumed to reduce to a residual value \(S_{R C}\left(=\mathrm{SFFC} \times S_{A C}\right)\). The axial stress is then assumed to remain constant, meaning
\(\sigma_{a}=-S_{R C}\), for continuous compressive loading, while the subsequent unloading curve follows a reduced axial modulus to zero axial stress and strain state. When the fiber crush failure occurs, the material is assumed to behave elastically for compressive pressure, \(p>\) 0 , and to carry no load for tensile pressure, \(p<0\).

When a matrix failure (delamination) in the \(a b\)-plane is predicted, the strength values for \(S_{c a}^{(0)}\) and \(S_{b c}^{(0)}\) are set to zero. This results in reducing the stress components \(\sigma_{c}, \tau_{b c}\) and \(\tau_{c a}\) to the fractured material strength surface. For tensile mode, \(\sigma_{c}>0\), these stress components are reduced to zero. For compressive mode, \(\sigma_{c}<0\), the normal stress \(\sigma_{c}\) is assumed to deform elastically for the closed matrix crack. Loading on the failure envelop, the shear stresses are assumed to 'slide' on the fractured strength surface (frictional shear stresses) like in an ideal plastic material, while the subsequent unloading shear stress-strain path follows reduced shear moduli to the zero shear stress and strain state for both \(\tau_{b c}\) and \(\tau_{c a}\) components.

The post failure behavior for the matrix crack in the a-c plane due to \(f_{4}\) is modeled in the same fashion as that in the \(a b\)-plane as described above. In this case, when failure occurs, \(S_{a b}^{(0)}\) and \(S_{b c}^{(0)}\) are reduced to zero instantaneously. The post fracture response is then governed by failure criterion of \(f_{5}\) with \(S_{a b}^{(0)}=0\) and \(S_{b c}^{(0)}=0\). For tensile mode, \(\sigma_{b}>0, \sigma_{b}, \tau_{a b}\) and \(\tau_{b c}\) are zero. For compressive mode, \(\sigma_{b}<0, \sigma_{b}\) is assumed to be elastic, while \(\tau_{a b}\) and \(\tau_{b c}\) 'slide' on the fracture strength surface as in an ideal plastic material, and the unloading path follows reduced shear moduli to the zero shear stress and strain state. It should be noted that \(\tau_{b c}\) is governed by both the failure functions and should lie within or on each of these two strength surfaces.

\section*{Fabric Lamina Model:}

The fiber failure criteria of Hashin for a unidirectional layer are generalized to characterize the fiber damage in terms of strain components for a plain weave layer. The fill and warp fiber tensile/shear failure are given by the quadratic interaction between the associated axial and shear stresses, that is,
\[
\begin{aligned}
& f_{6}=\left(\frac{\left\langle\sigma_{a}\right\rangle}{S_{a T}}\right)^{2}+\frac{\left(\tau_{a b}^{2}+\tau_{c a}^{2}\right)}{S_{a F S}^{2}}-1=0 \\
& f_{7}=\left(\frac{\left\langle\sigma_{b}\right\rangle}{S_{b T}}\right)^{2}+\frac{\left(\tau_{a b}^{2}+\tau_{b c}^{2}\right)}{S_{b F S}^{2}}-1=0
\end{aligned}
\]
where \(S_{a T}\) and \(S_{b T}\) are the axial tensile strengths in the fill and warp directions, respectively, and \(S_{a F S}\) and \(S_{b F S}\) are the layer shear strengths due to fiber shear failure in the fill and warp directions. These failure criteria are applicable when the associated \(\sigma_{a}\) or \(\sigma_{b}\) is positive. It is assumed \(S_{a F S}=S F S\), and
\[
S_{b F S}=\mathrm{SFS} \times \frac{S_{b T}}{S_{a T}}
\]

When \(\sigma_{a}\) or \(\sigma_{b}\) is compressive, it is assumed that the in-plane compressive failure in both the fill and warp directions are given by the maximum stress criterion, that is,
\[
\begin{aligned}
& f_{8}=\left[\frac{\left\langle\sigma_{a}^{\prime}\right\rangle}{S_{a C}}\right]^{2}-1=0, \quad \sigma_{a}^{\prime}=-\sigma_{a}+\left\langle-\sigma_{c}\right\rangle \\
& f_{9}=\left[\frac{\left\langle\sigma_{b}^{\prime}\right\rangle}{S_{b c}}\right]^{2}-1=0, \quad \sigma_{b}^{\prime}=-\sigma_{b}+\left\langle-\sigma_{c}\right\rangle
\end{aligned}
\]
where \(S_{a C}\) and \(S_{b c}\) are the axial compressive strengths in the fill and warp directions, respectively. The crush failure under compressive pressure is
\[
f_{10}=\left(\frac{\langle p\rangle}{S_{F C}}\right)^{2}-1=0, \quad p=-\frac{\sigma_{a}+\sigma_{b}+\sigma_{c}}{3} .
\]

A plain weave layer can fail under in-plane shear stress without the occurrence of fiber breakage. This in-plane matrix failure mode is given by
\[
f_{11}=\left(\frac{\tau_{a b}}{S_{a b}}\right)^{2}-1=0
\]
where \(S_{a b}\) is the layer shear strength due to matrix shear failure.
Another failure mode, which is due to the quadratic interaction between the thickness stresses, is expected to be mainly a matrix failure. This through the thickness matrix failure criterion is
\[
f_{12}=S^{2}\left\{\left(\frac{\left\langle\sigma_{c}\right\rangle}{S_{c T}}\right)^{2}+\left(\frac{\tau_{b c}}{S_{b c}}\right)^{2}+\left(\frac{\tau_{c a}}{S_{c a}}\right)^{2}\right\}-1=0
\]
where \(S_{c T}\) is the through the thickness tensile strength, and \(S_{b c}\) and \(S_{c a}\) are the shear strengths assumed to depend on the compressive normal stress \(\sigma_{\mathcal{C}}\), meaning
\[
\left\{\begin{array}{l}
S_{c a} \\
S_{b c}
\end{array}\right\}=\left\{\begin{array}{l}
S_{c a}^{(0)} \\
S_{b c}^{(0)}
\end{array}\right\}+\tan (\varphi)\left\langle-\sigma_{c}\right\rangle
\]

When failure predicted by this criterion occurs within elements that are adjacent to the ply interface, the failure plane is expected to be parallel to the layering planes, and, thus, can be referred to as the delamination mode. Note that a scale factor \(S\) is introduced to provide better correlation of delamination area with experiments. The scale factor \(S\) can be determined by fitting the analytical prediction to experimental data for the delamination area.

Similar to the unidirectional model, when fiber tensile/shear failure is predicted in a layer by \(f_{6}\) or \(f_{7}\), the load carrying capacity of that layer in the associated direction is completely eliminated. For compressive fiber failure due to by \(f_{8}\) or \(f_{9}\), the layer is assumed to carry a residual axial load in the failed direction, while the load carrying capacity transverse to the failed direction is assumed unchanged. When the compressive axial stress in a layer reaches the compressive axial strength \(S_{a C}\) or \(S_{b C}\), the axial layer stress is assumed to be reduced to the residual strength \(S_{a R C}\) or \(S_{b R C}\) where \(S_{a R C}=\mathrm{SFFC} \times S_{a C}\) and \(S_{b R C}=\)
\(\mathrm{SFFC} \times S_{b C}\). The axial stress is assumed to remain constant, that is, \(\sigma_{a}=-S_{a \subset R}\) or \(\sigma_{b}=\) \(-S_{b C R}\), for continuous compressive loading, while the subsequent unloading curve follows a reduced axial modulus. When the fiber crush failure is occurred, the material is assumed to behave elastically for compressive pressure, \(p>0\), and to carry no load for tensile pressure, \(p<0\).

When the in-plane matrix shear failure is predicted by \(f_{11}\) the axial load carrying capacity within a failed element is assumed unchanged, while the in-plane shear stress is assumed to be reduced to zero.

For through the thickness matrix (delamination) failure given by equation \(f_{12}\), the inplane load carrying capacity within the element is assumed to be elastic, while the strength values for the tensile mode, \(S_{c a}^{(0)}\) and \(S_{b c}^{(0)}\), are set to zero. For tensile mode, \(\sigma_{c}>\) 0 , the through the thickness stress components are reduced to zero. For compressive mode, \(\sigma_{c}<0, \sigma_{c}\) is assumed to be elastic, while \(\tau_{b c}\) and \(\tau_{c a}\) 'slide' on the fracture strength surface as in an ideal plastic material, and the unloading path follows reduced shear moduli to the zero shear stress and strain state.

The effect of strain-rate on the layer strength values of the fiber failure modes is modeled by the strain-rate dependent functions for the strength values \(\left\{S_{R T}\right\}\) as
\[
\begin{gathered}
\left\{S_{R T}\right\}=\left\{S_{0}\right\}\left(1+C_{\text {rate1 }} \ln \frac{\{\dot{\bar{\varepsilon}}\}}{\dot{\varepsilon}_{0}}\right) \\
\left\{S_{R T}\right\}=\left\{\begin{array}{c}
S_{a T} \\
S_{a C} \\
S_{b T} \\
S_{b C} \\
S_{F C} \\
S_{F S}
\end{array}\right\}, \quad\{\dot{\bar{\varepsilon}}\}=\left\{\begin{array}{c}
\left|\dot{\varepsilon}_{a}\right| \\
\left|\dot{\varepsilon}_{a}\right| \\
\left|\dot{\varepsilon}_{b}\right| \\
\left|\dot{\varepsilon}_{b}\right| \\
\left|\dot{\varepsilon}_{c}\right| \\
\left(\dot{\varepsilon}_{c a}^{2}+\dot{\varepsilon}_{b c}^{2}\right)^{1 / 2}
\end{array}\right\}
\end{gathered}
\]
where \(C_{\text {rate }}\) is the strain-rate constants, and \(\left\{S_{0}\right\}\) are the strength values of \(\left\{S_{R T}\right\}\) at the reference strain-rate \(\dot{\varepsilon}_{0}\).

\section*{Damage Model:}

The damage model is a generalization of the layer failure model of Material 161 by adopting the MLT damage mechanics approach, Matzenmiller et al. [1995], for characterizing the softening behavior after damage initiation. Complete model description is given in Yen [2002]. The damage functions, which are expressed in terms of ply level engineering strains, are converted from the above failure criteria of fiber and matrix failure modes by neglecting the Poisson's effect. Elastic moduli reduction is expressed in terms of the associated damage parameters \(\omega_{i}\) :
\[
E_{i}^{\prime}=\left(1-\omega_{i}\right) E_{i}
\]
where \(\omega_{i}\) is given by
\[
\omega_{i}=1-\exp \left(-\frac{r_{i}^{m_{i}}}{m_{i}}\right), \quad r_{i} \geq 0, \quad i=1, \ldots, 6
\]

In the above \(E_{i}\) are the initial elastic moduli, \(E_{i}^{\prime}\) are the reduced elastic moduli, \(r_{i}\) are the damage thresholds computed from the associated damage functions for fiber damage, matrix damage and delamination, and \(m_{i}\) are material damage parameters, which are currently assumed to be independent of strain-rate. The damage function is formulated to account for the overall nonlinear elastic response of a lamina including the initial 'hardening' and the subsequent softening beyond the ultimate strengths.

In the damage model (material 162), the effect of strain-rate on the nonlinear stress-strain response of a composite layer is modeled by the strain-rate dependent functions for the elastic moduli \(\left\{E_{R T}\right\}\) as
\[
\left\{E_{R T}\right\}=\left\{E_{0}\right\}\left(1+\left\{C_{\text {rate }}\right\} \ln \frac{\{\dot{\bar{\varepsilon}}\}}{\dot{\varepsilon}_{0}}\right)
\]
\[
\left\{E_{R T}\right\}=\left\{\begin{array}{c}
E_{a} \\
E_{b} \\
E_{c} \\
G_{a b} \\
G_{b c} \\
G_{c a}
\end{array}\right\} \quad\{\dot{\bar{\varepsilon}}\}=\left\{\begin{array}{c}
\left|\dot{\varepsilon}_{a}\right| \\
\left|\dot{\varepsilon}_{b}\right| \\
\left|\dot{\varepsilon}_{c}\right| \\
\left|\dot{\varepsilon}_{a b}\right| \\
\left|\dot{\varepsilon}_{b c}\right| \\
\left|\dot{\varepsilon}_{c a}\right|
\end{array}\right\} \quad\left\{C_{\text {rate }}\right\}=\left\{\begin{array}{l}
C_{\text {rate2 }} \\
C_{\text {rate2 }} \\
C_{\text {rate4 }} \\
C_{\text {rate3 }} \\
C_{\text {rate3 }} \\
C_{\text {rate3 }}
\end{array}\right\}
\]
where \(\left\{C_{\text {rate }}\right\}\) are the strain-rate constants. \(\left\{E_{0}\right\}\) are the modulus values of \(\left\{E_{R T}\right\}\) at the reference strain-rate \(\dot{\varepsilon}_{0}\).

\section*{Element Erosion:}

A failed element is eroded in any of three different ways:
1. If fiber tensile failure in a unidirectional layer is predicted in the element and the axial tensile strain is greater than E_LIMT. For a fabric layer, both in-plane directions are failed and exceed E_LIMT.
2. If compressive relative volume in a failed element is smaller than ECRSH.
3. If tensile relative volume in a failed element is greater than EEXPN.

\section*{Damage History Parameters:}

Information about the damage history variables for the associated failure modes can be plotted in LS-PrePost. These additional history variables are tabulated below:
\begin{tabular}{|c|l|c|c|}
\hline \begin{tabular}{c}
History \\
Variable
\end{tabular} & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Value } & \begin{tabular}{c}
History \\
Variable \#
\end{tabular} \\
\hline \hline \(\operatorname{efa}(I)\) & Fiber mode in \(a\) & & 7 \\
\(\operatorname{efb}(I)\) & Fiber mode in \(b\) & & 8 \\
\(\operatorname{efp}(I)\) & Fiber crush mode & EQ.0: elastic & 9 \\
\(\operatorname{em}(I)\) & Perpendicular matrix mode & GE.1: failed & 10 \\
\(\operatorname{ed}(I)\) & Parallel matrix/delamination mode & & 11 \\
\(\operatorname{delm}(I)\) & Delamination mode & & 12 \\
\hline
\end{tabular}

\section*{*MAT_MODIFIED_CRUSHABLE_FOAM}

This is Material Type 163 which is dedicated to modeling crushable foam with optional damping, tension cutoff, and strain rate effects. Unloading is fully elastic. Tension is treated as elastic-perfectly-plastic at the tension cut-off value.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & TID & TSC & DAMP & NCYCLE \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & 0.10 & 12. \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SRCLMT & SFLAG & & & & & & \\
Type & F & 1 & & & & & & \\
Default & \(10^{20}\) & 0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
TID Table ID defining yield stress as a function of volumetric strain, \(\gamma\), at different strain rates.

TSC Tensile stress cutoff. A nonzero, positive value is strongly recommended for realistic behavior.

DAMP Rate sensitivity via damping coefficient (. \(05<\) recommended value < .50).

Figure M163-1. Rate effects are defined by a family of curves giving yield stress as a function of volumetric strain where \(V\) is the relative volume.

\section*{VARIABLE}

NCYCLE
SRCLMT
SFLAG

\section*{DESCRIPTION}

Number of cycles to determine the average volumetric strain rate.
Strain rate change limit.
The strain rate in the table may be the true strain rate \((\mathrm{SFLAG}=0)\) or the engineering strain rate (\(\mathrm{SFLAG}=1\)).

\section*{Remarks:}

The volumetric strain is defined in terms of the relative volume, \(V\), as:
\[
\gamma=1-V
\]

The relative volume is defined as the ratio of the current to the initial volume. In place of the effective plastic strain in the d3plot database, the integrated volumetric strain (natural logarithm of the relative volume) is output.

This material is an extension of material 63, *MAT_CRUSHABLE_FOAM. It allows the yield stress to be a function of both volumetric strain rate and volumetric strain. Rate effects are accounted for by defining a table of curves using *DEFINE_TABLE. Each curve defines the yield stress as a function volumetric strain for a different strain rate. The yield stress is obtained by interpolating between the two curves that bound the strain rate.

To prevent high frequency oscillations in the strain rate from causing similar high frequency oscillations in the yield stress, a modified volumetric strain rate is used when interpolating to obtain the yield stress. The modified strain rate is obtained as follows. If NYCLE is \(>1\), then the modified strain rate is obtained by a time average of the actual strain rate over NCYCLE solution cycles. For SRCLMT \(>0\), the modified strain rate is capped so that during each cycle, the modified strain rate is not permitted to change more than SRCLMT multiplied by the solution time step.

\section*{*MAT_BRAIN_LINEAR_VISCOELASTIC}

This is Material Type 164. This material is a Kelvin-Maxwell model for modeling brain tissue, which is valid for solid elements only. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & BULK & G0 & Gl & DC & FO & S 0 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
BULK Bulk modulus (elastic)
G0 Short-time shear modulus, \(G_{0}\)
GI Long-time (infinite) shear modulus, \(G_{\infty}\)
DC Constant depending on formulation option (FO) below:
FO.EQ.0.0: Maxwell decay constant, \(\beta\)
FO.EQ.1.0: Kelvin relaxation constant, \(\tau\)

FO Formulation option:
EQ.0.0: Maxwell
EQ.1.0: Kelvin
SO Strain (logarithmic) output option to control what is written as component 7 to the d3plot database. (LS-PrePost always blindly labels this component as effective plastic strain.) The maximum values are updated for each element each time step:

EQ.0.0: Maximum principal strain that occurs during the calculation

\section*{DESCRIPTION}

EQ.1.0: Maximum magnitude of the principal strain values that occurs during the calculation
EQ.2.0: Maximum effective strain that occurs during the calculation

\section*{Remarks:}
1. Maxwell Model. The shear relaxation behavior is described for the Maxwell model by:
\[
G(t)=G+\left(G_{0}-G_{\infty}\right) e^{-\beta t}
\]

A Jaumann rate formulation is used
\[
\stackrel{\nabla}{\sigma}_{i j}=2 \int_{0}^{t} G(t-\tau) D_{i j}^{\prime}(\tau) d t
\]
where the prime denotes the deviatoric part of the stress rate, \(\stackrel{\nabla}{\sigma}_{i j}\), and the strain rate \(D_{i j}\).
2. Kelvin Model. For the Kelvin model the stress evolution equation is defined as:
\[
\dot{s}_{i j}+\frac{1}{\tau} s_{i j}=\left(1+\delta_{i j}\right) G_{0} \dot{e}_{i j}+\left(1+\delta_{i j}\right) \frac{G_{\infty}}{\tau} \dot{e}_{i j}
\]

The strain data as written to the d3plot database may be used to predict damage, see [Bandak 1991].

\section*{*MAT_PLASTIC_NONLINEAR_KINEMATIC}

This is Material Type 165. This relatively simple model, based on a material model by Lemaitre and Chaboche [1990], is suited to model nonlinear kinematic hardening plasticity. The model accounts for the nonlinear Bauschinger effect, cyclic hardening, and ratcheting. Huang [2009] programmed this model and provided it as a user subroutine. It is a very cost effective model and is available for shell and solid elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & H & C & GAMMA \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FS & & & & & & & \\
Type & F & & & & & & \\
Default & \(10^{16}\) & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
RO & Mass density \\
E & Young's modulus \\
SR & Poisson's ratio \\
H & Initial yield stress, \(\sigma_{y 0}\) \\
C & Kinematropic plastic hardening modulus
\end{tabular}

VARIABLE
GAMMA
FS

\section*{DESCRIPTION}

Kinematic hardening parameter, \(\gamma\)
Failure strain for eroding elements

\section*{Remarks:}

If the isotropic hardening modulus, \(H\), is nonzero, the size of the surface increases as a function of the equivalent plastic strain, \(\varepsilon^{p}\) :
\[
\sigma_{y}=\sigma_{y 0}+H \varepsilon^{p}
\]

The rate of evolution of the kinematic component is a function of the plastic strain rate:
\[
\dot{\alpha}=[C n-\gamma \alpha] \dot{\varepsilon}^{p},
\]
where \(n\) is the flow direction. The term, \(\gamma \alpha \dot{\varepsilon}^{p}\), introduces the nonlinearity into the evolution law, which becomes linear if the parameter, \(\gamma\), is set to zero.

\section*{*MAT_MOMENT_CURVATURE_BEAM}

This is Material Type 166. This material is for performing nonlinear elastic or multi-linear plastic analysis of Belytschko-Schwer beams with user-defined axial force-strain, moment curvature and torque-twist rate curves. If strain, curvature or twist rate is located outside the curves, use extrapolation to determine the corresponding rigidity. For multi-linear plastic analysis, the user-defined curves are used as yield surfaces.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & ELAF & EPFLG & CTA & CTB & CTT \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & N1 & N2 & N3 & N4 & N5 & N6 & N7 & N8 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & none & \begin{tabular}{c}
\(0.0 /\) \\
none
\end{tabular} & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCMS1 & LCMS2 & LCMS3 & LCMS4 & LCMS5 & LCMS6 & LCMS7 & LCMS8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & none & none & \(0 /\) none & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCMT1 & LCMT2 & LCMT3 & LCMT4 & LCMT5 & LCMT6 & LCMT7 & LCMT8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & none & none & \(0 /\) none & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCT1 & LCT2 & LCT3 & LCT4 & LCT5 & LCT6 & LCT7 & LCT8 \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & none & none & \(0 /\) none & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Multilinear Plastic Analysis Card. Additional card for EPFLG \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CFA & CFB & CFT & HRULE & REPS & RBETA & RCAPAY & RCAPAZ \\
Type & F & F & F & F & F & F & F & F \\
Default & 1.0 & 1.0 & 1.0 & 0.0 & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E

ELAF

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus. This variable controls the time step size and must be chosen carefully. Increasing the value of E will decrease the time step size.

Load curve ID for the axial force-strain curve
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline \multirow[t]{3}{*}{EPFLG} & Function flag: \\
\hline & EQ.0.0: Nonlinear elastic analysis \\
\hline & EQ.1.0: Multi-linear plastic analysis \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { CTA, СTB, } \\
\text { CTT }
\end{gathered}
\]} & Type of axial force-strain, moment-curvature, and torque-twist rate curves (see Remarks): \\
\hline & EQ.0.0: Curve is symmetric. \\
\hline & EQ.1.0: Curve is asymmetric. \\
\hline N1-N8 & Axial forces at which moment-curvature curves are given. The axial forces must be ordered monotonically increasing. At least two axial forces must be defined if the curves are symmetric. At least three axial forces must be defined if the curves are asymmetric. \\
\hline \begin{tabular}{l}
LCMS1 - \\
LCMS8
\end{tabular} & Load curve IDs for the moment-curvature curves about axis \(S\) under corresponding axial forces. \\
\hline \begin{tabular}{l}
LCMT1 - \\
LCMT8
\end{tabular} & Load curve IDs for the moment-curvature curves about axis \(T\) under corresponding axial forces. \\
\hline LCT1 - LCT8 & Load curve IDs for the torque-twist rate curves under corresponding axial forces. \\
\hline CFA, CFB, CFT & For multi-linear plastic analysis only. Ratio of axial, bending and torsional elastic rigidities to their initial values, no less than 1.0 in value. \\
\hline \multirow[t]{4}{*}{HRULE} & Hardening rule, for multi-linear plastic analysis only. \\
\hline & EQ.0.0: Isotropic hardening \\
\hline & GT.O.0.AND.LT.1.0: Mixed hardening \\
\hline & EQ.1.0: Kinematic hardening \\
\hline REPS & Rupture effective plastic axial strain \\
\hline RBETA & Rupture effective plastic twist rate \\
\hline RCAPAY & Rupture effective plastic curvature about axis \(S\) \\
\hline RCAPAZ & Rupture effective plastic curvature about axis \(T\) \\
\hline
\end{tabular}

\section*{Remarks:}

For symmetric curves (see fields CTA, CTB, and CTT above), all data points must be in the first quadrant, and at least three data points need to be given, starting from the origin, followed by the yield point.

For asymmetric curves, at least five data points are needed and exactly one point must be at the origin. The two points on both sides of the origin record the positive and negative yield points.

The last data point(s) has no physical meaning: it serves only as a control point for inter or extrapolation.

The curves are input by the user and treated in LS-DYNA as linearly piecewise functions. The curves must be monotonically increasing while the slopes must be monotonically decreasing.

\section*{*MAT_MCCORMICK}

This is Material Type 167. This material is intended for finite plastic deformations. McCormick's constitutive relation for materials exhibiting negative steady-state Strain Rate Sensitivity (SRS) defines this material's strength. See McCormick [1988] and Zhang, McCormick and Estrin [2001].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & SIGY & & & \\
Type & A & F & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Q1 & C1 & Q2 & C2 & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S & H & OMEGA & TD & ALPHA & EPSO & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Initial yield stress
Q1 Isotropic hardening parameter, \(Q_{1}\)
C1 Isotropic hardening parameter, \(C_{1}\)

\section*{DESCRIPTION}

\section*{VARIABLE}

Q2

S

H

C2 Isotropic hardening parameter, \(C_{2}\)
DESCRIPTION
Isotropic hardening parameter, \(Q_{2}\)

Dynamic strain aging parameter, \(S\)
Dynamic strain aging parameter, \(H\)

OMEGA
TD
ALPHA
EPS0

Dynamic strain aging parameter, \(\Omega\)
Dynamic strain aging parameter, \(t_{d}\)

Dynamic strain aging parameter, \(\alpha\)
Reference strain rate, \(\dot{\varepsilon}_{0}\)

\section*{Remarks:}

The uniaxial stress-strain curve is given in the following form:
\[
\sigma\left(\varepsilon^{p}, \dot{\varepsilon}^{p}\right)=\sigma_{Y}\left(t_{a}\right)+R\left(\varepsilon^{p}\right)+\sigma_{v}\left(\dot{\varepsilon}^{p}\right) .
\]

Viscous stress \(\sigma_{v}\) is given by
\[
\sigma_{v}\left(\dot{\varepsilon}^{p}\right)=\mathrm{S} \times \ln \left(1+\frac{\dot{\varepsilon}^{p}}{\dot{\varepsilon}_{o}}\right),
\]
where \(S\) represents the instantaneous strain rate sensitivity and \(\dot{\varepsilon}_{o}\) is a reference strain rate.

In the McCormick model the yield strength includes a dynamic strain aging (DSA) contribution. The yield strength is defined as
\[
\sigma_{Y}\left(t_{a}\right)=\sigma_{o}+\mathrm{S} \times \mathrm{H} \times\left[1-\exp \left\{-\left(\frac{t_{a}}{t_{d}}\right)^{\alpha}\right\}\right]
\]
where \(\sigma_{o}\) is the yield strength for vanishing average waiting time \(t_{a}\), and \(H, \alpha\), and \(t_{d}\) are material constants linked to dynamic strain aging.

The average waiting time is defined by the evolution equation
\[
\dot{t}_{a}=1-\frac{t_{a}}{t_{a, s s}},
\]
where the quasi-steady state waiting time \(t_{a, s s}\) is given as
\[
t_{a, s s}=\frac{\Omega}{\dot{\varepsilon}^{p}} .
\]

The strain hardening function \(R\) is defined by the extended Voce Law
\[
R\left(\varepsilon^{p}\right)=Q_{1}\left[1-\exp \left(-C_{1} \varepsilon^{p}\right)\right]+Q_{2}\left[1-\exp \left(-C_{2} \varepsilon^{p}\right)\right] .
\]

\section*{*MAT_POLYMER}

This is Material Type 168. This model is implemented for brick elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & GAMMA0 & DG & SC & ST \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TEMP & K & CR & N & C & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus, \(E\)
PR
GAMMA0
DG
SC
ST
TEMP

K

CR

N

C (see *PART).

Poisson's ratio, \(v\)
Pre-exponential factor, \(\dot{\gamma}_{0 A}\)
Energy barrier to flow, \(\Delta G\)

Shear resistance in tension, \(S_{t}\)
Absolute temperature, \(\theta\)
Boltzmann constant, \(k\)
Product, \(C_{r}=n k \theta\)

Relaxation factor, \(C\)

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified

Shear resistance in compression, \(S_{c}\)

Number of "rigid links" between entanglements, \(N\)

\section*{Remarks:}

The polymer is assumed to have two basic resistances to deformation:

Figure M168-1. Stress decomposition in inter-molecular and network contributions.
1. An intermolecular barrier to deformation related to relative movement between molecules.
2. An evolving anisotropic resistance related to straightening of the molecule chains.

The model which is implemented and presented in this paper is mainly based on the framework suggested by Boyce et al. [2000]. Going back to the original work by Haward and Thackray [1968], they considered the uniaxial case only. The extension to a full 3D formulation was proposed by Boyce et al. [1988]. Moreover, Boyce and co-workers have during a period of 20 years changed or further developed the parts of the original model. Haward and Thackray [1968] used an Eyring model to represent the dashpot in Fig. M168-1, while Boyce et al. [2000] employed the double-kink model of Argon [1973] instead. Part B of the model, describing the resistance associated with straightening of the molecules, contained originally a one-dimensional Langevin spring [Haward and Thackray, 1968], which was generalized to 3D with the eight-chain model by Arruda and Boyce [1993].

The main structure of the model presented by Boyce et al. [2000] is kept for this model. Recognizing the large elastic deformations occurring for polymers, a formulation based
on a Neo-Hookean material is here selected for describing the spring in resistance \(A\) in Figure M168-1.

Referring to Figure M168-1, it is assumed that the deformation gradient tensor is the same for the two resistances (Part A and B)
\[
\mathbf{F}=\mathbf{F}_{A}=\mathbf{F}_{B}
\]
while the Cauchy stress tensor for the system is assumed to be the sum of the Cauchy stress tensors for the two parts
\[
\sigma=\sigma_{A}+\sigma_{B}
\]

\section*{Part A: Inter-Molecular Resistance:}

The deformation is decomposed into elastic and plastic parts, \(\mathbf{F}_{A}=\mathbf{F}_{A}^{e} \mathbf{F}_{A}^{p}\), where it is assumed that the intermediate configuration \(\bar{\Omega}_{A}\) defined by \(\mathbf{F}_{A}^{p}\) is invariant to rigid body rotations of the current configuration. The velocity gradient in the current configuration \(\Omega\) is defined by
\[
\mathbf{L}_{A}=\dot{\mathbf{F}}_{A} \mathbf{F}_{A}^{-1}=\mathbf{L}_{A}^{e}+\mathbf{L}_{A}^{p}
\]

Owing to the decomposition, \(\mathbf{F}_{A}=\mathbf{F}_{A}^{e} \mathbf{F}_{A}^{p}\), the elastic and plastic rate-of-deformation and spin tensors are defined by
\[
\begin{aligned}
& \mathbf{L}_{A}^{e}=\mathbf{D}_{A}^{e}+\mathbf{W}_{A}^{e}=\dot{\mathbf{F}}_{A}^{e}\left(\mathbf{F}_{A}^{e}\right)^{-1} \\
& \mathbf{L}_{A}^{p}=\mathbf{D}_{A}^{p}+\mathbf{W}_{A}^{p}=\mathbf{F}_{A}^{e} \dot{\mathbf{F}}_{A}^{p}\left(\mathbf{F}_{A}^{p}\right)^{-1}\left(\mathbf{F}_{A}^{e}\right)^{-1}=\mathbf{F}_{A}^{e} \overline{\mathbf{L}}_{A}^{p}\left(\mathbf{F}_{A}^{e}\right)^{-1}
\end{aligned}
\]
where \(\overline{\mathbf{L}}_{A}^{p}=\dot{\mathbf{F}}_{A}^{p}\left(\mathbf{F}_{A}^{p}\right)^{-1}\). The Neo-Hookean material represents an extension of Hooke's law to large elastic deformations and may be chosen for the elastic part of the deformation when the elastic behavior is assumed to be isotropic.
\[
\tau_{A}=\lambda_{0} \ln J_{A}^{e} \mathbf{I}+\mu_{0}\left(\mathbf{B}_{A}^{e}-\mathbf{I}\right)
\]
where \(\boldsymbol{\tau}_{A}=J_{A} \sigma_{A}\) is the Kirchhoff stress tensor of Part A and \(J_{A}^{e}=\sqrt{\operatorname{det} \mathbf{B}_{A}^{e}}=J_{A}\) is the Jacobian determinant. The elastic left Cauchy-Green deformation tensor is given by \(\mathbf{B}_{A}^{e}=\) \(\mathbf{F}_{A}^{e} \mathbf{F}_{A}^{e}{ }^{T}\).

The flow rule is defined by
\[
\mathbf{L}_{A}^{p}=\dot{\gamma}_{A}^{p} \mathbf{N}_{A}
\]
where
\[
\mathbf{N}_{A}=\frac{1}{\sqrt{2} \tau_{A}} \tau_{A}^{\mathrm{dev}}, \quad \tau_{A}=\sqrt{\frac{1}{2} \operatorname{tr}\left(\tau_{A}^{\mathrm{dev}}\right)^{2}}
\]
and \(\tau_{A}^{\mathrm{dev}}\) is the stress deviator. The rate of flow is taken to be a thermally activated process
\[
\dot{\gamma}_{A}^{p}=\dot{\gamma}_{0 A} \exp \left[-\frac{\Delta G\left(1-\tau_{A} / s\right)}{k \theta}\right]
\]
where \(\dot{\gamma}_{0 A}\) is a pre-exponential factor, \(\Delta G\) is the energy barrier to flow, \(s\) is the shear resistance, \(k\) is the Boltzmann constant and \(\theta\) is the absolute temperature. The shear resistance, \(s\), is assumed to depend on the stress triaxiality, \(\sigma^{*}\) :
\[
s=s\left(\sigma^{*}\right), \quad \sigma^{*}=\frac{\operatorname{tr} \sigma_{A}}{3 \sqrt{3} \tau_{A}} .
\]

The exact dependence is given by a user-defined load curve, which is linear between the shear resistances in compression and tension. These resistances are denoted \(s_{c}\) and \(s_{t}\), respectively.

\section*{Part B: Network Resistance:}

The network resistance is assumed to be nonlinear elastic with deformation gradient \(\mathbf{F}_{B}=\) \(\mathbf{F}_{B}^{N}\), meaning, any viscoplastic deformation of the network is neglected. The stress-stretch relation is defined by
\[
\boldsymbol{\tau}_{B}=\frac{n k \theta}{3} \frac{\sqrt{N}}{\bar{\lambda}_{N}} \mathcal{L}^{-1}\left(\frac{\bar{\lambda}_{N}}{\sqrt{N}}\right)\left(\overline{\mathbf{B}}_{B}^{N}-\bar{\lambda}_{N}^{2} \mathbf{I}\right)
\]
where \(\tau_{B}=J_{B} \sigma_{B}\) is the Kirchhoff stress for Part \(\mathrm{B}, n\) is the chain density and \(N\) the number of "rigid links" between entanglements. In accordance with Boyce et. al [2000], the product, \(n k \theta\), is denoted \(C_{R}\) herein. Moreover, \(\mathcal{L}^{-1}\) is the inverse Langevin function, \(\mathcal{L}(\beta)=\) \(\operatorname{coth} \beta-1 / \beta\), and further
\[
\overline{\mathbf{B}}_{B}^{N}=\overline{\mathbf{F}}_{B}^{N} \overline{\mathbf{F}}_{B}^{N^{T}}, \quad \overline{\mathbf{F}}_{B}^{N}=J_{B}^{-1 / 3} \mathbf{F}_{B}^{N}, \quad J_{B}=\operatorname{det} \mathbf{F}_{B}^{N}, \quad \bar{\lambda}_{N}=\left[\frac{1}{3} \operatorname{tr} \overline{\mathbf{B}}_{B}^{N}\right]^{\frac{1}{2}}
\]

The flow rule defining the rate of molecular relaxation reads
\[
\mathbf{L}_{B}^{F}=\dot{\gamma}_{B}^{F} \mathbf{N}_{B}
\]
where
\[
\mathbf{N}_{B}=\frac{1}{\sqrt{2} \tau_{B}} \tau_{B}^{\mathrm{dev}}, \quad \tau_{B}=\sqrt{\frac{1}{2} \tau_{B}^{\mathrm{dev}}: \tau_{B}^{\mathrm{dev}}}
\]

The rate of relaxation is taken equal to
\[
\dot{\gamma}_{B}^{F}=C\left(\frac{1}{\bar{\lambda}_{F}-1}\right) \tau_{B}
\]
where
\[
\bar{\lambda}_{F}=\left[\frac{1}{3} \operatorname{tr}\left(\mathbf{F}_{B}^{F}\left\{\mathbf{F}_{B}^{F}\right\}^{T}\right)\right]^{\frac{1}{2}}
\]

The model has been implemented into LS-DYNA using a semi-implicit stress-update scheme [Moran et. al 1990], and is available for the explicit solver only.

\section*{*MAT_ARUP_ADHESIVE}

This is Material Type 169. This material model was created for adhesive bonding in aluminum structures. The plasticity model is not volume-conserving, so it avoids the spuriously high tensile stresses that can develop when modeling adhesive with traditional elasto-plastic material models. It is available only for solid elements of formulations 1, 2 and 15. Unless THKDIR \(=1\), the smallest dimension of the element is assumed to be the through-thickness dimension of the bond.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & TENMAX & GCTEN & SHRMAX & GCSHR \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PWRT & PWRS & SHRP & SHT_SL & EDOT0 & EDOT2 & THKDIR & EXTRA \\
\hline
\end{tabular}

Card 3. This card is included if EXTRA \(=1\) or 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TMAXE & GCTE & SMAXE & GCSE & PWRTE & PWRSE & & \\
\hline
\end{tabular}

Card 4. This card is included if EXTRA \(=1\) or 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FACET & FACCT & FACES & FACCS & SOFTT & SOFTS & & \\
\hline
\end{tabular}

Card 5. This card is included when EDOT2 \(\neq 0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SDFAC & SGFAC & SDEFAC & SGEFAC & & & & \\
\hline
\end{tabular}

Card 6. This card is included if EXTRA \(=2\) or 3 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline BTHK & OUTFAIL & FSIP & FBR713 & ELF2NS & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & TENMAX & GCTEN & SHRMAX & GCSHR \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

E

PR
TENMAX

GCTEN

SHRMAX

GCSHR

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus
Poisson's ratio
Maximum through-thickness tensile stress (see Remark 7):
GT.0.0: Constant value
LT.0.0: |TENMAX| is a function ID.
Energy per unit area to fail the bond in tension (see Remark 7):
GT.0.0: Constant value
LT.O.0: |GCTEN| is a function ID.

Maximum through-thickness shear stress (see Remark 7):
GT.0.0: Constant value
LT.0.0: |SHRMAX| is a function ID.
Energy per unit area to fail the bond in shear (see Remark 7):
GT.0.0: Constant value
LT.0.0: |GCSHR| is a function ID.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PWRT & PWRS & SHRP & SHT_SL & EDOT0 & EDOT2 & THKDIR & EXTRA \\
Type & F & F & F & F & F & F & F & F \\
Default & 2.0 & 2.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

PWRT
PWRS Power law term for shear
SHRP Shear plateau ratio (optional): GT.0.0: Constant value

LT.0.0: |SHRP| is a function ID (see Remark 7).
SHT_SL Slope (non-dimensional) of yield surface at zero tension (see Remark 3)

EDOT0 Strain rate at which the "static" properties apply
EDOT2
THKDIR
Through-thickness direction flag (see Remark 1):
EQ.O.O: Smallest element dimension (default)
EQ.1.0: Direction from nodes 1-2-3-4 to nodes 5-6-7-8

EXTRA
Flag to input further data:

EQ.1.0: Interfacial failure properties (Cards 3 and 4)
EQ.2.0: Bond thickness and more (Card 6)
EQ.3.0: Both of the above

Interfacial Failure Properties Card. Additional card for EXTRA \(=1\) or 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TMAXE & GCTE & SMAXE & GCSE & PWRTE & PWRSE & & \\
Type & F & F & F & F & F & F & & \\
Default & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & 2.0 & 2.0 & & \\
\hline
\end{tabular}

VARIABLE
TMAXE
GCTE
SMAXE
GCSE
PWRTE
PWRSE

\section*{DESCRIPTION}

Maximum tensile force per unit length on edges of joint Energy per unit length to fail the edge of the bond in tension

Maximum shear force per unit length on edges of joint
Energy per unit length to fail the edge of the bond in shear Power law term for tension

Interfacial Failure Properties Card. Additional card for EXTRA \(=1\) or 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FACET & FACCT & FACES & FACCS & SOFTT & SOFTS & & \\
Type & F & F & F & F & F & F & & \\
Default & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & & \\
\hline
\end{tabular}

VARIABLE
FACET

FACCS

FACCT Stiffness scaling factor for interior elements - tension
FACES Stiffness scaling factor for edge elements - shear

\section*{DESCRIPTION}

Stiffness scaling factor for edge elements - tension

Stiffness scaling factor for interior elements - shear

\section*{VARIABLE}

SOFTT
SOFTS

\section*{DESCRIPTION}

Tensile strength reduction factor applied when a neighbor fails Shear strength reduction factor applied when a neighbor fails

Dynamic Strain Rate Card. Additional card for EDOT2 \(\neq 0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SDFAC & SGFAC & SDEFAC & SGEFAC & & & & \\
Type & F & F & F & F & & & & \\
Default & 1.0 & 1.0 & 1.0 & 1.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

SDFAC

\section*{DESCRIPTION}

Factor on TENMAX and SHRMAX at strain rate EDOT2:
GT.0.0: Constant value
LT.O.O: \(\mid\) SDFAC \(\mid\) is a function ID (see Remark 7).
SGFAC Factor on GCTEN and GCSHR at strain rate EDOT2:
GT.0.0: Constant value
LT.0.0: |SGFAC| is a function ID (see Remark 7).
SDEFAC Factor on TMAXE and SMAXE at strain rate EDOT2
SGEFAC Factor on GCTE and GCSE at strain rate EDOT2

Bond Thickness Card. Additional card for EXTRA = 2 or 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & BTHK & OUTFAIL & FSIP & FBR713 & ELF2NS & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

BTHK

OUTFAIL Flag for additional output to messag file which includes information about damage initiation time, failure function terms and forces:

EQ.0.0: Off
EQ.1.0: On
FSIP Effective in-plane strain at failure
FBR713 Fallback option to get results from previous version. See Remark 8.
EQ.0.0: Off
EQ.1.0: LS-DYNA release R7.1.3

ELF2NS Volumetric smearing option for ELFORM = 2. See Remark 9.
EQ.0.0: Usual ELFORM = 2 behavior with volumetric smearing
EQ.1.0: Volumetric smearing is turned off.

\section*{Remarks:}
1. Through-Thickness Direction and Bond Thickness. The through-thickness direction is identified from the smallest dimension of each element by default (THKDIR \(=0.0\)). It is expected that this dimension will be smaller than in-plane dimensions (typically 1-2 mm compared with 5-10 mm). If this is not the case, one can set the through-thickness direction using element numbering (THKDIR \(=1.0\)). Then the thickness direction is expected to point from lower face (nodes 1-2-3-4) to upper face (nodes 5-6-7-8). For wedge elements these faces are the two triangular faces (nodes 1-2-5) and (nodes 3-4-6).

The bond thickness is assumed to be the element size in the thickness direction. This may be overridden using BTHK. In this case the behavior becomes independent of the element thickness. The elastic stiffness is affected by BTHK, so it is necessary to set the characteristic element length to a smaller value
\[
l_{e}^{\text {new }}=\sqrt{\text { BTHK } \times l_{e}^{\text {old }}} .
\]

Figure M169-1. Figure illustrating the yield surface
This again affects the critical time step of the element, that is, a small BTHK can decrease the element time step significantly.
2. Bond Stiffness and Strength. In-plane stresses are set to zero: it is assumed that the stiffness and strength of the substrate is large compared with that of the adhesive, given the relative thicknesses.

If the substrate is modeled with shell elements, it is expected that these will lie at the mid-surface of the substrate geometry. Therefore, the solid elements representing the adhesive will be thicker than the actual bond. If the elastic compliance of the bond is significant, this can be corrected by increasing the elastic stiffness property \(E\).
3. Stress and Failure. The yield and failure surfaces are treated as a power-law combination of direct tension and shear across the bond:
\[
\left(\frac{\sigma}{\sigma_{\max }}\right)^{\text {PWRT }}+\left(\frac{\tau}{\tau_{\max }-\mathrm{SHT}_{-} \mathrm{SL} \times \sigma}\right)^{\text {PWRS }}=1.0
\]

At yield SHT_SL is the slope of the yield surface at \(\sigma=0\). See Figure M169-1.
The stress-displacement curves for tension and shear are shown in Figure M169-2. In both cases, GC is the area under the curve. The displacement to failure in tension is given by
\[
d_{\mathrm{ft}}=2\left(\frac{\mathrm{GCTEN}}{\text { TENMAX }}\right)
\]
subject to a lower limit
\[
d_{\mathrm{ft}, \min }=\left(\frac{2 L_{0}}{E^{\prime}}\right) \text { TENMAX }
\]
where \(L_{0}\) is the initial element thickness (or BTHK if used) and
\[
E^{\prime}=\frac{E(1-v)}{(1-2 v)(1+v)} .
\]

Figure M169-2. Stress-Displacement Curves for Tension and Shear If GCTEN is input such that \(d_{\mathrm{ft}}<d_{\mathrm{ft}, \min }\), LS-DYNA will automatically increase GCTEN to make \(d_{\mathrm{ft}}=d_{\mathrm{ft}, \min }\). Therefore, GCTEN has a minimum value of
\[
\text { GCTEN } \geq \frac{L_{0}}{E^{\prime}}(\text { TENMAX })^{2}
\]

Similarly, the minimum value for GCSHR is
\[
\operatorname{GCSHR} \geq \frac{L_{0}}{G}(\text { SHRMAX })^{2}
\]
where \(G\) is the elastic shear modulus.
Because of the algorithm used, yielding in tension across the bond does not require strains in the plane of the bond - unlike the plasticity models, plastic flow is not treated as volume-conserving.
4. Output Variables. The plastic strain output variable, PS, has a special meaning:
\(0<\mathrm{PS}<1\) : PS is the maximum value of the yield function experienced since time zero.
\(1<\mathrm{PS}<2\) : The element has yielded, and the strength is reducing towards failure - yields at \(\mathrm{PS}=1\), fails at \(\mathrm{PS}=2\).

Extra history variables may be requested for solid elements (NEIPH on *DATABASE_EXTENT_BINARY). They are described in the following table.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History Vari- \\
able \#
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & \begin{tabular}{l}
Damage caused by cohesive deformation on a scale of 0 at first \\
yield to 1 at failure
\end{tabular} \\
2 & \begin{tabular}{l}
Damage caused by interfacial deformation (see Remark 6) on a \\
scale of 0 at first yield to 1 at failure
\end{tabular} \\
5 & Current thickness dimension of element \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History Vari- \\
able \#
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 6 & \begin{tabular}{l}
Current strain rate (relevant if EDOT0 and EDOT2 are defined, \\
see Remark 5)
\end{tabular} \\
10 & Direct stress in local z-direction (bond tensile stress) \\
12 & Through-thickness shear stress in local \(y z\)-direction \\
13 & Through-thickness shear stress in local \(z x\)-direction \\
\hline
\end{tabular}
5. Rate Effects. When the plastic strain rate rises above EDOT0, rate effects are assumed to scale with the logarithm of the plastic strain rate, as in the example shown in Figure M169-3 for cohesive tensile strength with dynamic factor SDFAC. The same form of relationship is applied for the other dynamic factors. If EDOT0 is zero or blank, no rate effects are applied. Rate effects are applied using the viscoplastic method.
6. Interfacial Failure. Interfacial failure is assumed to arise from stress concentrations at the edges of the bond - typically the strength of the bond becomes almost independent of bond length. This type of failure is usually more brittle than cohesive failure. To simulate this, LS-DYNA identifies the free edges of the bond (made up of element faces that are not shared by other elements of material type *MAT_ARUP_ADHESIVE, excluding the faces that bond to the substrate). Only these elements can fail initially. The neighbors of failed elements can then develop free edges and fail in turn.

In real adhesive bonds, the stresses at the edges can be concentrated over very small areas; in typical finite element models the elements are much too large to capture this. Therefore, the concentration of loads onto the edges of the bond is accomplished artificially, by stiffening elements containing free edges (e.g. FACET, FACES \(>1\)) and reducing the stiffness of interior elements (e.g. FACCT, FACCS \(<1\)). Interior elements are allowed to yield at reduced loads (equivalent to TMAXE \(\times\) FACET/FACCT and SMAXE \(\times\) FACES/FACCS) to prevent excessive stresses developing before the edge elements have failed - but cannot be damaged until they become edge elements after the failure of their neighbors.
7. Function Arguments. Parameters TENMAX, GCTEN, SHRMAX, GCSHR, SHRP, SDFAC, and SGFAC can be defined as negative values. In that case, the absolute values refer to *DEFINE_FUNCTION IDs. The arguments of those functions include several properties of both connection partners if corresponding solid elements are in a tied contact with shell elements.

Figure M169-3. Figure illustrating rate effects

These functions depend on:
\((\mathrm{t} 1, \mathrm{t} 2)=\) thicknesses of both bond partners
(sy1, sy2) \(=\) initial yield stresses at plastic strain of 0.002
\((\mathrm{sm} 1, \mathrm{sm} 2)=\) maximum engineering yield stresses (necking points)
\(r=\) strain rate
\(\mathrm{a}=\) element area
(e1, e2) = Young's moduli
For TENMAX \(=-100\) such a function could look like:
```

*DEFINE_FUNCTION
100
func(t1,t2,sy1,sy2,sm1,sm2,r,a,e1,e2)=0.5*(sy1+sy2)

```

Since material parameters must be identified from both bond partners during initialization, this feature is only available for a subset of material models at the moment, namely material models \(24,36,120,123,124,251\), and 258.
8. Older Versions. Some corrections were made to this material model that can cause results to be different in R8 and later versions compared to R7.1.3 and earlier versions. To avoid recalibration of old material data, it is possible to recover previous results with option FBR713 \(=1\). The corrections were related to the post-yield stress-strain response not matching the description in the manual, with the difference being most noticeable when (a) the elastic stiffness was low, such that the elastic displacement to yield was of the same order as the element
thickness; or (b) when the power-law terms PWRS, PWRT were not both equal to 2 , and strain rate effects were specified (EDOT2, SDFAC).
9. Volumetric Smearing. The element formulation given by ELFORM \(=2\) on *SECTION_SOLID smears the volumetric strain across the eight integration points. This smearing can sometimes cause an unstable dynamic response with \({ }^{*}\) MAT_ARUP_ADHESIVE. The smearing can be turned off by setting ELF2NS to 1. ELFNS has no effect for other element formulations or when FBR713 is nonzero.

\section*{*MAT_RESULTANT_ANISOTROPIC}

This is Material Type 170. This model is available for the Belytschko-Tsay and the C0 triangular shell elements. It is based on a resultant stress formulation. In-plane behavior is treated separately from bending for modeling perforated materials, such as television shadow masks. The plastic behavior of each resultant is specified with a load curve and is completely uncoupled from the other resultants. If other shell formulations are specified, the formulation will be automatically switched to Belytschko-Tsay. As implemented, this material model cannot be used with user defined integration rules.

NOTE: This material does not support specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & & & & \\
Type & A & F & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11P & E22P & V12P & V21P & G12P & G23P & G31P & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & E11B & E22B & V12B & V21B & G12B & A0PT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LN11 & LN22 & LN12 & LQ1 & LQ2 & LM11 & LM22 & LM12 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
E11P

E22P
V12P

V11P
G12P \(\quad G_{12 p}\), for in-plane behavior
G23P \(\quad G_{23 p}\), for in-plane behavior
G31P \(\quad G_{31 p}\), for in-plane behavior
E11B \(\quad E_{11 b}\), for bending behavior
E22B \(\quad E_{22 b}\), for bending behavior
V12B \(\quad v_{12 b}\), for bending behavior
V21B \(\quad v_{21 b}\), for bending behavior
G12B fied.

Mass density
\(E_{11 p}\), for in-plane behavior
\(E_{22 p}\), for in-plane behavior
\(v_{12 p}\), for in-plane behavior
\(v_{11 p}\), for in-plane behavior
\(G_{12 b}\), for bending behavior

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle BETA.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector \(\mathbf{v}\) with the element normal.

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

LN11 Yield curve ID for \(N_{11}\), the in-plane force resultant
LN22 Yield curve ID for \(N_{22}\), the in-plane force resultant
LN12 Yield curve ID for \(N_{12}\), the in-plane force resultant
LQ1 Yield curve ID for \(Q_{1}\), the transverse shear resultant
LQ2 Yield curve ID for \(Q_{2}\), the transverse shear resultant
LM11 Yield curve ID for \(M_{11}\), the moment
LM22 Yield curve ID for \(M_{22}\), the moment
LM12 Yield curve ID for \(M_{12}\), the moment

V1, V2, V3
D1, D2, D3
BETA
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\left(a_{1}, a_{2}, a_{3}\right)\), components of vector a for \(\mathrm{AOPT}=2\)
\(\left(v_{1}, v_{2}, v_{3}\right)\), components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
\(\left(d_{1}, d_{2}, d_{3}\right)\), components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Material angle in degrees for AOPT \(=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}

The in-plane elastic matrix for in-plane, plane stress behavior is given by:
\[
\mathbf{C}_{\text {in plane }}=\left[\begin{array}{cllll}
Q_{11 p} & Q_{12 p} & 0 & 0 & 0 \\
Q_{12 p} & Q_{22 p} & 0 & 0 & 0 \\
0 & 0 & Q_{44 p} & 0 & 0 \\
0 & 0 & 0 & Q_{55 p} & 0 \\
0 & 0 & 0 & 0 & Q_{66 p}
\end{array}\right]
\]

The terms \(Q_{i j p}\) are defined as:
\[
\begin{aligned}
Q_{11 p} & =\frac{E_{11 p}}{1-v_{12 p} v_{21 p}} \\
Q_{22 p} & =\frac{E_{22 p}}{1-v_{12 p} v_{21 p}} \\
Q_{12 p} & =\frac{v_{12 p} E_{11 p}}{1-v_{12 p} v_{21 p}} \\
Q_{44 p} & =G_{12 p} \\
Q_{55 p} & =G_{23 p} \\
Q_{66 p} & =G_{31 p}
\end{aligned}
\]

The elastic matrix for bending behavior is given by:
\[
\mathbf{C}_{\text {bending }}=\left[\begin{array}{ccc}
Q_{11 b} & Q_{12 b} & 0 \\
Q_{12 b} & Q_{22 b} & 0 \\
0 & 0 & Q_{44 b}
\end{array}\right]
\]

The terms \(Q_{i j p}\) are similarly defined.
Because this is a resultant formulation, no stresses are output to d3plot, and forces and moments are reported to elout in place of stresses.

\section*{*MAT_STEEL_CONCENTRIC_BRACE}

This is Material Type 171. It represents the cyclic buckling and tensile yielding behavior of steel braces and is intended primarily for seismic analysis. Use only for beam elements with ELFORM = 2 (Belytschko-Schwer beam).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & YM & PR & SIGY & LAMDA & FBUCK & FBUCK2 \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & optional & optional & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CCBRF & BCUR & EPTCRIT & DAMF1 & DAMF2 & DAMEP1 & DAMEP2 & \\
Type & F & F & F & F & F & F & F & \\
Default & optional & optional & 0.01 & optional & optional & optional & optional & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TS1 & TS2 & TS3 & TS4 & CS1 & CS2 & CS3 & CS4 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & TS1 & TS2 & TS3 & TS4 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
YM

\section*{DESCRIPTION}

Young's modulus
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline PR & Poisson's ratio \\
\hline SIGY & Yield stress \\
\hline LAMDA & Slenderness ratio, \(\lambda\) (optional - see remarks) \\
\hline FBUCK & Initial buckling load (optional - see remarks. If used, should be positive) \\
\hline FBUCK2 & Optional extra term in initial buckling load - see remarks \\
\hline CCBRF & Reduction factor on initial buckling load for cyclic behavior \\
\hline BCUR & Optional load curve giving compressive buckling load (y-axis) as a function of compressive strain (\(x\)-axis - both positive) \\
\hline EPTCRIT & Tensile plastic strain to reduce buckling strength to cyclic value \\
\hline DAMF1 & \begin{tabular}{l}
FEMA threshold at which damage begins (see Remark 5). \\
EQ.0: No damage or failure based on FEMA thresholds
\end{tabular} \\
\hline DAMF2 & FEMA threshold at which element is eroded, applicable only if DAMF1 > 0 \\
\hline DAMEP1 & \begin{tabular}{l}
Cumulative plastic strain at which damage begins (see Remark 5). \\
EQ.0: No damage or failure based on plastic strain
\end{tabular} \\
\hline DAMEP2 & Cumulative plastic strain at which element is eroded, applicable only if DAMEP1 > 0 \\
\hline TS1-TS4 & Tensile axial strain FEMA thresholds 1 to 4 (see Remark 3) \\
\hline CS1-CS4 & Compressive axial strain FEMA thresholds 1 to 4 (see Remark 3) \\
\hline
\end{tabular}

\section*{Remarks:}
1. General. The brace element is intended to represent the buckling, yielding and cyclic behavior of steel elements, such as tubes or I-sections, that carry only axial loads. A single beam element should be used to represent each structural element. Empirical relationships are used to determine the buckling and cyclic load-deflection behavior. Details of the axial response are given after the Remarks.
2. Strain Definitions. Output variables, and the damage and failure treatment, refer to the following strain definitions, all of which relate to the axial direction of the beam element:
a) Total strain: Change of length divided by initial length, positive in tension.
b) Plastic strain: Current inelastic strain, defined as total strain minus elastic strain. It is positive for tensile strains, negative for compressive strains. The term "plastic strain" is used here irrespective of whether the inelastic behavior represents yielding or buckling.
c) High-tide plastic strain: Maximum plastic strain that has occurred during the analysis. Separate values are recorded for tensile and compressive plastic strains.
d) Cumulative plastic strain: The sum of the absolute values of the plastic strain increments. The cumulative plastic strain increases whenever yielding or buckling occurs. For cyclic loading in the plastic or buckling regimes, this strain measure increases with each cycle.
3. FEMA Thresholds. FEMA thresholds are used in performance-based earthquake engineering to classify the response into categories such as "Elastic", "Immediate Occupancy", "Life Safe", etc., according to the level of deformation of each structural element. During the analysis, the maximum high-tide tensile and compressive plastic strains are recorded. These are checked against the user-defined limits TS1 to TS4 and CS1 to CS4. The output flag is then set to 0, \(1,2,3\), or 4 according to which limits have been passed. The value in the output files is the highest such flag from tensile or compressive strains.
4. Output. In addition to the six resultants written for all beam elements, this material model writes further extra history variables to the d3plot and d3thdt files, given in the table below. The data is written in the same position in these files as where integrated beams write the stresses and strains at integration points requested by BEAMIP on *DATABASE_EXTENT_BINARY. Therefore, some post-processors may interpret this data as if the elements were integrated beams with 4 integration points, and in that case the data may be accessed by selecting the appropriate integration point and data component:
\begin{tabular}{|c|l|l|}
\hline Int. Point & \begin{tabular}{c}
Data component in post- \\
processor
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & \(\mathrm{XX}(\mathrm{RR})\) axial stress & Total axial deformation/strain \\
3 & \(\mathrm{ZX}(\mathrm{TR})\) shear stress & Internal energy \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Int. Point & \begin{tabular}{c}
Data component in post- \\
processor
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 4 & \(\mathrm{XX}(\mathrm{RR})\) axial stress & \begin{tabular}{l}
Current buckling/yield force in compres- \\
sion
\end{tabular} \\
4 & \(\mathrm{XY}(\mathrm{RS})\) shear stress & Tensile high-tide plastic strain \\
4 & \(\mathrm{ZX}(\mathrm{TR})\) shear stress & Compressive high-tide plastic strain \\
4 & Equivalent plastic strain & Cumulative plastic strain \\
4 & \(\mathrm{XX}(\mathrm{RR})\) axial strain & FEMA flag \\
\hline
\end{tabular}
5. Damage and failure. Optionally, damage and failure (element erosion) can be modelled. DAMF1 and DAMF2 control damage and failure based on high tide plastic strains. DAMEP1 and DAMEP2 control damage and failure based on cumulative plastic strain (fatigue-type damage). A combination of both of the above is obtained if all four input parameters are defined.

DAMF1 and DAMF2 refer to the "FEMA" output flag (see Remark 3 above). Only integer values \(0,1,2,3\) or 4 are meaningful because those are the possible values of the FEMA output flag. DAMEP1 and DAMEP2 refer to values of cumulative plastic strain.

Damage is modelled with a scaling factor, \(D\), that multiplies the stiffness and strength of the element. DAMF1 and DAMEP1 define thresholds at which damage begins. Until that point is reached, the damage algorithm has no effect and \(D=1\). DAMF2 and DAMEP2 define the threshold at which damage is complete. At that point, \(D=0\), meaning the element has no remaining stiffness or strength and is deleted. Between DAMF1 and DAMF2 and between DAMEP1 and DAMEP2, \(D\) ramps down linearly from \(D=1.0\), when damage begins, to \(D=\) 0.0 , when damage is complete.

If both damage mechanisms are modelled (i.e., DAMF1, DAMF2, DAMEP1, DAMEP2 are all nonzero), the damage scaling factors for the two mechanisms are multiplied together. Thus, damage and failure can occur by either mechanism depending on which thresholds are reached first.

\section*{Axial response:}

The cyclic behavior is shown in Figure M171-1 (compression shown as negative force and displacement). The initial buckling load (point 2) is:
\[
F_{b, \text { initial }}=\mathrm{FBUCK}+\frac{\mathrm{FBUCK} 2}{L^{2}},
\]

Figure M171-1. Cyclic Behavior of a Steel Brace
where FBUCK and FBUCK2 are input parameters, and \(L\) is the length of the beam element. If neither FBUCK nor FBUCK2 is defined, the default is that the initial buckling load is
\[
\operatorname{SIGY} \times \mathrm{A}
\]
where \(A\) is the cross sectional area. The buckling curve (shown dashed) has the form:
\[
F(d)=\frac{F_{b, \text { initial }}}{\sqrt{A \delta+B}}
\]
where \(\delta\) is |strain/yield strain|, and \(A\) and \(B\) are internally calculated functions of slenderness ratio \((\lambda)\) and loading history.

The member slenderness ratio, \(\lambda\), is defined as \(\frac{k L}{r}\), where \(k\) depends on end conditions, \(L\) is the element length, and \(r\) is the radius of gyration such that \(A r^{2}=I\) (and \(I=\) \(\left.\min \left(I_{y y}, I_{z z}\right)\right) ; \lambda\) will by default be calculated from the section properties and element length using \(k=1\). Optionally, this may be overridden by input parameter LAMDA to allow for different end conditions.

Optionally, you may provide a buckling curve BCUR. The points of the curve give compressive displacement (\(x\)-axis) as a function of force (\(y\)-axis); the first point should have

Figure M171-2. Comparing the stress-strain response for two values of \(\lambda\)
zero displacement and the initial buckling force. Displacement and force should both be positive. The initial buckling force must not be greater than the yield force.

The tensile yield force (point 5 and segment 16-17 in Figure M171-1) is defined by
\[
F_{y}=\operatorname{SIGY} \times A,
\]
where yield stress SIGY is an input parameter and \(A\) is the cross-sectional area.
Following initial buckling and subsequent yield in tension, the member is assumed to be damaged. The initial buckling curve is then scaled by input parameter CCBRF, leading to reduced strength curves such as segments 6-7, 10-14 and 18-19. This reduction factor is typically in the range 0.6 to 1.0 (smaller values for more slender members). By default, CCBRF is calculated using SEAOC 1990:
\[
\mathrm{CCBRF}=\frac{1}{\left(1+\frac{0.5 \lambda}{\pi \sqrt{\frac{E}{0.5 \sigma_{y}}}}\right)}
\]

When tensile loading is applied after buckling, the member must first be straightened before the full tensile yield force can be developed. This is represented by a reduced unloading stiffness (such as segment 14-15) and the tensile reloading curve (segments 89 and 15-16). Further details can be found in Bruneau, Uang, and Whittaker [1998] and Structural Engineers Association of California [1974, 1990, 1996].

The response of stocky (low \(\lambda\)) and slender (high \(\lambda\)) braces are compared in Figure M171-2. These differences are achieved by altering the input value LAMDA (or the section properties of the beam) and FBUCK.

\section*{*MAT_CONCRETE_EC2}

This is Material Type 172. This model is available for shell, thick shell (formulations 1, 2, and 6), and Hughes-Liu beam elements. The material model can represent plain concrete only, reinforcing steel only, or a smeared combination of concrete and reinforcement. The model includes concrete cracking in tension and crushing in compression and reinforcement yield, hardening, and failure. Properties are thermally sensitive; the material model can be used for fire analysis. Material data and equations governing the behavior (including thermal properties) are taken from Eurocode 2 (EC2). See the remarks below for more details on how the standard is applied in the material model.

Although the material model offers many options, a reasonable response may be obtained by entering only RO, FC, and FT for plain concrete. If reinforcement is present, YMREINF, SUREINF, FRACRX, and FRACRY must be defined, or for an alternative way to model the reinforcement, see *MAT_203/*MAT_HYSTERETIC_REINFORCEMENT. Note that, from release R10 onwards, the number of possible cracks has been increased from 2 (0 and 90 degrees) to 4 (see TYPEC on Card 1 and Tensile response under the Material Behavior of Concrete section).

NOTE: This material does not support the specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell (ICOMP \(=1\) on *SECTION_SHELL, \(\mathrm{B} i\) on *PART_COMPOSITE or \(\mathrm{B} i\) on *ELEMENT_SHELL_COMPOSITE).

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & FC & FT & TYPEC & UNITC & ECUTEN & FCC \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ESOFT & LCHAR & MU & TAUMXF & TAUMXC & ECRAGG & AGGSZ & UNITL \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline YMREINF & PRREINF & SUREINF & TYPER & FRACRX & FRACRY & LCRSU & LCALPS \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & ET36 & PRT36 & ECUT36 & LCALPC & DEGRAD & ISHCHK & UNLFAC \\
\hline
\end{tabular}

Card 5. Include this card if AOPT > 0.0.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & \(Y P\) & \(Z P\) & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 6. Include this card if AOPT \(>0.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

Card 7. Include this card if ISHCHK \(\neq 0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline TYPESC & P_OR_F & EFFD & GAMSC & ERODET & ERODEC & ERODER & TMPOFF \\
\hline
\end{tabular}

Card 8. Include this card if TYPEC \(=6\) or 9 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EC1_6 & ECSP69 & GAMCE9 & PHIEF9 & & & & \\
\hline
\end{tabular}

Card 9. Include this card if \(\mathrm{FT}<0.0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FT2 & FTSHR & LCFTT & WRO_G & ZSURF & LCFIB & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & FC & FT & TYPEC & UNITC & ECUTEN & FCC \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & 0.0 & 1.0 & 1.0 & 0.0025 & \(\downarrow\) \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density

FC Compressive strength of concrete (stress units). Its meaning depends on TYPEC.

TYPEC.EQ. \(1,2,3,4,5,7,8: \mathrm{FC}\) is the actual compressive strength.
TYPEC.EQ.6:

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

FC is the unconfined compressive strength used in Mander equations.

\section*{VARIABLE}

FT
TYPEC

UNITC Factor to convert stress units to MPa (used in shear capacity checks and for application of EC2 formulae when TYPEC \(=9\)). For example, if the model units are Newtons and meters, UNITC \(=10^{-6}\).

ECUTEN Strain to fully open a crack
FCC \(\quad\) Relevant only if TYPEC \(=6\) or 9.
TYPEC.EQ.6: FCC is the compressive strength of confined concrete used in Mander equations. Default: unconfined properties are assumed (\(\mathrm{FCC}=\mathrm{FC}\)).
TYPEC.EQ.9: FCC is the actual compressive strength. If blank, this will be set equal to the mean compressive strength (\(f_{\mathrm{cm}}\) in EC2 1-1) as required for serviceability calculations (8MPa greater than FC). For ultimate load calculations, you can set FCC to a factored characteristic compressive strength. See remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ESOFT & LCHAR & MU & TAUMXF & TAUMXC & ECRAGG & AGGSZ & UNITL \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.4 & \(10^{20}\) & \begin{tabular}{c}
1.161 \\
\(\times \mathrm{FT}\)
\end{tabular} & 0.001 & 0.0 & 1.0 \\
\hline
\end{tabular}

VARIABLE
ESOFT

TAUMXF

TAUMXC

ECRAGG

AGGSZ

UNITL

LCHAR Characteristic length at which ESOFT applies. It is also used as crack spacing in aggregate-interlock calculations.

MU \(\quad\) Friction on crack planes (max shear \(=\mu \times\) compressive stress)

\section*{DESCRIPTION}

Tension stiffening (slope of stress-strain curve post-cracking in tension). See Figure M172-1.

Maximum friction shear stress on crack planes (ignored if AGGSZ > 0.0 - see remarks).

Maximum through-thickness shear stress after cracking (see remarks).

Strain parameter for aggregate interlock (ignored if AGGSZ > 0.0 see remarks).

Aggregate size (length units - used in NS3473 aggregate interlock formula - see remarks).

Factor to convert length units to millimeters (used only if AGGSZ > 0.0 - see remarks). For example, if the model unit is meters, UNITL = 1000 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & YMREINF & PRREINF & SUREINF & TYPER & FRACRX & FRACRY & LCRSU & LCALPS \\
Type & F & F & F & F & F & F & 1 & 1 \\
Default & none & 0.0 & 0.0 & 2.0 & 0.0 & 0.0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

YMREINF
PRREINF
SUREINF
TYPER

FRACRX

FRACRY

LCRSU Load curve for TYPER \(=5\) giving non-dimensional factor on SUREINF as a function of plastic strain (overrides stress-strain function from EC2).

LCALPS Optional load curve giving thermal expansion coefficient of reinforcement as a function of temperature (overrides function from EC2).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & ET36 & PRT36 & ECUT36 & LCALPC & DEGRAD & ISHCHK & UNLFAC \\
Type & F & F & F & F & I & F & I & F \\
Default & 0.0 & 0.0 & 0.25 & \(\downarrow\) & none & 0.0 & 0 & 0.5 \\
\hline
\end{tabular}

VARIABLE
AOPT

ET36 Young's modulus of concrete (TYPEC \(=3\) and 6). For other values of TYPEC, the Young's modulus is calculated internally (see remarks).

PRT36 Poisson's ratio of concrete. Applies to all values of TYPEC.
ECUT36 Strain to failure of concrete in compression (TYPEC \(=3\) and 6). See "Compressive response..." in the Material Behavior of Concrete section below. Default is 0.02 for TYPEC \(=3\) and \(1.1 \times\) EC1_6 for \(\mathrm{TYPEC}=6\).

LCALPC Optional load curve giving thermal expansion coefficient of concrete as a function of temperature - overrides relationship from EC2.

DEGRAD If non-zero, the compressive strength of concrete parallel to an open crack will be reduced (see remarks).

VARIABLE
ISHCHK

UNLFAC

\section*{DESCRIPTION}

Set this flag to 1 to include Card 7 (shear capacity check and other optional input data).

Stiffness degradation factor after crushing (0.0 to 1.0 - see Figure M172-4).

Additional card for AOPT > 0.0.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

XP, YP, ZP Not used
A1, A2, A3
Components of vector \(\mathbf{a}\) for \(\mathrm{AOPT}=2.0\)

Additional card for AOPT > 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3.0\)
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2.0\)
Material angle in degrees for \(\mathrm{AOPT}=3.0\). BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA

Include if ISHCHK \(\neq 0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TYPESC & P_OR_F & EFFD & GAMSC & ERODET & ERODEC & ERODER & TMPOFF \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 0.01 & 0.05 & 0.0 \\
\hline
\end{tabular}

VARIABLE
TYPESC

P_OR_F If BS8110 shear check, percent reinforcement - for example, if 0.5\%, input 0.5. If ACI shear check, ratio (cylinder strength/FC) - defaults to 1 .

EFFD

GAMSC

ERODET

ERODEC
ERODER
TMPOFF Constant to be added to the model's temperature unit to convert into degrees Celsius. For example, if the model's temperature unit is degrees Kelvin, set TMPOFF to -273. Degrees Celsius temperatures are then used throughout the material model for LCALPC and the default thermally-sensitive properties.

Additional card for TYPEC \(=6\) or 9 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EC1_6 & ECSP69 & GAMCE9 & PHIEF9 & & & & \\
Type & F & F & F & F & & & & \\
Default & \begin{tabular}{c}
see \\
remarks
\end{tabular} & \begin{tabular}{c}
see \\
remarks
\end{tabular} & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

VARIABLE
EC1_6
ECSP69

GAMCE9
PHIEF9

\section*{DESCRIPTION}

Strain at maximum compressive stress for Type 6 concrete
Spalling strain in compression for TYPEC \(=6\) and 9
Material factor that divides the Youngs Modulus (TYPEC = 9)
Effective creep ratio (TYPEC \(=9\))

Define this card only if FT \(<0.0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FT2 & FTSHR & LCFTT & WR0_G & ZSURF & LCFIB & & \\
Type & F & F & F & F & F & 1 & & \\
Default & \(|F T|\) & \(|F T 2|\) & 0.0 & 0.0 & 0.0 & 0 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FT2
FTSHR
LCFTT

WRO_G
ZSURF

\section*{DESCRIPTION}

Tensile strength used for calculating tensile response
Tensile strength used for calculating post-crack shear response
Load curve defining factor on tensile strength as a function of time
Density times gravity for water pressure in cracks
Z-coordinate of water surface (for water pressure in cracks)

VARIABLE
LCFIB

\section*{DESCRIPTION}

Optional load curve defining the tensile response. It is intended for fiber-reinforced concrete. The \(x\)-axis of the curve is tensile strain. The \(y\)-axis of the curve is a non-dimensional scale factor on the tensile strength FT2. If defined, this curve overrides ECUTEN.

\section*{Remarks:}
1. Material types. This material model can be used to represent unreinforced concrete \((F R A C R=0.0\) where \(F R A C R=\max (F R A C X, F R A C Y)\)), reinforcing steel (FRACR =1.0), or a smeared combination of reinforced concrete with evenly distributed reinforcement (\(0.0<\mathrm{FRACR}<1.0\)). Concrete is modeled as an initially isotropic material with a non-rotating smeared crack approach in tension, together with a plasticity model for compressive loading. Reinforcement is treated as separate sets of bars in the local material \(x\) - and \(y\)-axes. The reinforcement is assumed not to carry through-thickness shear or in-plane shear. Therefore, this material model should not be used to model steel-only sections; that is, do not create a section in which all the integration points are of *MAT_172 with both FRACRX and FRACRY set to 1.0.
2. Creating reinforced concrete sections. Reinforced concrete sections for shell or beam elements may be created using *PART_COMPOSITE (for shells) or *INTEGRATION_BEAM (for beams). Create one material definition representing the concrete using *MAT_CONCRETE_EC2 with FRACR \(=0.0\). Create another material definition representing the reinforcement using *MAT_CONCRETE_EC2 with FRACRX and/or FRACRY = 1.0. The material ID of each integration point is then set to represent either concrete or steel. The position of each integration point within the cross-section and its cross-sectional area are chosen to represent the actual distribution of reinforcement. If desired, *MAT_HYSTERETIC_REINFORCEMENT can be used for the reinforcement layers instead of *MAT_CONCRETE_EC2.
3. Eurocode 2. Eurocode 2 (EC2) contains different sections applicable to general structural engineering versus fire engineering. The latter contains different data for different types of concrete and steel and has been revised during its history. TYPEC and TYPER control the version and section of the EC2 document from which the material data is taken and the types of concrete and steel represented. In the descriptions of TYPEC and TYPER above, "Draft EC2 Annex (fire engineering)" means data taken from the 1995 draft Eurocode 2 Part 1-2 (for fire engineering), ENV 1992-1-2:1995. These defaults are suitable for general use where elevated temperatures are not considered.

EC2 was then issued in 2004 (described above as EC2 1-2:2004 (fire)) with revised stress-strain data at elevated temperatures (TYPEC and TYPER \(=7\) or 8). These settings are recommended for analyses with elevated temperatures.

Meanwhile, Eurocode 2 Part 1-1 (for general structural engineering), EC2 11:2004, contains material data and formulae that differ from Part 1-2; these are obtained by setting TYPEC \(=9\). This setting is recommended where compatibility is required with the structural engineering data and assumptions of Part 1-1 of the Eurocode.

A further option for modeling concrete, TYPEC \(=6\), is provided for applications, such as seismic engineering, in which the different stress-strain behaviors of confined versus unconfined concrete must be captured. This option uses equations by Mander et al. and does not relate directly to Eurocode 2.
4. Local material axes. The local material axes define the directions of the reinforcement bars. If the reinforcement directions are inconsistent across neighboring elements, the response may be less stiff than intended - this is equivalent to the bars being bent at the element boundaries. Local material axes default to the same as the element axes, with the local \(x\)-direction pointing from Node 1 to Node 2. The local material axes can be controlled using the angle BETA on *ELEMENT_SHELL_BETA or AOPT and associated input parameters in the material definition. See material type 2 for a description of the different AOPT settings.

Only the reinforcement response depends on the local material axes, not the concrete response. Therefore, it is not usually necessary to set the local material axes for material definitions that do not have reinforcement (i.e., FRACRX \(=0\) and FRACRY = 0). However, when a reinforced concrete section is defined using *PART_COMPOSITE, and either the shear capacity check is invoked (TYPESC > 0, see Remark 5) or CMPFLG is set on *DATABASE_EXTENT_BINARY, all layers in the *PART_COMPOSITE definition need to have identical material axes. This can be achieved by using the BETA angle on *ELEMENT_SHELL_BETA or inputting identical AOPT parameters for all the material definitions referenced by the *PART_COMPOSITE card.
5. Through-thickness shear. In this material model, cracks are initiated only by in-plane stresses caused by axial and bending effects. Once a crack has formed, the through-thickness shear stress is limited by considerations of aggregate interlock or friction on the crack surfaces. If the in-plane stresses are insufficient to cause cracks, the through-thickness shear strength is, by default, unlimited. Thus, failures caused primarily by through-thickness shear will not be predicted. The Shear Capacity Check option (see TYPESC) allows you to address this limitation. Two classes of behavior are available (described in a and b),
together with different options for the calculation of shear capacity (described in c and d):
a) TYPESC < 10 represents the situation where sufficient shear reinforcement will be provided to prevent any through-thickness failure. LS-DYNA generates extra history variables, so you can compare the shear demand to shear capacity to assess the requirements for shear reinforcement (see the list of additional history variables in Remark 8). Furthermore, we assume that the shear reinforcement prevents inelastic through-thickness shear deformation. Thus, through-thickness slipping on crack planes is automatically disabled.
b) TYPESC > 10 represents the situation where no shear reinforcement is provided. A brittle failure occurs if the shear capacity is exceeded. Note, however, that the shear capacity is calculated from equations in design codes and may be quite conservative.
c) If TYPESC \(=1\) or 11 , the shear capacity calculation is based on BS 81101:1997. These values of TYPESC require supplying the percentage reinforcement (P_OR_F), the effective depth of section EFFD (this typically excludes the cover concrete), and the load factor GAMSC. These are used in Table 3.8 of BS 8110-1:1997 to determine the design shear stress. The "shear capacity" is this design shear stress times the total section thickness (force per unit width), modified according to Equation 6b of BS 8110 to allow axial load.
d) If TYPESC \(=2\) or 12 , the shear capacity calculation is based on ACI 318-05M. The shear capacity, \(\varnothing V_{n}\), is calculated assuming \(\emptyset=0.75\) and taking \(V_{n}\) from ACI 318-05M equations 11-4 (for compressive axial load) or 11-8 (for tensile axial load). In these equations, \(f_{c}^{\prime}\) is taken as P_OR_F \(\times\) FC, \(d\) as EFFD, and \(b_{w}\) as 1 to give shear capacity as a force per unit width. Note that in LS-DYNA versions prior to R13, Equation 11-4 was incorrectly implemented, so results from the TYPESC \(=2\) check before R13 should not be used.

The "shear demand" (actual shear force per unit width) is compared to the shear capacity for all the above options. This process is performed separately for each element's two local reinforcement directions. When defining sections using *PART_COMPOSITE or integration rules with multiple sets of material properties, each set of material properties referenced must have the same local material axes (see Remark 4). The shear demand and axial load (used in calculating the shear capacity) are summed across the integration points within the section. The extra history variables for capacity, demand, and the difference between capacity and demand relate to the whole section (not each integration point separately). Thus, the same values are written to all the integration points within an element.
6. Thermal expansion. By default, thermal expansion properties from EC2 are used. If no temperatures are defined in the model, properties for \(20^{\circ} \mathrm{C}\) are used. For TYPEC \(=3,6\), or 9 , and TYPER \(=5\), there is no thermal expansion by default, and the properties do not vary with temperature. Defining curves of thermal expansion coefficient as a function of temperature (LCALPC, LCALPR) overrides the default thermal expansion behavior. These apply no matter the selected types of TYPEC and TYPER.
7. Erosion criteria. Elements are deleted from the calculation when all their integration points have reached the erosion criteria. Because this material model can represent plain concrete without reinforcement, pure reinforcement without concrete, or a smeared combination, the criteria depend on the modeled type (see Remark 1). There are three criteria:
a) Concrete Tensile Strain Limit. The concrete tensile (crack-opening) strain limit ERODET has been exceeded.
b) Concrete Compressive Strain Limit. The concrete compressive strain limit ERODEC \(+\varepsilon_{\text {csp }}\) has been exceeded. \(\varepsilon_{\text {csp }}\) is the strain at which the stressstrain relation falls to zero.
c) Reinforcement Strain Limit. The reinforcement strain limit ERODER \(+\varepsilon_{\text {rsp }}\) has been exceeded. \(\varepsilon_{\text {rsp }}\) is the strain at which the stress-strain relation falls to zero. However, if LCRSU \(>0, \varepsilon_{\text {rsp }}\) is assumed to be 2.0.

The table below indicates which criteria apply to each of the variations of material type. Note that FRACR \(=\max (\) FRACX, FRACY) as discussed in Remark 1.
\begin{tabular}{|l|l|c|l|}
\hline FRACR & Material Type & Erosion Criteria & \begin{tabular}{l}
Erosion Criteria \\
(in plain English)
\end{tabular} \\
\hline \hline FRACR \(=0.0\) & Pure concrete & (a).OR.(b) & \begin{tabular}{l}
The concrete tensile strain limit \\
or concrete compressive strain \\
limit conditions are satisfied.
\end{tabular} \\
\(0.0<\) FRACR \(<1\). & \begin{tabular}{l}
Smeared com- \\
bination \\
0
\end{tabular} & \begin{tabular}{l}
((a).OR.(b)) \\
.AND.(c)
\end{tabular} & \begin{tabular}{l}
The reinforcement strain limit \\
and either the concrete tensile \\
strain limit or the concrete com- \\
pressive strain limit are satis- \\
fied. \\
The reinforcement strain limit is \\
satisfied.
\end{tabular} \\
\hline FRACR =1.0 & \begin{tabular}{l}
Pure steel re- \\
inforcement
\end{tabular} & (c) &
\end{tabular}

If both FRACRX and FRACRY are nonzero, the reinforcement erosion criterion is applied as follows: in LS-DYNA versions up to and including R14, the
reinforcement erosion criterion must be met in both local directions (\(X\) and \(Y\)) before erosion occurs. In versions from R15 onwards, erosion occurs when either direction \(X\) or direction \(Y\) reaches the erosion criterion. The R14 treatment had the counterintuitive side-effect of preventing erosion of elements under large uniaxial strains because the reinforcement in the low-strain direction had not reached its erosion limit.
8. Output. "Plastic Strain" is the maximum of the plastic strains in the reinforcement in the two local directions.

Extra history variables may be requested for shell elements (NEIPS on *DATABASE_EXTENT_BINARY). They are described in the following table.
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 1 & Current crack opening strain (if two cracks are present, max of two) \\
\hline 2 & Equivalent uniaxial strain for concrete compressive behavior \\
\hline 3 & Number of cracks (\(0,1,2,3\) or 4) \\
\hline 4 & Temperature \\
\hline 5 & Thermal strain \\
\hline 6 & Current crack opening strain for the first crack to form \\
\hline 7 & Current crack opening strain for the crack at 90 degrees to the first crack \\
\hline 8 & Max crack opening strain for the first crack to form \\
\hline 9 & Max crack opening strain for the crack at 90 degrees to the first crack \\
\hline 10 & \begin{tabular}{l}
TYPESC.EQ.0: Maximum through-thickness shear stress (resultant of local \(Y Z\) and \(Z X\) shear stresses) \\
TYPESC.GE.1: Maximum difference (shear demand minus capacity) that has occurred so far in either of the two reinforcement directions
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
TYPESC.EQ.0: Maximum through-thickness YZ shear stress (element axes) \\
TYPESC.GE.1: Maximum difference (shear demand minus capacity) that has occurred so far in reinforcement \(x\)-direction
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 12 & \begin{tabular}{l}
TYPESC.EQ.0: Maximum through-thickness ZX shear stress (element axes) \\
TYPESC.GE.1: Maximum difference (shear demand minus capacity) that has occurred so far in reinforcement \(y\)-direction
\end{tabular} \\
\hline 13 & TYPESC.GE.1: Current shear demand minus capacity in reinforcement \(x\)-direction \\
\hline 14 & TYPESC.GE.1: Current shear demand minus capacity in reinforcement \(y\)-direction \\
\hline 15 & TYPESC.GE.1: Current shear capacity, \(V_{c x}\), in reinforcement \(x\)-direction \\
\hline 16 & TYPESC.GE.1: Current shear capacity, \(V_{\text {cy }}\), in reinforcement \(y\)-direction \\
\hline 17 & TYPESC.GE.1: Current shear demand, \(V_{x}\), in reinforcement \(x\)-direction \\
\hline 18 & TYPESC.GE.1: Current shear demand, \(V_{y}\), in reinforcement \(y\)-direction \\
\hline 19 & TYPESC.GT.0: Maximum shear demand that has occurred so far in reinforcement \(x\)-direction \\
\hline 20 & TYPESC.GT.0: Maximum shear demand that has occurred so far in reinforcement \(y\)-direction \\
\hline 21 & Current strain in reinforcement (x-direction) \\
\hline 22 & Current strain in reinforcement (y-direction) \\
\hline 23 & Engineering shear strain (slip) across the first crack \\
\hline 24 & Engineering shear strain (slip) across the second crack \\
\hline 25 & \(x\)-stress in concrete (element local axes) \\
\hline 26 & \(y\)-stress in concrete (element local axes) \\
\hline 27 & \(x y\)-stress in concrete (element local axes) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 28 & \(y z\)-stress in concrete (element local axes) \\
\hline 29 & \(x z\)-stress in concrete (element local axes) \\
\hline 30 & Reinforcement stress (\(a\)-direction) \\
\hline 31 & Reinforcement stress (b-direction) \\
\hline 32 & TYPESC.GT.0: Current shear demand \(V_{\max }\) \\
\hline 33 & TYPESC.GT.0: Maximum \(V_{\max }\) that has occurred so far \\
\hline 34 & TYPESC.GT.0: Current shear capacity \(V_{\text {c } \theta}\) \\
\hline 35 & TYPESC.GT.0: Excess shear, \(V_{\max }-V_{c \theta}\) \\
\hline 36 & TYPESC.GT.0: Maximum excess shear that has occurred so far \\
\hline 56 & Max crack opening strain for the crack at 45 degrees to the first crack \\
\hline 57 & Max crack opening strain for the crack at - 45 degrees to the first crack \\
\hline 58 & Current crack opening strain for the crack at 45 degrees to the first crack \\
\hline 59 & Current crack opening strain for the crack at -45 degrees to the first crack \\
\hline
\end{tabular}

In the above table \(V_{\max }\) is given by
\[
V_{\max }=\sqrt{V_{x}^{2}+V_{y}^{2}}
\]
where \(V_{x}\) and \(V_{y}\) is the shear demand reinforcement in \(x\) and \(y\) directions, respectively. Additionally,
\[
V_{c \theta}=\frac{V_{\max }}{\sqrt{\left(\frac{V_{x}}{V_{c x}}\right)^{2}+\left(\frac{V_{y}}{V_{c y}}\right)^{2}}}
\]
where \(V_{c x}\) and \(V_{c y}\) are the shear capacities in the \(x\) - and \(y\)-directions, respectively.

Note that the concrete stress history variables are stored in element local axes irrespective of AOPT; that is, local \(x\) is always the direction from node 1 to node
2. The reinforcement stresses are in the reinforcement directions; these do take account of AOPT.

\section*{Material Behavior of Concrete:}

\section*{Thermal sensitivity}

For TYPEC \(=1,2,4,5,7,8\), the material properties are thermally-sensitive. If no temperatures are defined in the model, it behaves as if at \(20^{\circ} \mathrm{C}\). Pre-programmed relationships between temperature and concrete properties are taken from the EC2 document. The thermal expansion coefficient is as defined in EC2, is nonzero by default, and is a function of temperature. This coefficient may be overridden by inputting the curve LCALPC. TYPEC \(=3,6\), and 9 are not thermally sensitive and have no thermal expansion coefficient by default.

\section*{Tensile response}

The concrete is assumed to crack in tension when the maximum in-plane principal stress reaches FT. A non-rotating smeared crack approach is used. Cracks can open and close repeatedly under hysteretic loading. When a crack is closed, it can carry compression according to the normal compressive stress-strain relationships. The direction of the crack relative to the element coordinate system is stored when the crack first forms. The material can carry compression parallel to the crack even when the crack is open. Further cracks may then form at pre-determined angles to the first crack if the tensile stress in that direction reaches FT. In versions up to R9, the number of further cracks is limited to one, at 90 degrees to the first crack. In versions starting from R10, up to three additional cracks can form at 45,90 , and 135 degrees to the first crack. The tensile stress is limited to FT only in the available crack directions. The tensile stress in other directions is unlimited and could exceed FT. This is a limitation of the non-rotating crack approach and may lead to models being non-conservative; that is, the response is stronger than implied by the input. Increasing the possible number of cracks from two to four significantly reduces this error and may cause models to seem "weaker" in R10 than in R9 under some loading conditions. An option to revert to the previous two-crack behavior is available in R10 and later - add 100 to TYPEC.

After initial cracking, the tensile stress reduces with increasing tensile strain. A finite amount of energy must be absorbed to create a fully open crack. In practice, the reinforcement holds the concrete together, allowing it to continue to take some tension (this effect is known as tension-stiffening). The options available for the stress-strain curve are shown in Figure M172-1. The piecewise curve is used by default. The simple linear curve applies only if ESOFT \(>0.0\) and ECUTEN \(=0.0\). A further option is to define the stressstrain response through a load curve; see LCFIB (intended for fiber-reinforced concrete).

Figure M172-1. Tensile Behavior of Concrete
LCHAR can optionally be used to maintain constant energy per unit area of crack irrespective of mesh size; that is, the crack opening displacement is fixed rather than the crack opening strain. LCHAR \(\times\) ECUTEN is then the displacement to open a crack fully. For the actual elements, crack opening displacement is estimated by strain \(\times \sqrt{\text { area }}\). Note that if LCHAR is defined, it is also used as the crack spacing in the NS 3473 aggregate interlock calculation.

For the thermally-sensitive values of TYPEC, the relationship of FT with temperature is taken from EC2 - there is no input option to change this. FT is assumed to remain at its input value at temperatures up to \(100^{\circ} \mathrm{C}\), then to reduce linearly with temperature to zero at \(600^{\circ} \mathrm{C}\). Up to \(500^{\circ} \mathrm{C}\), the crack opening strain ECUTEN increases with temperature such that the fracture energy to open the crack remains constant. Above \(500^{\circ} \mathrm{C}\), the crack opening strain does not increase further.

Some concrete design codes and standards stipulate that the tensile strength of concrete should be assumed to be zero. However, for MAT_CONCRETE_EC2, we do not recommend setting FT to zero because:
- Cracks will form at random orientations caused by small dynamic tensile stresses, leading to unexpected behavior when the loading increases because the crack orientations are fixed when the cracks first form;
- The shear strength of cracked concrete may also become zero in the analysis (according to the aggregate interlock formula, the post-crack shear strength is assumed proportional to FT).

These problems may be tackled by using the inputs on Card 9. Firstly, separate tensile strengths may be input for the tensile response and for calculating the shear strength of cracked concrete. Secondly, by using the load curve LCFTT, the tensile strength may be ramped gradually down to zero after the static loads have been applied, ensuring that the cracks will form in the correct orientation.

\section*{Compressive response for TYPEC \(=1,2,4,5,7\), and 8}

For TYPEC \(=1,2,4,5,7\), and 8 , the compressive behavior of the concrete initially follows a stress-strain curve defined in EC2 as:
\[
\text { Stress }=\mathrm{FC}_{\max } \times\left[\left(\frac{\varepsilon}{\varepsilon_{\mathrm{c} 1}}\right) \times \frac{3}{2+\left(\frac{\varepsilon}{\varepsilon_{\mathrm{c} 1}}\right)^{3}}\right]
\]
where \(\varepsilon_{\mathrm{c} 1}\) is the strain at which the ultimate compressive strength, \(\mathrm{FC}_{\max }\), is reached, and \(\varepsilon\) is the current equivalent uniaxial compressive strain.

The initial elastic modulus is given by \(E=3 \times \mathrm{FC}_{\max } / 2 \varepsilon_{\mathrm{c} 1}\). Upon reaching \(\mathrm{FC}_{\max }\), the stress decreases linearly with increasing strain, reaching zero at a strain \(\varepsilon_{\mathrm{cu}}\). Strains \(\varepsilon_{\mathrm{c} 1}\) and \(\varepsilon_{\mathrm{cu}}\) are by default taken from EC2 and are functions of temperature. At \(20^{\circ} \mathrm{C}\), they are values 0.0025 and 0.02 , respectively. \(\mathrm{FC}_{\max }\) is also a function of temperature, given by the input parameter FC (which applies at \(20^{\circ} \mathrm{C}\)) times a temperature-dependent softening factor taken from EC2. The differences among TYPEC \(=1,2,4,5,7\), and 8 are limited to (a) different reductions of FC at elevated temperatures and (b) different values of \(\varepsilon_{\mathrm{c} 1}\) at elevated temperatures.

Figure M172-2. Concrete stress strain behavior

\section*{Compressive response for TYPEC \(=3\)}

For TYPEC = 3, the stress-strain behavior follows the same form described above. To override the default values of the Young's modulus and \(\varepsilon_{\text {cu }}\), set ET36 and ECUT36, respectively. In this case, the strain, \(\varepsilon_{\mathrm{c} 1}\), is calculated from the elastic stiffness, and there is no thermal sensitivity.

\section*{Compressive response for TYPEC \(=6\)}

For TYPEC \(=6\), the above compressive crushing behavior is replaced with the equations proposed by Mander. This algorithm can model unconfined or confined concrete; for unconfined, leave FCC blank. For confined concrete, input the confined compressive strength as FCC.

As indicated in Figure M172-3, \(\varepsilon_{\mathrm{c} 1}\) is the strain at maximum compressive stress, \(\varepsilon_{\mathrm{cu}}\) is the ultimate compressive strain, and \(\varepsilon_{\text {csp }}\) is the spalling strain. Default values for these quantities for both confined and unconfined concrete are calculated as follows:
\[
\begin{aligned}
& \varepsilon_{\mathrm{c} 1}=0.002 \times\left[1+5\left(\frac{\mathrm{FCC}}{\mathrm{FC}}-1\right)\right] \\
& \varepsilon_{\mathrm{cu}}=1.1 \times \varepsilon_{\mathrm{c} 1} \\
& \varepsilon_{\mathrm{csp}}=\varepsilon_{\mathrm{cu}}+2 \frac{\mathrm{FCC}}{\mathrm{E}}
\end{aligned}
\]

Note that for unconfined concrete, \(\mathrm{FCC}=\mathrm{FC}\) causing \(\varepsilon_{\mathrm{c} 1}\) to default to 0.002 . To override the default values \(\varepsilon_{\mathrm{c} 1}, \varepsilon_{\mathrm{cu}}\), and \(\varepsilon_{\mathrm{csp}}\), set EC1_6, ECUT36, and ECSP69, respectively.

\section*{Compressive response: TYPEC \(=9\)}

For TYPEC \(=9\), the input parameter FC is the characteristic cylinder strength in the stress units of the model. FC \(\times\) UNITC is assumed to be \(f_{c k}\), the strength class in MPa units. The mean tensile strength \(\mathrm{f}_{\mathrm{ctm}}\), mean Young's modulus \(\mathrm{E}_{\mathrm{cm}}\), and the strains used to construct the stress-strain curve, such as \(\varepsilon_{\text {c1 }}\), are by default evaluated automatically from tabulated functions of \(\mathrm{f}_{\mathrm{ck}}\) given in Table 3.1 of EC2. Input parameter FCC provides the material's compressive strength of the material. It defaults to the mean compressive strength \(f_{c m}\) defined in EC2 as \(\mathrm{f}_{\mathrm{ck}}+8 \mathrm{MPa}\). Inputting FCC explicitly overrides the default compressive strength. The stress-strain curve follows this form:
\[
\frac{\text { Stress }}{\text { FCC }}=\frac{k \eta-\eta^{2}}{1+(k-2) \eta},
\]

Figure M172-3. Type 6 concrete. Values with superscripts \(u\) and \(c\) specify they are for the unconfined and confined curves, respectively.
where FCC is the input parameter FCC (default: \(\left.=\left(\mathrm{f}_{\mathrm{ck}}+8 \mathrm{MPa}\right) / \mathrm{UNITC}\right), \eta=\operatorname{strain} / \varepsilon_{\mathrm{c} 1}\), \(k=1.05 E \times \varepsilon_{\mathrm{c} 1} / \mathrm{FCC}\), and \(E\) is the Young's modulus.

The default parameters are intended to be appropriate for a serviceability analysis (mean properties), so default \(\mathrm{FT}=\mathrm{f}_{\mathrm{ctm}}\) and default \(E=\mathrm{E}_{\mathrm{cm}}\). For an ultimate load analysis, FCC should be the "design compressive strength" (normally the factored characteristic strength, including any appropriate material factors); FT should be input as the factored characteristic tensile strength; GAMCE9 may be input (a material factor that divides the Young's Modulus so \(E=E_{\mathrm{cm}}\) /GAMCE9); and a creep factor PHIEF9 may be input that scales \(\varepsilon_{\mathrm{c} 1}\) by (\(1+\) PHIEF9).

\section*{Unload/Reload Stiffness (All Concrete Types):}

The parameter UNLFAC (default \(=0.5\)) determines the reduction of the elastic modulus during compressive loading. See Figure M172-4. UNLFAC \(=0.0\) means no reduction; the initial elastic modulus applies during unloading and reloading. UNLFAC \(=1.0\) means that unloading results in no permanent strain. Intermediate values imply a permanent strain linearly interpolated between these extremes. The same factor reduces the tensile strength and the elastic modulus.

Figure M172-4. Concrete unloading behavior

\section*{Optional Compressive Strength Degradation due to Cracking:}

By default, the compressive strength of cracked and uncracked elements is the same. If DEGRAD is non-zero, the formula from BS8110 reduces compressive strength during or after crack opening has occurred:
\[
\text { Reduction factor }=\min \left(1.0, \frac{1.0}{0.8+100 \varepsilon_{\operatorname{tax}}}\right),
\]
where \(\varepsilon_{\text {tmax }}\) is the maximum (tensile) crack-opening strain that has occurred up to the current time.

\section*{Shear Strength on Cracking Planes:}

Before cracking, the through-thickness shear stress in the concrete is unlimited., unless TYPESC > 10 (see Remark 5). For cracked elements, shear stress on the crack plane (magnitude of shear stress including element-plane and through-thickness terms) is treated in one of two ways:
1. If AGGSZ > 0.0, the relationship from Norwegian standard NS3473 is used to model the aggregate-interlock that allows cracked concrete to carry shear loading. The maximum shear stress that can be carried on the crack plane, \(\tau_{\max }\), depends on compressive stress on the crack \(\sigma_{c}\) (if the crack is closed) or on crack opening width \(w\) (if the crack is open):
\[
\begin{aligned}
\tau_{\max } & =0.18 \tau_{\mathrm{rm}}+1.64 \sigma_{c}-0.82 \frac{\sigma_{c}^{2}}{\tau_{\mathrm{rm}}} \\
\tau_{\mathrm{rm}} & =\frac{2 \mathrm{FTSHR}}{0.31+\frac{24 w}{\left(\mathrm{D}_{0}+16\right)}}
\end{aligned}
\]

FTSHR is defined on Card 9 and defaults to FT on Card 1.
UNITL is compulsory when AGGSZ is non-zero. This is the factor that converts model length units to millimeters; that is, the aggregate size in millimeters \(\mathrm{D}_{0}=\) AGGSZ \(\times\) UNITL .

The crack width is estimated from \(w=\) UNITL \(\times \varepsilon_{\text {cro }} \times L_{e}\), where \(\varepsilon_{\text {cro }}\) is the crack opening strain and \(L_{e}\) is the crack spacing. \(L_{e}\) is taken as LCHAR if non-zero or is equal to element size if LCHAR is zero.

Optionally, TAUMXC may be used to set the maximum shear stress when the crack is closed, and the normal stress is zero - by default, this works out as \(1.161 \times\) FT from the above equations. If TAUMXC is defined, the shear stress from the NS3473 formula, \(\tau_{\max }\), is scaled by TAUMXC / \(1.161 \times\) FT.
2. If \(\mathrm{AGGSZ}=0.0\), the aggregate interlock is modeled by this formula:
\[
\tau_{\max }=\frac{\mathrm{TAUMXC}}{1.0+\frac{\varepsilon_{\text {cro }}}{\mathrm{ECRAGG}}}+\min \left(\mathrm{MU} \times \sigma_{\text {comp }}, \mathrm{TAUMXF}\right)
\]
where \(\tau_{\max }\) is the maximum shear stress carried across a crack; \(\sigma_{\text {comp }}\) is the compressive stress across the crack (this is zero if the crack is open); and ECRAGG is the crack opening strain at which the input shear strength TAUMXC is halved. Again, TAUMXC defaults to \(1.161 \times\) FT.

Note that if a shear capacity check is specified, the above applies only to in-plane shear, while the through-thickness shear is unlimited.

\section*{Reinforcement:}

The reinforcement is treated as separate bars providing resistance only in the local \(x\) - and \(y\)-directions - it does not carry shear in-plane or out-of-plane.

For TYPER \(=1,2,3,4,7\), and 8 , the behavior is thermally sensitive and follows stressstrain relationships of a form defined in \(\mathrm{EC} 2 . \mathrm{At} 20^{\circ} \mathrm{C}\) (or if no thermal input is specified), the behavior is elastic-perfectly-plastic with Young's Modulus EREINF and ultimate stress SUREINF, up to the onset of failure, after which the stress reduces linearly with increasing strain until final failure. At elevated temperatures, a nonlinear transition between the elastic and the perfectly plastic phases exists, and temperature-dependent
factors defined in EC2 scale down EREINF and SUREINF. The strain at which failure occurs depends on the reinforcement type (TYPER) and the temperature. For example, for hot-rolled reinforcing steel at \(20^{\circ} \mathrm{C}\), failure begins at \(15 \%\) strain and is complete at \(20 \%\). The thermal expansion coefficient is as defined in EC2 and is a function of temperature. This may be overridden by inputting the curve LCAPLS. The differences between TYPER \(=1,2,4,7,8\) are limited to (a) different reductions of EREINF and SUREINF at elevated temperatures, (b) different nonlinear transitions between elastic and plastic phases and (c) the strains at which softening begins and is complete.

The default stress-strain curve for reinforcement may be overridden using TYPER \(=5\) and LCRSU. In this case, the reinforcement properties are not temperature-sensitive, and SUREINF \(\times f\left(\varepsilon_{p}\right)\) gives the yield stress, where \(f\left(\varepsilon_{p}\right)\) is the load curve value at the current plastic strain. To include failure of the reinforcement, the curve should reduce to zero at the desired failure strain and remain zero for higher strains. Note that by default, LSDYNA re-interpolates the input curve to have 100 equally-spaced points; if the last point on the curve is at very high strain, then the initial part of the curve may become poorly defined.

\section*{*MAT_MOHR_COULOMB}

This is Material Type 173. It is for solid elements only and is intended to represent cohesive or sandy soils and other granular materials. A simple soil model is obtained by defining Fields 1 through 4 of Card 1 together with PHI and/or CVAL while leaving all other fields blank. Joints (planes of weakness) may be added if required; the material then represents rock. The joint treatment is identical to that of *MAT_JOINTED_ROCK.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & GMOD & RNU & & PHI & CVAL & PSI \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline NOVOID & NPLANES & EXTRA & LCCPDR & LCCPT & LCCJDR & LCCJT & LCSFAC \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GMODDP & GMODGR & LCGMEP & LCPHIEP & LCPSIEP & LCGMST & CVALGR & ANISO \\
\hline
\end{tabular}

Card 4. Include this card if EXTRA \(>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCGMT & LCCVT & LCPHT & EPDAM1 & EPDAM2 & & & \\
\hline
\end{tabular}

Card 5. Include if NPLANES \(>0\). Repeat this card for each plane (maximum of 6 planes).
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline DIP & DIPANG & CPLANE & FRPLANE & TPLANE & SHRMAX & LOCAL & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & GMOD & RNU & (blank) & PHI & CVAL & PSI \\
Type & A & F & F & F & & F & F & F \\
Default & none & none & none & none & & none & none & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
MID & \\
\begin{tabular}{ll}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
GMOD & Mass density \\
RNU & Elastic shear modulus \\
PHI & Poisson's ratio \\
CVAL & Cohesle of friction (radians) \\
PSI & Dilation angle (radians)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & NOVOID & NPLANES & EXTRA & LCCPDR & LCCPT & LCCJDR & LCCJT & LCSFAC \\
Type & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
NOVOID

\section*{DESCRIPTION}

Voiding behavior flag (see Remarks 8 and 9):
EQ.O: Voiding behavior on
EQ.1: Voiding behavior off
NPLANES \(\quad\) Number of joint planes (maximum of 6)
EXTRA
Flag to input further data. If EXTRA \(>0\), then Card 4 is read.
LCCPDR Load curve for extra cohesion for base material (dynamic relaxation)

LCCPT
Load curve for extra cohesion for base material (transient)
LCCJDR Load curve for extra cohesion for joints (dynamic relaxation)
LCCJT Load curve for extra cohesion for joints (transient)

\section*{VARIABLE}

LCSFAC

\section*{DESCRIPTION}

Load curve giving factor on strength as a function of time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GMODDP & GMODGR & LCGMEP & LCPHIEP & LCPSIEP & LCGMST & CVALGR & ANISO \\
Type & F & F & 1 & 1 & 1 & I & F & F \\
Default & 0.0 & 0.0 & 0 & 0 & 0 & 0 & 0.0 & 1.0 \\
\hline
\end{tabular}

VARIABLE
GMODDP
GMODGR Gradient of GMOD as a function of \(z\)-coordinate (usually negative)

\section*{DESCRIPTION}
\(z\)-coordinate at which GMOD and CVAL are correct

LCGMEP Load curve of GMOD as a function of plastic strain (overrides GMODGR)

LCPHIEP Load curve of PHI as a function of plastic strain
LCPSIEP Load curve of PSI as a function of plastic strain
LCGMST (Leave blank)
CVALGR Gradient of CVAL as a function of \(z\)-coordinate (usually negative)
ANISO Factor applied to elastic shear stiffness in global \(X Z\) and \(Y Z\) planes
Card 4. Define Card 4 only if EXTRA \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCGMT & LCCVT & LCPHT & EPDAM1 & EPDAM2 & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & \(10^{20}\) & 0.0 & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCGMT

LCCVT

LCPHT
EPDAM1

EPDAM2

\section*{DESCRIPTION}

Load curve of nondimensional factor on GMOD as a function of time

Load curve of nondimensional factor on CVAL as a function of time

Load curve of nondimensional factor on PHI as a function of time Plastic strain or volumetric void strain at which damage begins Plastic strain or volumetric void strain at which element is eroded

Plane Cards. Define if NPLANES \(>0\). Repeat Card 5 for each plane (maximum 6 planes).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DIP & DIPANG & CPLANE & FRPLANE & TPLANE & SHRMAX & LOCAL & \\
Type & F & F & F & F & F & F & I & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \(10^{20}\) & 0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

DIP
DIPANG
CPLANE

PHPLANE

TPLANE
SHRMAX

LOCAL Axes (see Remark 12):
EQ.0: DIP and DIPANG are with respect to the global axes.
EQ.1: DIP and DIPANG are with respect to the local element axes.

\section*{Remarks:}
1. Mohr Coulomb Yield Surface. This material has a Mohr Coulomb yield surface, given by
\[
\tau_{\max }=C+\sigma_{n} \tan (\mathrm{PHI})
\]
where \(\tau_{\max }\) is the maximum shear stress on any plane, \(\sigma_{n}\) is the normal stress on that plane (positive in compression), C is the cohesion, and PHI is the friction angle. The plastic potential function is of the form
\[
\beta \sigma_{k}-\sigma_{i}+\text { constant },
\]
where \(\sigma_{k}\) is the maximum principal stress, \(\sigma_{i}\) is the minimum principal stress, and
\[
\beta=\frac{1+\sin (\mathrm{PSI})}{1-\sin (\mathrm{PSI})} .
\]
2. Depth-Dependent Properties. If depth-dependent properties are used (see GMODDP, GMODGR, CVALGR), the model must be oriented with the \(z\)-axis in the upward direction.
3. Plastic Strain. Plastic strain is defined as
\[
\sqrt{\frac{2}{3} \varepsilon_{p i j} \varepsilon_{p i j}},
\]
that is, the same way as for other elasto-plastic material models.
4. Plastic Strain Adjustments. Friction and dilation angles PHI and PSI may vary with plastic strain (see LCPHIEP and LCPSIEP). To model heavily consolidated materials under large shear strains, as the strain increases, the dilation angle typically reduces to zero and the friction angle reduces to a lower, pre-consolidation value.

For similar reasons, the shear modulus may reduce with plastic strain (see LCGMEP), but this option may sometimes give unstable results.
5. Additional Cohesion. The load curves, LCCPDR, LCCPT, LCCJDR, and LCCJT, allow extra cohesion to be specified as a function of time. The cohesion is additional to that specified in the material parameters. This is intended for use during the initial stages of an analysis to allow application of gravity or other loads without cracking or yielding, and for the cracking or yielding then to be introduced in a controlled manner. This is done by specifying extra cohesion that exceeds the expected stresses initially, then declining to zero. If no curves are specified, no extra cohesion is applied.
6. Time-Dependent Properties. LCSFAC, the load curve for factor on strength, applies simultaneously to the cohesion and \(\tan (\mathrm{PHI})\) of the base material and
all joints. This feature is intended for reducing the strength of the material gradually to explore factors of safety. If no curve is present, a constant factor of 1 is assumed. Values much greater than 1.0 may cause problems with stability. Alternatively, separate functions of time may be defined for each of the properties GMOD, CVAL and PHI using load curves LCGMT, LCCVT and LCPHT, respectively.
7. ANISO. The anisotropic factor, ANISO, applies to the elastic shear stiffness in the global \(X Z\) and \(Y Z\) planes. It can be used only in a pure Mohr-Coulomb mode (NPLANES = 0).
8. Tensile Pressure Limit. For a friction angle greater than zero, the Mohr Coulomb yield surface implies a tensile pressure limit equal to CVAL/tan(PHI). By default, voids develop in the material when this pressure limit is reached, and the pressure will never become more tensile than the tensile pressure limit. The volumetric void strain is tracked and is reversible if the strain is reversed.
9. NOVOID. If NOVOID \(=1\), then the tensile pressure limit is not applied and stress states in which the pressure is more tensile than CVAL/tan \((\mathrm{PHI})\) are permitted but will be purely hydrostatic with no shear stress. NOVOID is recommended in Multi-Material ALE simulations in which the development of voids or air space is already accounted for by the Multi-Material ALE.
10. Soil or Rock. To model soil, set NJOINT \(=0\). The joints allow modeling of rock and are treated identically to those of *MAT_JOINTED_ROCK.
11. Joint Plane Orientations. The joint plane orientations are defined by the angle of a "downhill vector" drawn on the plane, meaning the vector is oriented within the plane to obtain the maximum possible downhill angle. DIP is the angle of this line below the horizontal. DIPANG is the plan-view angle of the line (pointing downhill) measured clockwise from the global \(Y\)-axis about the global Zaxis.
12. Masonry and Joint Planes. Joint planes are generally defined in the global axis system if they are taken from survey data, and the material represents rock. For this case, set LOCAL \(=0\). In other cases, it may be more convenient to define the joint plane angles, DIP and DIPANG, relative to the element local axis system (to do this, set LOCAL = 1). For example, this material model can be used to represent masonry with the weak planes representing the mortar joint. In this situation, these joints may be parallel to the local element axes throughout the mesh.

The choice of defining the joint angles relative to global versus local coordinates is available only for solid elements. For thick shell elements (*ELEMENT_TSHELL), DIP and DIPANG are always relative to the element local axis and the setting of LOCAL is ignored.
13. Rigid Body Motion. The joint planes rotate with the rigid body motion of the elements, irrespective of whether their initial definitions are in the global or local axis system.
14. Extra History Variables. Extra history variables may be requested (see NEIPH on *DATABASE_EXTENT_BINARY). They are described in the following table:
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 1 & Mobilized strength fraction for base material \\
\hline 2 & Volumetric void strain \\
\hline 3 & Maximum stress overshoot during plasticity calculation \\
\hline 4-9 & Crack opening strain for planes 1 through 6 \\
\hline 10-15 & Crack accumulated engineering shear strain for planes 1 through 6 \\
\hline 16-20 & Current shear utilization for planes 1 through 6 \\
\hline 21-27 & Maximum shear utilization to date for planes 1 through 6 \\
\hline 33 & Elastic shear modulus (for checking depth-dependent input) \\
\hline 34 & Cohesion (for checking depth-dependent input) \\
\hline
\end{tabular}

\section*{*MAT_RC_BEAM}

This is Material Type 174. It is for Hughes-Liu beam elements only. The material model can represent plain concrete only, reinforcing steel only, or a smeared combination of concrete and reinforcement. The main emphasis of this material model is the cyclic behavior. It is intended primarily for seismic analysis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & EUNL & PR & FC & EC1 & EC50 & RESID \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & Rem 2 & 0.0 & none & 0.0022 & Rem 2 & 0.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FT & UNITC & (blank) & (blank) & (blank) & ESOFT & LCHAR & OUTPUT \\
Type & F & F & F & F & F & F & F & F \\
Default & Rem 2 & 1.0 & none & none & none & Rem 2 & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FRACR & YMREIN & PRREIN & SYREIN & SUREIN & ESHR & EUR & RREINF \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & none & 0.0 & 0.0 & SYREIN & 0.03 & 0.2 & 4.0 \\
\hline
\end{tabular}

VARIABLE
MID

RO

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density

Figure M174-1. Example response for Concrete

\section*{Remarks:}
1. Creating sections for reinforced concrete beams. This material model can be used to represent unreinforced concrete (\(\mathrm{FRACR}=0\)), steel (\(\mathrm{FRACR}=1\)), or reinforced concrete with evenly distributed reinforcement (\(0<\) FRACR < 1).

Alternatively, you can specify the distribution in a section with *INTEGRATION_BEAM. In this case, the PID field for each integration point on *INTEGRATION_BEAM identifies the material for that integration point. You should create one part for concrete and another for steel. These parts should reference two materials of type *MAT_RC_BEAM, but one with FRACR \(=0\) and the other with FRACR \(=1\). Then, by assigning one or other of these part IDs to each integration point, the reinforcement can be applied to the correct locations within the section of the beam.
2. Modeling Concrete. In monotonic compression, we use the approach of Park and Kent, as described in Park \& Paulay [1975]. The material follows a parabolic stress-strain curve up to a maximum stress equal to the cylinder strength FC. Thereafter, the strength decays linearly with strain until the residual strength is reached.

Default values for some material parameters will be calculated automatically as follows:
\[
\mathrm{EC} 50=\frac{(3+0.29 \mathrm{FC})}{145 \mathrm{FC}-1000}
\]

Figure M174-2. Monotonic tensile loading of the reinforcement
where FC is in MPa as per Park and Kent test data.
\[
\mathrm{EUNL}=\text { initial tangent slope }=\frac{2 \mathrm{FC}}{\mathrm{EC} 1}
\]

Input values for EUNL lower than this are not permitted, but higher values may be defined if desired.
\[
\mathrm{FT}=1.4\left(\frac{\mathrm{FC}}{10}\right)^{\frac{2}{3}}
\]
where FC is in MPa as per Park and Kent test data.
ESOFT = EUNL

Input values higher than EUNL are not permitted. UNITC is used only to calculate default values for the above parameters from FC.

Strain-softening behavior tends to lead to deformations being concentrated in one element, and hence the overall force-deflection behavior of the structure can be mesh-size-dependent if the softening is characterized by strain. To avoid this, you may define a characteristic length (LCHAR). This is the length of specimen (or element) that would exhibit the defined monotonic stress-strain relationship. LS-DYNA adjusts the stress-strain relationship after ultimate load for each element, such that all elements irrespective of their length will show the same deflection during strain softening (that is, between ultimate load and residual load). Therefore, although deformation will still be concentrated in one element, the load-deflection behavior should be the same irrespective of element size. For tensile behavior, ESOFT is similarly scaled.

Cyclic behavior is broadly suggested by Blakeley and Park [1973] as described in Park \& Paulay [1975]. The stress-strain response lies within the Park-Kent envelope and is characterized by stiff initial unloading response at slope EUNL

Figure M174-3. Stress vs. strain hysteresis plot for the reinforcement with RREINF \(=4.0\)
followed by a less stiff response if it unloads to less than half the current strength. Reloading stiffness degrades with increasing strain.

In tension, the stress rises linearly with strain until a tensile limit FT is reached. Thereafter the stiffness and strength decays with increasing strain at a rate ESOFT. The stiffness also decays such that unloading always returns to strain at which the stress most recently changed to tensile.
3. Modeling the Reinforcement. Monotonic loading of the reinforcement results in the stress-strain curve shown in Figure M174-2, which is parabolic between \(\varepsilon_{\text {sh }}\) and \(\varepsilon_{\text {ult }}\). The same curve acts as an envelope on the hysteretic behavior when the \(x\)-axis is cumulative plastic strain.

Unloading from the yielded condition is elastic until the load reverses. Thereafter, the Bauschinger Effect (reduction in stiffness at stresses less than yield during cyclic deformation) is represented by following a Ramberg-Osgood relationship until the yield stress is reached:
\[
\varepsilon-\varepsilon_{s}=\left(\frac{\sigma}{E}\right)\left\{1+\left(\frac{\sigma}{\sigma_{\mathrm{CH}}}\right)^{r-1}\right\}
\]
where \(\varepsilon\) and \(\sigma\) are strain and stress, \(\varepsilon_{s}\) is the strain at zero stress, \(E\) is Young's Modulus, and \(r\) and \(\sigma_{\mathrm{CH}}\) are as defined below

We have two options for calculating \(r\) and \(\sigma_{\mathrm{CH}}\), which is performed at each stress reversal:
a) If RREINF is input as \(-1, r\) and \(\sigma_{\mathrm{CH}}\) are calculated internally from formulae given in Kent and Park. Parameter \(r\) depends on the number of stress reversals. Parameter \(\sigma_{C H}\) depends on the plastic strain that occurred between the previous two stress reversals. The formulae were statistically derived from experiments but may not fit all circumstances. In particular, large differences in behavior may be caused by the presence or absence of small stress reversals such as could be caused by high frequency oscillations. Therefore, results might sometimes be unduly sensitive to small changes in the input data.
b) If RREINF is entered by the user or left blank, \(r\) is held constant while \(\sigma_{\mathrm{CH}}\) is calculated on each reversal such that the Ramberg-Osgood curve meets the monotonic stress-strain curve at the point from which it last unloaded. For example, points 6 and 8 are coincident in Figure M174-3. The default setting of 4.0 for RREINF gives similar hysteresis behavior to that described by Kent \& Park but is unlikely to be so sensitive to small changes of input data.
4. Output. We recommend setting BEAMIP on *DATABASE_EXTENT_BINARY to request stress and strain output at the individual integration points. Note that for *MAT_RC_BEAM either element curvature or high tide plastic strain for the reinforcement is written to the output files in place of plastic strain depending on the setting of OUTPUT. In the post-processor, select "plastic strain" to display your selection of OUTPUT. For curvature, LS-DYNA compares the absolute values of the curvatures about the local \(y\) and \(z\) axes and outputs the larger value. In the post-processor, to display the total axial strain (elastic + plastic) at that integration point, select "axial strain." This can be combined with axial stress to create hysteresis plots, such as those shown in Figures M174-1 and M174-3.

\section*{*MAT_VISCOELASTIC_THERMAL}

This is Material Type 175. This material model provides a general viscoelastic Maxwell model having up to 12 terms in the prony series expansion and is useful for modeling dense continuum rubbers and solid explosives. Either the coefficients of the prony series expansion or a relaxation curve may be specified to define the viscoelastic deviatoric and bulk behavior. Note that *MAT_GENERAL_VISCOELASTIC (Material Type 76) has all the capability of *MAT_VISCOELASTIC_THERMAL and additionally offers more terms (18) in the prony series expansion and an optional scaling of material properties with moisture content.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & BULK & PCF & EF & TREF & A & B \\
\hline
\end{tabular}

Card 2. If fitting is done from a relaxation curve, specify fitting parameters on Card 2; otherwise if constants are set on Card 3, LEAVE THIS CARD BLANK.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
\hline
\end{tabular}

Card 3. These cards are not needed if data is defined using Card 2. This card can be input up to 6 times. The keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{G} i\) & BETA \(i\) & Ki & BETAK & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & BULK & PCF & EF & TREF & A & B \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
BULK Elastic bulk modulus

\section*{VARIABLE}

PCF

EF

TREF

A Coefficient for the Arrhenius and the Williams-Landel-Ferry shift functions

B Coefficient for the Williams-Landel-Ferry shift function

\section*{DESCRIPTION}

Tensile pressure elimination flag for solid elements only. If set to unity, tensile pressures are set to zero.

Elastic flag:
EQ.O: The layer is viscoelastic.
EQ.1: The layer is elastic.

Reference temperature for shift function (must be greater than zero)

Relaxation Curve Card. If fitting is done from a relaxation curve, specify fitting parameters on Card 2; otherwise if constants are set on Viscoelastic Constant Cards, LEAVE THIS CARD BLANK.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID & NT & BSTART & TRAMP & LCIDK & NTK & BSTARTK & TRAMPK \\
Type & F & I & F & F & F & I & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID

NT Number of terms in shear fit. If zero, 6 terms are used by default. Fewer than NT terms will be used if the fit produces one or more negative shear moduli. Currently, the maximum number is set to 6.
\(\operatorname{BSTART} \quad\) In the fit, \(\beta_{1}\) is set to zero, \(\beta_{2}\) is set to BSTART, \(\beta_{3}\) is 10 times \(\beta_{2}\), \(\beta_{4}\) is 10 times \(\beta_{3}\), and so on. If zero, BSTART is determined by an iterative trial and error scheme.

TRAMP Optional ramp time for loading

Figure M175-1. Relaxation curve. This curve defines stress as a function of time where time is defined on a logarithmic scale. For best results, the points defined in the load curve should be equally spaced on the logarithmic scale. Furthermore, the load curve should be smooth and defined in the positive quadrant. If nonphysical values are determined by least squares fit, LS-DYNA will terminate with an error message after the initialization phase is completed. If the ramp time for loading is included, then the relaxation which occurs during the loading phase is taken into account. This effect may or may not be important.

VARIABLE
LCIDK

NTK

BSTARTK

TRAMPK Optional ramp time for bulk loading

Viscoelastic Constant Cards. Up to 6 cards may be input. The next keyword ("*") card terminates this input. These cards are not needed if relaxation data is defined (Card 2). The number of terms for the shear behavior may differ from that for the bulk behavior: simply insert zero if a term is not included. If an elastic layer is defined, only Gi and Ki need to be defined (note in an elastic layer only one card is needed).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G \(i\) & BETA \(i\) & Ki & BETAK \(i\) & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Gi
Optional shear relaxation modulus for the \(i^{t^{\text {th }}}\) term
BETA \(i \quad\) Optional shear decay constant for the \(i^{\text {th }}\) term
\(\mathrm{Ki} \quad\) Optional bulk relaxation modulus for the \(i^{\text {th }}\) term
BETAK \(i \quad\) Optional bulk decay constant for the \(i^{\text {th }}\) term

\section*{Remarks:}

Rate effects are taken into accounted through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
where \(g_{i j k l(t-\tau)}\) is the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\sum_{m=1}^{N} G_{m} e^{-\beta_{m} t} .
\]

We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). An arbitrary number of terms, up to 6 , may be used when applying the viscoelastic model.

For volumetric relaxation, the relaxation function is also represented by the Prony series in terms of bulk moduli:
\[
k(t)=\sum_{m=1}^{N} K_{m} e^{-\beta_{k_{m}} t}
\]

The Arrhenius and Williams-Landel-Ferry (WLF) shift functions account for the effects of the temperature on the stress relaxation. A scaled time, \(t^{\prime}\),
\[
t^{\prime}=\int_{0}^{t} \Phi(T) d t
\]
is used in the relaxation function instead of the physical time. The Arrhenius shift function is
\[
\Phi(T)=\exp \left[-A\left(\frac{1}{T}-\frac{1}{T_{\mathrm{REF}}}\right)\right]
\]
and the Williams-Landel-Ferry shift function is
\[
\Phi(T)=\exp \left(-A \frac{T-T_{\mathrm{REF}}}{B+T-T_{\mathrm{REF}}}\right) .
\]

If all three values (TREF, A , and B) are not zero, the WLF function is used; the Arrhenius function is used if \(B\) is zero; and no scaling is applied if all three values are zero.

\section*{*MAT_QUASILINEAR_VISCOELASTIC}

This is Material Type 176. This is a quasi-linear, isotropic, viscoelastic material based on a one-dimensional model by Fung [1993], which represents biological soft tissues, such as the brain. It is implemented for solid and shell elements. As of LS-DYNA version 971, a second formulation has been implemented that allows for larger strains, but in general, will not give the same results as the previous (default) implementation.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & K & LC1 & LC2 & N & GSTART & M \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline S0 & E_MIN & E_MAX & GAMA1 & GAMA2 & K & EH & FORM \\
\hline
\end{tabular}

Card 3. This card is included if and only if LC1 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline G1 & BETA1 & G2 & BETA2 & G3 & BETA3 & G4 & BETA4 \\
\hline
\end{tabular}

Card 4. This card is included if and only if \(\mathrm{LC} 1=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline G5 & BETA5 & G6 & BETA6 & G7 & BETA7 & G8 & BETA8 \\
\hline
\end{tabular}

Card 5. This card is included if and only if LC1 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline G9 & BETA9 & G10 & BETA10 & G11 & BETA11 & G12 & BETA12 \\
\hline
\end{tabular}

Card 6. This card is included if and only if \(\mathrm{LC} 2=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C1 & C2 & C3 & C4 & C5 & C6 & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & LC1 & LC2 & N & GSTART & M \\
Type & A & F & F & I & I & F & F & F \\
Default & none & none & none & 0 & 0 & 6 & \(1 /\) TMAX & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline MID & Material identification. A unique number or label must be specified (see *PART). \\
\hline RO & Mass density \\
\hline K & Bulk modulus \\
\hline LC1 & Load curve ID that defines the relaxation function in shear. This curve is used to fit the coefficients Gi and BETA \(i\). If zero, define the coefficients directly. The latter is recommended. \\
\hline LC2 & Load curve ID that defines the instantaneous elastic response in compression and tension. If zero, define the coefficients directly. Symmetry is not assumed if only the tension side is defined; therefore, defining the response in tension only, may lead to nonphysical behavior in compression. Also, this curve should give a softening response for increasing strain without any negative or zero slopes. A stiffening curve or one with negative slopes is generally unstable. \\
\hline N & Number of terms used in the Prony series which must be less than or equal to 6 . This number should be equal to the number of decades of time covered by the experimental data. Define this number if LC1 is nonzero. Carefully check the fit in the d3hsp file to ensure that it is valid, since the least square fit is not always reliable. \\
\hline GSTART & Starting value for least square fit. If zero, a default value is set equal to the inverse of the largest time in the experiment. Define this number if LC1 is nonzero. \\
\hline M & Number of terms used to determine the instantaneous elastic response. This variable is ignored with the new formulation but is kept for compatibility with the previous input. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & S0 & E_MIN & E_MAX & GAMA1 & GAMA2 & K & EH & FORM \\
Type & F & F & F & F & F & F & \(F\) & 1 \\
Default & 0.0 & -0.9 & 5.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

SO

E_MIN Minimum strain used to generate the load curve from \(C_{i}\). The default range is -0.9 to 5.1 . The computed solution will be more accurate if the user specifies the range used to fit the \(C_{i}\). Linear extrapolation is used outside the specified range.
\(\begin{array}{ll}\text { E_MAX } & \text { Maximum strain used to generate the load curve from } C_{i} . \\ \text { GAMA1 } & \text { Material failure parameter (see *MAT_SIMPLIFIED_RUBBER and }\end{array}\) Figure M181-1)

GAMA2 Material failure parameter (see *MAT_SIMPLIFIED_RUBBER)
K Material failure parameter that controls the volume enclosed by the failure surface (see *MAT_SIMPLIFIED_RUBBER):

LE.O.O: Ignore failure criterion
GT.0.0: Use actual K value for failure criteria

\section*{EH}

FORM

\section*{DESCRIPTION}

Strain (logarithmic) output option to control what is written as component 7 to the d3plot database. (LS-PrePost always blindly labels this component as effective plastic strain.) The maximum values are updated for each element each time step:

EQ.0.0: Maximum principal strain that occurs during the calculation

EQ.1.0: Maximum magnitude of the principal strain values that occurs during the calculation
EQ.2.0: Maximum effective strain that occurs during the calculation

Damage parameter (see *MAT_SIMPLIFIED_RUBBER)
Formulation of model.

EQ.0: Original model developed by Fung, which always relaxes to a zero stress state as time approaches infinity
EQ.1: Alternative model, which relaxes to the quasi-static elastic response
EQ.-1: Improvement on FORM \(=0\) where the instantaneous elastic response is used in the viscoelastic stress update, not just in the relaxation, as in \(\mathrm{FORM}=0\). Consequently, the constants for the elastic response do not need to be scaled.

\section*{VARIABLE}

\section*{DESCRIPTION}

In general, formulations 1 and 2 won't give the same responses.

Viscoelastic Constants Card 1. Additional card for LC1 \(=0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G1 & BETA1 & G2 & BETA2 & G3 & BETA3 & G4 & BETA4 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Viscoelastic Constants Card 2. Additional card for LC1 \(=0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G5 & BETA5 & G6 & BETA6 & G7 & BETA7 & G8 & BETA8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Viscoelastic Constants Card 3. Additional card for \(\mathrm{LC} 1=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & G9 & BETA9 & G10 & BETA10 & G11 & BETA11 & G12 & BETA12 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

Gi

BETA \(i\)

\section*{DESCRIPTION}

Coefficients of the relaxation function. The number of coefficients is currently limited to 6 although 12 may be read in to maintain compatibility with the previous formulation's input. Define these coefficients if LC1 is set to zero. At least 2 coefficients must be nonzero.

Decay constants of the relaxation function. Define these coefficients if LC1 is set to zero. The number of coefficients is currently limited to 6 although 12 may be read in to maintain compatibility with the previous formulation's input.

Instantaneous Elastic Reponses Card. Additional card for LC2 \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Coefficients of the instantaneous elastic response in compression and tension. Define these coefficients only if LC2 is set to zero.

\section*{Remarks:}

The equations for the original model (\(\mathrm{FORM}=0\)) are given as:
\[
\begin{aligned}
\sigma_{V}(t) & =\int_{0}^{t} G(t-\tau) \frac{\partial \sigma_{\varepsilon}[\varepsilon(\tau)]}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \tau} d \tau \\
G(t) & =\sum_{i=1}^{n} G_{i} e^{-\beta t} \\
\sigma_{\varepsilon}(\varepsilon) & =\sum_{i=1}^{k} C_{i} \varepsilon^{i}
\end{aligned}
\]
where \(G\) is the shear modulus. Effective strain (which can be written to the d3plot database) is calculated as follows:
\[
\varepsilon^{\mathrm{eff}}=\sqrt{\frac{2}{3} \varepsilon_{i j} \varepsilon_{i j}}
\]

The polynomial for instantaneous elastic response should contain only odd terms if symmetric tension-compression response is desired.

The new model (FORM = 1) is based on the hyperelastic model used in *MAT_SIMPLIFIED_RUBBER assuming incompressibility. The one-dimensional expression for \(\sigma_{\varepsilon}\) generates the uniaxial stress-strain curve and an additional visco-elastic term is added on,
\[
\begin{aligned}
\sigma(\varepsilon, t) & =\sigma_{S R}(\varepsilon)+\sigma_{V}(t) \\
\sigma_{V}(t) & =\int_{0}^{t} G(t-\tau) \frac{\partial \varepsilon}{\partial \tau} d \tau
\end{aligned}
\]
where the first term to the right of the equals sign is the hyperelastic stress and the second is the viscoelastic stress. Unlike the previous formulation, where the stress always relaxed to zero, the current formulation relaxes to the hyperelastic stress.

\section*{*MAT_HILL_FOAM}

Purpose: This is Material Type 177. This is a highly compressible foam based on the strain-energy function proposed by Hill [1979]; also see Storakers [1986]. Poisson's ratio effects are taken into account.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & K & N & MU & LCID & FITTYPE & LCSR \\
\hline
\end{tabular}

Card 2. This card is included if LCID \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C 1 & C 2 & C 3 & C 4 & C 5 & C 6 & C 7 & C 8 \\
\hline
\end{tabular}

Card 3. This card is included if LCID \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
\hline
\end{tabular}

Card 4. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(R\) & \(M\) & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & N & MU & LCID & FITTYPE & LCSR \\
Type & A & F & F & F & F & 1 & 1 & 1 \\
Default & none & none & none & 0. & 0. & 0 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
\(\mathrm{K} \quad\) Bulk modulus. This modulus is used for determining the contact interface stiffness. See Remark 2.

\section*{VARIABLE}

N

MU
LCID Load curve ID that defines the force per unit area as a function of the stretch ratio. This curve can be given for either uniaxial or biaxial data depending on FITTYPE. See Remark 1.

FITTYPE Type of fit:
EQ.1: Uniaxial data
EQ.2: Biaxial data
EQ.3: Pure shear data
LCSR Load curve ID that defines the uniaxial or biaxial stretch ratio (see FITTYPE) as a function of the transverse stretch ratio.

Material Constant Card 1. Additional card for LCID \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

Ci

\section*{DESCRIPTION}

Material constants. See equations below. Define up to 8 coefficients if LCID \(=0\).

Material Constant Card 2. Additional card for LCID \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

Bi

\section*{DESCRIPTION}

Material constants. See equations below. Define up to 8 coefficients if LCID \(=0\).

Mullins Effect Card. This card is optional.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & R & M & & & & & & \\
Type & F & F & & & & & & \\
Default & 0.0 & 0.0 & & & & & & \\
\hline
\end{tabular}

VARIABLE
R

M

\section*{DESCRIPTION}

Mullins effect model \(r\) coefficient
Mullins effect model \(m\) coefficient

\section*{Remarks:}
1. Load Curve Fit. If load curve data is defined, the fit generated by LS-DYNA must be closely checked in the d3hsp output file. The nonlinear least squares procedure in LS-DYNA, which is used to fit the data, may be inadequate.
2. Material Model. The Hill strain energy density function for this highly compressible foam is given by:
\[
W=\sum_{j=1}^{m} \frac{C_{j}}{b_{j}}\left[\lambda_{1}^{b_{j}}+\lambda_{2}^{b_{j}}+\lambda_{3}^{b_{j}}-3+\frac{1}{n}\left(J^{-n b_{j}}-1\right)\right]
\]
where \(C_{j}, b_{j}\), and \(n\) are material constants. \(J=\lambda_{1} \lambda_{2} \lambda_{3}\) and represents the ratio of the deformed to the undeformed state. The constant \(m\) is internally set to 4 . If the number of points in the curve is less than 8 , then \(m\) is set to the number of points divided by 2 . The principal Cauchy stresses are:
\[
t_{i}=\sum_{j=1}^{m} \frac{C_{j}}{J}\left[\lambda_{i}^{b_{j}}-J^{-n b_{j}}\right] \quad i=1,2,3 .
\]

From the above equations the shear modulus is:
\[
\mu=\frac{1}{2} \sum_{j=1}^{m} C_{j} b_{j}
\]
and the bulk modulus is:
\[
K=2 \mu\left(n+\frac{1}{3}\right) .
\]

LS-DYNA uses the value for \(K\) defined in the input in the calculation of contact forces and for the material time step. Generally, this value should be equal to or greater than the \(K\) given in the above equation.

\section*{*MAT_VISCOELASTIC_HILL_FOAM}

This is Material Type 178. This material is a highly compressible foam based on the strain-energy function proposed by Hill [1979]; also see Storakers [1986]. The extension to include large strain viscoelasticity is due to Feng and Hallquist [2002].

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & K & N & MU & LCID & FITTYPE & LCSR \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|l|l|l|l|l|}
\hline LCVE & NT & GSTART & & & & & \\
\hline
\end{tabular}

Card 3. This card is defined if and only if LCID \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
\hline
\end{tabular}

Card 4. This card is defined if and only if LCID \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
\hline
\end{tabular}

Card 5. Include up to 12 of this card. The next keyword ("*") card terminates this input.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Gi & BETA & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & N & MU & LCID & FITTYPE & LCSR \\
Type & A & F & F & F & F & I & I & I \\
Default & none & none & none & 0.0 & 0.05 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

MID Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

RO

N

MU
LCID

FITTYPE

LCSR

K Bulk modulus. This modulus is used for determining the contact interface stiffness.

\section*{DESCRIPTION}

Mass density

Material constant. Define if LCID \(=0\) below; otherwise, N is fit from the load curve data. See remarks below.

Damping coefficient (\(0.05<\) recommended value \(<0.50\))
Load curve ID that defines the force per unit area as a function of the stretch ratio. This curve can be given for either uniaxial or biaxial data depending on FITTYPE. Load curve LCSR below must also be defined.

Type of fit:
EQ.1: Uniaxial data
EQ.2: Biaxial data
Load curve ID that defines the uniaxial or biaxial stress ratio (see FITTYPE) as a function of the transverse stretch ratio
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCVE & NT & GSTART & & & & & \\
Type & I & 1 & F & & & & & \\
Default & 0 & 6 & \(1 /\) TMAX & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCVE

\section*{DESCRIPTION}

Optional load curve ID that defines the relaxation function in shear. This curve is used to fit the coefficients Gi and BETA \(i\) (see Card 5). If zero, define the coefficients directly (recommended).

NT Number of terms used to fit the Prony series, which must be less than or equal to 12 . This number should be equal to the number of decades of time covered by the experimental data. Define this number if LCVE is nonzero. Carefully check the fit in the d3hsp file to ensure that it is valid, since the least square fit is not always

\section*{VARIABLE}

GSTART

\section*{DESCRIPTION}
reliable.
Starting value for the least squares fit. If zero, a default value is set equal to the inverse of the largest time in the experiment. Define this number if LCVE is nonzero. See remarks below.

Material Constant Card 1. Additional card for LCID \(=0\)
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

Material Constant Card 2. Additional card for LCID \(=0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Ci
Material constants. See remarks below. Define up to 8 coefficients.
\(\mathrm{Bi} \quad\) Material constants. See remarks below. Define up to 8 coefficients.

Viscoelastic Constant Cards. Up to 12 cards may be input. The next keyword ("*") card terminates this input.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETAi & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

VARIABLE
Gi Optional shear relaxation modulus for the \(i^{\text {th }}\) term

\section*{VARIABLE}

\section*{DESCRIPTION}

BETA \(i\)
\[
\text { Optional decay constant if } i^{\text {th }} \text { term }
\]

\section*{Remarks:}

If load curve data is defined, the fit generated by LS-DYNA must be closely checked in the d3hsp output file. It may occur that the nonlinear least squares procedure in LSDYNA, which is used to fit the data, is inadequate.

The Hill strain energy density function for this highly compressible foam is given by:
\[
W=\sum_{j=1}^{n} \frac{C_{j}}{b_{j}}\left[\lambda_{1}^{b_{j}}+\lambda_{2}^{b_{j}}+\lambda_{3}^{b_{j}}-3+\frac{1}{n}\left(J^{-n b_{j}}-1\right)\right],
\]
where \(C_{j}, b_{j}\), and \(n\) are material constants and \(J=\lambda_{1} \lambda_{2} \lambda_{3}\) represents the ratio of the deformed to the undeformed state. The principal Cauchy stresses are
\[
\tau_{i i}=\sum_{j=1}^{n} \frac{C_{j}}{J}\left[\lambda_{i}^{b_{j}}-J^{-n b_{j}}\right] \quad i=1,2,3
\]

From the above equations the shear modulus is:
\[
\mu=\frac{1}{2} \sum_{j=1}^{m} c_{j} b_{j}
\]
and the bulk modulus is:
\[
K=2 \mu\left(n+\frac{1}{3}\right)
\]

The value for \(K\) defined in the input is used in the calculation of contact forces and for the material time step. Generally, this value should be equal to or greater than the \(K\) given in the above equation.

Rate effects are taken into account through linear viscoelasticity by a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
or in terms of the second Piola-Kirchhoff stress, \(S_{i j}\), and Green's strain tensor, \(E_{i j}\),
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial E_{k l}}{\partial \tau} d \tau,
\]
where \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

If we wish to include only simple rate effects, the relaxation function is represented by six terms from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta_{m} t}
\]
given by,
\[
g(t)=\sum_{i=1}^{n} G_{i} e^{-\beta_{i} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). The viscoelastic behavior is optional and an arbitrary number of terms may be used.

\section*{*MAT_LOW_DENSITY_SYNTHETIC_FOAM_\{OPTION\}}

This is Material Type 179 (and 180 if the ORTHO option below is active) for modeling rate independent low density foams, which have the property that the hysteresis in the loading-unloading curve is considerably reduced after the first loading cycle. For this material we assume that the loading-unloading curve is identical after the first cycle of loading is completed and that the damage is isotropic, that is, the behavior after the first cycle of loading in the orthogonal directions also follows the second curve. The main application at this time is to model the observed behavior in the compressible synthetic foams that are used in some bumper designs. Tables may be used in place of load curves to account for strain rate effects.

Available options include:
<BLANK>
ORTHO

\section*{WITH_FAILURE}

ORTHO_WITH_FAILURE
If the foam develops orthotropic behavior, that is, after the first loading and unloading cycle the material in the orthogonal directions are unaffected, then the ORTHO option should be used. If the ORTHO option is active the directionality of the loading is stored. This option requires additional storage for history variables related to the orthogonality and is slightly more expensive.

An optional failure criterion is included. A description of the failure model is provided below for material type 181, *MAT_SIMPLIFIED_RUBBER/FOAM.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & LCID1 & LCID2 & HU & BETA & DAMP \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SHAPE & FAIL & BVFLAG & ED & BETA1 & KCON & REF & TC \\
\hline
\end{tabular}

Card 3. This card is included if LCID \(<0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline RFLAG & DTRT & & & & & & \\
\hline
\end{tabular}

Card 4. This card is included if and only if the IF_FAILURE keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(K\) & GAMA1 & GAMA2 & EH & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & LCID1 & LCID2 & HU & BETA & DAMP \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 1. & none & 0.05 \\
\hline
\end{tabular}

VARIABLE
MID

RO
E

LCID1

LCID2

HU Hysteretic unloading factor between 0.0 and 1.0 (default \(=1.0\), that is, no energy dissipation); see Figure M179-1 and Remarks 1 and 2.

BETA
DAMP Viscous coefficient (\(.05<\) recommended value \(<.50\)) to model damping effects.

LT.O.O: |DAMP| is the load curve ID that defines the damping constant as a function of the maximum strain in

\section*{DESCRIPTION}
compression defined as:
\[
\varepsilon_{\max }=\max \left(1-\lambda_{1}, 1-\lambda_{2}, 1 .-\lambda_{3}\right) .
\]

In tension, the damping constant is set to the value corresponding to the strain at 0.0 . The abscissa should be defined from 0.0 to 1.0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SHAPE & FAIL & BVFLAG & ED & BETA1 & KCON & REF & TC \\
Type & F & F & F & F & F & F & F & F \\
Default & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \(10^{20}\) \\
\hline
\end{tabular}

\section*{VARIABLE}

SHAPE

FAIL Failure option after cutoff stress is reached:
EQ.0.0: Tensile stress remains at cut-off value,
EQ.1.0: Tensile stress is reset to zero.

BVFLAG

ED
BETA1 Optional decay constant, \(\beta_{1}\).
KCON Stiffness coefficient for contact interface stiffness. If undefined, the maximum slope in the stress as a function of strain curve is used. When the maximum slope is used for the contact, the time step size for this material is reduced for stability. In some cases, \(\Delta t\) may be significantly smaller, so defining a reasonable stiffness is
recommended.
REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On

TC Tension cut-off stress

Additional card for LCID1 < 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RFLAG & DTRT & & & & & & \\
Type & F & F & & & & & & \\
Default & 0.0 & 0.0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

RFLAG
Rate type for input:
EQ.0.0: LCID1 and LCID2 should be input as functions of true strain rate.

EQ.1.0: LCID1 and LCID2 should be input as functions of engineering strain rate.

DTRT Strain rate averaging flag:
EQ.0.0: Use weighted running average.
LT.O.O: Average the last 11 values.
GT.0.0: Average over the last DTRT time units.

Figure M179-1. Loading and reloading curves.
Additional card for WITH_FAILURE keyword option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & GAMA1 & GAMA2 & EH & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

K

\section*{DESCRIPTION}

Material failure parameter that controls the volume enclosed by the failure surface.

LE.O.O: Ignore failure criterion;
GT.0.0: Use actual K value for failure criterions.
GAMA1 Material failure parameter; see Figure M181-1.
GAMA2 Material failure parameter
EH Damage parameter

\section*{Remarks:}
1. Uniaxial response. This model is based on *MAT_LOW_DENSITY_FOAM. The uniaxial response is shown in Figure M179-1 with a large shape factor and small hysteretic factor. If the shape factor is not used, the unloading will occur on the loading curve for the second and subsequent cycles.
2. Damage and hysteresis. The damage is defined as the ratio of the current volume strain to the maximum volume strain, and it is used to interpolate between the responses defined by LCID1 and LCID2.

HU defines a hysteretic scale factor that is applied to the stress interpolated from LCID1 and LCID2,
\[
\sigma=\left[\mathrm{HU}+(1-\mathrm{HU}) \times \min \left(1, \frac{e_{\mathrm{int}}}{e_{\mathrm{int}}^{\max }}\right)^{s}\right] \sigma(\mathrm{LCID} 1, \mathrm{LCID} 2)
\]
where \(e_{\text {int }}\) is the internal energy and \(S\) is the shape factor. Setting HU to 1 results in a scale factor of 1 . Setting HU close to zero scales the stress by the ratio of the internal energy to the maximum internal energy raised to the power \(S\), resulting in the stress being reduced when the strain is low.

\section*{*MAT_SIMPLIFIED_RUBBER/FOAM_\{OPTION\}}

This is Material Type 181. This material model provides a rubber and foam model specified with a single uniaxial load curve or a family of uniaxial curves at discrete strain rates. Hysteretic unloading may optionally be modeled through a single uniaxial unloading curve or a two-parameter formulation. Specifying a Poisson's ratio greater than 0.0 and less than 0.49 activates the foam formulation. This material may be used with both shell and solid elements.

Available options include:
<BLANK>
WITH_FAILURE

\section*{LOG_LOG_INTERPOLATION}

When the WITH_FAILURE keyword option is active, a strain-based failure surface is defined that is suitable for incompressible polymers. It models failure in both tension and compression. With LOG_LOG_INTERPOLATION, LS-DYNA interpolates the strain rate effect in the table TBID using log-log interpolation.

This material law has been developed at DaimlerChrysler, Sindelfingen, in collaboration with Paul Du Bois, LSTC, and Prof. Dave J. Benson, UCSD.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & KM & MU & G & SIGF & REF & PRTEN \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SGL & SW & ST & LC/TBID & TENSION & RTYPE & AVGOPT & PR \\
\hline
\end{tabular}

Card 3. This card is included if the WITH_FAILURE keyword option is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(K\) & GAMA1 & GAMA2 & EH & & & & \\
\hline
\end{tabular}

Card 4. This card is optional. It must be included if Card 5 is included.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCUNLD & HU & SHAPE & STOL & VISCO & HISOUT & & \\
\hline
\end{tabular}

Card 5. This card is optional. Up to 12 cards in this format may be input. If fewer than 12 cards are input, the next keyword ("*") card terminates this input.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline G \(i\) & BETAi & VFLAG & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & KM & MU & G & SIGF & REF & PRTEN \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
KM
MU Damping coefficient \((0.05<\) recommended value \(<0.50\); default is 0.10).

G Shear modulus for frequency independent damping. Frequency independent damping is based on a spring and slider in series. The critical stress for the slider mechanism is SIGF defined below. For the best results, the value of \(G\) should be 250-1000 times greater than SIGF. See Remark 1.

SIGF Limit stress for frequency independent, frictional damping. See Remark 1.

REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details).

EQ.0.0: Off
EQ.1.0: On

PRTEN

The tensile Poisson's ratio for shells (optional). If PRTEN is zero, PR will serve as the Poisson's ratio for both tension and

\section*{VARIABLE}

\section*{DESCRIPTION}
compression in shells. If PRTEN is nonzero, PR will serve only as the compressive Poisson's ratio for shells.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LC/TBID & TENSION & RTYPE & AVGOPT & PR \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 2 } SGL & & \begin{tabular}{l}
Specimen gauge length \\
SW
\end{tabular} \\
ST & Specimen width
\end{tabular}

TENSION

Parameter that controls how the rate effects are treated. Applicable to the table definition.

EQ.-1.0: Rate effects are considered during tension and compression loading, but not during unloading.
EQ.O.O: Rate effects are considered for compressive loading only.
EQ.1.0: Rate effects are treated identically in tension and compression.

RTYPE

Averaging option for strain rates to reduce numerical noise:

\section*{VARIABLE}

LE.O.O:

\section*{DESCRIPTION}

LT.0.0: \(|\mathrm{AVGOPT}|\) is a time window/interval over which the strain rates are averaged.
EQ.0.0: Simple average of 12 time steps
EQ.1.0: Running average of last 12 averages
Poisson ratio or viscosity coefficient:
An incompressible rubber material is assumed, using the Ogden strain-energy functional. PR is set to 0.495 internally for computing the time-step only and is not used otherwise. Compressibility is defined using KM. For PR \(<0\) in solid elements, an incrementally updated mean viscous stress develops according to the following equation with \(\beta=|\mathrm{PR}|\) and \(K_{m}=\mathrm{KM}\) (see Card 1):
\[
p^{n+1}=p^{n} e^{-\beta \Delta t}+K_{m} \dot{\varepsilon}_{k k}\left(\frac{1-e^{-\beta \Delta t}}{\beta}\right)
\]

GT.0.0.AND.LT.0.49: A foam material is assumed, using the Hill strain-energy function. PR gives Poisson's ratio. KM on Card 1 is ignored. Selectivereduced integration is not used for fullyintegrated elements.
GE.0.49.AND.LT.0.5: An incompressible rubber material is assumed, using the Ogden strain-energy functional. PR is used for computing the time-step only. Compressibility is defined using KM on Card 1. Selective-reduced integration is not used for fully-integrated elements.

Additional card required for WITH_FAILURE option. Otherwise skip this card.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & K & GAMA1 & GAMA2 & EH & & & & \\
Type & F & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
& \begin{tabular}{l}
Material failure parameter that controls the volume enclosed by \\
the failure surface. \\
LE.0.0: Ignore failure criterion. \\
GT.0.0: Use actual K value for failure criterion (see Remark 2).
\end{tabular} \\
GAMA1 & Material failure parameter, \(\Gamma_{1} ;\) see Remark 2 and Figure M181-1. \\
GAMA2 & Material failure parameter, \(\Gamma_{2} ;\) see Remark 2. \\
EH & Damage parameter, \(h\). See Remark 2.
\end{tabular}

Optional Parameter Card.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCUNLD & HU & SHAPE & STOL & VISCO & HISOUT & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCUNLD

HU Hysteretic unloading factor between 0 and 1 (default \(=1.0\), meaning no energy dissipation). See also material \({ }^{*}\) MAT_083 and Figure M57-1. This option is ignored if LCUNLD is used.

SHAPE Shape factor for unloading. Active for nonzero values of the hysteretic unloading factor HU. Values less than one reduces the energy dissipation and greater than one increases dissipation. See also material *MAT_083 and Figure M57-1.

STOL Tolerance in stability check. See Remark 3.

\section*{VARIABLE}

VISCO

\section*{DESCRIPTION}

Flag to invoke viscoelastic formulation. The viscoelastic formulation does not apply to shell elements and will be ignored for shells. See Remark 4.

EQ.0.0: Purely elastic
EQ.1.0: Viscoelastic formulation (solids only)
HISOUT History output flag.
EQ.0.0: Default
EQ.1.0: Principal strains are written to history variables 25,26 , and 27.

Optional Viscoelastic Constants Cards. Up to 12 cards in format 5 may be input. A keyword card (with a "*" in column 1) terminates this input if fewer than 12 cards are used.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Gi & BETAi & VFLAG & & & & & \\
Type & F & F & 1 & & & & & \\
Default & none & none & 0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

Gi

BETA \(i\)
VFLAG Type of viscoelasticity formulation. This appears only on the first line defining Gi, BETA \(i\), and VFLAG. See Remark 4.

EQ.0: Standard viscoelasticity formulation (default)
EQ.1: Viscoelasticity formulation using instantaneous elastic stress

Figure M181-1. Failure surface for polymer for \(\Gamma_{1}=0\) and \(\Gamma_{2}=0.02\).

\section*{Remarks:}
1. Frequency-independent damping. Frequency-independent damping is obtained by the having a spring and slider in series as shown in the following sketch:

2. Failure criterion for polymers. The general failure criterion for polymers is proposed by Feng and Hallquist as
\[
f\left(I_{1}, I_{2}, I_{3}\right)=\left(I_{1}-3\right)+\Gamma_{1}\left(I_{1}-3\right)^{2}+\Gamma_{2}\left(I_{2}-3\right)=K
\]
where \(K\) is a material parameter which controls the size enclosed by the failure surface. \(I_{1}, I_{2}\) and \(I_{3}\) are the three invariants of right Cauchy-Green deformation tensor (C):
\[
\begin{aligned}
& I_{1}=\mathrm{C}_{i i}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2} \\
& I_{2}=\frac{1}{2}\left(\mathrm{C}_{i i} \mathrm{C}_{j j}-\mathrm{C}_{i j} \mathrm{C}_{i j}\right)=\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{1}^{2} \lambda_{3}^{2}+\lambda_{2}^{2} \lambda_{3}^{2} \\
& I_{3}=\operatorname{det}(\mathbf{C})=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}
\end{aligned}
\]
with \(\lambda_{i}\) as the stretch ratios in the three principal directions.

To avoid sudden failure and numerical difficulty, material failure, which is usually a time point, is modeled as a process of damage growth. In this case, the two threshold values are chosen as \((1-h) K\) and \(K\), where \(h\) (also called EH) is a small number chosen based on experimental results reflecting the range between damage initiation and material failure.

The damage is defined as function of \(f\) :
\[
D= \begin{cases}0 & \text { if } f \leq(1-h) K \\ \frac{1}{2}\left[1+\cos \frac{\pi(f-K)}{h K}\right] & \text { if }(1-h) K<f<K \\ 1 & \text { if } f \geq K\end{cases}
\]

With this definition, damage is first-order continuous, and the tangent stiffness matrix will be continuous. The reduced stress considering damage effect is
\[
\sigma_{i j}=(1-D) \sigma_{i j}^{o}
\]
where \(\sigma_{i j}^{o}\) is the undamaged stress. Prior to final failure, material damage is assumed to be recoverable. Once material failure occurs, damage will become permanent.
3. Stability of the stress-strain response. Bad choices of curves for the stressstrain response may lead to an unstable model. LS-DYNA can check for stability given a certain tolerance with the field STOL. The check is done by examining the eigenvalues of the tangent modulus at selected stretch points. A warning message is issued if an eigenvalue is less than -STOL \(\times\) BULK, where BULK indicates the bulk modulus of the material. For STOL \(<0\), the check is disabled. Otherwise, it should be chosen with care. A too small value may detect instabilities that are insignificant in practice. To avoid significant instabilities, we recommend using smooth curves. At best the curves should be continuously differentiable. For the incompressible case, a sufficient condition for stability is that the stress-stretch curve \(S(\lambda)\) can be written as
\[
S(\lambda)=H(\lambda)-\frac{H\left(\frac{1}{\sqrt{\lambda}}\right)}{\lambda \sqrt{\lambda}}
\]
where \(H(\lambda)\) is a function with \(H(1)=0\) and \(H^{\prime}(\lambda)>0\).
4. Viscoelasticity. For solid elements, rate effects may also be taken into account through linear viscoelasticity by setting VISCO \(=1.0\). For VFLAG \(=0\), viscoelasticity is modeled through a convolution integral of the form:
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}}{\partial \tau} d \tau,
\]
or in terms of the second Piola-Kirchhoff stress, \(\mathbf{S}_{0}\), and Green's strain tensor, \(\mathrm{E}_{\text {RT }}\)
\[
S_{i j}=\int_{0}^{t} G_{i j k l}(t-\tau) \frac{\partial E_{k l}}{\partial \tau} d \tau
\]

Here \(g_{i j k l}(t-\tau)\) and \(G_{i j k l}(t-\tau)\) are the relaxation functions for the different stress measures. This stress is added to the stress tensor determined from the strain energy functional.

The relaxation function is represented by six terms from the Prony series:
\[
g(t)=\alpha_{0}+\sum_{m=1}^{N} \alpha_{m} e^{-\beta t}
\]
given by
\[
g(t)=\sum_{i=1}^{n} G_{i} e^{-\beta_{i} t}
\]

This model is effectively a Maxwell fluid which consists of a dampers and springs in series. We characterize this in the input by shear moduli, \(G_{i}\), and decay constants, \(\beta_{i}\). An arbitrary number of terms may be used.

For VFLAG \(=1\), the viscoelastic term is
\[
\sigma_{i j}=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \sigma_{k l}^{E}}{\partial \tau} d \tau
\]
where \(\sigma_{k l}^{E}\) is the instantaneous stress evaluated from the internal energy functional. The coefficients in the Prony series, therefore, correspond to normalized relaxation moduli instead of elastic moduli.

\section*{*MAT_SIMPLIFIED_RUBBER_WITH_DAMAGE_\{OPTION\}}

Available options include (see Remark 1):
<BLANK>

\section*{LOG_LOG_INTERPOLATION}

This is Material Type 183. This material model provides an incompressible rubber model defined by a single uniaxial load curve for loading (or a table if rate effects are considered) and a single uniaxial load curve for unloading. This model is similar to \({ }^{*} \mathrm{MAT}_{-}\) 181/*MAT_SIMPLIFIED_RUBBER/FOAM. This material may be used with both shell and solid elements.

This material law has been developed at DaimlerChrysler, Sindelfingen, in collaboration with Paul Du Bois, LSTC, and Prof. Dave J. Benson, UCSD.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & K & MU & G & SIGF & & \\
Type & A & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SGL & SW & ST & LC / TBID & TENSION & RTYPE & AVGOPT & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCUNLD & REF & STOL & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

\section*{VARIABLE}

RO
K Linear bulk modulus
MU
G Shear modulus for frequency-independent damping. Frequencyindependent damping is based on a spring and slider in series. The critical stress for the slider mechanism is SIGF defined below. For the best results, the value of G should be 250-1000 times greater than SIGF.

SIGF Limit stress for frequency-independent, frictional damping.
SGL Specimen gauge length
SW Specimen width
ST
LC/TBID

TENSION

RTYPE Strain rate type if a table is defined:
EQ.0.0: True strain rate
EQ.1.0: Engineering strain rate

\section*{VARIABLE}

AVGOPT

LCUNLD

REF

STOL

DESCRIPTION
Averaging option for determining strain rate to reduce numerical noise.

EQ.0.0: Simple average of twelve time steps
EQ.1.0: Running 12 point average
Load curve (see *DEFINE_CURVE) defining the force as a function of actual change in the gauge length during unloading. The unloading curve should cover exactly the same range as LC (or as the first curve of table TBID) and its endpoints should have identical values, meaning the combination of LC (or the first curve of table TBID) and LCUNLD describes a complete cycle of loading and unloading.

Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On
Tolerance in stability check. See Remark 2.

\section*{Remarks:}
1. LOG_LOG_INTERPOLATION. The LOG_LOG_INTERPOLATION option interpolates the strain rate effect in the table TBID using log-log interpolation.
2. Stability. A bad choice of curves for the stress-strain response may lead to an unstable model. STOL enables this check with its value setting the tolerance level. The check is done by examining the eigenvalues of the tangent modulus at selected stretch points and a warning message is issued if an eigenvalue is less than - STOL \(\times\) BULK, where BULK indicates the bulk modulus of the material. STOL \(<0\) disables the check. When enabled, the value of STOL should be chosen with care because a too small value may detect instabilities that are insignificant in practice. To avoid significant instabilities it is recommended to use smooth curves. At best the curves should be continuously differentiable. In fact, for the incompressible case, a sufficient condition for stability is that the stress-stretch curve \(S(\lambda)\) can be written as
\[
S(\lambda)=H(\lambda)-\frac{H\left(\frac{1}{\sqrt{\lambda}}\right)}{\lambda \sqrt{\lambda}}
\]
where \(H(\lambda)\) is a function with \(H(1)=0\) and \(H^{\prime}(\lambda)>0\).

\section*{*MAT_COHESIVE_ELASTIC}

This is Material Type 184. It is a simple cohesive elastic model for use with cohesive element formulations; see the field ELFORM in *SECTION_SOLID and *SECTION_SHELL.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & ROFLG & INTFAIL & ET & EN & FN_FAIL & FT_FAIL \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

RO Mass density fied (see *PART).

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Flag for whether density is specified per unit area or volume:
EQ.0: Specifies the density is per unit volume (default)
EQ.1: Specifies the density is per unit area for controlling the mass of cohesive elements with an initial volume of zero

INTFAIL The number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 the recommended value.

LT.O.O: Employs a Newton-Cotes integration scheme, and the element will be deleted when |INTFAIL| integration points have failed.

EQ.0.0: Employs a Newton-Cotes integration scheme, and the element will not be deleted even if it satisfies the failure criterion.

GT.0.0: Employs a Gauss integration scheme, and the element will be deleted when INTFAIL integration points have failed.

ET Stiffness in the plane of the cohesive element
EN Stiffness normal to the plane of the cohesive element
FN_FAIL Traction in the normal direction for tensile failure

\section*{VARIABLE}

FT_FAIL Traction in the tangential direction for shear failure

\section*{Remarks:}

This material cohesive model outputs three tractions having units of force per unit area into the d3plot database rather than the usual six stress components. The in-plane shear traction along the 1-2 edge replaces the \(x\)-stress, the orthogonal in plane shear traction replaces the \(y\)-stress, and the traction in the normal direction replaces the \(z\)-stress.

\section*{*MAT_COHESIVE_TH}

This is Material Type 185. It is a cohesive model by Tvergaard and Hutchinson [1992] for use with cohesive element formulations; see the variable ELFORM in *SECTION_SOLID and *SECTION_SHELL. The implementation is based on the description of the implementation in the Sandia National Laboratory code, Tahoe [2003].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & ROFLG & INTFAIL & SIGMAX & NLS & TLS & TLS2 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LAMDA1 & LAMDA2 & LAMDAF & STFSF & ISW & ALPHA1 & ALPHA2 & \\
Type & F & F & F & F & I & F & F & \\
\hline
\end{tabular}

Additional card that may be used for XFEM shells; see *SECTION_SHELL_XFEM.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DR & ALPHA3 & & & & & & \\
Type & F & F & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density fied (see *PART).

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

ROFLG Flag for whether density is specified per unit area or volume.
EQ.0: Specifies density per unit volume (default)
EQ.1: Specifies the density is per unit area for controlling the mass of cohesive elements with an initial volume of zero

VARIABLE
INTFAIL

SIGMAX Peak traction
NLS
TLS
LAMDA1
LAMDA2
LAMDAF
STFSF

TLS2

ISW

ALPHA1

\section*{DESCRIPTION}

The number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 as the recommended value.

LT.O.O: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration points have failed.

EQ.O.O: Employs a Newton-Cotes integration scheme. The element will not be deleted even if it satisfies the failure criterion.

GT.0.0: Employs a Gauss integration scheme. The element will be deleted when INTFAIL integration points have failed.

Length scale (maximum separation) in the normal direction
Length scale (maximum separation) in the tangential direction
Scaled distance to peak traction (\(\Lambda_{1}\))
Scaled distance to beginning of softening \(\left(\Lambda_{2}\right)\).
Scaled distance for failure (\(\Lambda_{\text {fail }}\))
Penetration stiffness multiplier. The penetration stiffness, \(P S\), in terms of input parameters becomes:
\[
\text { PS }=\frac{\text { STFSF } \times \text { SIGMAX }}{\text { NLS } \times\left(\frac{\text { LAMDA1 }}{\text { LAMDAF }}\right)}
\]

Length scale (maximum separation) in the tear direction (for XFEM shells only). See Remark 2.

Cohesive law for XFEM shells only (see Remark 2):
EQ.-1: Initially rigid cohesive law (type I)
EQ.-2: Initially rigid cohesive law (type II)
Ratio of maximum mode II shear traction to normal traction (for XFEM shells only)

Figure M185-1. Relative displacement and trilinear traction-separation law

\section*{VARIABLE}

ALPHA2

DR
ALPHA3

\section*{DESCRIPTION}

Ratio of maximum mode III shear traction to normal traction (for XFEM shells only)

Critical rotation scale (for XFEM shells only)
Ratio of maximum bending moment to normal traction (for XFEM shells only)

\section*{Material Model:}

In this cohesive material model, we use a dimensionless separation measure, \(\lambda\), for the interaction between relative displacements in the normal (\(\delta_{3}\) - mode I) and tangential (\(\delta_{1}\), \(\delta_{2}\) - mode II) directions (see Figure M185-1 left):
\[
\lambda=\sqrt{\left(\frac{\delta_{1}}{\mathrm{TLS}}\right)^{2}+\left(\frac{\delta_{2}}{\mathrm{TLS}}\right)^{2}+\left(\frac{\left\langle\delta_{3}\right\rangle}{\mathrm{NLS}}\right)^{2}}
\]

The Macaulay brackets distinguish between tension (\(\delta_{3} \geq 0\)) and compression (\(\delta_{3}<0\)). NLS and TLS are critical values, representing the maximum separations in the interface in the normal and tangential directions. For the stress calculation, we use a trilinear trac-tion-separation law, given by (see Figure M185-1 right):
\[
t(\lambda)= \begin{cases}\sigma_{\max } \frac{\lambda}{\Lambda_{1} / \Lambda_{\text {fail }}} & \lambda<\Lambda_{1} / \Lambda_{\text {fail }} \\ \sigma_{\max } & \Lambda_{1} / \Lambda_{\text {fail }}<\lambda<\Lambda_{2} / \Lambda_{\text {fail }} \\ \sigma_{\max } \frac{1-\lambda}{1-\Lambda_{2} / \Lambda_{\text {fail }}} & \Lambda_{2} / \Lambda_{\text {fail }}<\lambda<1\end{cases}
\]

With this law, the traction drops to zero when \(\lambda=1\). A potential, \(\phi\), is defined as:
\[
\phi\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=\operatorname{NLS} \times \int_{0}^{\lambda} t(\bar{\lambda}) d \bar{\lambda}
\]

Finally, the tangential components \(\left(t_{1}, t_{2}\right)\) and normal component \(\left(t_{3}\right)\) of the traction acting on the interface in the fracture process zone are given by:
\[
t_{1,2}=\frac{\partial \phi}{\partial \delta_{1,2}}=\frac{t(\lambda)}{\lambda} \frac{\delta_{1,2}}{\text { TLS }} \frac{\text { NLS }}{\text { TLS }}, \quad t_{3}=\frac{\partial \phi}{\partial \delta_{3}}=\frac{t(\lambda)}{\lambda} \frac{\delta_{3}}{\text { NLS }}
\]
which in matrix notation is
\[
\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\frac{t(\lambda)}{\lambda}\left[\begin{array}{lll}
\frac{\mathrm{NLS}}{\mathrm{TLS}} & 0 & 0 \\
0 & \frac{\mathrm{NLS}}{\mathrm{TLS}^{2}} & 0 \\
0 & 0 & \frac{1}{\mathrm{NLS}}
\end{array}\right]\left[\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3}
\end{array}\right]
\]

In the case of compression \(\left(\delta_{3}<0\right)\), penetration is avoided by:
\[
t_{3}=\frac{\operatorname{STFSF} \times \sigma_{\max }}{\operatorname{NLS} \times \Lambda_{1} / \Lambda_{\text {fail }}} \delta_{3}
\]

Loading and unloading follows the same path, that is, this model is completely reversible.

\section*{Remarks:}
1. Traction output to d3plot. This cohesive material model outputs three tractions having units of force per unit area to the d3plot database rather than the usual six stress components. The in-plane shear traction, \(t_{1}\), along the 1-2 edge replaces the \(x\)-stress, the orthogonal in-plane shear traction, \(t_{2}\), replaces the \(y\) stress, and the traction in the normal direction, \(t_{3}\), replaces the \(z\)-stress.
2. XFEM Shells. For XFEM shells, TLS for \(\delta_{2}\) in the above equation is replaced by TLS2. Since the initially rigid cohesive law is used, an element fails only when the stress level reaches SIGMAX. \(\Lambda_{1}\) is only used to define the penetration stiffness in case of a crack closing (compression).

\section*{*MAT_COHESIVE_GENERAL}

This is Material Type 186. It can be used only with cohesive element formulations; see the variable ELFORM in *SECTION_SOLID and *SECTION_SHELL. The material model allows you to choose from three general irreversible mixed-mode interaction cohesive formulations. It also includes an arbitrary normalized traction-separation law given by a load curve (TSLC). These three formulations are differentiated through the type of the effective separation parameter (TES). The interaction between fracture modes I and II is considered. Irreversible conditions are enforced with a damage formulation (unloading/reloading path pointing to/from the origin). See remarks for details.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & ROFLG & INTFAIL & TES & TSLC & GIC & GIIC \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XMU & T & S & STFSF & TSLC2 & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
ROFLG Flag for whether density is specified per unit area or volume:
EQ.O: Specifies density per unit volume (default)
EQ.1: Specifies the density is per unit area for controlling the mass of cohesive elements with an initial volume of zero

INTFAIL Number of integration points required for a cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 the recommended value.

LT.O.O: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration

VARIABLE

TES

TSLC Normalized traction-separation load curve ID. The curve must be

GIC Fracture toughness / energy release rate \(G_{I}^{c}\) for mode I
GIIC Fracture toughness / energy release rate \(G_{I I}^{\mathcal{C}}\) for mode II
XMU Exponent that appears in the power failure criterion (\(\mathrm{TES}=0.0\)) or the Benzeggagh-Kenane failure criterion (\(\mathrm{TES}=1.0\)). Recommended values for XMU are between 1.0 and 2.0. See Remark 2.
TSLC Normalized traction-separation load curve ID. The curve must be normalized in both coordinates and must contain at least three points: \((0.0,0.0),\left(\lambda_{0}, 1.0\right)\), and \((1.0,0.0)\). These points represent the origin, the peak, and the complete failure, respectively (see Figure M186-1). A platform can exist in the curve like the trilinear TSLC (see *MAT_185). See Remark 1.

EQ.2.0: A dimensionless separation measure is used for the interaction between mode I displacements and mode II displacements (similar to *MAT_185, but with damage and general traction-separation law). See Remarks 1 and 3 . normalized in both \((0,0,0,0)\), and (\(1.0,0,0\)). These points represent the

Peak traction in normal direction (mode I). See Remark 1.
S Peak traction in tangential direction (mode II). See Remark 1.

\begin{tabular}{|c|c|c|}
\hline & Mode I & Mode II \\
\hline\(t_{\max }\) & \(T\) & \(S\) \\
\(\delta^{\mathrm{F}}\) & \(\frac{G_{\mathrm{I}}^{\mathrm{C}}}{A_{\mathrm{TSLC}} T}\) & \(\frac{G_{\mathrm{II}}^{\mathrm{C}}}{A_{\mathrm{TSLC}}}\) \\
\(G^{\mathrm{C}}\) & \(G_{\mathrm{I}}^{\mathrm{C}}\) & \(G_{\mathrm{II}}^{\mathrm{C}}\) \\
\hline
\end{tabular}

Figure M186-1. Normalized traction-separation law

\section*{VARIABLE}

STFSF

TSLC2

\section*{DESCRIPTION}

Penetration stiffness multiplier for compression. Factor \(=(1.0+\) STFSF) is used to scale the compressive stiffness, that is, no scaling is done with STFSF \(=0.0\) (recommended).

Normalized traction-separation load curve ID for Mode II. The curve must be normalized in both coordinates and must contain at least three points: \((0.0,0.0),\left(\lambda_{0}, 1.0\right)\), and \((1.0,0.0)\), which represents the origin, the peak and the complete failure, respectively (see Figure M186-1). If not specified, TSLC is used for Mode II behavior as well. See Remark 1.

\section*{Remarks:}
1. Traction-separation behavior. For all three formulations, the traction-separation behavior of this model is mainly given by \(G_{I}^{c}\) and \(T\) for normal mode \(I, G_{I I}^{c}\) and S for tangential mode II, and an arbitrary normalized traction-separation load curve for both modes (see Figure M186-1). The maximum (or failure) separations are then given by:
\[
\delta_{I}^{F}=\frac{G_{I}^{c}}{A_{\mathrm{TSLC}} \times \mathrm{T}}, \quad \delta_{I I}^{F}=\frac{G_{I I}^{c}}{A_{\mathrm{TSLC}} \times \mathrm{S}}
\]

Here \(A_{\text {TSLC }}\) is the area under the normalized traction-separation curve given with TSLC.

If TSLC2 is defined,
\[
\delta_{I}^{F}=\frac{G_{I}^{c}}{A_{\mathrm{TSLC}} \times \mathrm{T}}, \quad \delta_{I I}^{F}=\frac{G_{I I}^{c}}{A_{\mathrm{TSLC} 2} \times \mathrm{S}}
\]

Here \(A_{\text {TSLC2 }}\) is the area under the normalized traction-separation curve given with TSLC2.

Figure M186-2. Mixed mode traction-separation law
2. First and second mixed-mode interaction cohesive formulations (TES = 0.0 and 1.0). For mixed-mode behavior, three different formulations are possible. We recommend TES \(=0.0\) with \(\mathrm{XMU}=1.0\) as a first try. In this remark we will discuss the two formulations with dimensional separation measures.

The total mixed-mode relative displacement \(\delta_{m}\) is defined as \(\delta_{m}=\sqrt{\delta_{I}^{2}+\delta_{I I}^{2}}\), where \(\delta_{I}=\delta_{3}\) is the separation in normal direction (mode I) and \(\delta_{I I}=\sqrt{\delta_{1}^{2}+\delta_{2}^{2}}\) is the separation in tangential direction (mode II). See Figure M186-2.

The ultimate mixed-mode displacement \(\delta^{F}\) (total failure) for the power law (TES = 0.0) is
\[
\delta^{F}=\frac{1+\beta^{2}}{A_{\mathrm{TSLC}}}\left[\left(\frac{\mathrm{~T}}{G_{I}^{c}}\right)^{\mathrm{XMU}}+\left(\frac{\mathrm{S} \times \beta^{2}}{G_{I I}^{c}}\right)^{\mathrm{XMU}}\right]^{-\frac{1}{\mathrm{XMU}}}
\]

If TSLC2 is defined, this changes to:
\[
\delta^{F}=\left(1+\beta^{2}\right)\left[\left(\frac{A_{\mathrm{TSLC}} \times \mathrm{T}}{G_{I}^{c}}\right)^{\mathrm{XMU}}+\left(\frac{A_{\mathrm{TSLC} 2} \times \mathrm{S} \times \beta^{2}}{G_{I I}^{c}}\right)^{\mathrm{XMU}}\right]^{-\frac{1}{\mathrm{XMU}}}
\]

Alternatively, for the Benzeggagh-Kenane law [1996] (TES \(=1.0\)) \(\delta^{F}\) is given by:
\[
\delta^{F}=\frac{1+\beta^{2}}{A_{\mathrm{TSLC}}\left(\mathrm{~T}+\mathrm{S} \times \beta^{2}\right)}\left[G_{I}^{c}+\left(G_{I I}^{c}-G_{I}^{c}\right)\left(\frac{\mathrm{S} \times \beta^{2}}{T+\mathrm{S} \times \beta^{2}}\right)^{\mathrm{XMU}}\right]
\]

If TSLC2 is defined, this changes to:
\[
\begin{aligned}
\delta^{F}=\frac{1+\beta^{2}}{A_{\mathrm{TSLC}} \times \mathrm{T}}+ & +A_{\mathrm{TSLC} 2} \times \mathrm{S} \times \beta^{2}
\end{aligned} G_{I}^{c}
\]
where \(\beta=\delta_{I I} / \delta_{I}\) is the "mode mixity". The larger the chosen exponent, XMU, is, the larger the fracture toughness will be in mixed-mode situations.

In this model, damage of the interface is considered, that is, irreversible conditions are enforced with loading/unloading paths coming from/pointing to the origin. This formulation is similar to *MAT_COHESIVE_MIXED_MODE (*MAT_138), but with the arbitrary traction-separation law TSLC.
3. Third mixed-mode interaction cohesive formulations (TES = 2.0). For TES = 2.0, we use a dimensionless effective separation parameter \(\lambda\) to model the interaction between relative displacements in normal (\(\delta_{3}\) - mode I) and tangential (\(\delta_{1}, \delta_{2}\) - mode II) directions:
\[
\lambda=\sqrt{\left(\frac{\delta_{1}}{\delta_{I I}^{F}}\right)^{2}+\left(\frac{\delta_{2}}{\delta_{I I}^{F}}\right)^{2}+\left\langle\frac{\delta_{3}}{\delta_{I}^{F}}\right\rangle^{2}}
\]

Macaulay brackets distinguish between tension (\(\delta_{3} \geq 0\)) and compression (\(\delta_{3}<\) 0). \(\delta_{I}^{F}\) and \(\delta_{I I}^{F}\) are critical values, representing the maximum separations in the interface in normal and tangential direction. For the stress calculation, the normalized traction-separation load curve TSLC is used:
\[
t=t_{\max } \times \bar{t}(\lambda)
\]

This formulation is similar to *MAT_COHESIVE_TH (*MAT_185) but with an arbitrary traction-separation law and a damage formulation (that is, irreversible conditions are enforced with loading/unloading paths coming from/pointing to the origin).

\section*{*MAT_SAMP-1}

Purpose: This is Material Type 187 (Semi-Analytical Model for Polymers). This material model uses an isotropic C-1 smooth yield surface to describe non-reinforced plastics. [Kolling, Haufe, Feucht, and Du Bois 2005] details the implementation.

This material law has been developed at DaimlerChrysler, Sindelfingen, in collaboration with Paul Du Bois and Dynamore, Stuttgart.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & BULK & GMOD & EMOD & NUE & RBCFAC & NUMINT \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCID-T & LCID-C & LCID-S & LCID-B & NUEP & LCID-P & & INCDAM \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCID-D & EPFAIL & DEPRPT & LCID_TRI & LCID_LC & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MITER & MIPS & & INCFAIL & ICONV & ASAF & & NHSV \\
\hline
\end{tabular}

Card 5. This card is optional.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline LCEMOD & BETA & FILT & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & BULK & GMOD & EMOD & NUE & RBCFAC & NUMINT \\
Type & A & F & F & F & F & F & F & I/F \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \(q\) & von Mises stress & & biaxial tension \\
\hline \(p\) & pressure & & tension \\
\hline \(\star\) & required input data & & shear \\
\hline - & optional input data & & compression \\
\hline \(\Delta\) & extrapolated data & & biaxial compression \\
\hline
\end{tabular}

Figure M187-1. von Mises stress as a function of pressure

\section*{VARIABLE}

MID

RO Mass density
BULK Optional bulk modulus used in the time step calculation for solids only

GMOD Optional shear modulus used in the time step calculation for solids only

EMOD Young's modulus
NUE Poisson ratio
RBCFAC Ratio of yield in biaxial compression as a function of yield in uniaxial compression. A nonzero RBCFAC with all four curves LCIDT, LCID-C, LCID-S, and LCID-B defined activates a piecewise-linear yield surface as shown in Figure M187-1. See Remark 3. The default is 0 .
\(\left.\begin{array}{l}\text { LCID-C }= \\ \text { LCID-S }= \\ \text { LCID-B }=\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\sigma_{c}=\sigma_{t} \\ \sigma_{s}=\frac{\sigma_{t}}{\sqrt{3}}\end{array}\right.\)
\(\left.\begin{array}{l}\text { LCID-C }=0 \\ \text { LCID-S } \neq 0 \\ \text { LCID-B }=0\end{array}\right\} \Rightarrow \sigma_{\mathrm{c}}=\frac{\sqrt{3} \sigma_{t} \sigma_{s}}{2 \sigma_{t}-\sqrt{3} \sigma_{s}}\)
\(\left.\begin{array}{l}\text { LCID-C } \neq 0 \\ \text { LCID-S }=0 \\ \text { LCID-B }=0\end{array}\right\} \Rightarrow \sigma_{s}=\frac{2 \sigma_{\mathrm{c}} \sigma_{t}}{\sqrt{3}\left(\sigma_{t}+\sigma_{c}\right)}\)
\(\left.\begin{array}{l}\text { LCID-C }=0 \\ \text { LCID-S }=0 \\ \text { LCID-B } \neq 0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}\sigma_{c}=\frac{\sigma_{t} \sigma_{b}}{3 \sigma_{b}-2 \sigma_{t}} \\ \sigma_{s}=\frac{\sigma_{t} \sigma_{b}}{\sqrt{3}\left(2 \sigma_{b}-\sigma_{t}\right)}\end{array}\right\}\)

Figure M187-2. Fewer than 3 load curves

VARIABLE
NUMINT

\section*{DESCRIPTION}

Number of integration points which must fail before the element is deleted. This option is available for shells and solids.

LT.O.O: |NUMINT| is the percentage of integration points/layers which must fail before the shell element fails. For fully integrated shells, a layer fails if one integration point in the layer fails, and then the element fails if the given percentage of layers fails. Only available for shells.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID-T & LCID-C & LCID-S & LCID-B & NUEP & LCID-P & & INCDAM \\
Type & 1 & 1 & 1 & 1 & \(F\) & 1 & & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID-T

\section*{DESCRIPTION}

Load curve or table ID giving the yield stress as a function of plastic strain. These curves should be obtained from quasi-static and (optionally) dynamic uniaxial tensile tests. This input is mandatory, and the material model will not work unless at least one tensile stress-strain curve is given. If LCID-T is a table ID, the table values are plastic strain rates, and a curve of yield stress versus plastic strain must be given for each of those strain rates. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of plastic strain rate. When the highest plastic strain rate is several orders of magnitude greater than the lowest strain rate, it is recommended that the natural log of plastic strain rate be input in the table. See Remark 4.

LCID-C Optional load curve ID giving the yield stress as a function of plastic strain. This curve should be obtained from a quasi-static uniaxial compression test.

LCID-S Optional load curve ID giving the yield stress as a function of plastic strain. This curve should be obtained from a quasi-static shear test.

LCID-B Optional load curve ID giving the yield stress as a function of plastic strain, this curve should be obtained from a quasi-static biaxial tensile test.

Plastic Poisson's ratio: an estimated ratio of transversal to longitudinal plastic rate of deformation under uniaxial loading should be given.

LCID-P Load curve ID giving the plastic Poisson's ratio as a function of plastic strain during uniaxial tensile and uniaxial compressive testing. The plastic strain on the abscissa is negative for compression and positive for tension. It is important to cover both tension and compression. If LCID-P is given, NUEP is ignored.

Flag to control the damage evolution as a function of triaxiality:
EQ.0: Damage evolution is independent of the triaxiality.
EQ.1: An incremental formulation is used to compute the damage.

Figure M187-3. Three or more load curves
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID-D & EPFAIL & DEPRPT & LCID_TRI & LCID_LC & & & \\
Type & I & F & F & I & I & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID-D

\section*{DESCRIPTION}

Load curve ID giving the damage parameter as a function of equivalent plastic strain during uniaxial tensile testing (history variable \#2). By default, this option assumes that effective (i.e. undamaged) yield values are used in the load curves LCID-T, LCID-C, LCID-S and LCID-B. If LCID-D is given a negative value, true (meaning damaged) yield stress values can be used. In this case an automatic stress-strain recalibration (ASSR) algorithm is activated. The damage value must be defined in the range \(0 \leq d<1\). If EPFAIL and DEPRPT are given, the curve is used only until the effective plastic strain reaches EPFAIL.

\section*{VARIABLE}

EPFAIL

DEPRPT

LCID_TRI

LCID_LC

\section*{DESCRIPTION}

This parameter is the equivalent plastic strain at failure under uniaxial tensile loading (history variable \#2). If EPFAIL is given as a negative integer, a load curve is expected that defines EPFAIL as a function of the plastic strain rate. The default value is \(10^{5}\).

Increment of equivalent plastic strain under uniaxial tensile loading (history variable \#2) between the failure and rupture points. Stresses will fade out to zero between EPFAIL and EPFAIL + DEPRPT. If DEPRPT is given a negative value, a curve definition is expected where DEPRPT is defined as a function of the triaxiality.

Load curve that specifies a factor that works multiplicatively on the value of EPFAIL depending on the triaxiality (that is, \(p / \sigma_{\mathrm{vM}}\)). For a triaxiality of \(-1 / 3\) a value of 1.0 should be specified.

Load curve that specifies a factor that works multiplicatively on the value of EPFAIL depending on a characteristic element length, defined as the average length of spatial diagonals
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MITER & MIPS & & INCFAIL & ICONV & ASAF & & NHSV \\
Type & I & I & & I & I & F & & 1 \\
\hline
\end{tabular}

VARIABLE
MITER

MIPS

INCFAIL

\section*{DESCRIPTION}

Maximum number of iterations in the cutting plane algorithm. The default is 400 .

Maximum number of iterations in the secant iteration performed to enforce plane stress (shell elements only). This variable is obsolete. A fixed three-step approach is used by default.

Flag to control the failure evolution as a function of triaxiality:
EQ.0: Failure evolution is independent of the triaxiality.
EQ.1: Incremental formulation is used to compute the failure value.

EQ.-1: The failure model is deactivated.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline \multirow[t]{3}{*}{ICONV} & Formulation flag: \\
\hline & EQ.0: Default \\
\hline & EQ.1: Yield surface is internally modified by increasing the shear yield until a convex yield surface is achieved. \\
\hline ASAF & Safety factor used only if \(\mathrm{ICONV}=1\). Values between 1 and 2 can improve convergence, however the shear yield will be artificially increased if this option is used. The default is 1 . \\
\hline NHSV & Number of history variables. Default is 22 . Set to 28 if the "instability criterion" should be included in the output (see Remark 5). Note that NEIPS or NEIPH must also be set on *DATABASE_EXTENT_BINARY for the history variable data to be output. \\
\hline
\end{tabular}

\section*{Optional Card.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCEMOD & BETA & FILT & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

VARIABLE
LCEMOD

BETA

FILT

\section*{DESCRIPTION}

Load curve ID defining Young's modulus as function of effective strain rate

Decay constant in viscoelastic law:
\[
\dot{\sigma}(t)=-\beta \times \sigma(t)+E(\dot{\varepsilon}(t)) \times \dot{\varepsilon}(t)
\]

If LCEMOD \(>0\) is used, a non-zero value for BETA is mandatory.
Factor for strain rate filtering:
\[
\dot{\varepsilon}_{n+1}^{a v g}=(1-\text { FILT }) \times \dot{\varepsilon}_{n+1}^{\mathrm{cur}}+\text { FILT } \times \dot{\varepsilon}_{n}^{a v g}
\]

\section*{Load Curves:}

Material SAMP-1 uses three yield curves internally to evaluate a quadratic yield surface. *MAT_SAMP-1 accepts four different kinds of yield curves, LCID-T, LCID-C, LCID-S, and LCID-B where data from tension tests (LCID-T) is always required, but the others are

Figure M187-4. EPFAIL and DEPRPT defined the failure and fading behavior of a single element.
optional. If fewer than three curves are defined, as indicated by setting the missing load curve IDs to 0 , the remaining curves are generated internally.
1. Fewer than 3 load curves. In the case of fewer than 3 load curves, a linear yield surface in the invariant space spanned by the pressure and the von Mises stress is generated using the available data. See Figure M187-2.
2. Three or more load curves. See Figure M187-3.

\section*{Remarks:}
1. Damage. If the LCID-D is given, then a damage curve as a function of equivalent plastic strains acting on the stresses is defined as shown in Figure M187-4.

Since the damaging curve acts on the yield values, the inelastic results are affected by the damage curve. As a means to circumvent this, the load curve LCID-D may be given a negative ID. This will lead to an internal conversion of from nominal to effective stresses (ASSR). While this conversion is possible for some combinations of yield curve definitions, plastic Poisson's ratio and damage curves, the corresponding inverse problem cannot be solved for all combinations. An error message is provided in this case.
2. Unsolvable Yield Surface Case. Since the generality of arbitrary curve inputs allows unsolvable yield surfaces, SAMP may modify curves internally. This will always lead to warning messages at the beginning of the simulation run. One modification that is not allowed are negative tangents of the last two data points of any of the yield curves.
3. RBCFAC. If RBCFAC is nonzero and curves LCID-T, LCID-C, LCID-S, and LCID-B are specified, the yield surface in \(I_{1}-\sigma_{v m}\)-stress space is constructed such that a piecewise-linear yield surface is activated. This option can help promote convergence of the plasticity algorithm. Figure M187-1 illustrates the effect of RBCFAC on behavior in biaxial compression.
4. Dynamic Amplification Factor for Yield Stress. If LCID-T is given as a table specifying strain-rate scaling of the yield stress, then the compressive, shear and biaxial yield stresses are computed by multiplying their respective static values by dynamic amplification factor (dynamic/static ratio) of the tensile yield stress.
5. Instability Criterion. Instability at an integration point is a value between 0 and 1 indicating the integration point's proximity to damage start. If instability reaches 1 , then damage starts and grows from 0 to 1 . The element then "ruptures". The choice of INCFAIL determines how instability is calculated. For INCFAIL \(=0\),
\[
\text { instability }=(\text { equivalent plastic strain }) / \text { EPFAIL }
\]
6. History Variables. This material has the following history variables. NEIPH or NEIPS on *DATABASE_EXTENT_BINARY must be set for the history data to be output.
\begin{tabular}{ll}
\hline\(\#\) & Interpretation \\
\hline 2 & Plastic strain in tension/compression \\
3 & Plastic strain in shear \\
4 & Biaxial plastic strain \\
5 & Damage \\
6 & Volumetric plastic strain \\
16 & Plastic strain rate in tension/compression \\
17 & Plastic strain rate in shear \\
18 & Biaxial plastic strain rate \\
28 & Instability criterion (set NHSV = 28, see Remark 5) \\
\hline
\end{tabular}

\section*{*MAT_SAMP_LIGHT}

Purpose: This is a slimmed-down form of Material Type 187. In contrast to the original SAMP-1 the options here are limited to rate-independent or rate-dependent flow in tension and compression as well as constant or variable plastic Poisson's ratio. Shear and biaxial test data are not incorporated. Damage and failure are not available here. *MAT_ADD_EROSION or *MAT_ADD_DAMAGE can be included for damage and failure. But as in the original model, a viscoelastic extension can be activated.

This model is based on a complete re-coding of the plasticity algorithm. The efficiency was improved to the extent that the computing times should be shorter. As compared to *MAT_SAMP-1, results should differ only slightly. To achieve the most similar results when including rate effects, set RATEOP \(=1\) because it is equivalent to the viscoplastic formulation in *MAT_SAMP-1.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & & & EMOD & NUE & LCEMOD & BETA \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCID-T & LCID-C & CTFLG & RATEOP & NUEP & LCID-P & RFILTF & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & EMOD & NUE & LCEMOD & BETA \\
Type & A & F & & & \(F\) & \(F\) & 1 & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EMOD Young's modulus
NUE Poisson ratio

\section*{VARIABLE}

LCEMOD

BETA

\section*{DESCRIPTION}

Load curve ID defining Young's modulus as function of effective strain rate. LCEMOD \(\neq 0\) activates viscoelasticity (see Remark 3). The parameters BETA and RFILTF must be defined too.

Decay constant in viscoelastic law (see Remark 3). BETA has the unit [\(1 /\) time]. If LCEMOD \(>0\) is used, a nonzero value for BETA is mandatory.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCID-T & LCID-C & CTFLG & RATEOP & NUEP & LCID-P & RFILTF & \\
Type & I & I & F & I & F & 1 & F & \\
Default & none & 0 & 0 & 0 & none & 0 & 0.95 & \\
\hline
\end{tabular}

\section*{VARIABLE}

LCID-T

LCID-C Optional load curve (or table) ID giving the yield stress as a function of plastic strain (and strain rate). This curve (or table) should be obtained from uniaxial compression tests. If LCID-C is defined as a curve and LCID-T given as a table, then the rate dependence from the tension table is adopted in compression as well. See Remark 1.

CTFLG Curve treatment flag (for LCID-T, LCID-C, and LCID-P)
EQ.O: Rediscretized curves (default). We recommend this option with an appropriate value of LCINT for accurate

\section*{VARIABLE}

RATEOP Calculation of effective strain rate option:
EQ.0: Original method for calculating the effective total strain rate.

EQ.1: Viscoplastic formulation, meaning using effective plastic strain rate. Recommended option to achieve the best match with *MAT_SAMP-1.

EQ.2: Improved method for calculating the effective total strain rate. This method gives a slightly closer match (compared to RATEOP \(=0\)) to \({ }^{*} \mathrm{MAT}_{2}\) SAMP- 1 .

NUEP

LCID-P Load curve ID giving the plastic Poisson's ratio as a function of an equivalent plastic strain measure during uniaxial tensile and uniaxial compressive testing. The plastic strain measure on the abscissa is negative for compression and positive for tension. It is important to cover both tension and compression. If LCID-P is given, NUEP is ignored. See Remark 1.

RFILTF Smoothing factor on the effective strain rate (default is 0.95). The filtered strain rate is used for the rate-dependent plastic flow (LCID-T being a table) as well as for the viscoelasticity (LCEMOD > 0). See Remark 2.
\[
\dot{\varepsilon}_{n}^{\text {avg }}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
\]

\section*{Remarks:}
1. Yield surfaces. In the case of one tensile load curve (or table) LCID-T, the yield surface is von Mises type with associated (NUEP \(=0.5\)) or non-associated (else) plastic flow. In the case LCID-T and LCID-C are both defined, a Drucker-Prager type yield surface is used. The plastic flow direction again depends on the choice of NUEP/LCID-P.

The yield condition is given by
\[
F=\sigma^{\text {eff }}-\sigma^{Y, T} \leq 0
\]
with the effective stress
\[
\sigma^{\text {eff }}=(1-\xi) \times \sigma^{\mathrm{vM}}-3 \xi \times p
\]
based on the von Mises stress \(\sigma^{\mathrm{vM}}\), the pressure \(p\) and the Drucker-Prager slope parameter
\[
\xi=\frac{\sigma^{Y, C}-\sigma^{Y, T}}{2 \times \sigma^{Y, C}}
\]
defined by the tensile and compressive yield stresses \(\sigma^{Y, T}\) and \(\sigma^{Y, C}\) (input with LCID-T and optionally LCID-C). The plastic potential
\[
G=\sqrt{\left(\sigma^{\mathrm{vM}^{2}}+\alpha \times p^{2}\right)}
\]
with
\[
\alpha=\frac{9}{2}\left(\frac{1-2 \nu^{p}}{1+v^{p}}\right)
\]
and the plastic Poisson's ratio \(\nu^{p}\) defines the direction of plastic flow. \(\nu^{p}\) can be input as a constant with NUEP or as a function of equivalent plastic strain with LCID-P. The elasto-plastic equations are solved with a classical predictor-corrector algorithm for the plastic strain increment \(\Delta \varepsilon^{p}\) and stress \(\sigma^{n+1}\).
2. Effective strain rate. If tables are used for hardening, the rate dependence is defined by using an effective strain rate. To reduce the noise from the elastic portion of that strain rate, an averaged value is used. This is governed by the filtering parameter RFILTF as shown above.
3. Nonlinear viscoelasticity. For LCEMOD \(\neq 0\), viscoelasticity is activated. With this model, EMOD becomes the Young's modulus for equilibrium stress \(\left(E_{\mathrm{eq}}\right)\). LCEMOD specifies the viscous Young's modulus which is a function of averaged strain rate \(\left(E_{v}\left(\dot{\varepsilon}^{\text {avg }}\right)\right)\). BETA gives a constant decay parameter specifying the ratio \(\frac{E_{v}\left(\dot{\varepsilon}^{\text {avg }}\right)}{\eta\left(\dot{\varepsilon}^{\mathrm{avg}}\right)}\) where \(\eta\) is the viscosity. The viscoelastic stress-strain law is given by:
\[
\dot{\sigma}_{v}=-\mathrm{BETA} \times \sigma(t)+E_{v}\left(\dot{\varepsilon}^{\mathrm{avg}}\right) \times \dot{\varepsilon}^{\mathrm{avg}}
\]

The one-dimensional viscoelastic behavior can be visualized by a generalized Maxwell cell as rheological model as shown in Figure M187-1.

We will be using the notation of the viscoelastic-plastic stress update. For simplicity we will discuss the one-dimensional case. Let \(\Delta \varepsilon^{\mathrm{Vp}}\) be the viscoplastic strain increment and let \(\sigma_{\text {eq }}\) and \(\sigma_{v}\) be the equilibrium and viscous stress portions. The stress update is then:

Figure M187-1. Viscoelastic model and strain rate dependent stress-strain curves.
\[
\sigma^{n+1}=\sigma_{\mathrm{eq}}^{n+1}+\sigma_{v}^{n+1}
\]
or with stress increments:
\[
\sigma^{n+1}=\sigma^{n}+\Delta \sigma_{\mathrm{eq}}+\Delta \sigma_{v} .
\]

In the elastic trial-step the equilibrium and viscous stress increments \(\Delta \sigma_{\mathrm{eq}}^{\mathrm{tr}}\) and \(\Delta \sigma_{v}^{\mathrm{tr}}\) are calculated as:
\[
\Delta \sigma_{\mathrm{eq}}^{\mathrm{tr}}=E_{\mathrm{eq}} \times \Delta \varepsilon
\]
and
\[
\Delta \sigma_{v}^{\mathrm{tr}}=E_{v}\left(\dot{\varepsilon}^{\mathrm{avg}}\right) \frac{1-e^{-\beta \Delta t}}{\beta \Delta t}\left(\dot{\varepsilon}^{\mathrm{avg}} \Delta t\right)-\left(1-e^{-\beta \Delta t}\right) \sigma_{v}^{n}
\]

And the yield condition (see Remark 1) is evaluated:
\[
F\left(\sigma^{n+1, \mathrm{tr}}\right)=F\left(\sigma^{n}+\Delta \sigma_{\mathrm{eq}}^{\mathrm{tr}}+\Delta \sigma_{v}^{\mathrm{tr}}\right) .
\]

For \(F \leq 0\) the trial stress state is the current stress, that is, \(\sigma^{n+1}=\sigma^{n}+\Delta \sigma_{\text {eq }}^{\mathrm{tr}}+\) \(\Delta \sigma_{v}^{\mathrm{tr}}\). Otherwise, the plastic strain increment \(\Delta \varepsilon^{p}\) must be evaluated and the equilibrium and viscous stress increments are updated.

For \(F\left(\sigma_{\text {eq }}^{\text {tr }}\right)>0\) :
\[
\begin{aligned}
& \sigma_{\mathrm{eq}}^{n+1}=\sigma_{\mathrm{eq}}^{\mathrm{tr}}-E_{\mathrm{eq}} \Delta \varepsilon^{p} \\
& \sigma_{v}^{n+1}=\sigma_{v}^{\mathrm{tr}}-E_{v}\left(\dot{\varepsilon}^{\mathrm{avg}}\right) \frac{1-e^{-\beta \Delta t}}{\beta \Delta t} \Delta \varepsilon^{p}
\end{aligned}
\]

For \(F\left(\sigma_{\text {eq }}^{\mathrm{tr}}\right) \leq 0\) :
\[
\sigma_{\mathrm{eq}}^{n+1}=\sigma_{\mathrm{eq}}^{\mathrm{tr}}
\]
4. History variables. This material has the following extra history variables:
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 1 & Filtered deviatoric strain rate for viscoelasticity (LCEMOD > 0) \\
2 & Volumetric plastic strain \\
3 & Number of iterations \\
4 & Current yield stress \\
5 & Filtered total strain rate \\
7 & Deviatoric plastic strain \\
\hline
\end{tabular}

\section*{*MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP}

This is Material Type 188. In this model, creep is described separately from plasticity using Garafalo's steady-state hyperbolic sine creep law or Norton's power law. Viscous effects of plastic strain rate are considered using the Cowper-Symonds model. Young's modulus, Poisson's ratio, thermal expansion coefficient, yield stress, material parameters of Cowper-Symonds model as well as the isotropic and kinematic hardening parameters are all assumed to be temperature dependent. Application scope includes: simulation of solder joints in electronic packaging, modeling of tube brazing process, creep age forming, etc.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & SIGY & ALPHA & LCSS & REFTEM \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QR1 & CR1 & QR2 & CR2 & QX1 & CX1 & QX2 & CX2 \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(C\) & \(P\) & LCE & LCPR & LCSIGY & LCQR & LCQX & LCALPH \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCC & LCP & LCCR & LCCX & CRPA & CRPB & CRPQ & CRPM \\
\hline
\end{tabular}

Card 5. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CRPLAW & & & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ALPHA & LCSS & REFTEM \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
SIGY Initial yield stress
ALPHA Thermal expansion coefficient
LCSS Load curve ID or Table ID. The load curve defines effective stress as a function of effective plastic strain. The table defines for each temperature value a load curve ID referencing stress as a function of effective plastic strain for that temperature. The stress as a function of effective plastic strain curve for the lowest value of temperature is used if the temperature falls below the minimum value. Likewise, the stress as a function of effective plastic strain curve for the highest value of temperature is used if the temperature exceeds the maximum value. Card 2 is ignored with this option.

REFTEM Reference temperature that defines thermal expansion coefficient
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & QR1 & CR1 & QR2 & CR2 & QX1 & CX1 & QX2 & CX2 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

QR1

QR2
CR2
QX1

CR1 Isotropic hardening parameter \(C_{r 1}\)

\section*{DESCRIPTION}

Isotropic hardening parameter \(Q_{r 1}\)

Isotropic hardening parameter \(Q_{r 2}\)
Isotropic hardening parameter \(C_{r 2}\)
Kinematic hardening parameter \(Q_{\chi 1}\)

\section*{VARIABLE}

CX1
QX2
CX2

\section*{DESCRIPTION}

Kinematic hardening parameter \(C_{\chi 1}\)
Kinematic hardening parameter \(Q_{\chi 2}\)
Kinematic hardening parameter \(C_{\chi 2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCE & LCPR & LCSIGY & LCQR & LCQX & LCALPH \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

C
\(P \quad\) Viscous material parameter \(P\)

LCPR Load curve for scaling Poisson's ratio as a function of temperature
LCSIGY Load curve for scaling initial yield stress as a function of temperature

LCQR Load curve for scaling the isotropic hardening parameters QR1 and QR2 or the stress given by the load curve LCSS as a function of temperature

LCQX Load curve for scaling the kinematic hardening parameters QX1 and QX2 as a function of temperature

LCALPH Load curve for scaling the thermal expansion coefficient as a function of temperature
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCC & LCP & LCCR & LCCX & CRPA & CRPB & CRPQ & CRPM \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

LCC

LCP Load curve for scaling the viscous material parameter \(P\) as a function of temperature

LCCR

LCCX

CRPA

CRPB \(\quad\) Creep law parameter \(B\)
GT.0.0: Constant value
LT.0.0: Load curve ID \(=(-C R P B)\) which defines \(B\) as a function of temperature, \(B(T)\)

CRPQ Creep law parameter \(Q=E / R\) where \(E\) is the activation energy and \(R\) is the universal gas constant.

GT.0.0: Constant value
LT.O.O: Load curve ID \(=(-\) CRPQ \()\) which defines \(Q\) as a function of temperature, \(Q(T)\)

CRPM Creep law parameter \(m\)
GT.0.0: Constant value
LT.O.O: Load curve ID \(=(-\) CRPM \()\) which defines \(m\) as a function of temperature, \(m(T)\)

Optional card 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CRPLAW & & & & & & & \\
Type & F & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

\section*{CRPLAW}

Creep law definition (see Remarks):
EQ.O.0: Garofalo's hyperbolic sine law (default)
EQ.1.0: Norton's power law

\section*{Remarks:}

If LCSS is not defined, the uniaxial stress-strain curve has the form
\[
\begin{aligned}
\sigma\left(\varepsilon_{\text {eff }}^{p}\right)=\sigma_{0} & +Q_{r 1}\left[1-\exp \left(-C_{r 1} \varepsilon_{\text {eff }}^{p}\right)\right]+Q_{r 2}\left[1-\exp \left(-C_{r 2} \varepsilon_{\text {eff }}^{p}\right)\right] \\
& +Q_{\chi 1}\left[1-\exp \left(-C_{\chi 1} 1_{\text {eff }}^{p}\right)\right]+Q_{\chi 2}\left[1-\exp \left(-C_{\chi 2} 2_{\text {eff }}^{p}\right)\right] .
\end{aligned}
\]

Viscous effects are accounted for using the Cowper-Symonds model, which scales the yield stress with the factor:
\[
1+\left(\frac{\dot{\varepsilon}_{\mathrm{eff}}^{p}}{C}\right)^{1 / p}
\]

For CRPLAW \(=0\), the steady-state creep strain rate of Garafalo's hyperbolic sine equation is given by
\[
\dot{\varepsilon}^{c}=A\left[\sinh \left(B \tau^{e}\right)\right]^{m} \exp \left(-\frac{Q}{T}\right) .
\]

For CRPLAW \(=1\), the steady-state creep strain rate is given by Norton's power law equation:
\[
\dot{\varepsilon}^{c}=A\left(\tau^{e}\right)^{B} t^{m} .
\]

In the above, \(\tau^{e}\) is the effective elastic stress in the von Mises sense, \(T\) is the temperature and \(t\) is the time. The following is a schematic overview of the resulting stress update. The multiaxial creep strain increment is given by
\[
\Delta \varepsilon^{c}=\Delta \varepsilon^{c} \frac{3 \tau^{e}}{2 \tau^{e}},
\]
where \(\tau^{e}\) is the elastic deviatoric stress tensor. Similarly, the plastic and thermal strain increments are given by
\[
\begin{aligned}
\Delta \varepsilon^{p} & =\Delta \varepsilon^{p} \frac{3 \tau^{e}}{2 \tau^{e}} \\
\Delta \varepsilon^{T} & =\alpha_{t+\Delta t}\left(T-T_{\text {ref }}\right) \mathbf{I}-\varepsilon_{t}^{T}
\end{aligned}
\]
where \(\alpha\) is the thermal expansion coefficient (note the definition compared to that of other materials). Adding it all together, the stress update is given by
\[
\sigma_{t+\Delta t}=\mathrm{C}_{t+\Delta t}\left(\varepsilon_{t}^{e}+\Delta \varepsilon-\Delta \varepsilon^{p}-\Delta \varepsilon^{c}-\Delta \varepsilon^{T}\right)
\]

The plasticity is isotropic or kinematic but with a von Mises yield criterion, the subscript in the equation above indicates the simulation time of evaluation. Internally, this stress update requires the solution of a nonlinear equation in the effective stress, the viscoelastic strain increment and potentially the plastic strain increment.
*DEFINE_MATERIAL_HISTORIES can be used to output the viscoelastic (creep strain).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{*DEFINE_MATERIAL_HISTORIES Properties} \\
\hline Label & Attributes & Description \\
\hline Effective Creep Strain & - - & Viscoelastic strain \(\varepsilon^{c}\), see above \\
\hline Plastic Strain Rate & - - & Effective plastic strain rate \(\dot{\varepsilon}_{\text {eff }}^{p}\) \\
\hline
\end{tabular}

\section*{*MAT_ANISOTROPIC_THERMOELASTIC}

This is Material Type 189. This model characterizes elastic materials whose elastic properties are temperature-dependent.

It is available for solid elements, thick shell formulations 3,5, and 7, and multi-material ALE solid elements. Note that it is not validated for multi-material ALE solid elements.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & TA1 & TA2 & TA3 & TA4 & TA5 & TA6 \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 11 & C 12 & C 13 & C 14 & C 15 & C 16 & C 22 & C 23 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C 24 & C 25 & C 26 & C 33 & C 34 & C 35 & C 36 & C 44 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C45 & C46 & C55 & C56 & C66 & TGE & TREF & AOPT \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MACF & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & REF \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
TA \(i \quad\) Curve IDs defining the coefficients of thermal expansion for the six components of strain tensor as function of temperature.

Cij Curve IDs defining the \(6 \times 6\) symmetric constitutive matrix in material coordinate system as function of temperature. Note that 1 corresponds to the \(a\) material direction, 2 to the \(b\) material direction, and 3 to the \(c\) material direction.

TGE Curve ID defining the structural damping coefficient as function of temperature.

TREF Reference temperature for the calculation of thermal loads or the definition of thermal expansion coefficients.

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, \(P\), in space and the global location of the element center; this is the a-direction. This option is for solid

\section*{VARIABLE}
\(\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad\) Coordinates of point \(p\) for \(\mathrm{AOPT}=1\) and 4
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation

D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) and 4.
BETA Material angle in degrees for \(\mathrm{AOPT}=3\). It may be overwritten on the element card; see *ELEMENT_SOLID_ORTHO.

REF
Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details).

EQ.0.0: Off
EQ.1.0: On

\section*{*MAT_FLD_3-PARAMETER_BARLAT}

This is Material Type 190. This model was developed by Barlat and Lian [1989] for modeling sheets with anisotropic materials under plane stress conditions. This material allows the use of the Lankford parameters for the definition of the anisotropy. This particular development is due to Barlat and Lian [1989]. It has been modified to include a failure criterion based on the Forming Limit Diagram. The curve can be input as a load curve or calculated based on the n-value and sheet thickness.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & HR & P1 & P2 & ITER \\
Type & A & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & M & R00 & R45 & R90 & LCID & E0 & SPI & P3 \\
Type & F & F & F & F & I & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & C & P & FLDCID & RN & RT & FLDSAFE & FLDNIPF \\
Type & F & F & F & I & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

P1 Material parameter:

\section*{VARIABLE}

MID

RO
E
PR

HR

P2

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Young's modulus, \(E\)
Poisson's ratio, \(v\)
Hardening rule:
EQ.1.0: Linear (default)
EQ.2.0: Exponential (Swift)
EQ.3.0: Load curve
EQ.4.0: Exponential (Voce)
EQ.5.0: Exponential (Gosh)
EQ.6.0: Exponential (Hocket-Sherby)

HR.EQ.1.0: Tangent modulus
HR.EQ.2.0: \(k\), strength coefficient for Swift exponential hardening

HR.EQ.4.0: \(a\), coefficient for Voce exponential hardening
HR.EQ.5.0: \(k\), strength coefficient for Gosh exponential hardening

HR.EQ.6.0: \(a\), coefficient for Hocket-Sherby exponential hardening

Material parameter:
HR.EQ.1.0: Yield stress
HR.EQ.2.0: n, exponent for Swift exponential hardening

\section*{DESCRIPTION}

HR.EQ.4.0: c, coefficient for Voce exponential hardening
HR.EQ.5.0: \(n\), exponent for Gosh exponential hardening
HR.EQ.6.0: \(c\), coefficient for Hocket-Sherby exponential hardening

ITER

Iteration flag for speed:
EQ.0.0: Fully iterative
EQ.1.0: Fixed at three iterations
Generally, ITER \(=0\) is recommended. However, ITER \(=1\) is somewhat faster and may give acceptable results in most problems.
\(m\), exponent in Barlat's yield surface
\(R_{00}\), Lankford parameter determined from experiments
\(R_{45}\), Lankford parameter determined from experiments
\(R_{90}\), Lankford parameter determined from experiments
Load curve ID for the load curve hardening rule \((\mathrm{HR}=3.0)\)
Material parameter
HR.EQ.2.0: \(\varepsilon_{0}\) for determining initial yield stress for Swift exponential hardening. The default value is 0.0 .

HR.EQ.4.0: \(b\), coefficient for Voce exponential hardening
HR.EQ.5.0: \(\varepsilon_{0}\) for determining initial yield stress for Gosh exponential hardening. The default value is 0.0 .

HR.EQ.6.0: \(b\), coefficient for Hocket-Sherby exponential hardening

If E 0 is zero above and \(\mathrm{HR}=2.0\) :
EQ.0.0: \(\varepsilon_{0}=(E / k)^{1 /(n-1)}\)
LE.0.2: \(\varepsilon_{0}=\) SPI
GT.0.2: \(\varepsilon_{0}=(\mathrm{SPI} / k)^{1 / n}\)
Material parameter:
HR.EQ.5.0: \(p\), parameter for Gosh exponential hardening

\section*{VARIABLE}

AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by the cross product of the vector v with the element normal.

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

C C in Cowper-Symonds strain rate model
P \(\quad p\) in Cowper-Symonds strain rate model. \(p=0.0\) for no strain rate effects.

FLDCID

RN

RT

Load curve ID defining the Forming Limit Diagram. Minor engineering strains in percent are defined as abscissa values and major engineering strains in percent are defined as ordinate values. The forming limit diagram is shown in Figure M39-1. In defining the curve, list pairs of minor and major strains starting with the leftmost point and ending with the rightmost point. See *DEFINE_CURVE. See Remark 2.

Hardening exponent equivalent to the n-value in a power law hardening law. If the parameter FLDCID is not defined, this value in combination with the value RT can be used to calculate a forming limit curve to allow for failure. Otherwise it is ignored. See Remark 2.

Sheet thickness used for calculating a forming limit curve. This

\section*{VARIABLE}

FLDSAFE

FLDNIPF Numerical integration points failure treatment:
GT.0.O: The number of element integration points that must fail before the element is deleted. By default, if one integration point has strains above the forming limit curve, the element is flagged for deletion.
LT.O.O: The element is deleted when all integration points within a relative distance of -FLDNIPF from the midsurface have failed (value between -1.0 and 0.0).
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\).
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\).
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\).
BETA Material angle in degrees for AOPT \(=0\) and 3. It may be overridden on the element card. See *ELEMENT_SHELL_BETA.

\section*{Remarks:}
1. Theoretical basis. See *MAT_036 for the theoretical basis.
2. Forming limit curve. The forming limit curve can be input directly as a curve by specifying a load curve ID with the parameter FLDCID. When defining such a curve, the major and minor strains must be input as percentages. Alternatively, the parameters RN and RT can be used to calculate a forming limit curve. The use of RN and RT is not recommended for non-ferrous materials. RN and RT are ignored if a nonzero FLDCID is defined.
3. History variable. The first history variable is the maximum strain ratio defined by:
\[
\frac{\varepsilon_{\text {major }_{\text {workpiece }}}}{\varepsilon_{\text {major }_{\text {fld }}}}
\]
corresponding to \(\varepsilon_{\text {minor }}^{\text {workpiece }}\). A value between 0 and 1 indicates that the strains lie below the forming limit curve. Values above 1 indicate that the strains are above the forming limit curve.

\section*{*MAT_SEISMIC_BEAM}

This is Material Type 191. This material enables lumped plasticity to be developed at the "node 2" end of Belytschko-Schwer beams (resultant formulation). The plastic yield surface allows for interaction between the two moments and the axial force.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & ASFLAG & FTYPE & DEGRAD & IFEMA \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCPMS & SFS & LCPMT & SFT & LCAT & SFAT & LCAC & SFAC \\
\hline
\end{tabular}

Card 3a. This card is included if and only if FTYPE \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ALPHA & BETA & GAMMA & DELTA & A & B & FOFFS & \\
\hline
\end{tabular}

Card 3b. This card is included if and only if FTYPE \(=2\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIGY & D & W & TF & TW & & & \\
\hline
\end{tabular}

Card 3c. This card is included if and only if FTYPE \(=4\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PHI_T & PHI_C & PHI_B & & & & & \\
\hline
\end{tabular}

Card 3d. This card is included if and only if FTYPE \(=5\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA & BETA & GAMMA & DELTA & PHI_T & PHI_C & PHI_B & \\
\hline
\end{tabular}

Card 4. This card is included if and only if IFEM \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PR1 & PR2 & PR3 & PR4 & & & & \\
\hline
\end{tabular}

Card 5. This card is included if and only if IFEM \(>0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TS1 & TS2 & TS3 & TS4 & CS1 & CS2 & CS3 & CS4 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & ASFLAG & FTYPE & DEGRAD & IFEMA \\
Type & A & F & F & F & F & 1 & I & I \\
Default & none & none & none & none & 0.0 & 1 & 0 & 0 \\
\hline
\end{tabular}

VARIABLE
MID

RO

E

PR
ASFLAG

FTYPE

DEGRAD Flag for degrading moment behavior (see Remark 5):
EQ.0: Behavior as in previous versions
EQ.1: Fatigue-type degrading moment-rotation behavior

\section*{VARIABLE}

IFEMA

\section*{DESCRIPTION}

EQ.2: FEMA-type degrading moment-rotation behavior
Flag for input of FEMA thresholds:
EQ.0: No input
EQ.1: Input of rotation thresholds only
EQ.2: Input of rotation and axial strain thresholds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCPMS & SFS & LCPMT & SFT & LCAT & SFAT & LCAC & SFAC \\
Type & F & F & F & F & F & \(F\) & \(F\) & \(F\) \\
Default & none & 1.0 & LCMPS & 1.0 & none & 1.0 & LCAT & 1.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

LCPMS

SFS
LCPMT

SFT
LCAT

SFAT

LCAC

SFAC

\section*{DESCRIPTION}

Load curve ID giving plastic moment as a function of plastic rotation at node 2 about the local \(s\)-axis. See *DEFINE_CURVE.

Scale factor on s-moment at node 2
Load curve ID giving plastic moment as a function of plastic rotation at node 2 about local the \(t\)-axis. See *DEFINE_CURVE.

Scale factor on \(t\)-moment at node 2
Load curve ID giving axial tensile yield force as a function of total tensile (elastic + plastic) strain or of elongation. See ASFLAG above. All values are positive. See *DEFINE_CURVE.

Scale factor on axial tensile force
Load curve ID giving compressive yield force as a function of total compressive (elastic + plastic) strain or of elongation. See ASFLAG above. All values are positive. See *DEFINE_CURVE.

Scale factor on axial tensile force

FTYPE 1 Card. This card 3 format is used when FTYPE \(=1\) (default).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & BETA & GAMMA & DELTA & A & B & FOFFS & \\
Type & F & F & F & F & F & F & F & \\
Default & Rem 1 & 0.0 & \\
\hline
\end{tabular}

VARIABLE

DELTA
A

B

FOFFS
\(\begin{array}{ll}\text { ALPHA } & \text { Parameter to define yield surface } \\ \text { BETA } & \text { Parameter to define yield surface }\end{array}\)
GAMMA Parameter to define yield surface

\section*{DESCRIPTION}

Parameter to define yield surface
Parameter to define yield surface
Parameter to define yield surface

FTYPE 2 Card. This card 3 format is used when FTYPE \(=2\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SIGY & D & W & TF & TW & & & \\
Type & F & F & F & F & F & & & \\
Default & none & none & none & none & none & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

SIGY

D
W

\section*{DESCRIPTION}

Yield stress of material
Depth of section used to calculate interaction curve
Width of section used to calculate interaction curve

\section*{VARIABLE}

TF
TW

\section*{DESCRIPTION}

Flange thickness of section used to calculate interaction curve Web thickness used to calculate interaction curve

FTYPE 4 Card. This card 3 format is used when FTYPE \(=4\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PHI_T & PHI_C & PHI_B & & & & & \\
Type & F & F & F & & & & & \\
Default & 0.8 & 0.85 & 0.9 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

PHI_T
PHI_C
PHI_B

DESCRIPTION
Factor on tensile capacity, \(\phi_{t}\)
Factor on compression capacity, \(\phi_{c}\)
Factor on bending capacity, \(\phi_{b}\)

FTYPE 5 Card. This card 3 format is used when FTYPE \(=5\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & BETA & GAMMA & DELTA & PHI_T & PHI_C & PHI_B & \\
Type & F & F & F & F & F & F & F & \\
Default & none & none & 1.4 & none & 1.0 & 1.0 & 1.0 & \\
\hline
\end{tabular}

VARIABLE
ALPHA
BETA
GAMMA
DELTA

\section*{DESCRIPTION}

Parameter to define yield surface
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } PHI_T & & Factor on tensile capacity, \(\phi_{t}\) \\
PHI_C & & Factor on compression capacity, \(\phi_{c}\) \\
PHI_B & & Factor on bending capacity, \(\phi_{b}\)
\end{tabular}

FEMA Limits Card 1. Additional card for IFEMA \(>0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PR1 & PR2 & PR3 & PR4 & & & & \\
Type & F & F & F & F & & & & \\
Default & 0 & 0 & 0 & 0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

PR1 - PR4
Plastic rotation thresholds 1 to 4

FEMA Limits Card 2. Additional card for IFEMA = 2.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TS1 & TS2 & TS3 & TS4 & CS1 & CS2 & CS3 & CS4 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0 & 0 & 0 & 0 & TS1 & TS2 & TS3 & TS4 \\
\hline
\end{tabular}

VARIABLE
TS1 - TS4
CS1-CS4

\section*{DESCRIPTION}

Tensile axial strain thresholds 1 to 4
Compressive axial strain thresholds 1 to 4

\section*{Remarks:}
1. FTYPE 1. Yield surface for formulation type 1 is of the form:
\[
\psi=\left(\frac{M_{s}}{M_{y s}}\right)^{\alpha}+\left(\frac{M_{t}}{M_{y t}}\right)^{\beta}+A\left(\frac{F}{F_{y}}\right)^{\gamma}+B\left(\frac{F}{F_{y}}\right)^{\delta}-1,
\]
where
\[
\begin{aligned}
M_{s}, M_{t} & =\text { moments about the local } s \text { and } t \text { axes } \\
M_{y s}, M_{y t} & =\text { current yield moments } \\
F & =\text { axial force } \\
F_{y} & =\text { yield force; LCAC in compression or LCAT in tension } \\
\alpha, \beta, \gamma, \delta & =\text { input parameters; must be greater than or equal to } 1.1 \\
A, B & =\text { input parameters }
\end{aligned}
\]

If \(\alpha, \beta, \gamma, \delta, \mathrm{A}\) and B are all set to zero, then the following default values are used:
\begin{tabular}{lc}
\hline Field & Default Value \\
\hline ALPHA & 2.0 \\
BETA & 2.0 \\
GAMMA & 2.0 \\
DELTA & 4.0 \\
A & 2.0 \\
B & -1.0 \\
\hline
\end{tabular}
2. FOFFS. FOFFS offsets the yield surface parallel to the axial force axis. It is the compressive axial force at which the maximum bending moment capacity about the local \(s\)-axis (determined by LCPMS and SFS) and that about the local \(t\)-axis (determined by LCPMT and SFT) occur. For steel beams and columns, the value of FOFFS is usually zero. For reinforced concrete beams, columns and shear walls, the maximum bending moment capacity occurs corresponding to a certain compressive axial force, FOFFS. The value of FOFFS can be input as either positive or negative. Internally, LS-DYNA converts FOFFS to, and regards compressive axial force as, negative.
3. FTYPE 4. Interaction surface FTYPE 4 calculates a utilisation parameter using the yield force and moment data given on Card 2, but the elements remain elastic even when the forces or moments exceed yield values. This is done for consistency with the design code OBE AISC LRFD (2000). The utilization calculation is as follows:
\[
\text { Utilization }=\frac{K_{1} F}{\phi F_{y}}+\frac{K_{2}}{\phi_{b}}\left(\frac{M_{s}}{M_{y s}}+\frac{M_{t}}{M_{y t}}\right)
\]
where \(M_{s}, M_{t}, M_{y s}, M_{y t}\), and \(F_{y}\) are as defined in Remark 1. \(\phi\) is PHI_T under and PHI_C under compression. \(K_{1}\) and \(K_{2}\) are as follow:
\[
\begin{aligned}
& K_{1}= \begin{cases}0.5 & \frac{F}{\phi F_{y}}<0.2 \\
1.0 & \frac{F}{\phi F_{y}} \geq 0.2\end{cases} \\
& K_{2}= \begin{cases}1.0 & \frac{F}{\phi F_{y}}<0.2 \\
8 / 9 & \frac{F}{\phi F_{y}} \geq 0.2\end{cases}
\end{aligned}
\]
4. FTYPE 5. Interaction surface FTYPE 5 is similar to FTYPE 4 (calculates a utilization parameter using the yield data, but the elements do not yield). The equations are taken from Australian code AS4100. The user must select appropriate values of \(\alpha, \beta, \gamma\) and \(\delta\) using the various clauses of Section 8 of AS4100. It is assumed that the local \(s\)-axis is the major axis for bending.
\[
\text { Utilization }=\max \left(U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\right)
\]
where
\[
\begin{array}{ll}
U_{1}=\frac{F}{\beta \phi_{c} F_{y c}} & \text { used for members in compression } \\
U_{2}=\frac{F}{\phi_{t} F_{y t}} & \text { used for members in tension } \\
U_{3}=\left[\frac{M_{s}}{K_{2} \phi_{b} M_{y s}}\right]^{\gamma}+\left[\frac{M_{t}}{K_{1} \phi_{b} M_{y t}}\right]^{\gamma} & \text { used for members in compression } \\
U_{4}=\left[\frac{M_{s}}{K_{4} \phi_{b} M_{y s}}\right]^{\gamma}+\left[\frac{M_{t}}{K_{3} \phi_{b} M_{y t}}\right]^{\gamma} & \text { used for members in tension } \\
U_{5}=\frac{F}{\phi_{c} F_{y c}}+\frac{M_{s}}{\phi_{b} M_{y s}}+\frac{M_{t}}{\phi_{b} M_{y t}} & \text { used for all members }
\end{array}
\]

In the above, \(M_{s}, M_{t}, F, M_{y s}, M_{y t}, F_{y t}\) and \(F_{y c}\) are as defined in Remark 1. \(K_{1}, K_{2}\), \(K_{3}\), and \(K_{4}\) are subject to a minimum value of \(10^{-6}\) and defined as
\[
\begin{aligned}
& K_{1}=1.0-\frac{F}{\beta \phi_{c} F_{y c}} \\
& K_{2}=\min \left[K_{1}, \alpha\left(1.0-\frac{F}{\delta \phi_{c} F_{y c}}\right)\right] \\
& K_{3}=1.0-\frac{F}{\phi_{t} F_{y t}} \\
& K_{4}=\min \left[K_{3}, \alpha\left(1.0+\frac{F}{\phi_{t} F_{y t}}\right)\right]
\end{aligned}
\]
\(\alpha, \beta, \gamma, \delta, \phi_{t}, \phi_{c}\), and \(\phi_{b}\) are input parameters.
5. DEGRAD. The option for degrading moment behavior changes the meaning of the plastic moment-rotation curve as follows:
a) If DEGRAD \(=0\) (not recommended), the \(x\)-axis points on the curve represent current plastic rotation (meaning total rotation minus the elastic component of rotation). This quantity can be positive or negative depending on the direction of rotation; during hysteresis the behavior will repeatedly follow backwards and forwards along the same curve. The curve should include negative and positive rotation and moment values. This option is retained so that results from existing models will be unchanged.
b) If \(\mathrm{DEGRAD}=1\), the \(x\)-axis points represent cumulative absolute plastic rotation. This quantity is always positive and increases whenever there is plastic rotation in either direction. Thus, during hysteresis, the yield moments are taken from points in the input curve with increasingly positive rotation. If the curve shows a degrading behavior (reducing moment with rotation), then, once degraded by plastic rotation, the yield moment can never recover to its initial value. This option can be thought of as having "fatigue-type" hysteretic damage behavior, where all plastic cycles contribute to the total damage.
c) If \(\mathrm{DEGRAD}=2\), the \(x\)-axis points represent the high-tide value (always positive) of the plastic rotation. This quantity increases only when the absolute value of plastic rotation exceeds the previously recorded maximum. If smaller cycles follow a larger cycle, the plastic moment during the small cycles will be constant, since the high-tide plastic rotation is not altered by the small cycles. Degrading moment-rotation behavior is possible. This option can be thought of as showing rotation-controlled damage and follows the FEMA approach for treating fracturing joints.

DEGRAD applies also to the axial behavior. The same options are available as for rotation: DEGRAD \(=0\) gives unchanged behavior from previous versions; DEGRAD = 1 gives a fatigue-type behavior using cumulative plastic strain; and DEGRAD \(=2\) gives FEMA-type behavior, where the axial load capacity depends on the high-tide tensile and compressive strains. The definition of strain for this purpose is according to ASFLAG on Card \(1-i t\) is expected that ASFLAG \(=2\) will be used with \(\operatorname{DEGRAD}=2\). The "axial strain" variable plotted by post-processors is the variable defined by ASFLAG.

The output variables plotted as "plastic rotation" have special meanings for this material model- note that hinges form only at Node 2. "Plastic rotation at End \(1^{\prime \prime}\) is really a high-tide mark of absolute plastic rotation at Node 2, defined as follows:
d) Current plastic rotation is the total rotation minus the elastic component of rotation.
e) Take the absolute value of the current plastic rotation, and record the maximum achieved up to the current time. This is the high-tide mark of plastic rotation.

If DEGRAD \(=0\), "Plastic rotation at End 2" is the current plastic rotation at Node 2. If DEGRAD \(=1\) or 2 , "Plastic rotation at End 2 " is the current total rotation at Node 2. The total rotation is a more intuitively understood parameter, such as for plotting hysteresis loops. However, with DEGRAD \(=0\), the previous meaning of that output variable has been retained such that results from existing models are unchanged.

FEMA thresholds are the plastic rotations at which the element is deemed to have passed from one category to the next, e.g. "Elastic", "Immediate Occupancy", "Life Safe", etc. The high-tide plastic rotation (maximum of Y and Z) is checked against the user-defined limits FEMA1, FEMA2, etc. The output flag is then set to \(0,1,2,3\), or 4 : 0 means that the rotation is less than FEMA1; 1 means that the rotation is between FEMA1 and FEMA2, and so on. By contouring this flag, it is possible to see quickly which joints have passed critical thresholds.
6. Output. For this material model, special output parameters are written to the d3plot and d3thdt files. The number of output parameters for beam elements is automatically increased to 20 (in addition to the six standard resultants) when parts of this material type are present. Some post-processors may interpret this data as if the elements were integrated beams with 4 integration points. Depending on the post-processor used, the data may be accessed as follows:
\begin{tabular}{ll}
\begin{tabular}{l}
Extra Variable \# \\
(Integration Point 4 Description)
\end{tabular} & Data Description \\
\hline 16 (or Axial Stress) & FEMA rotation flag \\
17 (or XY Shear Stress) & Current utilization \\
18 (or ZX Shear Stress) & Maximum utilization to date \\
20 (or Axial Strain) & FEMA axial flag \\
\hline
\end{tabular}
"Utilization" is the yield parameter, where 1.0 is on the yield surface.

\section*{*MAT_SOIL_BRICK}

Purpose: This is Material Type 192. It is intended for modeling over-consolidated clay.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & RLAMBDA & RKAPPA & RIOTA & RBETA1 & RBETA2 & RMU \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline RNU & RLCID & TOL & PGCL & SUB-INC & BLK & GRAV & THEORY \\
\hline
\end{tabular}

Card 3a. This card is included only if THEORY \(=4\) or 104.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline RVHHH & & & & & & STRSUB & \\
\hline
\end{tabular}

Card 3b. This card is included only if THEORY \(=204\) or 304.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline RVHHH & & & & & & STRSUB & CRFLG \\
\hline
\end{tabular}

Card 3c. This card is included only if THEORY \(=7\) or 107.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline EHEV & GHHGVH & PRHH & CAP & & & & \\
\hline
\end{tabular}

Card 4. This card is included only if THEORY \(=204\) or 304 and CRFLG \(>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SLRATIO & BETAC & EPSDOT1 & EPSDOT2 & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & RLAMBDA & RKAPPA & RIOTA & RBETA1 & RBETA2 & RMU \\
Type & A & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
Default & none & 1.0 \\
\hline
\end{tabular}
\(\frac{\text { VARIABLE }}{\text { MID }}\)

RO Mass density
RLAMBDA Material coefficient, see Remark 1.
RKAPPA Material coefficient, see Remark 1.
RIOTA Material coefficient, see Remark 1.
RBETA1 Material coefficient, see Remark 1.
RBETA2 Material coefficient, see Remark 1.
RMU Shape factor coefficient. This parameter will modify the shape of the yield surface used. A value of 1.0 implies a von Mises type surface, while 1.1 to 1.25 is more indicative of soils. The default value is 1.0 . See Remarks 1 and 9.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RNU & RLCID & TOL & PGCL & SUB-INC & BLK & GRAV & THEORY \\
Type & F & F & F & F & \(F\) & \(F\) & \(F\) & 1 \\
Default & none & none & 0.0005 & none & none & none & 9.807 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

RNU
RLCID

TOL

PGCL

\section*{DESCRIPTION}

Poisson's ratio. See Remarks 1 and 2.
Load curve ID (see *DEFINE_CURVE) consisting of up to 10 points defining nonlinear response in terms of stiffness degradation. The \(x\)-axis is strain ("string length"), and the \(y\)-axis is the ratio of secant stiffness to small-strain stiffness. See Remarks 3 and 12.

User defined tolerance for convergence checking. Default value is set to 0.0005 (recommended). See Remark 11.

Pre-consolidation ground level. This parameter defines the maximum surface level (relative to \(z=0.0\) in the model) of the soil throughout geological history which is used calculate the

\section*{VARIABLE}

SUB-INC

BLK

GRAV

THEORY

\section*{DESCRIPTION}
maximum overburden pressure on the soil elements. See Remark 6.

User defined strain increment size. A typical value is 0.005 . This is the maximum strain increment permitted in the iteration scheme within the material model. If the value is exceeded, a warning is echoed to the d3hsp file. See Remark 11.

The elastic bulk stiffness of the soil which is used for contact stiffness only.

The gravitational acceleration which is used to calculate the element stresses due to the overlying soil. Default is set to \(9.807 \mathrm{~m} / \mathrm{s}^{2}\).

Version of material subroutines used (see Remarks 7 and 8):
EQ.O: 1995 version (default)
EQ.4: 2003 version, load/unload initialization
EQ.7: 2003 version, load/unload initialization, anisotropy from Ellison et al (2012)

EQ.104: 2003 version, load/unload/reload initialization
EQ.107: 2003 version, load/unload/reload initialization, anisotropy from Ellison et al (2012)
EQ.204: 2015 version, load/unload initialization
EQ.304: 2015 version, load/unload/reload initialization

Define Card 3a only if THEORY \(=4\) or 104. Omit otherwise.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RVHHH & & & & & & STRSUB & \\
Type & F & & & & & & F & \\
Default & 0.0 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

RVHHH

\section*{DESCRIPTION}

Anisotropy parameter: shear modulus in vertical planes divided by shear modulus in horizontal plane. If this field is blank or zero,

\section*{VARIABLE}

\section*{DESCRIPTION}
isotropic behavior is assumed. See Remark 10.
STRSUB Strain limit, used to determine whether subcycling within the material model is required (recommended value: 0.001)

Define Card 3b only if THEORY = 204 or 304. Omit otherwise.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RVHHH & & & & & & STRSUB & CRFLG \\
Type & F & & & & & & F & F \\
Default & 0.0 & & & & & & & 0.001 \\
0
\end{tabular}

\section*{VARIABLE}

RVHHH

\section*{DESCRIPTION}

Anisotropy parameter: shear modulus in vertical planes divided by shear modulus in horizontal plane. If this field is blank or zero, isotropic behavior is assumed. See Remark 10.

STRSUB Strain limit, used to determine whether subcycling within the material model is required (recommended value: 0.001)

CRFLG Creep flag:
EQ.0: No creep
EQ.24: Creep activated; see Card 4.

Define Card 3c only if THEORY \(=7\) or 107. Omit otherwise.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EHEV & GHHGVH & PRHH & CAP & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

EHEV

GHHGVH

\section*{DESCRIPTION}

Anisotropy parameter: Young's modulus in horizontal directions divided by Young's modulus in vertical direction. See Remarks 1 and 10.

Anisotropy parameter: shear modulus in horizontal plane divided by shear modulus in vertical planes. See Remarks 1 and 10.

Anisotropy parameter: Poisson's ratio in horizontal plane. See Remarks 1 and 10.

Anisotropy parameter. See Remarks 1 and 10.

Define Card 4 only if THEORY \(=204\) or 304 and CRFLG \(>0\). Omit otherwise.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SLRATIO & BETAC & EPSDOT1 & EPSDOT2 & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & & & & \\
\hline
\end{tabular}

VARIABLE
SLRATIO
BETAC
EPSDOT1

EPSDOT2

\section*{DESCRIPTION}

Creep parameter, see Remark 12
Creep parameter, see Remark 12
Creep parameter: reference strain rate for volumetric strains. See Remark 12.

Creep parameter: reference strain rate for shear strains. See Remark 12.

\section*{Remarks:}
1. Material behavior and references. The material model consists of up to 10 nested elasto-plastic yield surfaces defined in a transformed stress-strain space, termed "BRICK" space. The sizes of the yield surfaces are given in terms of BRICK strains and are called "string-lengths". Explanation of the input parameters and underlying concepts may be found in Simpson (1992), Lehane \&

Simpson (2000), and Ellison et al (2012). The input parameters correspond to those described in Ellison et al as follows:
\begin{tabular}{|c|c|}
\hline LS-DYNA & Ellison et al \\
\hline \hline RLAMBDA & \(\lambda\) \\
RKAPPA & \(\kappa\) \\
RIOTA & \(\iota\) \\
RBETA1 & \(\beta^{G}\) \\
RBETA2 & \(\beta^{\phi}\) \\
RMU & \(\mu\) \\
RNU & \(\nu\) \\
EHEV & \(E_{h} / E_{v}\) \\
GHHGVH & \(G_{h h} / G_{v h}\) \\
PRHH & \(v_{h h}\) \\
CAP & \(\zeta\) \\
\hline
\end{tabular}

See Table 3 in Ellison et al for example input parameter values.
2. Elastic stiffness. The elastic bulk modulus is given by \(p^{\prime} / l\), where \(p^{\prime}\) is the current mean effective stress (compression positive), and the small-strain elastic shear modulus is calculated from the bulk modulus and Poisson's ratio RNU.
3. Nonlinear stress-strain response. The curve RLCID defines the nonlinear behavior in terms of secant stiffness degradation. The same curve is assumed to apply to all six BRICK stress-strain components. For example, shear in the \(x z\) plane will follow the curve, such that the \(x\)-axis points correspond to shear angle \(\gamma_{x z}\), while the \(y\)-axis contains \(G / G_{\max }\), where \(G\) is the secant stiffness (equal to \(\tau_{x z} / \gamma_{x z}\)) and \(G_{\max }\) is the small-strain elastic shear modulus.
4. Model requirements. This material type requires that the model be oriented such that the \(z\)-axis is defined in the upward direction. Compressive initial stress must be defined, using, for example, *INITIAL_STRESS_SOLID or *INITIAL_STRESS_DEPTH. Stresses must remain compressive throughout the analysis.
5. Units. The recommended unit system is kiloNewtons, meters, seconds, tonnes. There are some built-in defaults that assume stress units of \(\mathrm{kN} / \mathrm{m}^{2}\).
6. Over-consolidated clays. Over-consolidated clays have suffered previous loading to higher stress levels than are present at the start of the analysis due to phenomena such as ice sheets during previous ice ages, or the presence of soil or rock that has subsequently been eroded. The maximum vertical stress during that time is assumed to be:
\[
\sigma_{\mathrm{V}, \mathrm{MAX}}=\mathrm{RO} \times \mathrm{GRAV} \times\left(\mathrm{PGCL}-\mathrm{Z}_{\mathrm{el}}\right)
\]
where
\[
\begin{aligned}
\text { RO, GRAV, and PGCL } & =\text { input parameters } \\
Z_{\mathrm{el}} & =\mathrm{z} \text { coordinate of center of element }
\end{aligned}
\]

Since that time, the material has been unloaded until the vertical stress equals the user-defined initial vertical stress. The previous load/unload history has a significant effect on the subsequent behavior. For example, the horizontal stress in an over-consolidated clay may be greater than the vertical stress.
7. Initialization. This material model initializes each element with a load/unload cycle under uniaxial vertical strain conditions. The element is loaded up to a vertical stress of \(\sigma_{\mathrm{V}, \mathrm{MAX}}\) (defined in Remark 6 above) and then unloaded to the user-defined initial vertical stress \(\sigma_{\text {V,USER }}\) (see *INITIAL_STRESS_SOLID or *INITIAL_STRESS_DEPTH). During this initialization cycle, the stresses and history variables are updated using the same constitutive behavior as during the main analysis. Therefore, the horizontal stress at the start of the analysis \(\sigma_{\mathrm{H}, \mathrm{ACTUAL}}\) (as seen in the results files at time zero) is an output of the initialization process and will be different from the user-defined initial horizontal stress \(\sigma_{\text {H,USER; }}\) the latter is ignored. Optionally, initialization may be switched to a load/unload/reload cycle (see input settings of THEORY). In this case, the element is loaded up to a vertical stress of \(\sigma_{\mathrm{V}, \mathrm{MAX}}\), unloaded to a stress \(\sigma_{\mathrm{V}, \mathrm{MIN}}\) which is less than \(\sigma_{\mathrm{V}, \text { USER }}\), and then reloaded to \(\sigma_{\mathrm{V}, \mathrm{USER}}\). The value of \(\sigma_{\mathrm{V}, \mathrm{MIN}}\) is calculated automatically to try to minimize the difference between \(\sigma_{\mathrm{H}, \mathrm{ACTUAL}}\) and \(\sigma_{\mathrm{H}, \mathrm{USER}}\).
8. Material subroutine version. This material model is developed for a Geotechnical FE program (Oasys Ltd.'s SAFE) written by Arup. The default THEORY \(=0\) gives a vectorized version ported from SAFE in the 1990's. Since then the material model has been developed further in SAFE, with versions ported to LSDYNA in 2003 (THEORY = 4 and 104) and 2015 (THEORY = 204 and 304); these are not vectorized and will run more slowly on most computer platforms. Nevertheless, the 2015 version is recommended. THEORY \(=0,4\), and 104 are retained only for backward compatibility.
9. Shape factor. The shape factor for a typical soil would be 1.25. Do not use values higher than 1.35.
10. Anisotropy. Anisotropy is treated by applying stretch factors to the strain axis of the stress-strain curves for certain BRICK shear components. It may be defined by either using THEORY \(=204\) or 304 together with RVHHH on Card 3b or using THEORY \(=7\) or 107 with the parameters on Card 3c. Using THEORY \(=4\) or 104 with non-zero anisotropy parameters on Card 3a is permitted but not recommended. See Ellison et al (2012) for description of the anisotropy effects modelled by THEORY \(=7 / 107\) and the meaning of the parameters on Card 3c. If anisotropy is not required, use THEORY \(=204\) or 304 and leave Card 3b blank. "Vertical" and "horizontal" are defined in the global coordinate system with "vertical" being the global \(z\)-axis.
11. TOL and SUBINC. These parameters usually have little influence on the result. Smaller values may sometimes improve accuracy, at cost of greater run times.
12. Creep. Creep is implemented by scaling the strain "string lengths" (see RLCID) as a function of strain rate:
\[
S=\operatorname{SLRATIO} \times S_{\text {RLCID }}\left[1+\operatorname{BETAC} \times \ln \left(\frac{|\dot{\varepsilon}|}{\dot{\varepsilon}_{\mathrm{ref}}}+1\right)\right]
\]

Where \(S\) is string length; \(S_{\text {RLCID }}\) are the string lengths in the curve RLCID; SLRATIO and BETAC are input parameters on Card \(4 ;|\dot{\varepsilon}|\) is strain rate; and \(\dot{\varepsilon}_{\text {ref }}\) is input parameter EPSDOT1 or EPSDOT2 for volumetric and shear strains, respectively. Note that SLRATIO \(\times S_{\text {RLCID }}\) gives the string lengths for zero strain rate.

\section*{References:}
[1] Simpson, B., "Retaining structures: displacement and design", Géotechnique, Vol. 42, No. 4, 539-576, (1992).
[2] Lehane, B. \& Simpson, B., "Modelling glacial till conditions using a Brick soil model", Can. Geotech. J. Vol. 37, No. 5, 1078-1088 (2000).
[3] Ellison, K., Soga, K., \& Simpson, B., "A strain space soil with evolving stiffness memory", Géotechnique, Vol. 62, No. 7, 627-641 (2012).

\section*{*MAT_DRUCKER_PRAGER}

This is Material Type 193. This material enables soil to be modeled effectively. The parameters used to define the yield surface are familiar geotechnical parameters (such as angle of friction). The modified Drucker-Prager yield surface is used in this material model, enabling the shape of the surface to be distorted into a more realistic definition for soils.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & GMOD & RNU & RKF & PHI & CVAL & PSI \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & 1.0 & none & none & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & STR_LIM & & & & & & & \\
Type & F & & & & & & & \\
Default & 0.005 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GMODDP & PHIDP & CVALDP & PSIDP & GMODGR & PHIGR & CVALGR & PSIGR \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
MID Material identification. A unique number or label must be speci-

RO
fied (see *PART).

\section*{DESCRIPTION}

Mass density
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline GMOD & Elastic shear modulus \\
\hline RNU & Poisson's ratio \\
\hline RKF & Failure surface shape parameter \\
\hline PHI & Angle of friction (radians) \\
\hline CVAL & Cohesion value \\
\hline PSI & Dilation angle (radians) \\
\hline STR_LIM & Minimum shear strength of material is given by STR_LIM \(\times\) CVAL \\
\hline GMODDP & Depth at which shear modulus (GMOD) is correct \\
\hline PHIDP & Depth at which angle of friction (PHI) is correct \\
\hline CVALDP & Depth at which cohesion value (CVAL) is correct \\
\hline PSIDP & Depth at which dilation angle (PSI) is correct \\
\hline GMODGR & Gradient at which shear modulus (GMOD) increases with depth \\
\hline PHIGR & Gradient at which friction angle (PHI) increases with depth \\
\hline CVALGR & Gradient at which cohesion value (CVAL) increases with depth \\
\hline PSIGR & Gradient at which dilation angle (PSI) increases with depth \\
\hline
\end{tabular}

\section*{Remarks:}
1. Orientation. This material type requires the model to be oriented such that the Z-axis is defined in the upward direction. The key parameters are defined such that they may vary with depth (i.e. the Z-axis).
2. Shape Factor. The shape factor for a typical soil would be 0.8 but should not be pushed further than 0.75.
3. STR_LIM. If STR_LIM is set to less than 0.005 , the value is reset to 0.005 .
4. Yield Function. The yield function is defined as:
\[
t-p \times \tan \beta-d=0
\]
where:
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline\(p\) & Hydrostatic pressure, \(p=J_{1} / 3\) \\
\(t\) & \(t=q / 2\left(a-b(r / q)^{3}\right)\) \\
\(q\) & von Mises stress, \(q=\sqrt{3 J_{2}}\) \\
\(a\) & \(a=1+1 / K\) \\
\(b\) & \(b=1-1 / K\) \\
\(K\) & Input field RKF \\
\(r\) & Second deviatoric stress invariant \\
\(J_{2}\) & Third deviatoric stress invariant \\
\(J_{3}\) & tan \(\beta=6 \sin \varphi /(3-\sin \varphi)\) \\
\(\tan \beta\) & \(d=6 C \cos \varphi /(3-\sin \varphi)\) \\
\(d\) & Input field PHI \\
\(C\) & Input field CVAL \\
\hline
\end{tabular}
5. Executable Precision. We recommend using this material with a double precision executable.
6. Output. This remark applies to versions R14 and onwards. "Plastic Strain" is the deviatoric plastic strain, defined in the same way as for material types 3, 24, etc. Extra history variables may be requested for solid elements (NEIPH on *DATABASE_EXTENT_BINARY). They are described in the following table.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Volumetric strain \\
2 & \begin{tabular}{l}
Mobilized fraction (=1 when on yield surface) \\
3
\end{tabular} \\
\begin{tabular}{l}
At-rest coefficient (ratio of horizontal stress to vertical \\
stress)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & \multicolumn{1}{c|}{ Description } \\
\hline \hline 4 & \begin{tabular}{l}
Friction angle in radians (differs from input parameter \\
PHI only if PHIDP and PHIGR are used)
\end{tabular} \\
5 & \begin{tabular}{l}
Cohesion (differs from input parameter CVAL only if \\
CVALDP and CVALGR are used)
\end{tabular} \\
6 & \begin{tabular}{l}
Dilation angle in radians (differs from input parameter \\
PSI only if PSIDP and PSIGR are used) \\
Shear modulus (differs from input parameter GMOD \\
only if GMODDP and GMODGR are used)
\end{tabular} \\
7 &
\end{tabular}

\section*{*MAT_RC_SHEAR_WALL}

Purpose: This is Material Type 194. It is for shell elements only. It uses empiricallyderived algorithms to model the effect of cyclic shear loading on reinforced concrete walls. It is primarily intended for modeling squat shear walls but can also be used for slabs. Because the combined effect of concrete and reinforcement is included in the empirical data, crude meshes can be used. The model has been designed such that the minimum amount of input is needed: generally, only the variables on the first card need to be defined.

NOTE: This material does not support the specification of a material angle, \(\beta_{i}\), for each through-thickness integration point of a shell.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & TMAX & & & \\
Type & A & F & F & F & F & & & \\
Default & none & none & none & 0.0 & 0.0 & & & \\
\hline
\end{tabular}

Include the following data if "Uniform Building Code" formula for maximum shear strength or tensile cracking are required - otherwise leave blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FC & PREF & FYIELD & SIG0 & UNCONV & ALPHA & FT & ERIENF \\
Type & F & F & F & F & F & F & \(F\) & \(F\) \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & A & B & C & D & E & F & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.05 & 0.55 & 0.125 & 0.66 & 0.25 & 1.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & Y1 & Y2 & Y3 & Y4 & Y5 & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & T1 & T2 & T3 & T4 & T5 & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & & & & & & & \\
Type & F & & & & & & & \\
Default & 0.0 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
E Young's modulus
PR Poisson's ratio
TMAX Ultimate in-plane shear stress. If set to zero, LS-DYNA calculates TMAX based on the formulae in the Uniform Building Code, using the data on Card 2. See Remark 3.

FC Unconfined compressive strength of concrete. It is used in the calculation of ultimate shear stress. Crushing behavior is not modeled.

PREF

FYIELD

Percent reinforcement. For example, if \(1.2 \%\) of the material is reinforcement, enter 1.2.

Yield stress of reinforcement

\section*{VARIABLE \\ SIG0}

UCONV

ALPHA
FT

ERIENF

A
B
C
D

E

F

Y1, Y2, ..., Y5

T1, T2, ..., T5 Shear stress points on stress-strain curve. By default, these are calculated from the values on Card 1. See Remark 3.

AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for more details):

\section*{VARIABLE}

EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1, and then rotated about the shell element normal by the angle BETA.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element (see Figure M2-1). a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
\(\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad\) Coordinates of point \(P\) for \(\mathrm{AOPT}=1\)
A1, A2, A3 Components of vector a for \(\mathrm{AOPT}=2\)
V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
BETA Material angle in degrees for \(\mathrm{AOPT}=0\) and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

\section*{Remarks:}
1. Model limitations. The element is linear elastic except for in-plane shear and tensile cracking effects. Crushing due to direct compressive stresses is modeled only insofar as there is an in-plane shear stress component. Using this model is not recommended when the nonlinear response to direct compressive or loads is important.
2. In-plane shear stress. Note that the in-plane shear stress \(t_{x y}\) is defined as the shear stress in the element's local \(x y\)-plane. This shear stress is not necessarily equal to the maximum shear stress in the plane. For example, if the principal
stresses are at 45 degrees to the local axes, \(t_{x y}\) is zero. Therefore, it is important to ensure that the local axes are appropriate. For a shear wall the local axes should be vertical or horizontal. By default, the local \(x\)-axis points from node 1 to node 2 of the element. It is possible to change the local axes by using AOPT > 0 .
3. TMAX and shear stress as a function of shear strain. If TMAX is set to zero, the ultimate shear stress is calculated using a formula in the Uniform Building Code 1997, section 1921.6.5:
\[
\mathrm{TMAX}_{\mathrm{UBC}}=\mathrm{UCONV} \times \mathrm{ALPHA} \times \sqrt{F C}+\mathrm{RO} \times \mathrm{FY}
\]
where,
\[
\begin{aligned}
\mathrm{UCONV} & =\text { unit conversion factor, see varriable list } \\
\text { ALPHA } & =\text { aspect ratio } \\
& =2.0 \text { for } h / l \in(2.0, \infty) \text { increases linearly to } 3.0 \text { for } h / l \in(2.0,1.5) \\
\mathrm{FC} & =\text { unconfined compressive strength of concrete } \\
\mathrm{RO} & =\text { fraction of reinforcement } \\
& =\text { (percent reinforcement }) / 100 \\
\mathrm{FY} & =\text { yield stress of reinforcement }
\end{aligned}
\]

To this we add shear stress due to the overburden to obtain the ultimate shear stress:
\[
\mathrm{TMAX}_{\mathrm{UBC}}=\mathrm{TMAX}_{\mathrm{UBC}}+\mathrm{SIG} 0
\]
where
SIG0 = in-plane compressive stress under static equilibrium conditions
The UBC formula for ultimate shear stress is generally conservative (predicts that the wall is weaker than shown in test), sometimes by \(50 \%\) or more. A less conservative formula is that of Fukuzawa:
\[
\begin{aligned}
\operatorname{TMAX}=\max [(0.4 & \left.\left.+\frac{A_{c}}{A_{w}}\right), 1\right] \times 2.7 \times\left(1.9+\frac{M}{L_{v}}\right) \times \mathrm{UCONV}+\sqrt{\mathrm{FC}}+0.5 \\
& \times \text { RO } \times \text { FY }+ \text { SIG } 0
\end{aligned}
\]
where
\(A_{C}=\) Cross-sectional area of stiffening features such as columns or flanges
\(A_{w}=\) Cross-sectional area of wall
\(M / L_{v}=\) Aspect ratio of wall height/length
Other terms are as above. This formula is not included in the material model. TMAX should be calculated by hand and entered on Card 1 if the Fukuzawa formula is required.

Note that none of the available formulae, including Fukuzawa, predict the ultimate shear stress accurately for all situations. Variance from the experimental results can be as great as \(50 \%\).

The shear stress as a function of shear strain curve is then constructed automatically as follows, using the algorithm of Fukuzawa extended by Arup:
a) Assume ultimate engineering shear strain, \(\gamma_{u}=0.0048\)
b) First point on curve, corresponding to concrete cracking, is at
\[
\left(0.3 \times \frac{\mathrm{TMAX}}{G}, 0.3 \times \mathrm{TMAX}\right)
\]
where \(G\) is the elastic shear modulus given by
\[
G=\frac{E}{2(1+v)} .
\]
c) Second point, corresponding to the reinforcement yield, is at
\[
\left(0.5 \times \gamma_{u}, 0.8 \times \text { TMAX }\right)
\]
d) Third point, corresponding to the ultimate strength, is at
\[
\left(\gamma_{u}, \text { TMAX }\right)
\]
e) Fourth point, corresponding to the onset of strength reduction, is at
\[
\left(2 \gamma_{u}, \text { TMAX }\right)
\]
f) Fifth point, corresponding to failure is at
\[
\left(3 \gamma_{u}, 0.6 \times \text { TMAX }\right)
\]

After failure, the shear stress drops to zero. The curve points can be entered by the user if desired, in which case they override the automatically calculated curve. However, it is anticipated that in most cases the default curve will be preferred due to ease of input.
4. Hysteresis. Hysteresis follows the algorithm of Shiga as for the squat shear wall spring (see *MAT_SPRING_SQUAT_SHEARWALL). The hysteresis constants which are defined in fields A, B, C, D, and E can be entered if desired, but it is generally recommended that the default values be used.
5. Cracking. Cracking in tension is checked for the local \(x\) and \(y\) directions only. Cracking is calculated separately from the in-plane shear. A trilinear response is assumed, with turning points at concrete cracking and reinforcement yielding. The three regimes are:
a) Pre-cracking. A linear elastic response is assumed using the overall Young's Modulus on Card 1.
b) Cracking. Cracking occurs in the local \(x\) or \(y\) directions when the tensile stress in that direction exceeds the concrete tensile strength FT (if not input on Card 2, this defaults to \(8 \%\) of the compressive strength FC). Post-cracking, a linear stress-strain response is assumed up to reinforcement yield at a strain defined by reinforcement yield stress divided by reinforcement Young's Modulus.
c) Post-yield. A constant stress is assumed (no work hardening).

Unloading returns to the origin of the stress-strain curve. For compressive strains the response is always linear elastic using the overall Young's modulus on Card 1. If insufficient data is entered, no cracking occurs in the model. As a minimum, FC and FY are needed.
6. History variables. Extra variables are available for post-processing as follows:
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 1 & \begin{tabular}{l}
Current engineering shear strain \\
2
\end{tabular} \\
\begin{tabular}{l}
Shear status: \(0,1,2,3,4\), or 5 . The shear status shows how far along \\
the shear stress-strain curve each element has progressed. For in- \\
stance, status 2 means that the element has passed the second point \\
on the curve. These status levels correspond to performance criteria \\
in building design codes such as FEMA. \\
Maximum direct strain so far in the local \(x\)-direction (for tensile \\
cracking)
\end{tabular} \\
\begin{tabular}{l}
Maximum direct strain so far in the local \(y\)-direction (for tensile \\
cracking)
\end{tabular} \\
\begin{tabular}{l}
Tensile status: \\
5
\end{tabular} & \begin{tabular}{l}
EQ.0: Elastic \\
EQ.1: Cracked
\end{tabular} \\
&
\end{tabular}

\section*{*MAT_CONCRETE_BEAM}

This is Material Type 195 for beam elements. This model can define an elasto-plastic material with an arbitrary stress as a function of strain curve and arbitrary strain rate dependency. It supports failure based on a plastic strain or a minimum time step size. See Remarks below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & ETAN & FAIL & TDEL \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.0 & \(10^{20}\) & \(10^{20}\) \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & C & P & LCSS & LCSR & & & & \\
Type & F & F & F & F & & & & \\
Default & 0 & 0 & 0 & 0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & NOTEN & TENCUT & SDR & & & & & \\
Type & I & F & F & & & & & \\
Default & 0 & \(10^{15}\) & 0.0 & & & & & \\
\hline
\end{tabular}

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density

\section*{DESCRIPTION}

\section*{VARIABLE}

E
PR SIGY Yield stress

ETAN \(\quad\) Tangent modulus; ignored if LCSS \(>0\)
FAIL Failure flag:
LT.O.O: User-defined failure subroutine is called to determine failure.

EQ.0.0: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL Minimum time step size for automatic element deletion.
C Strain rate parameter, C; see Remarks below.
P Strain rate parameter, \(p\); see Remarks below.
LCSS Load curve ID or Table ID. Load curve ID defining effective stress as a function of effective plastic strain. The table ID defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate; see Figure M16-1 Stress as a function of effective plastic strain curve for the lowest value of strain rate is used if the strain rate falls below the minimum value. Likewise, the stress as a function of effective plastic strain curve for the highest value of strain rate is used if the strain rate exceeds the maximum value. The strain rate parameters (\(C\) and \(p\)) and the curve ID, LCSR, are ignored if a Table ID is defined.

LCSR Load curve ID defining strain rate scaling effect on yield stress
NOTEN No-tension flag:
EQ.0: Beam takes tension.
EQ.1: Beam takes no tension.
EQ.2: Beam takes tension up to value given by TENCUT.

\section*{VARIABLE}

SDR

\section*{DESCRIPTION}

Stiffness degradation factor

\section*{Remarks:}

The stress strain behavior may be treated using a bilinear stress strain curve through defining the tangent modulus, ETAN. An effective stress as a function of effective plastic strain curve (LCSS) may be input instead of defining ETAN. The cost is roughly the same for either approach. The most general approach is to use the table definition (LCSS) discussed below.

Three options to account for strain rate effects are possible.
1. Strain rate may be accounted for using the Cowper and Symonds model which scales the yield stress with the factor
\[
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{1 / p}
\]
where \(\dot{\varepsilon}\) is the strain rate. \(\dot{\varepsilon}=\sqrt{\dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}\).
2. For complete generality a load curve (LCSR) to scale the yield stress may be input instead. In this curve the scale factor as a function of strain rate is defined.
3. If different stress as a function of strain curves can be provided for various strain rates, the option using the reference to a table (LCSS) can be used.

\section*{*MAT_GENERAL_SPRING_DISCRETE_BEAM}

This is Material Type 196. This model permits elastic and elastoplastic springs with damping to be represented with a discrete beam element of type 6 by using six springs each acting about one of the six local degrees-of-freedom. For elastic behavior, a load curve defines force or moment as a function of displacement or rotation. For inelastic behavior, a load curve defines yield force or moment as a function of plastic deflection or rotation, which can vary in tension and compression.

The two nodes defining a beam may be coincident to give a zero length beam or offset to give a finite length beam. For finite length discrete beams, the absolute value of the field SCOOR in the *SECTION_BEAM input should be set to a value of 2.0 , which causes the local \(r\)-axis to be aligned along the two nodes of the beam to give physically correct behavior. The distance between the nodes of a beam should not affect the behavior of this material model. A triad is used to orient the beam for the directional springs.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & & & & & & DOSPOT \\
\hline
\end{tabular}

Card 2. For each active degree of freedom include a pair of Cards 2 and 3. This data is terminated by the next keyword ("*") card or when all six degrees of freedom have been specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DOF & TYPE & K & D & CDF & TDF & & \\
\hline
\end{tabular}

Card 3. For each active degree of freedom include a pair of Cards 2 and 3. This data is terminated by the next keyword ("*") card or when all six degrees of freedom have been specified.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FLCID & HLCID & C1 & C2 & DLE & GLCID & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & & & & & & DOSPOT \\
Type & A & F & & & & & & 1 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density; see also volume in *SECTION_BEAM definition.
DOSPOT Activate thinning of tied shell elements when SPOTHIN \(>0\) on *CONTROL_CONTACT.

EQ.0: Spot weld thinning is inactive for shells tied to discrete beams that use this material (default).

EQ.1: Spot weld thinning is active for shells tied to discrete beams that use this material.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DOF & TYPE & K & D & CDF & TDF & & \\
Type & I & I & F & F & F & F & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DOF

TYPE

K Elastic loading/unloading stiffness. This is required input for inelastic behavior.

D
CDF Compressive displacement at failure. Input as a positive number. After failure, no forces are carried. This option does not apply to zero length springs.

EQ.0.0: inactive

\section*{VARIABLE}

DESCRIPTION
TDF
Tensile displacement at failure. After failure, no forces are carried.
EQ.0.0: inactive
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FLCID & HLCID & C1 & C2 & DLE & GLCID & & \\
Type & F & F & F & F & F & I & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FLCID

HLCID Optional load curve ID (see *DEFINE_CURVE) defining force as a function of relative velocity. If the origin of the curve is at \((0,0)\), the force magnitude is identical for a given magnitude of the relative velocity, meaning only the sign changes.

C1 Damping coefficient
C2 Damping coefficient
DLE Factor to scale time units
GLCID Optional load curve ID (see *DEFINE_CURVE) defining a scale factor as a function of deflection for load curve ID, HLCID. If zero, a scale factor of unity is assumed.

\section*{Remarks:}
1. Elastic Behavior. If TYPE \(=0\), elastic behavior is obtained. In this case, if the linear spring stiffness is used, the force, \(F\), is given by:
\[
F=\mathrm{K} \times \Delta L+\mathrm{D} \times \Delta \dot{L} .
\]

But if the load curve ID is specified, the force is then given by:
\[
\begin{aligned}
F=K f(\Delta L) & {\left[1+\mathrm{C} 1 \times \Delta \dot{L}+\mathrm{C} 2 \times \operatorname{sgn}(\Delta \dot{L}) \ln \left(\max \left\{1 ., \frac{|\Delta \dot{L}|}{\mathrm{DLE}}\right\}\right)\right]+\mathrm{D} \times \Delta \dot{L} } \\
& +g(\Delta L) h(\Delta \dot{L}) .
\end{aligned}
\]

In these equations, \(\Delta L\) is the change in length
\[
\Delta L=\text { current length }- \text { initial length }
\]

For the first three degrees of freedom the fields on Cards 2 and 3 have dimensions as shown below. Being angular in nature, the next three degrees of freedom involve moment instead of force and angle instead of length but are otherwise identical.
\[
\begin{aligned}
{[\mathrm{K}] } & =\left\{\begin{array}{l}
\frac{[\text { force }]}{[\text { length }]} \\
\text { unitless }
\end{array} \quad \begin{array}{l}
\text { FLCID }=0
\end{array}\right. \\
{[\mathrm{D}] } & =\frac{[\text { force }]}{[\text { velocity }]}=\frac{[\text { force }][\text { time }]}{[\text { length }]} \\
{[\text { FLCID }]=[\text { GLCID }] } & =([\text { length }],[\text { force }]) \\
{[\text { HLCID }] } & =([\text { velocity }],[\text { force }]) \\
{[\mathrm{C} 1] } & =\frac{[\text { time }]}{[\text { length }]} \\
{[\mathrm{C} 2] } & =\text { unitless } \\
{[\mathrm{DLE}] } & =\frac{[\text { length }]}{[\text { time }]}
\end{aligned}
\]
2. Inelastic Behavior. If TYPE \(=1\), inelastic behavior is obtained. A trial force is computed as:
\[
F^{T}=F^{n}+K \times \Delta \dot{L}(\Delta t)
\]
and the yield force is taken from the load curve:
\[
F^{Y}=F_{y}\left(\Delta L^{\text {plastic }}\right),
\]
where \(L^{\text {plastic }}\) is the plastic deflection, given by
\[
\Delta L^{\text {plastic }}=\frac{F^{T}-F^{Y}}{S+K^{\max }}
\]

The maximum elastic stiffness is \(K^{\max }=\max \left(K, 2 \times S^{\max }\right)\), where \(S\) is the slope of FLCID. The trial force is checked against the yield force to determine \(F\) :
\[
F= \begin{cases}F^{Y} & \text { if } F^{T}>F^{Y} \\ F^{T} & \text { if } F^{T} \leq F^{Y}\end{cases}
\]

The final force, which includes rate effects and damping, is given by:
\[
\begin{aligned}
F^{n+1}=F \times[1 & \left.+\mathrm{C} 1 \times \Delta \dot{L}+\mathrm{C} 2 \times \operatorname{sgn}(\Delta \dot{L}) \ln \left(\max \left\{1 ., \frac{|\Delta \dot{L}|}{\mathrm{DLE}}\right\}\right)\right]+\mathrm{D} \times \Delta \dot{L} \\
& +g(\Delta L) h(\Delta \dot{L})
\end{aligned}
\]

Unless the origin of the curve starts at \((0,0)\), the negative part of the curve is used when the spring force is negative where the negative of the plastic displacement is used to interpolate, \(F_{y}\). The positive part of the curve is used whenever the force is positive.
3. Cross-Sectional Area. The cross-sectional area is defined on the section card for the discrete beam elements, See *SECTION_BEAM. The square root of this area is used as the contact thickness offset if these elements are included in the contact treatment.
4. Rotational Displacement. Rotational displacement is measured in radians.

\section*{*MAT_SEISMIC_ISOLATOR}

This is Material Type 197 for discrete beam elements. Sliding (pendulum) and elastomeric seismic isolation bearings can be modeled, applying bi-directional coupled plasticity theory. The hysteretic behavior was proposed by Wen [1976] and Park, Wen, and Ang [1986]. The sliding bearing behavior is recommended by Zayas, Low and Mahin [1990]. The algorithm used for implementation was presented by Nagarajaiah, Reinhorn, and Constantinou [1991]. Further options for tension-carrying friction bearings are as recommended by Roussis and Constantinou [2006]. Element formulation type 6 must be used. Local axes are defined on *SECTION_BEAM; the default is the global axis system. The local \(z\)-axis is expected to be vertical. On *SECTION_BEAM SCOOR must be set to zero when using this material model, even if the element has non-zero initial length.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & A & BETA & GAMMA & DISPY & STIFFV & ITYPE \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline PRELOAD & DAMP & MX1 & MX2 & MY1 & MY2 & CDE & IEXTRA \\
\hline
\end{tabular}

Card 3. This card is used for ITYPE \(=0,2\), or 5 . Leave this card blank for all other settings of ITYPE.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FMAX & DELF & AFRIC & RADX & RADY & RADB & STIFFL & STIFFTS \\
\hline
\end{tabular}

Card 4a. This card is included for ITYPE \(=1\) or 4.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FORCEY & ALPHA & STIFFT & DFAIL & & & & \\
\hline
\end{tabular}

Card 4 b. This card is included for ITYPE \(=2\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & FMAXYC & FMAXXT & FMAXYT & YLOCK \\
\hline
\end{tabular}

Card 4c. This card is included for ITYPE \(=3\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FORCEY & ALPHA & & & & & & \\
\hline
\end{tabular}

Card 4d. This blank card is included for all other settings of ITYPE (0 or5).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{tabular}

Card 5. This card is included for ITYPE \(=3\) only. Omit for other settings of ITYPE.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HTCORE & RCORE & TSHIM & ROLCL & ROSCS & THCST & YLE2 & \\
\hline
\end{tabular}

Card 6. This card is included for ITYPE \(=3\) only. Omit for other settings of ITYPE.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PCRINI & DIAMB & FCAVO & CAVK & CAVTR & CAVA & PHIM & \\
\hline
\end{tabular}

Card 7. This card is included for ITYPE \(=4\) only. Omit for other settings of ITYPE.

\section*{BETA}

Card 8. This card is included for ITYPE \(=5\) only. Omit for other settings of ITYPE.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FYRIM & DFRIM & & & & & & \\
\hline
\end{tabular}

Card 9. This card is included if and only if IEXTRA \(=1\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline KTHX & KTHY & KTHZ & & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & A & BETA & GAMMA & DISPY & STIFFV & ITYPE \\
Type & A & F & F & F & F & F & F & 1 \\
Default & none & none & 1.0 & 0.5 & 0.5 & none & none & 0.0 \\
\hline
\end{tabular}

VARIABLE
MID

RO Mass density
A Nondimensional variable - see below
GAMMA Nondimensional variable - see below
BETA Nondimensional variable - see below
DISPY \(\quad\) Yield displacement (length units - must be \(>0.0\))

\section*{VARIABLE}

STIFFV
ITYPE

\section*{DESCRIPTION}

Vertical stiffness (force/length units)
Type:
EQ.O: sliding (spherical or cylindrical)
EQ.1: elastomeric
EQ.2: sliding (two perpendicular curved beams)
EQ.3: lead rubber bearing
EQ.4: high damping rubber bearing
EQ.5: sliding with rim failure
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRELOAD & DAMP & MX1 & MX2 & MY1 & MY2 & CDE & IEXTRA \\
Type & F & F & F & F & F & F & F & 1 \\
Default & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

PRELOAD
DAMP
MX1, MX2
MY1, MY2
CDE \(\quad\) Viscous damping coefficient (ITYPE \(=1,3\) or 4)
IEXTRA If IEXTRA = 1, optional Card 9 will be read

Sliding Isolator Card. This card is used for ITYPE \(=0,2\), or 5 . Leave this card blank for all other settings of ITYPE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FMAX & DELF & AFRIC & RADX & RADY & RADB & STIFFL & STIFFTS \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & \(10^{20}\) & \(10^{20}\) & \(10^{20}\) & STIFFV & 0.0 \\
\hline
\end{tabular}

VARIABLE
FMAX
DELF Difference between maximum friction and static friction coefficient
AFRIC Velocity multiplier in sliding friction equation (time/length units)
RADX Radius for sliding in local \(x\) direction
RADY Radius for sliding in local \(y\) direction
RADB Radius of retaining ring
STIFFL Stiffness for lateral contact against the retaining ring
STIFFTS \(\quad\) Stiffness for tensile vertical response (default \(=0\))

This card is included only for ITYPE \(=1\) or 4 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FORCEY & ALPHA & STIFFT & DFAIL & FMAXYC & FMAXXT & FMAXYT & YLOCK \\
Type & F & F & F & F & F & F & \(F\) & \(F\) \\
Default & none & 0.0 & \begin{tabular}{c}
\(0.5 \times\) \\
STIFFV
\end{tabular} & \(10^{20}\) & FMAX & FMAX & FMAX & 0.0 \\
\hline
\end{tabular}

VARIABLE
FORCEY Yield force

\section*{VARIABLE}

ALPHA
STIFFT Stiffness for tensile vertical response (elastomeric isolator)
DFAIL Lateral displacement at which the isolator fails

This card is included only for ITYPE \(=2\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4b & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & FMAXYC & FMAXXT & FMAXYT & YLOCK \\
Type & & & & & & & \\
Default & & & & & \(F\) & \(F\) & \(F\) \\
\hline
\end{tabular}

\section*{VARIABLE}

FMAXYC
FMAXXT
FMAXYT

YLOCK

\section*{DESCRIPTION}

Max friction coefficient (dynamic) for local \(y\)-axis (compression)
Max friction coefficient (dynamic) for local \(x\)-axis (tension)
Max friction coefficient (dynamic) for local \(y\)-axis (tension)
Stiffness locking the local \(y\)-displacement (optional -single-axis sliding)

This card is included only for ITYPE \(=3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FORCEY & ALPHA & & & & & & \\
Type & F & F & & & & & & \\
Default & none & 0.0 & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FORCEY

\section*{DESCRIPTION}

Yield force

\section*{VARIABLE}

\section*{DESCRIPTION}

ALPHA
Ratio of post-yielding stiffness to pre-yielding stiffness

Include this blank card for ITYPE \(=0\) or 5 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & & \\
Type & & & & & & & & \\
Default & & & & & & & & \\
\hline
\end{tabular}

Lead Rubber Bearing Card. This card is included for ITYPE \(=3\) only. Omit for other settings of ITYPE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HTCORE & RCORE & TSHIM & ROLCL & ROSCS & THCST & YLE2 & \\
Type & F & F & F & F & F & F & F & \\
Default & none & \\
\hline
\end{tabular}

VARIABLE
HTCORE
RCORE
TSHIM
ROLCL
ROLCS
THCST
YLE2 \(\quad E_{2}\) in temperature-dependent yield stress of lead (units: 1/Temperature)

Lead Rubber Bearing Card. This card is included for ITYPE \(=3\) only. Omit for other settings of ITYPE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PCRINI & DIAMB & FCAVO & CAVK & CAVTR & CAVA & PHIM & \\
Type & F & F & F & F & F & F & F & \\
Default & none & \\
\hline
\end{tabular}

\section*{VARIABLE}

PCRINI Buckling capacity (force units)
DIAMB External diameter of bearing (length units)
FCAV0 Tensile capacity limited by cavitation (force units)
CAVK Cavitation parameter (units 1/length)
TR Total thickness of rubber (length units)
CAVA Strength degradation parameter (dimensionless)
PHIM Maximum cavitation damage index (dimensionless)

High Damping Rubber Bearing Yield Card. This card is included for ITYPE \(=4\) only. Omit for other settings of ITYPE.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & BETA & & & & & & & \\
Type & F & & & & & & & \\
Default & 0.0 & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

BETA
Quadratic factor for yield force

Rim Failure Card. This card is included for ITYPE \(=5\) only. Omit for other settings of ITYPE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FYRIM & DFRIM & & & & & & \\
Type & F & F & & & & & & \\
Default & \(10^{20}\) & \(10^{20}\) & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

DESCRIPTION
FYRIM Radial force at failure of rim
DFRIM Radial displacement of rim to failure after FYRIM is reached
Rotational Stiffness Card. Card 9 for IEXTRA \(=1\) only. Omit if IEXTRA \(=0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & KTHX & KTHY & KTHZ & & & & & \\
Type & F & F & F & & & & & \\
Default & 0 & 0 & 0 & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

KTHX
KTHY Rotational stiffness in local \(y\) direction (moment per radian)
KTHZ Rotational stiffness in local \(z\) direction (moment per radian)

\section*{Remarks:}
1. Horizontal behavior of the isolator. The horizontal behavior for all isolator types is governed by plastic history variables Zx and Zy that evolve according to equations given in the reference; A, GAMMA, BETA and DISPYt are the input parameters for this. The intention is to provide smooth build-up, rotation and reversal of forces in response to bidirectional displacement histories in the
horizontal plane. The theoretical model has been correlated to experiments on seismic isolators.
2. Sliding surface for sliding isolator. The RADX and RADY inputs for the sliding isolator are optional. If left blank, the sliding surface is assumed to be flat. A cylindrical surface is obtained by defining either RADX or RADY; a spherical surface can be defined by setting RADX = RADY. The effect of the curved surface is to add a restoring force proportional to the horizontal displacement from the center. As seen in elevation, the top of the isolator will follow a curved trajectory, lifting as it displaces away from the center.
3. Vertical behavior of the isolator. The vertical behavior for all types is linear elastic, but with different stiffnesses for tension and compression. By default, the tensile stiffness is zero for the sliding types. For the elastomeric type in the case of uplift, the tensile stiffness will be different from the compressive stiffness. For the sliding type, compression is treated as linear elastic, but no tension can be carried.
4. Vertical preload. Vertical preload can be modeled either explicitly (for example, by defining gravity), or by using the PRELOAD input. PRELOAD does not lead to any application of vertical force to the model. It is added to the compression in the element before calculating the friction force and tensile/compressive vertical behavior.
5. Overview of ITYPE. Various settings of ITYPE are described as follows.
a) ITYPE \(=0\) is used to model a single (spherical) pendulum bearing. Triple pendulum bearings can be modelled using three of these elements in series, following the method described by Fenz and Constantinou 2008.
b) ITYPE \(=2\) is intended to model uplift-prevention sliding isolators that consist of two perpendicular curved beams joined by a connector that can slide in slots on both beams. The beams are aligned in the local \(x\) and \(y\) axes, respectively. The vertical displacement is the sum of the displacements induced by the respective curvatures and slider displacements along the two beams. Single-axis sliding is obtained by using YLOCK to lock the local \(y\) displacement. To resist uplift, STIFFTS must be defined (recommended value: same as STIFFV). This isolator type allows for different friction coefficients on each beam as well as different values in tension and compression. The total friction, taking into account sliding velocity and the friction history functions, is first calculated using FMAX which applies to the local \(x\)-axis when in compression, and then scaled as necessary, such as by FMAXXT/FMAX (for the local \(x\)-axis when in tension) and by FMAXYC/FMAX or FMAXYT/FMAX for the \(y\)-axis as appropriate. For this reason, FMAX should not be zero.
c) ITYPE \(=3\) is used to model Lead Rubber Bearings (LRB), made of rubber with a lead core. Phenomenological models following Kumar et al. (2014) are incorporated to simulate the following salient behavior:
i) The properties of the lead core may degrade in the short-term because of substantial internal heat generation from cyclic deformation.
ii) Under larger lateral deformation, the rubber may experience net tension which will affect the compression and tension stiffness, and lead to potential vertical instability.
iii) Cavitation may happen when the bearing is under excessive tension, resulting in permanent damage in the tensile capacity.
d) ITYPE \(=4\) is used to model higher damping rubber bearings. It differs from elastomeric bearing (ITYPE =1) in that the time-varying yield force is a function of resultant horizontal displacement, governed by:
\[
\text { Yield force }=\text { FORCEY }\left(1+\text { BETA }\left(\frac{d x^{2}+d y^{2}}{\text { DISPY }^{2}}\right)\right)
\]

Here \(d x\) and \(d y\) are the displacements in the local \(x\) and \(y\) directions.
e) ITYPE \(=5\) is the same as ITYPE \(=0\) (spherical sliding bearing), except for the additional capability of yielding and failure of the rim, also called the retaining ring. The rim is intended to prevent the radial displacement of the slider exceeding RADB, but if sufficient radial force is applied, the rim can yield and then fail, leading to the slider falling off the supporting surface. When the rim fails, the isolator element is deleted.
6. Damping. DAMP is the fraction of critical damping for free vertical vibration of the isolator, based on the mass of the isolator (including any attached lumped masses) and its vertical stiffness. The viscosity is reduced automatically if it would otherwise infringe numerical stability. Damping is generally recommended:
a) Oscillations in the vertical force have a direct effect on friction forces in sliding isolators.
b) For isolators with curved surfaces, vertical oscillations can be excited as the isolator slides up and down the curved surface.

It may occasionally be necessary to increase DAMP if these oscillations become significant.
7. Rotational stiffness. By default, this element has no rotational stiffness - a pin joint is assumed. However, if required, "offset moments" can be generated according to the vertical load multiplied by the lateral displacement of the isolator. This is invoked using MX1, MX2, MY1, MY2. The moment about the local \(x\)-axis (meaning the moment that is dependent on lateral displacement in the local \(y\) direction) is reacted on nodes 1 and 2 of the element in the proportions MX1 and MX2, respectively. Similarly, moments about the local \(y\)-axis are reacted in the proportions MY1 and MY2. These inputs effectively determine the location of the pin joint.

For example, consider an isolator installed between the top of the foundation of a building (Node 1 of the isolator element) and the base of a column of the superstructure (Node 2 of the isolator element). To model a pin at the base of the column and react the offset moment on the foundation, set MX1 \(=\) MY1 \(=1.0\) and \(\mathrm{MX} 2=\mathrm{MY} 2=0.0\). For the same model, MX1 \(=\mathrm{MY} 1=0.0\) and \(\mathrm{MX} 2=\mathrm{MY} 2=1.0\) would imply a pin at the top of the foundation - all the moment is transferred to the column. Some isolator designs have the pin at the bottom for moments about one horizontal axis, and at the top for the other axis - these can be modeled by setting MX1 \(=\mathrm{MY} 2=1.0\) and \(\mathrm{MX} 2=\mathrm{MY} 1=0.0 . \mathrm{MX1}, \mathrm{MX} 2, \mathrm{MY} 1\) and MY2 are all expected to be greater than or equal to 0 and less than or equal to 1 . Also, if MX1 and MX2 are not both zero, then MX1 + MX2 is expected to equal 1.0, and similarly for MY1 and MY2. However, no error checks are performed to ensure this.

Optionally, rotational stiffnesses that resist rotation of Node 2 relative to Node 1 may be defined on Card 9. These moments are applied equal and opposite on Nodes 1 and 2, irrespective of the settings of MX1, MX2, MY1 and MY2.
8. Density. Density should be set to a reasonable value, say 2000 to \(8000 \mathrm{~kg} / \mathrm{m}^{3}\). The element mass will be calculated as density \(\times\) volume (volume is entered on *SECTION_BEAM).
9. *SECTION_BEAM input. Note on values for *SECTION_BEAM:
a) Set ELFORM to 6 (discrete beam).
b) VOL (the element volume) might typically be set to \(0.1 \mathrm{~m}^{3}\).
c) INER always needs to be non-zero. It will influence the solution only when the element has rotational stiffness, that is, when any of MX1, MX2, MY1, MY2, KTHX, KTHY or KTHZ are non-zero. A reasonable value might be \(10-20 \mathrm{~kg}-\mathrm{m}^{2}\).
d) CID can be left blank if the isolator is aligned in the global coordinate system, otherwise a coordinate system should be referenced.
e) By default, the isolator will be assumed to rotate with the average rotation of its two nodes. If the base of the column rotates slightly the isolator will no longer be perfectly horizontal: this can cause unexpected vertical displacements coupled with the horizontal motion. To avoid this, rotation of the local axes of the isolator can be eliminated by setting RRCON, SRCON, and TRCON to 1.0. This does not introduce any rotational restraint to the model, it only prevents the orientation of the isolator from changing as the model deforms.
f) SCOOR must be set to zero.
g) All other parameters on *SECTION_BEAM can be left blank.
10. Post-processing note. As with other discrete beam material models, the force described in some post-processors as "Axial" is really the force in the local \(x\) direction; "Y-Shear" is really the force in the local \(y\)-direction; and "Z-Shear" is really the force in the local \(z\)-direction.

\section*{*MAT_JOINTED_ROCK}

This is Material Type 198. Joints (planes of weakness) are assumed to exist throughout the material at a spacing small enough to be considered ubiquitous. The planes are assumed to lie at constant orientations defined on this material card. Up to three planes can be defined for each material. The base material is like *MAT_DRUCKER_PRAGER (*MAT_193). Input parameters for the base material are defined on Cards 1 through 3, while the joint planes are defined using Card 4. See *MAT_MOHR_COULOMB (*MAT_173) for a preferred alternative to this material model.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & GMOD & RNU & RKF & PHI & CVAL & PSI \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline STR_LIM & NPLANES & ELASTIC & LCCPDR & LCCPT & LCCJDR & LCCJT & LCSFAC \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GMODDP & PHIDP & CVALDP & PSIDP & GMODGR & PHIGR & CVALGR & PSIGR \\
\hline
\end{tabular}

Card 4. Include an instance of this card for each plane. Up to three planes may be defined.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline DIP & STRIKE & CPLANE & FRPLANE & TPLANE & SHRMAX & LOCAL & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & GMOD & RNU & RKF & PHI & CVAL & PSI \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & 1.0 & none & none & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
GMOD & & Mass density \\
RNU & & Plastic shear modulus \\
RKF & & Failure surface shape parameter, see Remark 5. \\
PHI & Angle of friction (radians) \\
CVAL & Cohesion value (shear strength at zero normal stress) \\
PSI & Dilation angle (radians)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & STR_LIM & NPLANES & ELASTIC & LCCPDR & LCCPT & LCCJDR & LCCJT & LCSFAC \\
Type & F & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 0.005 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

STR_LIM

NPLANES Number of joint planes (maximum of 3)
ELASTIC Behavior of base material (see Remark 3):
EQ.0: Nonlinear using all parameters on Cards 1 through 3
EQ.1: Linear elastic; only the joint planes are nonlinear
Load curve for extra cohesion for base material (dynamic relaxation) as a function of time. See Remark 8.

LCCPT Load curve for extra cohesion for base material (transient) as a function of time. See Remark 8.

\section*{VARIABLE}

LCCJDR

LCCJT

LCSFAC

\section*{DESCRIPTION}

Load curve for extra cohesion for joints (dynamic relaxation) as a function of time. See Remark 8.

Load curve for extra cohesion for joints (transient) as a function of time. See Remark 8.

Load curve giving a factor on strength as a function of time (see Remark 9).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GMODDP & PHIDP & CVALDP & PSIDP & GMODGR & PHIGR & CVALGR & PSIGR \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Remark & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
\end{tabular}

VARIABLE
GMODDP
PHIDP

CVALDP
PSIDP
GMODGR
PHIGR
CVALGR
PSIGR

\section*{DESCRIPTION}

Z-coordinate at which GMOD is correct
Z-coordinate at which PHI is correct
Z-coordinate at which CVAL is correct
Z-coordinate at which PSI is correct
Gradient of GMOD as a function of Z-coordinate (usually negative)
Gradient of PHI as a function of Z-coordinate
Gradient of CVAL as a function of Z-coordinate (usually negative)
Gradient of PSI as a function of Z-coordinate

Repeat Card 4 for each plane (maximum of 3 planes):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DIP & STRIKE & CPLANE & FRPLANE & TPLANE & SHRMAX & LOCAL & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \(1 . e 20\) & 0.0 & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Angle of the plane in degrees below the horizontal
Plan view angle (degrees) of downhill vector drawn on the plane
CPLANE Cohesion for shear behavior on plane
FRPLANE Friction angle for shear behavior on plane (degrees)
TPLANE Tensile strength across plane (generally zero or very small)
SHRMAX Max shear stress on plane (upper limit, independent of compression)

LOCAL

Axes (see Remark 10)
EQ.O: DIP and STRIKE are with respect to the global axes.
EQ.1: DIP and STRIKE are with respect to the local element axes.

\section*{Remarks:}
1. Joint Plane Orientations. The joint plane orientations are defined by the angle of a "downhill vector" drawn on the plane, that is, the vector is oriented within the plane to obtain the maximum possible downhill angle. DIP is the angle of this line below the horizontal. STRIKE is the plan-view angle of the line (pointing downhill) measured clockwise from the global \(Y\)-axis about the global Zaxis. Note that DIP and STRIKE can also be with respect to the local element axes. See Remark 10 for details.
2. Rigid Body Motion. The joint planes rotate with the rigid body motion of the elements, irrespective of whether their initial definitions are in the global or local axis system.
3. Elastic Only Behavior. The full facilities of the modified Drucker Prager model for the base material can be used - see description of material type 193. Alternatively, to speed up the calculation, the ELASTIC flag can be set to 1 , in which case the yield surface will not be considered and only RO, GMOD, RNU, GMODDP, GMODGR and the joint planes will be used.
4. Model Orientation. This material type requires that the model is oriented such that the \(Z\)-axis is defined in the upward direction. The key parameters are defined such that they may vary with depth (i.e. the Z-axis), see Card 3. If Card 3 is left blank, the material properties do not vary with depth.
5. Shape Factor RKF. The shape factor for a typical soil would be around 0.8. Values less than 0.75 should not be used.
6. STR_LIM. If STR_LIM is set to less than 0.005 , the value is reset to 0.005 .
7. Correction to Drucker Prager Model. A correction has been introduced into the Drucker Prager model, such that the yield surface never infringes the MohrCoulomb criterion. Thus, the model does not give the same results as a "pure" Drucker Prager model.
8. Load Curves giving Extra Cohesion. The load curves LCCPDR, LCCPT, LCCJDR, and LCCJT allow additional cohesion to be specified as a function of time. This cohesion is in addition to that specified in the material parameters. This feature is intended for use during the initial stages of an analysis to allow application of gravity or other loads without cracking or yielding, and for the cracking or yielding then to be introduced in a controlled manner. This is done by specifying extra cohesion that exceeds the expected stresses initially, then declining to zero. If no curves are specified, no extra cohesion is applied.
9. LCSFAC. The load curve giving a factor on strength applies simultaneously to the cohesion and \(\tan \mathrm{PHI}\) of the base material and all joints. This feature is intended for reducing the strength of the material gradually to explore factors of safety. If no curve is present, a constant factor of 1 is assumed. Values much greater than 1.0 may cause problems with stability.
10. Masonry and Joint Planes. Joint planes are generally defined in the global axis system if they are taken from survey data, and the material represents rock. For this case, set LOCAL \(=0\). In other cases, it may be more convenient to define the joint plane angles, DIP and STRIKE, relative to the element local axis system (to do this, set LOCAL \(=1\)). For example, this material model can be used to represent masonry with the weak planes representing the mortar joint. In this situation, these joints may be parallel to the local element axes throughout the mesh.

The choice of defining the joint angles relative to global versus local coordinates is available only for solid elements. For thick shell elements (*ELEMENT_-

TSHELL), DIP and STRIKE are always relative to the element local axis and the setting of LOCAL is ignored.
11. Extra History Variables. Extra history variables may be plotted (see NEIPH on *DATABASE_EXTENT_BINARY). They are described in the following table:
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
History \\
Variable \#
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Mobilized strength fraction for base material \\
2 & \begin{tabular}{l}
At-rest coefficient (defined as horizontal stress divided by verti- \\
cal stress, where "horizontal stress" is the average of the stresses \\
in the global X and Y directions, and "vertical stress" is in the \\
global Z direction).
\end{tabular} \\
\(4-6\) & \begin{tabular}{l}
Crack opening strains for planes 1 through 3 \\
\(7-9\) \\
\(10-12\) \\
\(13-15\)
\end{tabular} \\
\begin{tabular}{l}
Crack accumulated engineering shear strain for planes 1 \\
through 3 \\
Current shear utilization for planes 1 through 3 \\
Maximum shear utilization to date for planes 1 through 3
\end{tabular} \\
\hline
\end{tabular}

\section*{*MAT_BARLAT_YLD2004}

This is Material Type 199. This model was developed by Aretz and Barlat [2004] and Barlat et al. [2005]. It incorporates a yield criterion called Barlat 2004-18p, where up to 18 material parameters are used to define anisotropy for a full 3D stress state. This model is currently available for solid elements and thick shell formulations 3,5 and 7 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP12 & CP13 & CP21 & CP23 & CP31 & CP32 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPP12 & CPP13 & CPP21 & CPP23 & CPP31 & CPP32 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP44 & CP55 & CP66 & CPP44 & CPP55 & CPP66 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & A & LCSS & & & & & \\
Type & F & F & I & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MACF & \\
Type & F & F & F & F & F & F & I & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
RO & Mass density
\end{tabular}

PR Poisson's ratio
\(\mathrm{CP} i j \quad 9\) coefficients \(c_{i j}^{\prime}\) of the first linear transformation matrix \(\mathbf{C}^{\prime}\)
CPPij \(\quad 9\) coefficients \(c_{i j}^{\prime \prime}\) of the second linear transformation matrix \(\mathbf{C}^{\prime \prime}\)
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):
EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

\section*{VARIABLE}

EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, \(\mathrm{AOPT}=3\) is only available for hexahedrons. a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

A Flow potential exponent \(a\)
LCSS Load curve ID or table ID for (isotropic) hardening:
GT.0: If LCSS is a load curve, then yield stress \(\bar{\sigma}\) is a function of plastic strain. If LCSS is a table, then yield stress \(\bar{\sigma}\) is a function of plastic strain and plastic strain rate.
LT.O: If -LCSS is a load curve, then yield stress \(\bar{\sigma}\) is a function of plastic strain. If -LCSS is a table, then yield stress \(\bar{\sigma}\) is a function of plastic strain and temperature.

XP YP ZP \(\quad\) Define coordinates of point \(P\) for AOPT \(=1\) and 4
A1, A2, A3 Components of vector a for AOPT \(=2\)
MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation

\section*{VARIABLE}

V1, V2, V3 Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3 Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
BETA Material angle in degrees for \(\mathrm{AOPT}=3\). It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO and *ELEMENT_TSHELL_BETA.

\section*{Remarks:}

The 3D yield condition for this material can be written as (see Barlat et al. [2005])
\[
\begin{aligned}
\phi & =\phi\left(\tilde{\mathbf{S}}^{\prime}, \tilde{\mathbf{S}}^{\prime \prime}\right) \\
& =\left|\widetilde{S}_{1}^{\prime}-\widetilde{S}_{1}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{1}^{\prime}-\tilde{S}_{2}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{1}^{\prime}-\widetilde{S}_{S}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime}-\widetilde{S}_{1}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime}-\tilde{S}_{2}^{\prime \prime}\right|^{a} \\
& =4 \bar{\sigma}^{a}
\end{aligned}
\]

Here \(\tilde{S}_{i}^{\prime}\) and \(\tilde{S}_{i}^{\prime \prime}(i=1,2,3)\) are the 6 principal values, \(a\) is the flow potential exponent, and \(\bar{\sigma}\) is the effective uniaxial yield stress (defined with LCSS). The diagonal tensors \(\tilde{\mathbf{S}}^{\prime}=\) \(\operatorname{diag}\left(\tilde{S}_{1}^{\prime}, \tilde{S}_{2}^{\prime}, \tilde{S}_{3}^{\prime}\right)\) and \(\tilde{\mathbf{S}}^{\prime \prime}=\operatorname{diag}\left(\tilde{S}_{1}^{\prime \prime}, \tilde{S}_{2}^{\prime \prime}, \tilde{S}_{3}^{\prime \prime}\right)\) contain the principal values of \(\tilde{\mathbf{s}}^{\prime}\) and \(\tilde{\mathbf{s}}^{\prime \prime}\). \(\tilde{\mathbf{s}}^{\prime}\) and \(\tilde{\mathbf{s}}^{\prime \prime}\) result from two linear transformations of the deviatoric portion of the Cauchy stress, s :
\[
\begin{aligned}
\tilde{\mathbf{s}}^{\prime} & =C^{\prime} \mathbf{s} \\
\tilde{\mathbf{s}}^{\prime \prime} & =C^{\prime \prime} \mathbf{s}
\end{aligned}
\]
\(\mathbf{C}^{\prime}\) and \(\mathbf{C}^{\prime \prime}\) have the following form:
\[
\begin{aligned}
\mathbf{C}^{\prime} & =\left[\begin{array}{cccccc}
0 & -c_{12}^{\prime} & -c_{13}^{\prime} & 0 & 0 & 0 \\
-c_{21}^{\prime} & 0 & -c_{23}^{\prime} & 0 & 0 & 0 \\
-c_{31}^{\prime} & -c_{32}^{\prime} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55}^{\prime} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}^{\prime}
\end{array}\right] \\
\mathbf{C}^{\prime \prime} & =\left[\begin{array}{cccccc}
0 & -c_{12}^{\prime \prime} & -c_{13}^{\prime \prime} & 0 & 0 & 0 \\
-c_{21}^{\prime \prime} & 0 & -c_{23}^{\prime \prime} & 0 & 0 & 0 \\
-c_{31}^{\prime \prime} & -c_{32}^{\prime \prime} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{\prime \prime} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55}^{\prime \prime} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}^{\prime \prime}
\end{array}\right]
\end{aligned}
\]

Each transformation matrix requires 9 coefficients that must be defined on Cards 2,3, and 4 of this material model input. For identification of all 18 coefficients, uniaxial tests in several directions, biaxial tests, and crystal plasticity models (for out-of-plane properties) are needed. See Barlat et al. [2005] for more details and examples for parameters sets.

Note that the sequence of stress tensor components in LS-DYNA is as follows
\[
\mathbf{s}=\left[\begin{array}{l}
s_{x x} \\
s_{y y} \\
s_{z z} \\
s_{x y} \\
s_{y z} \\
s_{z x}
\end{array}\right]
\]
meaning matrix entry " 44 " is linked to stress component " \(x y\) ", " 55 " belongs to " \(y z\) ", and " 66 " refers to " \(z x\) ". If compared to the paper from Barlat et al. [2005] that means the following relations hold (each equation: LS-DYNA parameters on the left, Barlat coefficients on the right):
\[
\begin{aligned}
\mathrm{CP} 44 & =c_{66}^{\prime} & \mathrm{CP} 55 & =c_{44}^{\prime} \\
\mathrm{CPP} 44 & =c_{66}^{\prime \prime} & \mathrm{CPP} 55 & =c_{44}^{\prime \prime}
\end{aligned} \mathrm{CPP66}=c_{55}^{\prime}=c_{55}^{\prime \prime}
\]

For example, the following input would correspond to the parameters in Table 2 of that paper for 6111-T4 aluminum alloy:
```

*MAT_BARLAT_YLD2004

$\$$	CP12	CP13	CP21	CP23	CP31	CP32
	1.241024	1.078271	1.216463	1.223867	1.093105	0.889161
$\$$	CPP12	CPP13	CPP21	CPP23	CPP31	CPP32
	0.775366	0.922743	0.765487	0.793356	0.918689	1.027625
$\$$	CP44	CP55	CP66	CPP44	CPP55	CPP66
	1.349094	0.501909	0.557173	0.589787	1.115833	1.112273

```

\section*{*MAT_BARLAT_YLD2004_27P}

This is Material Type 199_27P. This model is a straightforward extension of material type 199. Aretz et al. [2010] developed the extension. It consists of a yield criterion called Barlat 2004-27p, where up to 27 material parameters define anisotropy for a 3D stress state. This model is currently available for solid elements and thick shell formulations 3, 5 , and 7 .

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & R0 & E & PR & & & & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CP12 & CP13 & CP21 & CP23 & CP31 & CP32 & & \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CPP12 & CPP13 & CPP21 & CPP23 & CPP31 & CPP32 & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CPPP12 & CPPP13 & CPPP21 & CPPP23 & CPPP31 & CPPP32 & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CP44 & CP55 & CP66 & CPP44 & CPP55 & CPP66 & & \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline CPPP44 & CPPP55 & CPPP66 & & & & & \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline AOPT & A & LCSS & & & & & \\
\hline
\end{tabular}

Card 8. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X P\) & \(Y P\) & \(Z P\) & A1 & A2 & A3 & MACF & \\
\hline
\end{tabular}

Card 9. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & & & & \\
Type & A & F & F & F & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
LT.O.O: -E is either a load curve ID for Young's modulus as a function of plastic strain or a table ID for Young's modulus as a function of plastic strain and temperature.

PR Poisson's ratio
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP12 & CP13 & CP21 & CP23 & CP31 & CP32 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPP12 & CPP13 & CPP21 & CPP23 & CPP31 & CPP32 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPPP12 & CPPP13 & CPPP21 & CPPP23 & CPPP31 & CPPP32 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CP44 & CP55 & CP66 & CPP44 & CPP55 & CPP66 & & \\
Type & F & F & F & F & F & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & CPPP44 & CPPP55 & CPPP66 & & & & & \\
Type & F & F & F & & & & & \\
\hline
\end{tabular}

VARIABLE
CPij
CPPij
CPPP \(i j\)

\section*{DESCRIPTION}

9 coefficients \(c_{i j}^{\prime}\) of the first linear transformation matrix \(\mathbf{C}^{\prime}\)
9 coefficients \(c_{i j}^{\prime \prime}\) of the second linear transformation matrix \(\mathbf{C}^{\prime \prime}\)
9 coefficients \(c_{i j}^{\prime \prime \prime}\) of the second linear transformation matrix \(\mathbf{C}^{\prime \prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & AOPT & A & LCSS & & & & & \\
Type & F & F & I & & & & & \\
\hline
\end{tabular}

VARIABLE
AOPT

\section*{DESCRIPTION}

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

\author{
VARIABLE
}

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT \(=3\) is only available for hexahedrons. \(\mathbf{a}\) is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the element's keyword input or input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA, depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector, \(\mathbf{v}\), and an originating point, \(P\), which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

A Flow potential exponent \(a\)
LCSS Load curve ID or table ID for (isotropic) hardening:
GT.O: If LCSS is a load curve, yield stress, \(\bar{\sigma}\), is a function of plastic strain. If LCSS is a table, \(\bar{\sigma}\) is a function of plastic strain and plastic strain rate.
LT.O: If -LCSS is a load curve, yield stress, \(\bar{\sigma}\), is a function of plastic strain. If -LCSS is a table, \(\bar{\sigma}\) is a function of plastic strain and temperature.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A1 & A2 & A3 & MACF & \\
Type & F & F & F & F & F & F & I & \\
\hline
\end{tabular}

VARIABLE
XP YP ZP
A1, A2, A3
MACF

\section*{DESCRIPTION}

Define coordinates of point, \(P\), for AOPT \(=1\) and 4
Components of vector a for \(\mathrm{AOPT}=2\)
Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the procedure to obtain the final material axes. If you define BETA on *ELEMENT_SOLID_\{OPTION\}, LS-DYNA uses that BETA for the rotation for all AOPT options. Otherwise, if \(\mathrm{AOPT}=3\), the BETA input on Card 9 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

V1, V2, V3
Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\)
D1, D2, D3
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)

VARIABLE
BETA

\section*{DESCRIPTION}

Material angle in degrees for \(\mathrm{AOPT}=3\). It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO and *ELEMENT_TSHELL_BETA.

\section*{Remarks:}

We can write the 3D yield condition for this material as (see Aretz et al. [2010]):
\[
\begin{aligned}
& \phi=\phi\left(\tilde{\mathbf{S}}^{\prime}, \tilde{\mathbf{S}}^{\prime \prime}, \tilde{\mathbf{S}}^{\prime \prime \prime}\right) \\
& =\left|\tilde{S}_{1}^{\prime}-\tilde{S}_{1}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{1}^{\prime}-\tilde{S}_{2}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{1}^{\prime}-\tilde{S}_{3}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime}-\tilde{S}_{1}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime}-\tilde{S}_{2}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime}-\tilde{S}_{3}^{\prime \prime}\right|^{a} \\
& +\left|\tilde{S}_{3}^{\prime}-\tilde{S}_{1}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{3}^{\prime}-\tilde{S}_{2}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{3}^{\prime}-\tilde{S}_{3}^{\prime \prime}\right|^{a}+\left|\tilde{S}_{1}^{\prime \prime \prime}-\tilde{S}_{2}^{\prime \prime \prime}\right|^{a}+\left|\tilde{S}_{2}^{\prime \prime \prime}-\tilde{S}_{3}^{\prime \prime \prime}\right|^{a}+\left|\tilde{S}_{3}^{\prime \prime \prime}-\tilde{S}_{1}^{\prime \prime \prime}\right|^{a} \\
& =6 \bar{\sigma}^{a}
\end{aligned}
\]

Here \(\tilde{S}_{i}^{\prime}, \tilde{S}_{i}^{\prime \prime}\) and \(\tilde{S}_{i}^{\prime \prime \prime}(i=1,2,3)\) are the nine principal values, \(a\) is the flow potential exponent, and \(\bar{\sigma}\) is the effective uniaxial yield stress (defined with LCSS). The diagonal tensors \(\tilde{\mathbf{S}}^{\prime}=\operatorname{diag}\left(\tilde{S}_{1}^{\prime}, \tilde{S}_{2}^{\prime}, \tilde{S}_{3}^{\prime}\right), \tilde{\mathbf{S}}^{\prime \prime}=\operatorname{diag}\left(\tilde{S}_{1}^{\prime \prime}, \tilde{S}_{2}^{\prime \prime}, \tilde{S}_{3}^{\prime \prime}\right)\) and \(\tilde{\mathbf{S}}^{\prime \prime \prime}=\operatorname{diag}\left(\tilde{S}_{1}^{\prime \prime \prime}, \tilde{S}_{2}^{\prime \prime \prime}, \tilde{S}_{3}^{\prime \prime \prime}\right)\) contain the principal values of \(\tilde{\mathbf{s}}^{\prime}, \tilde{\mathbf{s}}^{\prime \prime}\) and \(\tilde{\mathbf{s}}^{\prime \prime \prime}\). \(\tilde{\mathbf{s}}^{\prime}, \tilde{\mathbf{s}}^{\prime \prime}\) and \(\tilde{\mathbf{s}}^{\prime \prime \prime}\) result from three linear transformations of the deviatoric portion of the Cauchy stress, \(\mathbf{s}\) :
\[
\begin{aligned}
\tilde{\mathbf{s}}^{\prime} & =\mathbf{C}^{\prime} \mathbf{s} \\
\tilde{\mathbf{s}}^{\prime \prime} & =\mathbf{C}^{\prime \prime} \mathbf{s} \\
\tilde{\mathbf{s}}^{\prime \prime \prime} & =\mathbf{C}^{\prime \prime \prime} \mathbf{s}
\end{aligned}
\]
\(\mathbf{C}^{\prime}, \mathbf{C}^{\prime \prime}\), and \(\mathbf{C}^{\prime \prime \prime}\) have the following form:
\[
\begin{aligned}
\mathbf{C}^{\prime} & =\left[\begin{array}{cccccc}
0 & -c_{12}^{\prime} & -c_{13}^{\prime} & 0 & 0 & 0 \\
-c_{21}^{\prime} & 0 & -c_{23}^{\prime} & 0 & 0 & 0 \\
-c_{31}^{\prime} & -c_{32}^{\prime} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55}^{\prime} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}^{\prime}
\end{array}\right] \\
\mathbf{C}^{\prime \prime} & =\left[\begin{array}{ccccc}
0 & -c_{12}^{\prime \prime} & -c_{13}^{\prime \prime} & 0 & 0 \\
-c_{21}^{\prime \prime} & 0 & -c_{23}^{\prime \prime} & 0 & 0 \\
-c_{31}^{\prime \prime} & -c_{32}^{\prime \prime} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{\prime \prime} & 0 \\
0 & 0 & 0 & 0 & c_{55}^{\prime \prime} \\
0 \\
0 & 0 & 0 & 0 & 0 \\
c_{66}^{\prime \prime}
\end{array}\right] \\
\mathbf{C}^{\prime \prime \prime} & =\left[\begin{array}{cccccc}
0 & -c_{12}^{\prime \prime \prime} & -c_{13}^{\prime \prime \prime} & 0 & 0 & 0 \\
-c_{21}^{\prime \prime \prime} & 0 & -c_{23}^{\prime \prime \prime} & 0 & 0 & 0 \\
-c_{31}^{\prime \prime} & -c_{32}^{\prime \prime \prime} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{\prime \prime \prime} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55}^{\prime \prime \prime} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}^{\prime \prime \prime}
\end{array}\right]
\end{aligned}
\]

Each transformation matrix requires nine coefficients input on Cards 2, 3, 4, 5, and 6. You must identify the 27 coefficients from the results of uniaxial tests in several directions, biaxial tests, and crystal plasticity models (for out-of-plane properties). See Barlat et al. [2005] and Aretz et al. [2010] for more details and examples of parameter sets.

Note that the sequence of stress tensor components in LS-DYNA is as follows
\[
\mathbf{s}=\left[\begin{array}{l}
s_{x x} \\
s_{y y} \\
s_{z z} \\
s_{x y} \\
s_{y z} \\
s_{z x}
\end{array}\right]
\]
meaning matrix entry " 44 " is linked to stress component " \(x y\) ", " 55 " belongs to " \(y z\) ", and " 66 " refers to " \(z x^{\prime \prime}\). If compared to the paper from Aretz et al. [2010] that means the following relations hold (each equation: LS-DYNA parameters on the left, Barlat coefficients on the right):
\[
\begin{aligned}
\mathrm{CP} 44 & =c_{66}^{\prime} & \mathrm{CP} 55 & =c_{44}^{\prime} & \mathrm{CP} 66 & =c_{55}^{\prime} \\
\mathrm{CPP} 44 & =c_{66}^{\prime \prime} & \mathrm{CPP} 55 & =c_{44}^{\prime \prime} & \mathrm{CPP} 66 & =c_{55}^{\prime \prime} \\
\mathrm{CPPP} 44 & =c_{66}^{\prime \prime \prime} & \mathrm{CPPP} 55 & =c_{44}^{\prime \prime \prime} & \mathrm{CPPP} 66 & =c_{55}^{\prime \prime \prime}
\end{aligned}
\]

For example, the following input corresponds to the anisotropy parameters of the paper from Aretz et al. [2010] for AA3104-H19 aluminum alloy:

\section*{*MAT_STEEL_EC3}

This is Material Type 202. Tables and formulae from Eurocode 3 are used to derive the mechanical properties and their variation with temperature, although these can be overridden by user-defined curves. It is currently available only for Hughes-Liu beam elements. This material model is intended for modelling structural steel in fires.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & SIGY & & & \\
Type & A & F & F & F & F & & & \\
Default & none & none & none & none & none & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LC_E & LC_PR & LC_AL & TBL_SS & LC_FS & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & \\
\hline
\end{tabular}

Card 3 must be included but left blank.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & & \\
Type & & & & & & & & \\
Default & & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

RO
Mass density
\begin{tabular}{cll}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } & & \(\begin{array}{l}\text { Young's modulus - a reasonable value must be provided even if } \\
\text { LC_E is also input. See Remark 2. }\end{array}\) \\
PR & & Poisson's ratio
\end{tabular}\(]\)\begin{tabular}{l}
Initial yield stress, \(\sigma_{y 0}\).
\end{tabular}

\section*{Remarks:}
1. Eurocode 3 and Required Input. By default, only E, PR and SIGY must be defined. The Young's Modulus, \(E\), will be scaled by a factor which is a function of temperature as specified in EC3. The factor is 1.0 at low temperature. Eurocode 3 (EC3) Section 3.2 specifies the stress-strain behaviour of carbon steels at temperatures between \(20^{\circ} \mathrm{C}\) and \(1200^{\circ} \mathrm{C}\). The stress-strain curves given in EC3 are scaled within the material model such that the maximum stress at low temperatures is SIGY (see Figure below). By default, the thermal expansion coefficient as a function of temperature will be as specified in EC3 Section 3.4.1.1.
2. Optional Input. LC_E, LC_PR and LC_AL are optional; they should have temperature on the \(x\)-axis and the material property on the \(y\)-axis, with the points in order of increasing temperature. If defined (that is, nonzero), they over-ride E, PR, and the relationships from EC3. However, a reasonable value for E should always be included, since these values will be used for purposes such as contact stiffness calculation.

Figure M202-1. Stress-Strain Curves at various temperatures

TBL_SS is also optional. It overrides SIGY and the stress-strain relationships from EC3. If present, TBL_SS must be the ID of a *DEFINE_TABLE. The field VALUE on the *DEFINE_TABLE should contain the temperature at which each stress-strain curve is applicable; the temperatures should be in ascending order. The curves that follow the temperature values have plastic strain on the \(x\)-axis and yield stress on the \(y\)-axis as per other LS-DYNA elasto-plastic material models. As with all instances of *DEFINE TABLE, the curves containing the stressstrain data must immediately follow the *DEFINE_TABLE input data and must be in the correct order (that is, the same order as the temperatures).
3. Temperature. Temperature can be defined by any of the *LOAD_THERMAL methods. The temperature does not have to start at zero: the initial temperature will be taken as a reference temperature for each element, so non-zero initial temperatures will not cause thermal shock effects.
4. Extra History Variables. Temperature is output by this material model as Extra History Variable 1. This can be useful for checking the input in cases where temperature varies across the different integration points, as is the case with *LOAD_THERMAL_VARIABLE_BEAM

\section*{*MAT_HYSTERETIC_REINFORCEMENT}

This is Material Type 203. It is intended as an alternative reinforcement model for layered reinforced concrete shell or beam elements, for use in seismic analysis where the nonlinear hysteretic behavior of the reinforcement is important. *PART_COMPOSITE or *INTEGRATION_BEAM should be used to define some integration points as a part made of *MAT_HYSTERETIC_REINFORCEMENT, while other integration points have concrete properties using *MAT_CONCRETE_EC2. When using beam elements, ELFORM = 1 is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & YM & PR & SIGY & LAMDA & SBUCK & POWER \\
Type & A & F & F & F & F & F & F & F \\
Default & none & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & SIGY & 0.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline Variable & FRACX & FRACY & LCTEN & LCCOMP & AOPT & EBU & DOWNSL & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline Variable & DBAR & FCDOW & LCHARD & UNITC & UNITL & & & \\
Type & F & F & F & F & F & & & \\
Default & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EPDAM1 & EPDAM2 & DRESID & & & & & \\
Type & F & F & F & & & & \\
Default & 0.0 & 0.0 & 0.0 & & & & & \\
\hline
\end{tabular}

Additional Card for AOPT \(\neq 0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & A1 & A2 & A3 & & \\
Type & & & & F & F & F & & \\
Default & & & & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

Additional Card for AOPT \(\neq 0\).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & \\
Type & F & F & F & F & F & F & F & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{cll}
VARIABLE & & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & & \begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
RO & Mass density \\
YM & Young's modulus \\
PR & Poisson'srRatio \\
SIGY & Yield stress
\end{tabular}

\section*{VARIABLE}

LAMDA
SBUCK Initial buckling stress (should be positive)
POWER Power law for Bauschinger effect (non-dimensional)
FRACX Fraction of reinforcement at this integration point in local \(x\)-direction

FRACY Fraction of reinforcement at this integration point in local \(y\)-direction

LCTEN Optional curve providing the factor on SIGY as a function of plastic strain (tension)

LCCOMP Optional curve providing the factor on SBUCK as a function of plastic strain (compression)

AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC):
EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in Figure M2-1. The a-direction is from node 1 to node 2 of the element. The \(\mathbf{b}\)-direction is orthogonal to the a-direction and is in the plane formed by nodes 1,2 , and 4 . The material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors a and d input below, as with *DEFINE_COORDINATE_VECTOR.
EQ.3.0: Locally orthotropic material axes determined by a vector \(\mathbf{v}\) and the normal vector to the plane of the element (see Figure M2-1). a is determined by taking the cross product of \(\mathbf{v}\) with the normal vector, \(\mathbf{b}\) is determined by taking the cross product of the normal vector with \(\mathbf{a}\), and \(\mathbf{c}\) is the normal vector. Then \(\mathbf{a}\) and \(\mathbf{b}\) are rotated about \(\mathbf{c}\) by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword.

LT.0.0: \(|\mathrm{AOPT}|\) is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

EBU Optional buckling strain. If defined, it overrides LAMBDA.
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline DOWNSL & Initial downslope of the buckling curve as a fraction of the Young's modulus (dimensionless) \\
\hline DBAR & Reinforcement bar diameter used for dowel action. See Remark 7. \\
\hline FCDOW & Concrete compressive strength used for dowel action. See Remark 7. This field has units of stress. \\
\hline LCHARD & Characteristic length for dowel action (length units) \\
\hline UNITC & Factor to convert model stress units to MPa. For instance, if the model units are Newtons and meters, UNITC \(=10^{-6}\). [UNITC] \(=\) 1/[STRESS]. \\
\hline UNITL & Factor to convert model length units to millimeters. For example, if the model units are meters, \(\mathrm{UNITL}=1000\). [UNITL] \(=1 /\) [LENGTH]. \\
\hline EPDAM1 & Accumulated plastic strain at which hysteretic damage begins \\
\hline EPDAM2 & Accumulated plastic strain at which hysteretic damage is complete \\
\hline DRESID & Residual factor remaining after hysteretic damage \\
\hline A1, A2, A3 & Components of vector a for AOPT \(=2\) \\
\hline V1, V2, V3 & Components of vector \(\mathbf{v}\) for \(\mathrm{AOPT}=3\) \\
\hline D1, D2, D3 & Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\) \\
\hline BETA & Angle for AOPT \(=0\) and 3 \\
\hline
\end{tabular}

\section*{Remarks:}
1. Material directions. The reinforcement is treated as bars, acting independently in the local material \(x\) and \(y\) directions. By default, the local material \(x\)-axis is the element's \(x\)-axis (parallel to the line from Node 1 to Node 2), but this direction may be overridden using AOPT or the element's BETA angles.
2. Using this material with shell and beam elements. For shell elements, the reinforced concrete section should be defined using *PART_COMPOSITE with some integration points being reinforcement (referencing a material ID using this material model) and others being concrete (using, for example, *MAT_CONCRETE_EC2). By default, shear strains in the local \(x y, y z\), and \(z x\) directions are unresisted by this material model, so it should not be used alone (without

Figure M203-1. Buckling behavior using EBU and DOWNSL
concrete). The area fractions of reinforcement in the local \(x\) and \(y\)-directions at each integration point are given by the thickness fraction of the integration point in the *PART_COMPOSITE definition times the fractions FRACX and FRACY on Card 2 above.

For beam elements, *INTEGRATION_BEAM defines the material at the integration point (e.g. reinforcement or concrete). Due to a limitation of *INTEGRATION_BEAM, this material model can be paired only with *MAT_CONCRETE_EC2 within the same *INTEGRATION_BEAM.
3. Stress-strain response. The tensile response is elastic-perfectly plastic, using yield stress SIGY. Optionally, load curves may be used to describe the stressstrain response in tension (LCTEN) and compression (LCCOMP). Either, neither, or both curves may be defined. If present, LCTEN overrides the perfectly plastic tensile response, and LCCOMP overrides the buckling curve. The tensile and compressive plastic strains are considered independent of each other.
4. Bar buckling. To define bar buckling, set either the slenderness ratio LAMDA or the initial buckling strain EBU with downslope DOWNSL. If bar buckling is not defined, the bars simply yield in compression. If both ways are defined, the buckling behavior defined by EBU and DOWNSL overrides LAMDA.

The slenderness ratio LAMDA determines buckling behavior and is defined as,
\[
\frac{k L}{r},
\]
where \(k\) depends on end conditions, and
\(L=\) unsupported length of reinforcement bars
\(r=\) radius of gyration which for round bars is equal to (bar radius) \(/ 2\).

Users are expected to determine LAMDA accounting for the expected crack spacing.

Figure M203-1 shows the alternative buckling behavior defined by EBU and DOWNSL.
5. Hysteresis response. Reloading after a change of load direction follows a Bauschinger-type curve, leading to the hysteresis response shown below:

Figure M203-2. Example hysteretic response
6. Damage modeling. Two types of damage accumulation may be modeled. Damage based on ductility (strain) can be modeled using the curves LCTEN and LCCOMP. At high strain, these curves show reducing stress with increasing strain.

To model damage based on hysteretic energy accumulation, use the parameters EPDAM1, EPDAM2, and DRESID. The damage is a function of accumulated plastic strain. For this purpose, plastic strain increments are always treated as positive in both tension and compression, and buckling strain also counts towards the accumulated plastic strain. The material has its full stiffness and strength until the accumulated plastic strain reaches EPDAM1. Between plastic strains EPDAM1 and EPDAM2, the stiffness and strength fall linearly with accumulated plastic strain, reaching a factor DRESID at plastic strain EPDAM2.
7. Dowel action. The data on Card 3 defines the shear stiffness and strength and is optional. Shear resistance is assumed to occur by dowel action. The bars bend
locally to the crack and crush the concrete. An elastic-perfectly-plastic relation is assumed for all shear components (in-plane and through-thickness). The assumed (smeared) shear modulus and yield stress applicable to the reinforcement bar cross-sectional area are as follows, based on formulae derived from experimental data by El-Ariss, Soroushian, and Dulacska:
\[
\begin{aligned}
G[\mathrm{MPa}] & =8.02 E^{0.25} F_{c}^{0.375} L_{\mathrm{char}} D_{b}^{0.75} \\
\tau_{y} & =1.62 \sqrt{F_{c} S_{y}}
\end{aligned}
\]
where,
\[
\begin{aligned}
E & =\text { steel Young's modulus in MPa } \\
F_{c} & =\text { compressive strength of concrete in MPa } \\
L_{\text {char }} & =\text { characteristic length of shear deformation in } \mathrm{mm} \\
D_{b} & =\text { bar diameter in } \mathrm{mm} \\
S_{y} & =\text { steel yield stress in MPa. }
\end{aligned}
\]

The input parameters should be given in model units. For instance, DBAR and LCHAR are in model length units, and FCDOW is in model stress units. These units are converted internally using UNITL and UNITC.
8. Element erosion. By default, no erosion occurs. Elements are deleted only if EPDAM1 and EPDAM2 are nonzero, DRESID is zero, and the accumulated plastic strain reaches EPDAM2. If FRACX and FRACY are both nonzero, i.e., if there is reinforcement in both local directions, elements only erode when the condition above has been reached in both local directions.
9. Output. The output stresses, as for all other LS-DYNA material models, are by default in the global coordinate system. They are scaled by the reinforcement fractions FRACX and FRACY. The plastic strain output is the accumulated plastic strain (increments always treated as positive) and is the greater such value of the two local directions. Extra history variables are available as follows:
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 1 & \begin{tabular}{l}
Reinforcement stress in the local \(x\)-direction (not scaled by \\
FRACX)
\end{tabular} \\
2 & \begin{tabular}{l}
Reinforcement stress in the local \(y\)-direction (not scaled by FRA- \\
CY)
\end{tabular} \\
3 & Total strain in the local \(x\)-direction \\
4 & Total strain in the local \(y\)-direction \\
5 & Accumulated plastic strain in the local \(x\)-direction \\
6 & Accumulated plastic strain in the local \(y\)-direction \\
7 & Shear stress (dowel action) in local \(x y\) \\
\hline
\end{tabular}
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 8 & Shear stress (dowel action) in local \(x z\) \\
9 & Shear stress (dowel action) in local \(y z\) \\
10 & Maximum (high-tide) total strain in the local \(x\)-direction \\
11 & Maximum (high-tide) total strain in the local \(y\)-direction \\
\hline
\end{tabular}

\section*{*MAT_DISCRETE_BEAM_POINT_CONTACT}

This is Material Type 205. It is used for discrete beam elements only (ELFORM = 6). It simulates contact forces between a point (Node 2) and an imaginary flat surface (fixed relative to Node 1). The beam elements may have nonzero initial length. On *SECTION_BEAM, SCOOR must be set to -13, the triad rotation option. The triad rotation option ensures that the axis system remains fixed in the imaginary surface.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline MID & RO & STIFF & FRIC & DAMP & DMXPZ & LIMPZ & \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline DMXPX & DMXNX & DMXPY & DMXNY & LIMPX & LIMNX & LIMPY & LIMNY \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline KROTX & KROTY & KROTZ & TKROT & FBONDH & FBONDT & DBONDH & DBONDT \\
\hline
\end{tabular}

Card 4. This card is optional.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline LCZ & DAMPZ & STIFFH & FRMAX & DAMPH & GAP0 & AFAC & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & STIFF & FRIC & DAMP & DMXPZ & LIMPZ & \\
Type & A & F & F & F & F & F & F & \\
Default & none & none & none & 0.0 & 0.0 & \(10^{20}\) & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{cl}
VARIABLE & \multicolumn{1}{c}{ DESCRIPTION } \\
\cline { 1 - 1 } MID & \\
\begin{tabular}{l}
Material identification. A unique number or label must be speci- \\
fied (see *PART).
\end{tabular} \\
STIFF & Mass density \\
FRIC & Stiffness (Force/length units) \\
& Friction coefficient (dimensionless)
\end{tabular}

\section*{VARIABLE}

DAMP

DMXPZ
LIMPZ

\section*{DESCRIPTION}

Damping factor (dimensionless), in the range 0 to 1 . We suggest a value of 0.5.

Displacement limit in positive local \(z\)-direction (uplift)
Action when Node 2 passes DMXPZ:
EQ.0: Element is deleted.
EQ.1: Further displacement is resisted by stiffness STIFF.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DMXPX & DMXNX & DMXPY & DMXNY & LIMPX & LIMNX & LIMPY & LIMNY \\
Type & F & F & F & F & F & F & F & F \\
Default & \(10^{20}\) & DMXPX & DMXPX & DMXPY & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
DMXPX
DMXNX \(\quad\) Displacement limit in negative local \(x\)-direction
DMXPY Displacement limit in positive local y-direction
DMXNY Displacement limit in negative local \(y\)-direction
LIMPX Action when Node 2 passes DMXPX:
EQ.0: Element is deleted.
EQ.1: Further displacement is resisted by stiffness STIFF.
Action when Node 2 passes DMXNX:
EQ.O: Element is deleted.
EQ.1: Further displacement is resisted by stiffness STIFF.
LIMPY Action when Node 2 passes DMXPY:
EQ.O: Element is deleted.
EQ.1: Further displacement is resisted by stiffness STIFF.

\section*{VARIABLE}

\section*{DESCRIPTION}

LIMNY
Action when Node 2 passes DMXNY:
EQ.0: Element is deleted.
EQ.1: Further displacement is resisted by stiffness STIFF.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & KROTX & KROTY & KROTZ & TKROT & FBONDH & FBONDT & DBONDH & DBONDT \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \(10^{20}\) & \(10^{20}\) \\
\hline
\end{tabular}

\section*{VARIABLE}

KROTX
KROTY
KROTZ
TKROT
FBONDH
FBONDT
DBONDH

DBONDT Displacement over which bond force normal to the contact surface reduces from FBONDT to zero

This card is optional
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCZ & DAMPZ & STIFFH & FRMAX & DAMPH & GAP0 & AFAC & \\
Type & I & F & F & F & F & F & F & \\
Default & 0 & 0.0 & STIFF & \(\infty\) & 0.0 & 0.0 & 1.0 & \\
\hline
\end{tabular}

\section*{VARIABLE \\ LCZ}

DAMPZ

FRMAX Upper limit on friction force

GAP0
AFAC

STIFFH \(\quad\) Elastic stiffness in local \(x\) - and \(y\)-directions

DAMPH \(\quad\) Viscous damping coefficient in local \(x\) - and \(y\)-directions (applied in addition to DAMP) (force/velocity units).

\section*{DESCRIPTION}

Optional load curve ID giving force-displacement for compression in local \(z\)-direction (abscissa: displacement; ordinate: force). The load curve must be defined in the positive quadrant, meaning that the compressive force values should be defined as positive values.

Viscous damping coefficient in local \(z\)-direction (applied in addition to DAMP) (force/velocity units) Initial gap in local \(z\)-direction (length units)

Scale factor applied to all stiffnesses and forces

\section*{Remarks:}
1. Model Description. This material model simulates contact between a point (Node 2 of the beam element) and an imaginary flat surface which is fixed relative to Node 1. In these remarks we call the imaginary surface the "contact surface" - this does not refer to *CONTACT. The local axes are determined by CID on *SECTION_BEAM. The imaginary surface is in the local \(x y\) plane passing through the initial coordinates of Node 2. The local \(z\)-axis points outwards from the surface. The surface translates and rotates with Node 1. SCOOR must be set to -13 . The elements may have nonzero length.

When Node 2 moves in the negative local \(z\)-direction relative to Node 1 (penetration into the contact surface), the motion is resisted by stiffness STIFF and the force generated is described here as the contact force. By default, uplift (Node 2 moving in the positive local \(z\)-direction relative to Node 1) is not resisted. If uplift greater than DMXPZ occurs, either the element is deleted (if LIMPZ \(=0\)) or further uplift is resisted by STIFF (if LIMPZ \(=1\)).

Sliding on the surface (motion of Node 2 in the local \(x\) - and \(y\)-directions) is resisted by friction. The maximum friction force is given by FRIC times the contact force, with an upper limit of FRMAX if that parameter is nonzero. When one of the displacement limits, DMXPX, DMXNX, DMXPY, or DMXNY, is reached, the default behavior is for Node 2 to fall off the edge of the contact surface, and the element is deleted (see Figure M205-1). Optionally, the input fields LIMPX, LIMNX, LIMPY, and LIMNY can be used to change the behavior to "hard limits" using stiffness STIFF - these represent contact with a hard surface perpendicular to the surface on which Node 2 slides. In that case, the limit distances, DMXPX, DMXNX, DMXPY, and

Figure M205-1. Illustration of the two different actions that can be applied to the element when Node 2 reaches the edge of the plane. The left schematic depicts the default behavior in which the element is deleted when Node 2 reaches the edge. The right image illustrates Node 2 reaching a hard limit. When it reaches this limit, a contact force is applied.

DMXNY, represent the initial gap between the point (Node 2) and the hard surface.

Optionally, an initial bond strength can be defined. The bond forces are in addition to any contact and friction forces. After breakage of the bond, contact and sliding can continue to occur.

If LCZ is defined, compressive loading in the contact direction follows LCZ while unload/reload is linear with stiffness STIFF. The value of STIFF must not be less than the maximum slope of any segment of the curve LCZ.

You can also define moment stiffnesses through KROTX, KROTY and KROTZ. Optionally, these stiffnesses can be set to become active at a certain time (TKROT). If TKROT is nonzero, the moment stiffness will be zero before that time and during any dynamic relaxation. If TKROT is left zero, the moment stiffness will be active from the start of the analysis including during dynamic relaxation.

Damping is applied to the force normal to the surface, to the bond forces, and to any forces generated by "hard limits" (LIMPX etc.), but not to sliding. Two damping methods are available: DAMP and DAMPZ/DAMPH. DAMP is recommended for general use where the exact amount of damping is unimportant, and the requirement is simply to remove unwanted oscillations. DAMPZ and DAMPH are available for cases where particular values of viscous damping coefficient are required. When LCZ is also defined and the response is following the load curve (meaning not during unloading/reloading), the damping coefficient DAMPZ is scaled to the ratio of the slope of LCZ to STIFF. The slope of LCZ is the gradient at the current point on the load curve.
2. *SECTION_BEAM Input. Note on values for *SECTION_BEAM:
a) Set ELFORM to 6 (discrete beam)
b) CID can be left blank if the contact surface is aligned in the global \(X Y\) plane, otherwise a coordinate system should be referenced.
c) SCOOR must be set to -13 .
3. Output. Beam "axial" or "X" force is the force in the local \(x\)-direction. "Shear- \(Y\) " or " \(Y\) " force is the force in the local \(y\)-direction. "Shear- \(Z\) " or " \(Z\) " force is the force in the local \(z\)-direction, normal to the contact surface.

Other output is written to the d3plot and d3thdt files in the places where postprocessors expect to find the stress and strain at the first integration point for integrated beams:
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
Integration \\
Point
\end{tabular} & \begin{tabular}{c}
Post-Processing \\
Data Component
\end{tabular} & \multicolumn{1}{|c|}{ Actual Meaning } \\
\hline \hline 1 & Axial stress & Displacement in the local \(x\)-direction \\
1 & \(X Y\) shear stress & Displacement in the local \(y\)-direction \\
1 & \(Z X\) shear stress & \begin{tabular}{l}
Displacement in the local \(z\)-direction \\
Minimum overlap, meaning the minimum value so \\
far during the analysis of the remaining displace- \\
ment before Node 2 falls of the surface in the \(x\) - or \\
1
\end{tabular} \\
Plastic strain & Axial strain & \begin{tabular}{l}
Bond damage \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{*MAT_SOIL_SANISAND}

This is Material Type 207. It is supported for solid elements only. It is intended for modelling sands and sandy soils under monotonic and cyclic loading conditions. Cyclic shear loading leads to dilative and contractive volumetric behavior based on critical state soil mechanics. When used together with LS-DYNA's pore fluid analysis capabilities, liquefaction and related phenomena can be modelled. See Remarks below.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & GO & KONU & PREF & RHOC & THETA & \(X\) \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EIN & ALPHAC & EO & LAMBDA & XI & NB & H0 & CH \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline P0 & CC & ND & A0 & & & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ANISO & KH & ZMAX & CZ & & & & \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PATM & M & N & V & & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & G0 & KONU & PREF & RHOC & THETA & X \\
Type & A & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & 0.37 & none & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO

G0
K0NU

PREF

RHOC
THETA

X

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Shear modulus term \(G_{0}\). See Remark 6.
Elastic constant (see Remark 6):
GT.0.0: Bulk modulus term \(K_{0}\)
LT.0.0: Absolute value is Poisson's ratio, \(v\).

Reference pressure in Limiting Compression Curve, associated with unity void ratio. See Remark 10.

Exponent in Limiting Compression Curve, \(\rho_{c}\). See Remark 10.
Exponent in transitional compression behavior, \(\theta\). See Remark 10.
Material constant X. See Remark 10.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & EIN & ALPHAC & E0 & LAMBDA & XI & NB & H 0 & CH \\
Type & F & F & F & F & F & F & F & F \\
Default & none & none & none & none & 0.7 & none & none & none \\
\hline
\end{tabular}

VARIABLE
EIN

ALPHAC
E0
LAMBDA
XI

NB

\section*{DESCRIPTION}

Initial void ratio
Critical surface angle in \(q-p\) space, \(\alpha_{c}^{c}\). See Remark 8.
Material constant in Critical State Line, \(e_{0}\). See Remark 8.
Material constant in Critical State Line, \(\lambda\). See Remark 8.
Material constant in Critical State Line, \(\xi\). See Remark 8.
Bounding surface parameter, \(n^{b}\). See Remark 8.

\section*{VARIABLE}

H0
CH

\section*{DESCRIPTION}

Kinematic hardening parameter, \(h_{0}\). See Remark 7 .
Kinematic hardening parameter, \(c_{h}\). See Remark 7.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PO & CC & ND & A0 & & & & \\
Type & F & F & F & F & & & & \\
Default & none & 0.778 & none & none & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

P0
CC

ND
A0

\section*{DESCRIPTION}

Initial value of yield surface parameter, \(p_{0}\). See Remark 7 .
Ratio of critical surface angle in extension to critical surface angle in compression, c. See Remark 8.

Dilatancy surface parameter, \(n_{d}\). See Remark 8.
Dilatancy parameter, \(A_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ANISO & KH & ZMAX & CZ & & & & \\
Type & F & F & F & F & & & & \\
Default & 0.333 & 1.0 & none & none & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

ANISO
KH Material constant, \(k_{h}\), in dependence of hardening parameters on inherent fabric anisotropy. See Remark 12.

ZMAX Material constant for fabric change effect, \(z_{\text {max }}\) See Remark 11.
\(\frac{\text { VARIABLE }}{\text { CZ }} \quad\)\begin{tabular}{l}
DESCRIPTION \\
Material constant for fabric change effect, \(c_{z}\). See Remark 11.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PATM & M & N & V & & & & \\
Type & F & F & F & F & & & & \\
Default & none & 0.05 & 20.0 & 1000.0 & & & & \\
\hline
\end{tabular}

VARIABLE
PATM
M Yield surface constant, \(m\). See Remark 7.
\(\mathrm{N} \quad\) Yield surface constant, \(n\). See Remark 7.
V Flow rule constant, \(V\)

\section*{Remarks:}
1. References. SANISAND (an acronym for Simple ANIsotropic SAND) is a family of constitutive models within the frameworks of critical state soil mechanics and bounding surface plasticity. Although the overall principles remain the same, different research teams have developed versions of SANISAND with different details. The material model implemented in LS-DYNA as *MAT_SANISAND is based on Dafalias and Manzari [2004] with high-pressure yield surface cap from Taiebat and Dafalias [2008] and options for inherent fabric anisotropy taken from Dafalias, Papadimitriou, and Li [2004]. The references give the constitutive model equations both in "triaxial formulation" (in which there are only two stress variables \(q\) and \(p\)), and in "multi-axial formulation" (in which the deviatoric stress-related terms are tensors). The LS-DYNA implementation follows the multi-axial formulation, but, in these Remarks, equations are given in triaxial formulation for ease of understanding the principles.
2. Pore pressure build-up and liquefaction. Pore water pressure build-up occurs when the "soil skeleton" contracts (for example, under cyclic shearing), leaving a greater proportion of the external load to be supported by the pore water and a lesser proportion acting on the soil skeleton, that is, the effective stress is reduced. Since sandy soils are frictional materials, reduced effective stress leads
to reduced shear stiffness and reduced shear strength. It ultimately leads to liquefaction of the soil. Therefore, accurate modelling of pore pressure build-up and liquefaction effects depend critically on accurate dilation/contraction behavior of the material model, which is a key aspect of the SANISAND material model.
3. Modeling pore pressure. Pore pressure is not included in the material model itself. As with other LS-DYNA soil models, the material model represents the effective stress (soil skeleton) behavior. Pore pressure can be modelled with *CONTROL_PORE_FLUID and *BOUNDARY_PORE_FLUID. The analysis type should be set to Undrained or Time Dependent Consolidation (ATYPE = 1 or 3, respectively) in order for pore pressure changes to occur in response to the dilation or contraction of the soil.
4. Void ratio. Soils consist of solid particles with voids between them. Many of the equations governing the behavior of this material model are given in terms of the void ratio, \(e\). The volume of voids divided by the volume of solids gives the void ratio. It is a measure of how loosely or tightly packed the particles are (the lower the void ratio, the more tightly packed). The void ratio at the start of the analysis is given by input parameter EIN. The void ratio varies during the analysis: volumetric strains are assumed to relate to changes of void volume, while the volume of solids remains unchanged.
5. Stress ratio. Most elasto-plastic constitutive models are described in terms of their stress-strain behavior. For frictional materials, such as sandy soils, shear strength is considered proportional to pressure. Thus, it is more appropriate to define the equations in terms of stress ratio rather than stress. Stress ratio in triaxial formulation is a scalar quantity \(\eta\) equal to \(q / p\) (where \(q\) is Von Mises stress and \(p\) is pressure). In the multi-axial formulation, the stress ratio is a tensor quantity equal to the deviatoric stress tensor divided by pressure. Stress ratios described in the references include the "dilatancy stress ratio" (also called the "phase transformation line") which marks the boundary between contractive and dilative response to shear strains, the "critical state stress ratio" (see Remark 8), and the "bounding stress ratio" at which shear failure occurs.
6. Elastic properties. The elastic shear modulus, \(G\), is given by:
\[
G=G_{0} p_{\mathrm{atm}} \frac{(2.97-e)^{2}}{1+e}\left(\frac{p}{p_{\mathrm{atm}}}\right)^{1 / 2}
\]
where \(G_{0}\) and \(p_{\text {atm }}\) are the input parameters G0 and PATM, \(p\) is the current pressure, and \(e\) is the current void ratio.

If input parameter K 0 NU is positive, then the bulk modulus, \(K\), is given by:
\[
K=K_{0} p_{\mathrm{a}} \frac{1+e}{e}\left(\frac{p}{p_{\mathrm{atm}}}\right)^{2 / 3}
\]
where \(K_{0}\) is the input parameter K 0 NU . If input parameter K 0 NU is negative, then the bulk modulus, \(K\), is given by:
\[
K=\frac{2(1+v)}{3(1-2 v)} G
\]
where \(v=-\mathrm{K} 0 \mathrm{NU}\).
7. Yield surface and hardening. The yield surface is defined as a narrow cone of semi-angle \(m\) centered on a back stress ratio \(\alpha\) which, together with the hardening rule, enables realistic nonlinear unload/reload behavior under cyclic loading. The yield surface is closed at the high pressure end by a cap-like feature that models grain crushing using parameter \(p_{0}\), as described in Taiebat and Dafalias [2008]:
\[
f=(q-p \alpha)^{2}-m^{2} p^{2}\left[1-\left(\frac{p}{p_{0}}\right)^{n}\right]=0
\]
where \(m\) and \(n\) are input parameters M and N (see Card 5), and \(p_{0}\) has an initial value given by input parameter P0. Description of the flow rule and evolution of \(\alpha\) and \(p_{0}\) are given in the references. The yield surface as described in Dafalias and Manzari [2004] is the same as above except that it lacks the term in square brackets, which corresponds to a yield surface cap at high pressure. When P0 is set to a high value compared to the expected pressure, the yield surface in this material model becomes the same as that of Dafalias and Manzari [2004].

Hardening is described by a "stress ratio hardening modulus", \(H\), which is the rate of change of stress ratio \(\eta\) with deviatoric plastic strain:
\[
H=\frac{d \eta}{d \varepsilon_{p}}=\frac{G_{0}\left|h_{0}\right|\left(1-c_{h} e\right)\left(\alpha_{b}-\eta\right)}{R}\left(\frac{p}{p_{a t m}}\right)^{-1 / 2} .
\]

Here \(h_{0}\) is the input parameter \(\mathrm{H} 0, c_{h}\) is the input parameter \(\mathrm{CH}, \alpha_{b}-\eta\) is the "distance" (in stress ratio terms) between the current stress ratio and its image on the bounding surface for loading in the current loading direction. \(R\) is defined as given in Equations 5, 6, and 24 of Dafalias and Manzari [2004] and can be considered as the "distance" (in stress ratio terms) between the current stress ratio and the stress ratio where the current plastic loading cycle began (such as at the most recent loading direction reversal). This term is zero on initial loading and immediately following a stress reversal, giving an instantaneously infinite hardening slope and a smooth transition between elastic and plastic behavior.

If the anisotropy parameter ANISO has a non-default value, anisotropy effects are included as per Equation 15 in Dafalias, Papadimitriou and Li [2004].
8. Critical state. The critical state is a combination of values of stress ratio, pressure, and void ratio at which the application of shear strain causes no change to any of those three parameters. It is assumed that soil starting from any initial state, if subjected to sufficient shear strain, will tend towards and eventually
reach a critical state. In MAT_SANISAND, the critical state void ratio, \(e_{\mathrm{c}}\), is defined as follows:
\[
e_{\mathrm{c}}=e_{0}-\lambda\left(p / p_{\mathrm{a}}\right)^{\xi} .
\]

In the above, \(e_{0}, \lambda, \xi\), and \(p_{\mathrm{a}}\) are input parameters E0, LAMBDA, XI and PATM, respectively. If the anisotropy parameter ANISO has a non-default value, \(e_{0}\) in the above equation is replaced by \(e_{0} \exp (-A)\) where \(A\) is the lode angle-dependent state parameter described in Dafalias, Papadimitriou and Li [2004].

The state parameter \(\psi\) is given by \(e-e_{c}\), which may be thought of as the distance from the critical state in terms of void ratio.

The critical state stress ratio, \(\alpha_{c}^{c}\), is a constant given by the input parameter ALPHAC. If the material is on the critical state line in \(e-p\) space according to the above equation, that is, when \(\psi=0\), then both the dilatancy stress ratio, \(\alpha^{d}\), and the bounding stress ratio, \(\alpha^{b}\), coincide with the critical state stress ratio. These stress ratios vary with \(\psi\) in the following manner:
\[
\begin{aligned}
\alpha^{d} & =c \alpha_{c}^{c} \exp \left(n^{d} \psi\right) \\
\alpha^{b} & =c \alpha_{c}^{c} \exp \left(-n^{b} \psi\right)
\end{aligned}
\]
where \(n^{d}\) and \(n^{b}\) are the input parameters ND and NB, respectively, and \(c=1\) for compressive loading. For extension loading, \(c\) is equal to the input parameter C.
9. Dilation and contraction. The volumetric plastic strain increment is linked to the deviatoric plastic strain increment through a dilation angle, \(D . D\) is defined such that the volumetric plastic strain is contractive at stress ratios below \(\alpha^{d}\) and dilative at stress ratios above \(\alpha^{d}\) :
\[
D=\frac{\dot{\epsilon}_{v}^{p}}{\dot{\epsilon}_{q}^{p}}=s A_{d}\left(\alpha^{d}-\alpha\right)
\]

In the above equation, \(\dot{\epsilon}_{v}^{p}\) and \(\dot{\epsilon}_{v}^{p}\) are the volumetric and deviatoric plastic strain increments, \(s\) takes the value 1 or -1 according to loading direction, and \(A_{d}\) is the input parameter A0. If the fabric change parameters ZMAX and CZ are defined (see Remark 11), \(A_{d}\) is scaled according to Equation 12 of Dafalias and Manzari [2004].
10. Limiting Compression Curve (LCC). The maximum pressure that the material can sustain is governed by the LCC, which is analogous to a yield curve in pres-sure-void ratio space. The LCC consists of points \(\left(p_{\mathrm{LCC}}, e_{\mathrm{LCC}}\right)\) such that:
\[
\log e_{\mathrm{LCC}}=-\rho_{c} \log \left(\frac{p_{\mathrm{LCC}}}{p_{\mathrm{REF}}}\right)
\]

Here \(\rho_{c}\) and \(p_{\text {REF }}\) are the input parameters RHOC and PREF. The transition from elastic volumetric response to plastic volumetric deformation along the LCC is a smooth function governed by input parameters THETA, and X. See Taiebat and Dafalias [2008] for further details.
11. Fabric change. Input parameters ZMAX and CZ control the fabric change effect described by Dafalias and Manzari [2004]. During cyclic shearing, in the dilatant phase the contact surfaces between the sand particles are re-oriented in a manner that greatly increases the contractive tendency upon subsequent reversal of the shearing direction. If this effect is not modelled, simulations of cyclic shearing may tend to stabilize at a nonzero effective pressure in cases where experiments would show the effective pressure diminishing to zero.
12. Fabric anisotropy. Input parameters ANISO and KH control the fabric anisotropy effect described by Dafalias, Papadimitriou and Li [2004]. The default, given by ANISO \(=1 / 3\) and \(K H=1\), is isotropic behavior. Non-default values cause the plastic hardening behavior and the critical state line to depend on a lode-angle, leading to a better match of experimental results under a wide variety of stress states. ANISO \(=0\) corresponds to a fabric formation where particles lie entirely on the global \(X Y\)-plane. ANISO \(=1\) implies a fabric formation where particles are oriented entirely parallel to the vertical global Z-direction. It is expected that the most common cases will be in the range of \(0<\) ANISO \(<1 / 3\), i.e., with a preference toward horizontal orientations.
13. Output. The current void ratio, \(e\), is output in place of plastic strain.

\section*{References:}
[1] Taiebat M. and Dafalias, Y. F. "SANISAND: simple anisotropic sand plasticity model." International Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915-948 (2008).
[2] Dafalias,Y. F. and Manzari, M.T. "Simple plasticity sand model accounting for fabric change effects." Journal of Engineering Mechanics, 130(6), 622-634 (2004).
[3] Dafalias, Y. F., Papadimitriou, A. G., and Li, X. S. "Sand plasticity model accounting for inherent fabric anisotropy." Journal of Engineering Mechanics,130(11), 1319-1333 (2004).

\section*{*MAT_BOLT_BEAM}

This is Material Type 208 for use with beam elements using ELFORM \(=6\) (discrete beam). The beam elements must have nonzero initial length so that the directions in which tension and compression act can be distinguished. See Remarks 1 and 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & KAX & KSHR & blank & blank & FPRE & TRAMP \\
Type & A & F & F & F & & & F & F \\
Default & none & none & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCAX & LCSHR & FRIC & CLEAR & DAFAIL & DRFAIL & DAMAG & TOPRE \\
Type & I & I & F & F & F & F & F & F \\
Default & 0 & 0 & 0.0 & 0.0 & \(10^{20}\) & \(10^{20}\) & 0.1 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DACFAIL & AXSHFL & HOLSHR & IAXIS & & & & \\
Type & F & 1 & 1 & 1 & & & & \\
Default & \(10^{20}\) & 0 & 0 & 1 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO
KAX

\section*{DESCRIPTION}

Material identification. A unique number or label must be specified (see *PART).

Mass density
Axial elastic stiffness (Force/Length units)

KSHR
FPRE Preload force

DRFAIL

DAMAG

TOPRE
DACFAIL

AXSHFL

TRAMP Time duration during which preload is ramped up
LCAX Load curve giving axial load as a function of plastic displacement \((x\)-axis \(=\) displacement (length units), \(y\)-axis \(=\) force \()\). See Remark 4.

LCSHR Load curve ID or table ID giving lateral load as a function of plastic displacement (\(x\)-axis - displacement (length units), \(y\)-axis - force). In the table case, each curve in the table represents lateral load as a function of displacement at a given (current) axial load, meaning the values in the table are axial forces. See Remark 4.

FRIC Friction coefficient resisting sliding of bolt head/nut (non-dimensional)

CLEAR Radial clearance (gap between bolt shank and the inner diameter of the hole) (length units). See Remark 5.

DAFAIL Axial tensile displacement at which failure is initiated (length Axial
units)

\section*{DESCRIPTION}

Shear elastic stiffness (Force/Length units)

Radial displacement at which failure is initiated (excludes clearance)

Failure is completed at
(DAFAIL or DRFAIL or DACFAIL) \(\times(1+\) DAMAG \()\)
Time at which preload application begins
Axial compressive displacement at which failure is initiated (positive value, length units)

Flag to determine effect on axial response of increase of length of element due to shear displacement. In this context, shear displacement excludes sliding within the clearance gap. See Remark 6.

EQ.0: Shear-induced length increase treated as axial load.
EQ.1: Shear-induced length increase is ignored.

\section*{VARIABLE}

HOLSHR

IAXIS Flag to determine how the bolt axis relates to the beam element local axes. See Remark 2.

EQ.1: Each element creates own axes, bolt axis (N1-N2 direction) is local \(x\) (default)
EQ.2: Each element creates own axes, bolt axis (N1-N2 direction) is local \(y\)
EQ.3: Each element creates own axes, bolt axis (N1-N2 direction) is local \(z\)
EQ.4: Axis system defined by CID on *SECTION_BEAM, bolt axis is local \(x\)

EQ.5: Axis system defined by CID on Section card, bolt axis is local \(y\)
EQ.6: Axis system defined by CID on Section card, bolt axis is local \(z\)

\section*{Remarks:}
1. Bolted Joint Geometry. The element represents a bolted joint. The nodes of the beam should be thought of as representing the points at the centers of the holes in the plates that are joined by the bolt.
2. Local Axes. There are three options for defining the bolt axis direction and local axis system for elements of this material type. Here, "bolt axis" means the direction in which tension is applied, while shear forces are perpendicular to the bolt axis. "Local axes" means the axis system in which the element's deformations are calculated and its forces are output. By default, the bolt axis coincides with the local \(x\)-axis, although that can be changed using the input parameter IAXIS.
a) Local axes defined by a *DEFINE_COORDINATE_NODES that has FLAG set to 1. The coordinate system is referenced either as CID on *SECTION_BEAM or through PARAM3 on *ELEMENT_BEAM_THICKNESS. The behavior is then as follows:
i) The local axis system is defined by the three nodes of the *DEFINE_COORDINATE_NODES throughout the analysis, as described in the Remarks under *DEFINE_COORDINATE_NODES. The initial direction given by Nodes 1 and 2 of the beam element and the rotation of the local system based on SCOOR from *SECTION_BEAM are both irrelevant in this case.
ii) By default, the axial direction of the bolt coincides with the local \(x\) axis of the *DEFINE_COORDINATE_NODES. Tension (positive force) is generated when Node 2 displaces in the positive local \(x\) direction relative to Node 1. Care is needed to ensure that the beam element topology is defined with Node 1 and Node 2 the correct way around to generate tension in the expected direction - for example, having Node 2 initially offset in the positive local \(x\) direction from Node 1 will mean that tension is generated when the beam element elongates in the local \(x\)-direction.
iii) The axial direction of the bolt can be oriented along the local \(y\) - or \(z\)-axis instead of the local \(x\)-axis by setting IAXIS to 2 or 3 , respectively.
iv) For bolts that are differently oriented, you will need to either separate them into different *PARTs (so that the different *DEFINE_COORDINATE_NODES can be referenced by different *SECTION_BEAM cards) or have PARAM3 on *ELEMENT_BEAM_THICKNESS reference the needed *DEFINE_COORDINATE_NODES coordinate system.
b) Bolt axis defined by the initial orientation of the beam element. To obtain this behavior, set CID \(=0\) on *SECTION_BEAM (and set PARAM3 \(=0\) if using *ELEMENT_BEAM_THICKNESS), and position Nodes 1 and 2 of each beam element with a nonzero distance between them, aligned with the axis of the bolt. Note that the behavior described below will also occur if IAXIS \(<4\) and CID is nonzero, but the referenced coordinate system is a *DEFINE_COORDINATE_SYSTEM or a *DEFINE_COORDINATE_NODES with FLAG \(=0\) (i.e. it does not fulfill all the conditions for a) above).
i) Each beam element automatically creates its own axis system where the bolt axis is initially in the direction defined by Node 1 to Node 2. Note that this behavior is different than that for other Discrete Beam material types.
ii) During the analysis, the local axis system rotates as defined by SCOOR on *SECTION_BEAM. For example, if SCOOR \(=-13\), the axes rotate with Node 1. We recommend using SCOOR \(=-13\) or +13 .
iii) The bolt axis is always initially coincident with the Node 1 to Node 2 direction, but IAXIS \(=1,2\) or 3 controls whether the bolt axis is labelled as the local \(x\)-, \(y\) - or \(z\)-axis. This setting has no effect on the analysis, only on the output of results for post-processing. This can be useful when post-processing discrete beams of different material types so that, for example, the beam \(z\)-force has a similar meaning across the different material types.
c) Local axes initially defined by a *DEFINE_COORDINATE_OPTION with rotation of the axes controlled by SCOOR. To obtain this behavior, the coordinate system should be specified by either *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_NODES with FLAG \(=0\). Reference the coordinate system as CID on *SECTION_BEAM (or as PARAM3 on *ELEMENT_BEAM_THICKNESS) and set IAXIS to 4,5 or 6 . The behavior is as follows:
i) The local axis system defined with CID on *SECTION_BEAM (or PARAM3 on *ELEMENT_BEAM_THICKNESS) is used. The initial direction Node 1 to Node 2 has no influence on the local axes or the bolt axis direction.
ii) During the analysis, the local axis system rotates as defined by SCOOR on *SECTION_BEAM. For example, if SCOOR \(=-13\), the axes rotate with Node 1. We recommend using SCOOR \(=-13\) or +13 .
iii) The bolt axis is oriented along the local \(x\)-, \(y\) - or \(z\)-axis according to whether IAXIS \(=4,5\) or 6 , respectively.
iv) Care is needed to ensure that the beam element topology is defined with Node 1 and Node 2 the correct way around to generate tension in the expected direction - for example, if IAXIS \(=4\), having Node 2 initially offset in the positive local \(x\) direction from Node 1 will mean that tension is generated when the beam element elongates in the local \(x\) direction.
v) For bolts that are differently oriented, you will need to either separate them into different *PARTs (so that the different *DEFINE_COORDINATE_NODES can be referenced by different *SECTION_BEAM cards) or have PARAM3 on *ELEMENT_BEAM_THICKNESS reference the needed *DEFINE_COORDINATE_NODES coordinate system.
3. Axial Response. The axial response is tensile only. If the element shortens in the bolt axis direction, instead of generating a compressive axial load, a gap is assumed to develop between the bolt head (or nut) and the surface of the plate.

Contact between the bolted surfaces must be modelled separately, such as using *CONTACT or another discrete beam element.
4. Yield Force Curves. Curves LCAX and LCSHR give yield force as a function of plastic displacement for the axial and shear directions, respectively. The force increments are calculated from the elastic stiffnesses, subject to the yield force limits given by the curves.
5. Sliding Shear Displacement. CLEAR allows the bolt to slide in shear, resisted by friction between bolt head/nut and the surfaces of the plates, from the initial position at the center of the hole. CLEAR is the total sliding shear displacement before contact occurs between the bolt shank and the inside surface of the hole. Sliding shear displacement is not included in the displacement used for LCSHR. LCSHR is intended to represent the behavior after the bolt shank contacts the edge of the hole.
6. Shear Deformation and Axial Tension. If KSHR and LCSHR represent deformation and rotation of the bolt itself, \(\mathrm{AXSHFL}=0\), the default setting, is recommended. On the other hand, if KSHR and LCSHR represent deformation of the bearing surfaces, \(\mathrm{AXSHFL}=1\) is recommended, and \(\mathrm{HOLSHR}=1\) is likely to be appropriate too (see Remark 7).

The explanation is as follows. Consider the case where a shear displacement is applied to the bolted joint, while the plates are constrained to remain the same distance apart. Mechanisms by which a bolted joint can displace in the shear direction include:
a) the bolt sliding within a clearance gap;
b) rotation, bending and shearing of the bolt itself; and
c) deformation of the bearing surfaces while the bolt itself remains almost rigid and perpendicular to the plates.

The tension in the bolt might be expected to increase when mechanism (b) occurs because the length of the bolt itself must increase (in this example, the plates are held the same distance apart). Tension in the bolt would not increase with mechanisms (a) or (c). In the LS-DYNA model, applying shear while holding the plates the same distance apart will cause the element to lengthen. When calculating the axial force in the bolt, *MAT_BOLT_BEAM always ignores any lengthening due to mechanism (a) but is unable to distinguish between (b) and (c) KSHR and LCSHR could represent either or both types of mechanism. AXSHFL tells \({ }^{*}\) MAT_BOLT_BEAM whether to treat these shear deformations as contributing to changes of length to the bolt itself, and hence whether axial tension will be generated.
7. Hole Enlargement. If HOLSHR is nonzero, shear deformation beyond that necessary to close the clearance gap enlarges the hole in the plates and does not deform the bolt itself. The force-deformation relation of this mechanism is still governed by LCSHR, and the deformation (that is, enlargement of the hole) is tracked separately in each of the local \(-y,+y,-z\), and \(+z\) directions. Thus, for example, enlargement of the hole in the positive \(Y\) direction has no effect on the position of the edge of the hole in the negative \(Y\) direction. When HOLSHR is used, AXSHFL should be set to 1 .
8. Output. Beam "axial" or " X " force is the axial force in the beam. "shear- Y " and "shear-Z" are the shear forces. Other output is written to the d3plot and d3thdt files in the places where post-processors expect to find the stress and strain at the first two integration points for integrated beams.
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
Integration \\
Point
\end{tabular} & \begin{tabular}{c}
Post-Processing Data \\
Component
\end{tabular} & \multicolumn{1}{|c|}{ Actual Meaning } \\
\hline 1 & Axial Stress & Change of length \\
1 & XY Shear stress & Sliding shear displacement in local \(y\) \\
1 & ZX Shear stress & Sliding shear displacement in local Z \\
1 & Plastic strain & Resultant shear sliding displacement \\
1 & Axial strain & Axial plastic displacement \\
2 & Axial Stress & Shear plastic displacement excluding sliding \\
2 & XY Shear stress & Not used \\
2 & Plastic strain & Not used \\
2 & Axial strain & Not used \\
\hline
\end{tabular}

\section*{*MAT_HYSTERETIC_BEAM}

This is Material Type 209. It can be used only with resultant beam elements (ELFORM \(=2\)). It is intended for modelling buildings in seismic analysis and is similar to *MAT_191 but with increased capabilities. Plastic hinges can form at both ends of the element, and plasticity options are available for axial and shear behavior as well as bending. The yield surface incorporates moment-axial interaction. Advanced features implemented for this material include hinge locations and pinching effect (Card 3), asymmetry and shear failure (Card 4), Bauschinger effect (Card 5), stiffness degradation (Cards 6 and 7), and FEMA flags (Cards 8, 9, and 10).

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & E & PR & IAX & ISURF & IHARD & IFEMA \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LCPMS & SFS & LCPMT & SFT & LCAT & SFAT & LCAC & SFAC \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline ALPHA & BETA & GAMMA & FO & PINM & PINS & HLOC1 & HLOC2 \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|c|}
\hline DELTAS & KAPPAS & DELTAT & KAPPAT & LCSHS & SFSHS & LCSHT & SFSHT \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline HARDMS & GAMMS & HARDMT & GAMMT & HARDAT & GAMAT & HARDAC & GAMAC \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline OMGMS1 & OMGMS2 & OMGMT1 & OMGMT2 & OMGAT1 & OMGAT2 & OMGAC1 & OMGAC2 \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline RUMS & RUMT & DUAT & DUAC & LAM1 & LAM2 & SOFT1 & SOFT2 \\
\hline
\end{tabular}

Card 8. Include this card if IFEMA \(>0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline PRS1 & PRS2 & PRS3 & PRS4 & PRT1 & PRT2 & PRT3 & PRT4 \\
\hline
\end{tabular}

Card 9. Include this card if IFEMA \(>1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TS1 & TS2 & TS3 & TS4 & CS1 & CS2 & CS3 & CS4 \\
\hline
\end{tabular}

Card 10. Include this card if IFEMA \(>2\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SS1 & SS2 & SS3 & SS4 & ST1 & ST2 & ST3 & ST4 \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & RO & E & PR & IAX & ISURF & IHARD & IFEMA \\
Type & A & F & F & F & 1 & 1 & 1 & I \\
Default & none & none & none & none & 1 & 1 & 2 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
IAX Abscissa definition for axial yield force as a function of inelastic deformation/strain curves (LCAT and LCAC on Card 2):

EQ.1: Plastic deformation (change in length)
EQ.2: Nominal plastic strain, that is,
\[
\frac{\text { plastic deformation }}{\text { initial length }}
\]

ISURF Yield surface type for interaction (see Remark 2):
EQ.1: Simple power law (default)
EQ.2: Power law based on resultant moment
EQ.3: Skewed yield surface version of ISURF \(=2(\) see Remark 5)

\author{
VARIABLE \\ IHARD
}

IFEMA

\section*{DESCRIPTION}

Hardening type during cyclic response (see Remark 6):
EQ.1: Cumulative absolute deformation
EQ.2: Peak deformation
EQ.3: Peak deformation, yield-oriented
EQ.4: Peak deformation, peak-oriented
Flag for input of FEMA thresholds (Cards 8, 9 and 10; see Remarks 9 and 11):

EQ.0: No input
EQ.1: Input of rotation thresholds only
EQ.2: Input of rotation and axial strain thresholds
EQ.3: Input of rotation, axial strain and shear strain thresholds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCPMS & SFS & LCPMT & SFT & LCAT & SFAT & LCAC & SFAC \\
Type & I & F & I & F & I & F & I & F \\
Default & none & 1.0 & LCPMS & SFS & none & 1.0 & LCAT & SFAT \\
\hline
\end{tabular}

\section*{VARIABLE}

LCPMS

SFS

LCPMT Load curve ID (See *DEFINE_CURVE) giving normalized yield moment as a function of plastic rotation at hinges about the local \(t\) axis. All values are positive.

SFT Representative yield moment for plastic hinges about local the \(t\) axis (scales the normalized moment from LCPMT)

LCAT Load curve ID (See *DEFINE_CURVE) giving normalized axial

\section*{VARIABLE}

\section*{DESCRIPTION}
tensile yield force as a function of inelastic deformation/strain. See IAX above for definition of deformation/strain. All values are positive. See *DEFINE_CURVE.

SFAT Representative tensile strength (scales the normalized force from LCAT)

LCAC

SFAC

Load curve ID (See *DEFINE_CURVE) giving normalized axial compressive yield force as a function of inelastic deformation/strain. See IAX above for definition of deformation/strain. All values are positive. See *DEFINE_CURVE.

Representative compressive strength (scales the normalized force from LCAC)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & ALPHA & BETA & GAMMA & F0 & PINM & PINS & HLOC1 & HLOC2 \\
Type & F & F & F & F & F & F & F & F \\
Default & 2.0 & 2.0 & 2.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

VARIABLE
ALPHA

\section*{DESCRIPTION}

Parameter to define moment-axial yield surface:
GT.0.0: Yield surface parameter ALPHA (must not be < 1.1); see Remark 2.

LT.0.0: User-defined yield surface for the local s-axis. |ALPHA| is the load curve ID giving the yield locus. The abscissa is the moment about the local \(s\)-axis; the ordinate is the axial force (tensile positive). See Remark 4.

BETA Parameter to define moment-axial yield surface:
GT.0.0: Yield surface parameter BETA (must not be \(<1.1\)); see Remark 2.

LT.0.0: User-defined yield surface for the local \(t\)-axis. |BETA| is the load curve ID giving the yield locus. Abscissa is moment about the local \(t\)-axis; the ordinate is the axial force

VARIABLE

GAMMA Parameter to define yield surface which must not be \(<1.1\) (see Remark 2)

Force at which maximum yield moment is achieved (tensile positive; for reinforced concrete, a negative (compressive) value would be entered).

PINM Pinching factor for flexural hysteresis (for IHARD \(=3\) or 4 only). See Remark 7.

Pinching factor for shear hysteresis (for IHARD \(=3\) or 4 only). See Remark 7.

HLOC1 Location of plastic Hinge 1 from Node 1 (see Remark 1):
GE.0.0: \(\quad\) HLOC1 is the distance of Hinge 1 to Node 1 divided by element length.
LT.O.0.AND.GT.-1.0: -HLOC1 is the distance of Hinge 1 to Node 1 divided by element length; deactivate shear yielding.
EQ.-1.0: deactivate Hinge 1.
EQ.-10.0: deactivate shear yielding; Hinge 1 is located at Node 1.
EQ.-11.0: deactivate Hinge 1 and shear yielding.
Location of plastic Hinge 2 from Node 2 (see Remark 1):
GE.0.0:
HLOC2 is the distance of Hinge 2 to Node 2 divided by element length.
LT.O.0.AND.GT.-1.0: HLOC2 is the distance of Hinge 2 to Node 2 divided by element length; deactivate shear yielding.
EQ.-1.0: deactivate Hinge 2.
EQ.-10.0: deactivate shear yielding; Hinge 2 is located at Node 2.

EQ.-11.0: deactivate Hinge 2 and shear yielding.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DELTAS & KAPPAS & DELTAT & KAPPAT & LCSHS & SFSHS & LCSHT & SFSHT \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & none & 1.0 & LCSHS & SFSHS \\
\hline
\end{tabular}

\section*{VARIABLE}

DELTAS

KAPPAS

DELTAT

KAPPAT Parameter to define the skew for yield surface (ISURF = 3); see Remark 2.

LCSHS Load curve ID (see *DEFINE_CURVE) giving yield shear force as a function of inelastic shear strain (shear angle) in the local \(s\)-direction (see Remark 10).

SFSHS

LCSHT Load curve ID (see *DEFINE_CURVE) giving yield shear force as a function of inelastic shear strain (shear angle) in the local \(t\)-direction (see Remark 10).

SFSHT Scale factor on yield shear force in the local \(t\)-direction (scales the force from LCSHS).

\section*{VARIABLE}

\section*{DESCRIPTION}

GT.0.0: Constant scale factor
LT.0.0: User-defined interaction with axial force. |SFSHT| is the load curve ID giving scale factor as a function of normalized axial force (tensile is positive). The normalization uses SFAT for tensile force and SFAC for compressive force. For example, point (\(-1.0,0.5\)) on the curve defines a scale factor of 0.5 for compressive force of -SFAC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & HARDMS & GAMMS & HARDMT & GAMMT & HARDAT & GAMAT & HARDAC & GAMAC \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.0 & 0.0 & HARDMS & GAMMS & 0.0 & 0.0 & HARDAT & GAMAT \\
\hline
\end{tabular}

VARIABLE
HARDMS

GAMMS

HARDMT

GAMMT
HARDAT
GAMAT

HARDAC
GAMAC

\section*{DESCRIPTION}

Kinematic hardening modulus for moment about the local s-axis (see Remark 8)

Kinematic hardening limit for moment about the local s-axis (see Remark 8)

Kinematic hardening modulus for moment about the local \(t\)-axis
Kinematic hardening limit for moment about the local \(t\)-axis
Kinematic hardening modulus for tensile axial force
Kinematic hardening limit for tensile axial force
Kinematic hardening modulus for compressive axial force
Kinematic hardening limit for compressive axial force
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & OMGMS1 & OMGMS2 & OMGMT1 & OMGMT2 & OMGAT1 & OMGAT2 & OMGAC1 & OMGAC2 \\
Type & F & F & F & F & F & \(F\) & \(F\) & \(F\) \\
Default & 0.0 & 0.0 & OMGMS1 & OMGMS2 & 0.0 & 0.0 & OMGAT1 & OMGAT2 \\
\hline
\end{tabular}

\section*{VARIABLE}

OMGMS1

OMGMS2
OMGMT1
OMGMT2
OMGAT1
OMGAT2
OMGAC1
OMGAC2

\section*{DESCRIPTION}

Damage evolution parameter \(\omega_{s 1}\) for moment about the local \(s\)-axis (see Remark 9)

Damage evolution parameter \(\omega_{s 2}\) for moment about the local \(s\)-axis
Damage evolution parameter \(\omega_{t 1}\) for moment about the local \(t\)-axis
Damage evolution parameter \(\omega_{t 2}\) for moment about the local \(t\)-axis
Damage evolution parameter \(\omega_{a t 1}\) for tensile force
Damage evolution parameter \(\omega_{a t 2}\) for tensile force
Damage evolution parameter \(\omega_{\text {ac1 }}\) for compressive force
Damage evolution parameter \(\omega_{\text {ac2 }}\) for compressive force
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & RUMS & RUMT & DUAT & DUAC & LAM1 & LAM2 & SOFT1 & SOFT2 \\
Type & F & F & F & F & F & F & F & F \\
Default & \(10^{20}\) & RUMS & \(10^{20}\) & DUAT & 0.0 & LAM1 & 3.0 & 4.0 \\
\hline
\end{tabular}

VARIABLE
RUMS

\section*{DESCRIPTION}

Ultimate plastic rotation about \(s\)-axis for damage calculation (see Remark 9)

RUMT
Ultimate plastic rotation about \(t\)-axis for damage calculation

\section*{VARIABLE}

DUAT

DUAC Ultimate compressive plastic deformation/strain for damage calculation. See IAX above in Card 1.

LAM1 Damage evolution parameter
LAM2

SOFT1
Threshold index at which softening starts (see Remark 9)
LE.4.0: Threshold index for start of softening, see Cards 8 thru 10

EQ.5.0: Softening and element deletion are disabled.
SOFT2 Threshold index at which the element is fully softened and to be removed (ignored if SOFT1 = 5)

Plastic Rotation Thresholds Card. Define Card 8 only if IFEMA > 0 (see Remarks 9 and 11).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & PRS1 & PRS2 & PRS3 & PRS4 & PRT1 & PRT2 & PRT3 & PRT4 \\
Type & F & F & F & F & F & F & F & F \\
Default & \(10^{20}\) & \(2 \times 10^{20}\) & \(3 \times 10^{20}\) & \(4 \times 10^{20}\) & PRS1 & PRS2 & PRS3 & PRS4 \\
\hline
\end{tabular}

\section*{VARIABLE}

PRS1 - PRS4
PRT1 - PRT4

\section*{DESCRIPTION}

Plastic rotation thresholds 1 to 4 about s-axis
Plastic rotation thresholds 1 to 4 about t-axis

Plastic Axial Strains Threshold Card. Define Card 9 only if IFEMA > 1 (see Remarks 9 and 11).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & TS1 & TS2 & TS3 & TS4 & CS1 & CS2 & CS3 & CS4 \\
Type & F & F & F & F & F & F & F & F \\
Default & \(10^{20}\) & \(2 \times 10^{20}\) & \(3 \times 10^{20}\) & \(4 \times 10^{20}\) & TS1 & TS2 & TS3 & TS4 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

TS1 - TS4 Tensile plastic axial deformation/strain thresholds 1 to 4
CS1-CS4 Compressive plastic axial deformation/strain thresholds 1 to 4
Plastic Shear Strains Threshold Card. Define Card 10 only if IFEMA > 2 (see Remarks 9 and 11).
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & SS 1 & SS 2 & SS 3 & SS 4 & ST 1 & ST 2 & \(\mathrm{ST3}\) & \(\mathrm{ST4}\) \\
Type & F & F & F & F & F & F & F & F \\
Default & \(10^{20}\) & \(2 \times 10^{20}\) & \(3 \times 10^{20}\) & \(4 \times 10^{20}\) & SS 1 & SS 2 & SS 3 & SS 4 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

SS1 - SS4 Plastic shear strain thresholds 1 to 4 in the \(s\)-direction
ST1 - ST4 Plastic shear strain thresholds 1 to 4 in the \(t\)-direction

\section*{Remarks:}
1. Plastic hinge locations. Two plastic hinges can be developed at user-specified locations. The default plastic hinge locations are at the ends of the beam element. See Figure M209-1.
2. Yield surface. Axial/moment interaction is defined according to the setting of ISURF on Card 1 (see also Remark 4).

Figure M209-1. Plastic hinge locations for HLOC1 \(>0.0\) and HLOC2 \(>0.0\)
a) \(\operatorname{ISURF}=1\) (default, simple power law):
\[
\psi=\left|\frac{M_{s}-m_{s}}{M_{y s}}\right|^{\alpha}+\left|\frac{M_{t}-m_{t}}{M_{y t}}\right|^{\beta}+\left|\frac{F-f-F_{0}}{F_{y}-F_{0}}\right|^{\gamma}-1
\]
b) \(\operatorname{ISURF}=2\) (power law based on resultant moment):
\[
\psi=\left[\left(\frac{M_{s}-m_{s}}{M_{y s}}\right)^{2}+\left(\frac{M_{t}-m_{t}}{M_{y t}}\right)^{2}\right]^{\frac{\alpha}{2}}+\left|\frac{F-f-F_{0}}{F_{y}-F_{0}}\right|^{\gamma}-1
\]
c) \(\operatorname{ISURF}=3\) (skew yield surface version of ISURF \(=2\); see Remark 5):
\[
\begin{gathered}
\psi=\left\{\left[\frac{\left(M_{s}-m_{s}\right)+\delta_{s}\left(F-f-F_{0}\right)}{\left(1-\delta_{s} \kappa_{s}\right) M_{y s}}\right]^{2}+\left[\frac{\left(M_{t}-m_{t}\right)+\delta_{t}\left(F-f-F_{0}\right)}{\left(1-\delta_{t} \kappa_{t}\right) M_{y t}}\right]^{2}\right\}^{\frac{\alpha}{2}} \\
+\left|\frac{\left(F-f-F_{0}\right)+\kappa_{s}\left(M_{s}-m_{s}\right)+\kappa_{t}\left(M_{t}-m_{t}\right)}{\left(1-\delta_{s} \kappa_{s}-\delta_{t} \kappa_{t}\right)\left(F_{y}-F_{0}\right)}\right|^{\gamma}-1
\end{gathered}
\]

In the above equations,
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Definition } \\
\hline \hline\(M_{s}\) and \(M_{t}\) & \begin{tabular}{l}
Moments about the \(s\) - and \(t\)-axes, respectively \\
\(M_{y s}\) and \(M_{y t}\)
\end{tabular} \\
\(F_{y}\) & \begin{tabular}{l}
Axial force \\
Current yield moments \\
Current axial yield force, where
\end{tabular} \\
\(\qquad F_{y}=\left\{\begin{array}{cc}F_{y t} & \text { for }(F-f) \geq F_{0} \\
-F_{y c} & \text { for }(F-f)<F_{0}\end{array}\right.\) \\
\(F_{y t}\) and \(F_{y c}\) & \begin{tabular}{l}
Current tensile and compressive strengths, respec- \\
tively
\end{tabular} \\
\(m_{s}, m_{t}\) and \(f\) & \begin{tabular}{l}
Current moments and forces that determine the cen- \\
ter of the yield surface. They are closely related to \\
the Bauschinger effect or kinematic hardening dis- \\
cussed below.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Definition } \\
\hline \hline\(\alpha, \beta\), and \(\gamma\) & \begin{tabular}{l}
Input parameters ALPHA, BETA, and GAMMA on \\
Card 3 which are real numbers \(\geq 1.1\) unless ALPHA \\
and BETA are \(<0\) (see Remark 4)
\end{tabular} \\
\(\delta_{s}\) and \(\delta_{t}\) & \begin{tabular}{l}
Input parameters DELTAS and DELTAT (length \\
units) on Card 4 for skew of yield surface in the lo- \\
cal s- and \(t\)-directions, respectively
\end{tabular} \\
\(\kappa_{s}\) and \(\kappa_{t}\) & \begin{tabular}{l}
Input parameters KAPPAS and KAPPAT (1/length \\
units) on Card 4 for skew of yield surface in the lo- \\
cal s-and \(t\)-directions, respectively
\end{tabular} \\
\(F_{0}\) & \begin{tabular}{l}
Input parameter F0 on Card 3 (see Remark 3)
\end{tabular} \\
\hline
\end{tabular}
3. Force offset. The input parameter F0 offsets the yield surface parallel to the axial force axis. It is the axial force at which the maximum bending moment capacity occurs and is treated as tensile if F0 is positive, or compressive if F0 is negative. The same axial force offset F0 is used for both the local axes (\(s\) and \(t\)). For steel components, the value of F0 is usually zero. For reinforced concrete components, F0 should be input as negative, corresponding to the compressive axial force at which the moment capacities are maximum.

Figure M209-2. Effect of force offset on the yield surface
4. User-defined yield surface shape. Optionally, you may provide curves defining the shape of the axial-moment yield surface. When ALPHA and BETA are less than 0.0 and GAMMA is equal to 0.0, the absolute values of ALPHA and BETA are the IDs of the load curves (see *DEFINE_CURVE) that define the yield loci in \(M_{s}-F\) and \(M_{t}-F\) planes. The program will automatically find the set of parameters ALPHA, BETA, GAMMA, SFS, SFT, SFAT, SFAC, F0, DELTAS,

KAPPAS, DELTAT and KAPPAT that best fits the yield loci and the yield surface type ISURF.
5. Skew yield surface. Reinforced concrete sections with asymmetric reinforcement have a skew yield surface, meaning that the bending moment capacities at zero axial force are different in positive and negative bending, and the maximum axial capacity occurs at a nonzero bending moment. Furthermore, the axial load at which maximum biaxial bending moment occurs depends on the angle of the bending axis. This can be modelled with ISURF \(=3\), where DELTAS and DELTAT control the slope of the line connecting peak tensile and compressive strength vertices, and KAPPAS and KAPPAT control the slope of the line connecting peak moment vertices (which lies in the balance plane).

Figure M209-3. Example of a skew yield surface
6. Hardening behavior during cyclic deformation (hysteresis). The input parameter IHARD determines how the force as a function of deformation and moment as a function of rotation curves on Card 2 are applied during cyclic deformation. In this case, "deformation" includes both axial deformation and rotation at plastic hinges. If IHARD \(=1\), the abscissa represents cumulative absolute plastic deformation. This quantity is always positive. It increases whenever there is deformation in either direction. Thus, during hysteresis, the yield moments are taken from points in the input curve with increasingly positive deformation. If the curve shows a degrading behavior (reducing strength with deformation), then, once degraded by plastic deformation, the yield force or moment can never recover to its initial value. This option can be described as "fatigue-type" hysteretic behavior, where all plastic cycles contribute to the degradation. In the axial direction, plastic deformation is accumulated separately for tensile and compressive deformations.

If IHARD \(=2,3\) or 4 , the abscissa represents the peak absolute value of the plastic deformation. This quantity increases only when the absolute value of plastic deformation exceeds the previously recorded maximum. This option can be described as "high-tide" hardening behavior and follows the FEMA approach. In particular, IHARD of 3 and 4 reproduce the yield-oriented and peak-oriented hysteresis, respectively, as shown below.

Figure M209-4. Example hardening curves
7. Pinching. Pinched-shape hysteresis loops are seen in experiments on reinforced concrete members. They are caused by stiffness changes due to cracks opening and closing. This effect on the flexure response may be simulated using input parameter PINM. The default, \(\mathrm{PINM}=1.0\), gives no pinching. The pinch points are given by moments and rotations illustrated in the schematic below. Input parameter PINS has the same effect on shear hysteresis as PINM does on flexure hysteresis. See Figure M209-5.
8. Kinematic hardening. Kinematic hardening (Bauschinger effect, whereby an increase in tensile yield strength occurs at the expense of compressive yield

Figure M209-5. Example hysteresis curve with pinch point
strength) is modelled by shift of the yield surface and is controlled by input parameters HARDxx and GAMxx, where xx is MS, MT, AT, and AC for moment about \(s\)-axis, moment about \(t\)-axis, axial tension and axial compression, respectively. HARDxx is the rate at which the yield surface shifts, in units of force/displacement or force/strain for axial response (depending on the setting of IAX) and in units of moment/rotation for flexure response. GAMxx is defined such that HARDxx/GAMxx is the maximum force or moment by which the yield surface can shift.

Figure M209-6. Example hysteresis curve with kinematic hardening for the moment about the s-axis. Here \(K_{s}\) is HARDMS and \(C_{s}\) is GAMMS.
9. Degradation, damage, and element erosion. Stiffness and strength degradation are modelled using a damage approach. The damaged fraction of the material does not contribute to the forces, the moments or the stiffness. Damage is calculated in two stages:
a) a single damage parameter based on passing FEMA thresholds, and
b) component-specific damage (where "component" means axial tension, axial compression, bending about s-axis and bending about t-axis).

The force or moment for component \(x x, F_{x x \text { actual }}\), is calculated as:
\[
F_{x x, \text { actual }}=\left(1-D_{x x}\right)\left(1-D_{\text {FEMA }}\right) F_{x x, \text { nominal }} .
\]
\(x x\) can be AT for axial tension, AC for axial compression, MS for bending about the \(s\)-axis, MT for bending about the \(t\)-axis. Here, \(F_{x x, \text { nominal }}\) is the force or moment calculated in the absence of damage for component \(x x . D_{x x}\) is the compo-nent-specific damage fraction for component \(x x\), and \(D_{\text {FEMA }}\) is the damage calculated from passing FEMA thresholds (see Remark 11).

The component-specific damage may be defined to be dependent on cumulative plastic deformation, on peak deformation, or a combination of both:
\[
D_{x x}(t)=1-\left[1-\omega_{1 x x} \frac{\Delta_{x x, p e a k}}{\Delta_{x x, u l t}}\right]^{\lambda_{1}}\left[1-\omega_{2 x x} \frac{\Delta_{x x, a c c u m}}{\Delta_{x x, u l t}}\right]^{\lambda_{2}} .
\]

Here \(\omega_{1 x x}\) are \(\omega_{2 x x}\) are the input parameters OMGxx1 and OMGxx2. \(\Delta_{x x, \text { peak }}\) is the peak deformation (i.e., axial displacement, axial strain or rotation depending on \(x x\) and IAX) that has occurred to date; \(\Delta_{x x \text {,accum }}\) is the accumulated plastic deformation; and \(\Delta_{x x, \text { ult }}\) is the input parameter DUAT, DUAC, RUMS or RUMT. \(\lambda_{1}\) and \(\lambda_{2}\) are the input parameters LAM1 and LAM2. Setting these to zero disables dependence on peak deformation and cumulative plastic deformation, respectively.

The damage \(D_{\text {FEMA }}\) is calculated using input parameters SOFT1 and SOFT2, taking the most damaged component including shear as well as axial and moment components. For example, if SOFT1 \(=3\) and \(\mathrm{SOFT} 2=4\), and the most damaged component has reached a FEMA index of 3.25 (meaning one quarter of the way from threshold 3 to threshold 4), then \(D_{\text {FEMA }}=0.25\). When the most damaged component reaches a FEMA index of \(4.0, D_{\text {FEMA }}\) reaches zero and the element will be deleted.

By default, SOFT1 \(=3\) and SOFT2 \(=4\). Thus, softening and element removal can occur even if the input parameters SOFT1 and SOFT2 have not been set by the user. This damage mechanism can be switched off by setting SOFT1 \(=5\). In that case, \(D_{\text {FEMA }}\) is always zero irrespective of which thresholds are passed, and elements will not be deleted.
10. Shear behavior. Nonlinear shear behavior is controlled using input parameters LCSHS, LCSHT, SFSHS and SFSHT. By default, the shear yield surface is independent of the yield surface for axial and flexure and takes the following form:
\[
\psi_{s}=\left(\frac{V_{s}}{V_{y s}}\right)^{2}+\left(\frac{V_{t}}{V_{y t}}\right)^{2}-1 .
\]

Here, \(V_{s}\) and \(V_{t}\) are the current shear forces in the local \(s\) - and \(t\)-directions. \(V_{y s}\) and \(V_{y t}\) are the current yield shear forces in the local \(s\) - and \(t\)-directions

The shear yield forces are functions of plastic shear strain (that is, shear angle). The plastic shear strain can be either peak or cumulative, depending on IHARD.

Optionally, the shear strengths can be user-defined functions of the axial force; this is obtained by setting SFSHS and SFSHT to negative values.
11. FEMA thresholds. FEMA thresholds are used in performance-based earthquake engineering to classify the response according to the level of deformation. The thresholds are the divisions between regimes such as "Elastic", "Immediate Occupancy", "Life Safe", etc. Output parameters indicate the status of each element with respect to these regimes. The thresholds are defined by input parameters PRSn, PRTn, TSn, CSn, SSn, ST \(n\) where \(n=1,2,3\), and 4 for the different regimes. PRS and PRT are plastic rotation about the \(s\) and \(t\) axes, TS and CS are tensile and compressive strain or deformation according to the setting of IAX, and SS and ST are shear strains in the \(s\) and \(t\) directions. The corresponding output parameters, described as "FEMA flags" (see Remark 12) are "high-tide" values indicating which thresholds have been passed during the analysis, for example 3.25 means that the maximum deformation that has occurred to date exceeds threshold 3 and is one quarter of the way from threshold 3 to threshold 4. See also the influence of SOFT1 and SOFT2 described in Remark 9.
12. Output. In addition to the six resultants written for all beam elements, this material model writes a further 50 extra history variables to the d3plot and d3thdt files, given in the table below. The data is written in the same position in these files as where integrated beams write the stresses and strains at integration points requested by BEAMIP on *DATABASE_EXTENT_BINARY. Therefore, some post-processors may interpret this data as if the elements were integrated beams with 10 integration points, and in that case the data may be accessed by selecting the appropriate integration point and data component:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Integration \\
point
\end{tabular} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline \multirow{13}{*}{\begin{tabular}{c}
Extra (his- \\
tory) varia- \\
ble
\end{tabular}} & 1 & 6 & 11 & 16 & 21 & 26 & 31 & 36 & 41 & 46 & XX(RR) axial stress \\
\cline { 2 - 12 } & 3 & 7 & 12 & 17 & 22 & 27 & 32 & 37 & 42 & 47 & XY(RS) shear stress \\
\cline { 2 - 11 } & 4 & 9 & 14 & 19 & 23 & 28 & 33 & 38 & 43 & 48 & ZX(TR) shear stress \\
\cline { 2 - 10 } & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & XX(RR) axial strain \\
\hline
\end{tabular}

For example, extra history variable 16 is located at the position that would normally be \(\mathrm{XX}(\mathrm{RR})\) axial stress for integration point 4.
\begin{tabular}{|c|l|}
\hline Extra Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline 1 & Total axial deformation/strain \\
2 & Hysteretic bending energy at plastic Hinge 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Extra Variable & Description \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \hline 3 & Hysteretic bending energy at plastic Hinge 2 \\
4 & Plastic rotation about \(s\)-axis at Hinge 1 \\
5 & Plastic rotation about \(s\)-axis at Hinge 2 \\
6 & Plastic rotation about \(t\)-axis at Hinge 1 \\
7 & Plastic rotation about \(t\)-axis at Hinge 2 \\
8 & Bending moment about \(s\)-axis at node 1 \\
9 & Bending moment about \(s\)-axis at node 2 \\
10 & Bending moment about \(t\)-axis at node 1 \\
11 & Bending moment about \(t\)-axis at node 2 \\
12 & Hysteretic axial deformation energy \\
13 & Internal energy \\
14 & N/A \\
15 & Axial plastic deformation \\
\hline 16 & FEMA rotation flag \\
17 & Current utilization \\
\hline 18 & Peak utilization \\
19 & FEMA shear flag \\
20 & FEMA axial flag \\
21 & Peak plastic tensile axial deformation/strain \\
22 & Peak plastic compressive axial deformation/strain \\
23 & Peak plastic rotation about \(s\)-axis at Hinge 1 \\
24 & Peak plastic rotation about \(s\)-axis at Hinge 2 \\
25 & Peak plastic rotation about \(t\)-axis at Hinge 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Extra Variable & Description \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 26 & Peak plastic rotation about \(t\)-axis at Hinge 2 \\
\hline 27 & Cumulative plastic tensile axial deformation/strain \\
\hline 28 & Cumulative plastic compressive axial deformation/strain \\
\hline 29 & Cumulative plastic rotation about \(s\)-axis at Hinge 1 \\
\hline 30 & Cumulative plastic rotation about s-axis at Hinge 2 \\
\hline 31 & Cumulative plastic rotation about \(t\)-axis at Hinge 1 \\
\hline 32 & Cumulative plastic rotation about \(t\)-axis at Hinge 2 \\
\hline 33 & Axial tensile damage \\
\hline 34 & Axial compressive damage \\
\hline 35 & Flexural damage about \(s\)-axis at Hinge 1 \\
\hline 36 & Flexural damage about s-axis at Hinge 2 \\
\hline 37 & Flexural damage about \(t\)-axis at Hinge 1 \\
\hline 38 & Flexural damage about \(t\)-axis at Hinge 2 \\
\hline 39 & Plastic shear strain in s-direction \\
\hline 40 & Plastic shear strain in \(t\)-direction \\
\hline 41 & Peak plastic shear strain in s-direction \\
\hline 42 & Peak plastic shear strain in \(t\)-direction \\
\hline 43 & Cumulative plastic shear strain in s-direction \\
\hline 44 & Cumulative plastic shear strain in \(t\)-direction \\
\hline 45 & Current axial-flexural utilization at Hinge 1 \\
\hline 46 & Peak axial-flexural utilization at Hinge 1 \\
\hline 47 & Current axial-flexural utilization at Hinge 2 \\
\hline 48 & Peak axial-flexural utilization at Hinge 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Extra Variable & \\
\hline \hline 49 & Current shear utilization \\
& Description \\
\hline 50 & Peak shear utilization \\
\hline
\end{tabular}

\section*{*MAT_SPR_JLR}

This is Material Type 211. This material model was written for Self-Piercing Rivets (SPR) connecting aluminum sheets. Each SPR should be modeled by a single hexahedral (8node solid) element, fixed to the sheet either by direct meshing or by tied contact. Preand post-processing methods are the same as for solid-element spot welds using *MAT_SPOTWELD. On *SECTION_SOLID, set ELFORM \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & E & PR & HELAS & TELAS & & \\
Type & A & F & F & F & F & F & & \\
Default & none & none & none & none & 0.0 & 0.0 & & \\
\hline
\end{tabular}

Cards 2 and 3 define the input for the "Head" end of the SPR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCAXH & LCSHH & LCBMH & SFAXH & SFSHH & SFBMH & & \\
Type & I & I & I & F & F & F & & \\
Default & none & none & none & 1.0 & 1.0 & 1.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DFAKH & DFSHH & RFBMH & DMFAXH & DMFSHH & DMFBMH & & \\
Type & F & F & F & F & F & F & & \\
Default & Rem 13 & Rem 13 & Rem 13 & 0.1 & 0.1 & 0.1 & & \\
\hline
\end{tabular}

Cards 4 and 5 define the inputs for the "Tail" end of the SPR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LCAXT & LCSHT & LCBMT & SFAXT & SFSHT & SBFMT & & \\
Type & F & F & F & F & F & F & & \\
Default & none & none & none & 1 & 1 & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & DFAXT & DFSHT & RFBMT & DFMAXT & DMFSHT & DMFBMT & & \\
Type & F & F & F & F & F & F & & \\
Default & Rem 13 & Rem 13 & Rem 13 & 0.1 & 0.1 & 0.1 & & \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
E

PR
HELAS

TELAS

LCAXH fied (see *PART).

\section*{DESCRIPTION}

Material identification. A unique number or label must be speci-

Young's modulus, used only for contact stiffness calculation.
Poisson's ratio, used only for contact stiffness calculation.
SPR head end behavior flag:
EQ.0.0: Nonlinear
EQ.1.0: Elastic (use first two points of the load curves).

SPR tail end behavior flag:
EQ.0.0: Nonlinear
EQ.1.0: Elastic (use the first two points of the load curves).
Load curve ID (see *DEFINE_CURVE) giving axial force as a function of deformation (head)

LCSHH

LCBMH

SFAXH
SFSHH

SFBMH

DFAXH
DFSHH

RFBMH

DMFAXH
DMFSHH

DMFBMH

LCAXT

LCSHT Load curve ID (see *DEFINE_CURVE) giving shear force as a function of deformation (tail)

LCBMT Load curve ID (see *DEFINE_CURVE) giving moment as a function of rotation (tail)

Scale factor on axial force from curve LCAXT
Scale factor on shear force from curve LCSHT

Scale factor on bending moment from curve LCBMT
DFAXT Optional displacement to start of softening in axial load (tail)
DFSHT Optional displacement to start of softening in shear load (tail)
RFBMT Optional rotation (radians) to start of bending moment softening (tail)

\section*{VARIABLE}

\section*{DESCRIPTION}

DMFAXT
Scale factor on DFAXT
DMFSHT
Scale factor on FFSHT
DMFBMT
Scale factor on RFBMT

\section*{Remarks:}
1. SPR geometry. "Head" is the end of the SPR that fully perforates a sheet. "Tail" is the end that is embedded within the thickness of a sheet.

The sheet planes are defined at the head by the quadrilateral defined by nodes N1-N2-N3-N4 of the solid element; and at the tail by the quadrilateral defined by nodes N5-N6-N7-N8. It is essential that the nodes N1 to N4 are fixed to the head sheet (e.g. by direct meshing or tied contact): the element has no stiffness to resist relative motion of nodes N1 to N4 in the plane of the head sheet. Similarly, nodes N5 to N8 must be fixed to the tail sheet

The tail of the SPR is defined as a point in the tail sheet plane, initially at the center of the element face. The head of the SPR is initially at the center of the head sheet plane. The SPR axis is defined as the line joining the tail to the head. Thus, the axis of the SPR would typically be coincident with the solid element local \(z\)-axis if the solid is a cuboid. It is the user's responsibility to ensure that each solid element is oriented correctly.

During the analysis, the head and tail will always remain in the plane of the sheet but may move away from the centers of the sheet planes if the shear forces in these planes are sufficient.
2. Young's modulus and Poisson's ratio. E and PR are used only to calculate contact stiffness. They are not used by the material model.
3. Axes. Deformation is in length units and is on the \(x\)-axis. Force is on the \(y\)-axis. Rotation is in radians on the \(x\)-axis. Moment is on the \(y\)-axis.
4. Load curve assumptions. All the load curves are expected to start at \((0,0)\). "Deformation" means the total deformation including both elastic and plastic components, similarly for rotation.
5. "High tide" algorithm. A "high tide" algorithm is used to determine the deformation or rotation to be used as the \(x\)-axis of the load curves when looking up the current yield force or moment. The "high tide" is the greatest displacement or rotation that has occurred so far during the analysis.
6. Elastic stiffness. The first two points of the load curve define the elastic stiffness, which is used for unloading.
7. HELAS and TELAS. If HELAS \(>0\), the remainder of the head load curves after the first two points is ignored and no softening or failure occurs. The same applies for TELAS and the tail load curves.
8. Deformation and rotation of the SPR. Axial deformation is defined as change of length of the line between the tail and head of the SPR. This line also defines the direction in which the axial force is applied.

Shear deformation is defined as motion of the tail and head points, in the sheet planes. This deformation is not necessarily perpendicular to axial deformation. Shear forces in these planes are controlled by the load curves LCSHT and LCSHH.

Rotation at the tail is defined as rotation of the tail-to-head line relative to the normal of the tail sheet plane; and for the head, relative to the normal of the head sheet plane.
9. Element formulation. Although ELFORM = 1 is used in the input data, \({ }^{*} \mathrm{MAT}_{-}\)SPR_JLR is really a separate unique element formulation. The usual stress/force and hourglass calculations are bypassed, and deformations and nodal forces are calculated by a method unique to *MAT_SPR_JLR; for example, a single *MAT_SPR_JLR element can carry bending loads.
10. Hourglass. *HOURGLASS inputs are irrelevant to *MAT_SPR_JLR.
11. SWFORC file. Output to the swforc file works in the same way as for spotwelds. Although inside the material model the load curves LCSHT and LCSHH control "shear" forces in the sheet planes, in the swforc file the quoted shear force is the force normal to the axis of the SPR.
12. Softening. Before an element fails, it enters a "softening" regime in which the forces, moments and stiffnesses are ramped down as displacement increases (this avoids sudden shocks when the element is deleted). For example, for axial loading at the head, softening begins when the maximum axial displacement exceeds DFAXH. As the displacement increases beyond that point, the load curve will be ignored for that deformation component. The forces, moments and stiffnesses are ramped down linearly with increasing displacement and reach zero at displacement \(=\) DFAXH \(\times(1+\) DMFAXH \()\) when the element is deleted. The softening factor scales all the force and moment components at both head and tail. Thus, all the force and moment components are reduced when any one displacement component enters the softening regime. For example, if \(\mathrm{DFAXT}=3.0 \mathrm{~mm}\), and DMFAXT \(=0.1\), then softening begins when axial displacement of the tail reaches 3.0 mm and final failure occurs at 3.3 mm .
13. Initial softening displacements/rotations. If the inputs DFAXH, DFSHH, RFBMH, DFAXT, DFSHT, and RFBMT are non-zero, these values must be within the abscissa values of the relevant curve, such that the curve force/moment value is greater than zero at the defined start of softening.

If the inputs are left blank or zero, they will be calculated internally as follows:
a) Final failure will occur at the displacement or rotation (DFAIL) at which the load curve reaches zero (determined, if necessary, by extrapolation from the last two points).
b) Displacement or rotation at which softening begins is then back-calculated. For example, DFAXT = DFAIL/(\(1+\) DMGAXT \()\).
c) If DMGAXT is left blank or zero, it defaults to 0.1.
d) If the load curve does not drop to zero, and the final two points have a zero or positive gradient, no failure or softening will be caused by that displacement component.
14. Output stress. Output stresses (in the d3plot and time-history output files) are set to zero.
15. Displacement ratio. The output variable "displacement ratio" (or rotation ratio for bending), \(R\), is defined as follows. See also the Figure M211-1.
a) \(R=0.0\) to 1.0. The maximum force or moment on the input curve has not yet been reached. \(R\) is proportional to the maximum force or moment reached so far, with 1.0 being the point of maximum force or moment on the input curve.
b) \(R=1.0\) to 2.0. The element has passed the point of maximum force but has not yet entered the softening regime. \(R\) rises linearly with displacement (or rotation) from 1.0 when maximum force occurs to 2.0 when softening begins.
c) \(R=2.0\) to 3.0. Softening is occurring. \(R\) rises linearly with displacement from 2.0 at the onset of softening to 3.0 when the element is deleted.

The displacement (or rotation) ratio is calculated separately for axial, shear, and bending at the tail and head (see Remark 16 below). The output listed by postprocessors as "plastic strain" is actually the maximum displacement or rotation ratio of any displacement or rotation component at head or tail. This same variable is also output as "Failure" in the spotweld data in the swforc file (or the swforc section of the binout file).

Figure M211-1. Output variable "displacement ratio" (or rotation ratio for bending)
16. Additional history variables. The additional history variables are listed in the table below.
\begin{tabular}{cl}
\hline History Variable \# & Description \\
\hline 1 & Failure time (used for swforc file) \\
2 & Softening factor used internally to prevent abrupt failure. \\
3 & Displacement ratio - axial, head \\
4 & Displacement ratio - axial, tail \\
5 & Displacement ratio - shear, head \\
6 & Displacement ratio - shear, tail \\
7 & Rotation ratio - bending, head \\
8 & Rotation ratio - bending, tail \\
9 & Used for swforc output \\
10 & Shear force in "beam" \(x\)-axis \\
11 & Shear force in "beam" \(y\)-axis \\
12 & Axial force in "beam" \(z\)-axis (along "beam") \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline History Variable \# & Description \\
\hline 13 & Moment about "beam" \(x\)-axis at head \\
\hline 14 & Moment about "beam" \(y\)-axis at head \\
\hline 15 & Moment about "beam" \(z\)-axis at head (torsion - should be zero) \\
\hline 16 & "Beam" length \\
\hline 17 & Moment about "beam" \(x\)-axis at tail \\
\hline 18 & Moment about "beam" \(y\)-axis at tail \\
\hline 19 & Moment about "beam" \(z\)-axis at tail (torsion - should be zero) \\
\hline 20 & Isoparametric coordinate of head of "beam" (s) \\
\hline 21 & Isoparamteric coordinate of head of "beam" \((t)\) \\
\hline 22 & Isoparametric coordinate of tail of "beam" (s) \\
\hline 23 & Isoparametric coordinate of tail of "beam" \((t)\) \\
\hline 24 & Timestep \\
\hline 25 & Plastic displacement - axial, head \\
\hline 26 & Plastic displacement - axial, tail \\
\hline 27 & Plastic rotation - head \\
\hline 28 & Plastic rotation - tail \\
\hline 29 & Plastic displacement - shear in sheet axes, head \\
\hline 30 & Plastic displacement - shear in sheet axes, tail \\
\hline 31 & Global \(x\)-component of the "beam" \(x\)-axis \\
\hline 32 & Global \(y\)-component of the "beam" \(x\)-axis \\
\hline 33 & Global z-component of the "beam" \(x\)-axis \\
\hline 34 & Shear displacement - local \(x\)-axis, head \\
\hline 35 & Shear displacement - local \(y\)-axis, head \\
\hline 36 & Shear displacement - local \(x\)-axis, tail \\
\hline 37 & Shear displacement - local \(y\)-axis, tail \\
\hline 38 & Total displacement - axial \\
\hline 39 & Current rotation (radians) - head, local \(x\)-axis \\
\hline 40 & Current rotation (radians) - head, local \(y\)-axis \\
\hline 41 & Current rotation (radians) - tail, local \(x\)-axis \\
\hline
\end{tabular}
\begin{tabular}{cl}
History Variable \# & Description \\
\hline 42 & Current rotation (radians) - tail, local \(y\)-axis \\
\hline
\end{tabular}

\section*{*MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE}

This is Material Type 213, an orthotropic elastoplastic material. It is V1.3.6 of this material. It has a modular architecture supporting viscoelastic deformations, viscoplastic deformations [1-4, 9, 12], damage [6, 7], failure [8] and probabilistic analysis [5]. It is available for solid and thin shell elements.

\section*{Card Summary:}

Card 1. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MID & RO & EA & EB & EC & PRBA & PRCA & PRCB \\
\hline
\end{tabular}

Card 2. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline GAB & GBC & GCA & PTOL & AOPT & MACF & FILT & VEVP \\
\hline
\end{tabular}

Card 3. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline XP & YP & ZP & A1 & A2 & A3 & & \\
\hline
\end{tabular}

Card 4. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline V1 & V2 & V3 & D1 & D2 & D3 & BETA & TCSYM \\
\hline
\end{tabular}

Card 5. This card is required.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline H11 & H22 & H33 & H12 & H23 & H13 & H44 & H55 \\
\hline
\end{tabular}

Card 6. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline H66 & LT1 & LT2 & LT3 & LT4 & LT5 & LT6 & LT7 \\
\hline
\end{tabular}

Card 7. This card is required.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LT8 & LT9 & LT10 & LT11 & LT12 & YSC & DFLAG & DC \\
\hline
\end{tabular}

Card 8a.1. This card is included if FTYPE \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FTYPE & & & & & & & \\
\hline
\end{tabular}

Card 8a.2. This card must be included as a blank line if FTYPE \(=0\).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{tabular}

Card 8b.1. This card is included if FTYPE \(=1\) (Puck Failure Criterion).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline FTYPE & FV0 & FV1 & FV2 & FV3 & FV4 & FV5 & FV6 \\
\hline
\end{tabular}

Card 8b.2. This card is included if FTYPE \(=1\) (Puck Failure Criterion).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FV7 & FV8 & FV9 & FV10 & FV11 & FV12 & FV13 & FV14 \\
\hline
\end{tabular}

Card 8c.1. This card is included if FTYPE \(=2\) (Tsai-Wu Failure Criterion).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FTYPE & & FV1 & FV2 & FV3 & FV4 & FV5 & FV6 \\
\hline
\end{tabular}

Card 8c.2. This card is included if FTYPE \(=\) 2. (Tsai-Wu Failure Criterion).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FV7 & FV8 & FV9 & FV10 & FV11 & FV12 & FV13 & FV14 \\
\hline
\end{tabular}

Card 8d.1. This card is included if FTYPE \(=3\) (Generalized Tabulated Failure Criterion).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline FTYPE & & FV1 & FV2 & FV3 & & & \\
\hline
\end{tabular}

Card 8d.2. This card is included as a blank line if FTYPE \(=3\) (Generalized Tabulated Failure Criterion).
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{tabular}

Card 9. BETA values only need to be specified when VEVP \(=1\) or 2.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline BETA11 & BETA22 & BETA33 & BETA44 & BETA55 & BETA66 & BETA12 & BETA23 \\
\hline
\end{tabular}

Card 10. BETA values only need to be specified when VEVP \(=1\) or 2 .
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline BETA13 & CP & TQC & TEMP & PMACC & & & \\
\hline
\end{tabular}

\section*{Data Card Definitions:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & MID & R0 & EA & EB & EC & PRBA & PRCA & PRCB \\
Type & A & F & F & F & \(F\) & \(F\) & \(F\) & \(F\) \\
Default & none \\
\hline
\end{tabular}

\section*{VARIABLE}

MID

RO Mass density
EA \(\quad E_{a}\), Young's modulus in the \(a\)-direction
EB \(\quad E_{b}\), Young's modulus in the \(b\)-direction
EC \(\quad E_{c}\), Young's modulus in the \(c\)-direction
PRBA \(\quad v_{b a}\) (elastic) Poisson's ratio, \(b a\) (see Remark 9)
PRCA \(\quad v_{c a \prime}\) (elastic) Poisson's ratio, ca (see Remark 9)
PRCB \(\quad v_{c b}\), (elastic) Poisson's ratio, \(c b\) (see Remark 9)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & GAB & GBC & GCA & PTOL & AOPT & MACF & FILT & VEVP \\
Type & F & F & F & F & F & I & F & I \\
Default & none & none & none & \(10^{-6}\) & 0.0 & 0 & 0.0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

GAB
\(G_{a b}\), shear modulus \(a b\)-plane
GBC \(\quad G_{b c}\), shear modulus \(b c\)-plane
GCA
\(G_{c a}\), shear modulus ca-plane
PTOL Yield function tolerance used during plastic multiplier calculations
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a

\section*{VARIABLE}

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes \(b\) and \(c\) before BETA rotation
EQ.-3: Switch material axes \(a\) and \(c\) before BETA rotation
EQ.-2: Switch material axes \(a\) and \(b\) before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes \(a\) and \(b\) after BETA rotation
EQ.3: Switch material axes \(a\) and \(c\) after BETA rotation
EQ.4: Switch material axes \(b\) and \(c\) after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the

\section*{VARIABLE}

FILT

VEVP

DESCRIPTION
process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT \(=3\), the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

Factor for strain rate filtering (optional):
\[
\dot{\varepsilon}_{i+1}^{\mathrm{avg}}=(1-\text { FILT }) \times \dot{\varepsilon}_{i+1}^{\mathrm{cur}}+\text { FILT } \times \dot{\varepsilon}_{i}^{\text {avg }}
\]
where \(i\) is the previous time step. The value of FILT is between 0 and 1

Flag to control viscoelastic, viscoplastic behavior:
EQ.0: Viscoplastic only with no rate effects in elastic region (default)
EQ.1: Viscoelastic, viscoplastic (see Cards 9 and 10)
EQ.2: Viscoelastic only (see Cards 9 and 10)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & XP & YP & ZP & A 1 & A 2 & A 3 & & \\
Type & F & F & F & F & F & F & & \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline
\end{tabular}

VARIABLE

\section*{DESCRIPTION}

XP, YP, ZP \(\quad\) Coordinates of point \(P\) for AOPT \(=1\) and 4
\(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad\) Components of vector a for \(\mathrm{AOPT}=2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & V1 & V2 & V3 & D1 & D2 & D3 & BETA & TCSYM \\
Type & F & F & F & F & F & F & F & I \\
Default & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 \\
\hline
\end{tabular}

\section*{VARIABLE}

V1, V2, V3
D1, D2, D3
BETA

TCSYM

\section*{DESCRIPTION}

Components of vector \(\mathbf{v}\) for AOPT \(=3\) and 4
Components of vector \(\mathbf{d}\) for \(\mathrm{AOPT}=2\)
Angle in degrees of a material rotation about the c-axis, available for AOPT \(=0\) (shells only) and AOPT \(=3\) (all element types). This angle may be overridden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO.

Flag for handling tension-compression asymmetry in all three material directions:

EQ.0: Do not adjust user-defined data.
EQ.1: Compute and use average of tension and compression elastic moduli in adjusting the stress-strain curve. See Remark 7.

EQ.2: Use compression modulus as user-defined tension modulus in adjusting the stress-strain curve. See Remark 7.

EQ.3: Use tension modulus as user-defined compression modulus in adjusting the stress-strain curve. See Remark 7.

EQ.4: Use user-defined tensile curve as the compressive curve overriding the user-defined compressive curve. This implies that the normal stress-strain curves are symmetric including yield values.

EQ.5: Use user-defined compressive curve as the tensile curve overriding the user-defined tensile curve. This implies that the normal stress-strain curves are symmetric including yield values.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & H 11 & H 22 & H 33 & H 12 & H 23 & H 13 & H 44 & H 55 \\
Type & F & F & F & F & F & F & F & F \\
Default & none & none & none & none & none & none & 3.0 & 3.0 \\
\hline
\end{tabular}

\section*{VARIABLE}

\section*{DESCRIPTION}

Hij
Plastic flow rule coefficients. See Remark 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & H66 & LT1 & LT2 & LT3 & LT4 & LT5 & LT6 & LT7 \\
Type & F & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
Default & 3.0 & none \\
\hline
\end{tabular}

\section*{VARIABLE}

Hij
LT1

LT2

LT3

LT4

\section*{DESCRIPTION}

Plastic flow rule coefficients. See Remark 1.
Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(a\)-direction tension test. See Remarks 2, 8 and 9.

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(b\)-direction tension test. See Remarks 2, 8 and 9.

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(c\)-direction tension test. See Remarks 2, 8 and 9. Not required if used with shell elements.

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(a\)-direction compression test. See Remarks 2, 8 and 9.

\section*{VARIABLE}

LT5

LT6

LT7

\section*{DESCRIPTION}

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(b\)-direction compression test. See Remarks 2, 8 and 9.

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(c\)-direction compression test. See Remarks 2,8 and 9 . Not required if used with shell elements.

Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(a b\) plane shear test. See Remarks 2, 8 and 9 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & LT8 & LT9 & LT10 & LT11 & LT12 & YSC & DFLAG & DC \\
Type & I & I & I & I & I & I & F & I \\
Default & none & none & none & none & none & none & 0.0 & none \\
\hline
\end{tabular}

\section*{VARIABLE}

LT8

LT9 Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(a c\) plane shear test. See Remarks 2, 8 and 9. Not required if used with shell elements.

LT10

LT11 Table ID for a three-dimensional table (see *DEFINE_TABLE_3D) containing temperature and stress-strain input curves for the \(45^{\circ}\) off axis \(b c\)-plane tension or compression test. See Remarks 2,8 and

\section*{VARIABLE}

LT12

YSC

DFLAG Damage formulation flag (see Remark 12):
EQ.O: Based on effective stress (default)
EQ.1: Based on corrected plastic strain

DC Curve ID that specifies which components of the damage model are active. It contains the damage parameter ID and the corresponding damage as a function of total strain curve ID or Table3D ID. Set this value to zero if damage should not be included in the analysis. See Remark 4.

No Failure Card. The following two cards are included if FTYPE \(=0\). Card 8 a. 2 must be included as a blank line
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 8a.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FTYPE & & & & & & & \\
Type & 1 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|l|l|l|l|l|}
\hline Card 8a.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & & \\
Type & & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FTYPE

DESCRIPTION
Failure criterion type (see Remarks 5 and 6):
EQ.0: No failure considered (default)
EQ.1: Puck Failure Criterion (PFC) (solid elements only)
EQ.2: Tsai-Wu Failure Criterion (TWFC)
EQ.3: Generalized Tabulated Failure Criterion (GTFC)

PFC Card. The following two cards are included if FTYPE \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8b.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FTYPE & FV0 & FV1 & FV2 & FV3 & FV4 & FV5 & FV6 \\
Type & I & F & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8b.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FV7 & FV8 & FV9 & FV10 & FV11 & FV12 & FV13 & FV14 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

VARIABLE
FTYPE

FV0
FV1

FV2

\section*{DESCRIPTION}

Failure criterion type (see Remarks 5 and 6):
EQ.O: No failure considered (default)
EQ.1: Puck Failure Criterion (PFC) (solid elements only)
EQ.2: Tsai-Wu Failure Criterion (TWFC)
EQ.3: Generalized Tabulated Failure Criterion (GTFC)
\(\Gamma_{f}\), fiber mode fracture energy (\(a\)-direction)
Post-peak residual damage in the \(a\)-direction for tension. Value must be a real number between 0 and 1 .

Post-peak residual damage in the \(a\)-direction for compression. Value must be a real number between 0 and 1 .
\begin{tabular}{|c|c|}
\hline VARIABLE & DESCRIPTION \\
\hline FV3 & Post-peak residual damage in the \(b\) and \(c\)-directions for tension. Value must be a real number between 0 and 1 . \\
\hline FV4 & Post-peak residual damage in the \(b\) and \(c\)-directions for compression. Value must be a real number between 0 and 1 . \\
\hline FV5 & Post-peak residual damage in shear. Value must be a real number between 0 and 1. \\
\hline FV6 & magnification factor, \(m_{f}\) \\
\hline FV7 & Slope parameter, \(p_{b a}^{t}\) \\
\hline FV8 & Slope parameter, \(p_{b a}^{c}\) \\
\hline FV9 & Slope parameter, \(p_{b b}^{t}\) \\
\hline FV10 & Slope parameter, \(p_{b b}^{c}\) \\
\hline FV11 & Fiber Poisson's ratio, \(v_{a b}^{f}\) \\
\hline FV12 & Fiber Young's modulus, \(E_{a}^{f}\) \\
\hline FV13 & Inter-fiber mode I fracture energy, \(\Gamma_{1}\) \\
\hline FV14 & Inter-fiber mode II fracture energy, \(\Gamma_{2}\) \\
\hline
\end{tabular}

TWFC Card. The following two cards are included if FTYPE \(=2\). See Remarks 13 and 14 .
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 8c.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FTYPE & & FV1 & FV2 & FV3 & FV4 & FV5 & FV6 \\
Type & I & & F & F & F & F & F & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8c.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FV7 & FV8 & FV9 & FV10 & FV11 & FV12 & FV13 & FV14 \\
Type & F & F & F & F & F & F & F & F \\
\hline
\end{tabular}

FTYPE

FV1
FV2

FV3

FV4

FV5
FV6

FV7

FV8
FV9
FV10

FV11
FV12

FV13 Curve ID that defines orientation-dependent erosion strain for all nine stress strain curves (3 tension, 3 compression, and 3 shear). The ordinate values in the load curve define the various erosion strains in the following order:

Ordinate Value Descriptions
Tensile erosion strain in the \(a\)-direction, \(\varepsilon_{a a T}\)
Compressive erosion strain in the \(a\)-direction, \(\varepsilon_{a a C}\)

VARIABLE

FV14 Curve ID that defines orientation-dependent post-peak residual strength (PPRD) for all nine stress strain curves (3 tension, 3 compression, and 3 shear). The ordinate values in the load curve define the various residual strength in the following order:

Ordinate Value Descriptions
Tensile post-peak residual strength in the \(a\)-direction, \(\mathrm{PPRD}_{a a T}\)
Compressive post-peak residual strength in the \(a\)-direction, PPRD \(_{a a c}\)

Tensile post-peak residual strength in the \(b\)-direction, \(\mathrm{PPRD}_{b b T}\)
Compressive post-peak residual strength in the \(b\)-direction, \(P_{P R D}^{b b c}\)
Tensile post-peak residual strength in the \(c\)-direction, \(\mathrm{PPRD}_{c c T}\)
Compressive post-peak residual strength in the \(c\)-direction, \(\mathrm{PPRD}_{d d C}\)
In-plane shear post-peak residual strength in the \(a b\)-plane, \(\mathrm{PPRD}_{a b}\)
Out-of-plane shear post-peak residual strength in the bc-plane, \(\mathrm{PPRD}_{b c}\)
Out-of-plane shear post-peak residual strength in the ac-plane, PPRD \(_{a c}\)

GTFC Card. The following two cards are included if FTYPE \(=3\). Card 8 d .2 must be included as a blank line.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 8d.1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & FTYPE & & FV1 & FV2 & FV3 & & & \\
Type & I & & F & F & F & & & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Card 8d.2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & & & & & & & & \\
Type & & & & & & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

FTYPE

FV1

FV2

\section*{DESCRIPTION}

Failure criterion type (see Remarks 5 and 6):
EQ.O: No failure considered (default)
EQ.1: Puck Failure Criterion (PFC) (solid elements only)
EQ.2: Tsai-Wu Failure Criterion (TWFC)
EQ.3: Generalized Tabulated Failure Criterion (GTFC)
\[
d= \begin{cases}\max \left(d_{1}, d_{2}\right) & \text { if } n=0.0 \\ \left(d_{1}^{n}+d_{2}^{n}\right)^{1 / n} & \text { otherwise }\end{cases}
\]
where, \(d_{i}=\varepsilon^{\mathrm{eq}} / \varepsilon_{\text {fail }}, i=1,2\). \(i=1\) corresponds to the in-plane mode, while \(i=2\) corresponds to the out-of-plane mode. Here,
\[
\varepsilon^{\mathrm{eq}}= \begin{cases}\sqrt{\varepsilon_{11}^{2}+\varepsilon_{22}^{2}+2 \varepsilon_{12}^{2}} & \text { for in-plane } \\ \sqrt{\varepsilon_{33}^{2}+2 \varepsilon_{13}^{2}+2 \varepsilon_{23}^{2}} & \text { for out-of-plane }\end{cases}
\]

An element is eroded if \(d\) reaches a value of 1.0 for solid elements. For shell elements, an element is eroded if \(d_{1}\) reaches a value of 1.0 since only the in-plane mode of failure is considered. \(n\) is not required for shell elements.
In-plane and out-of-plane interaction term, \(n\), used to compute \(d\) :

Table ID for the table containing in-plane \(\left(\theta_{\text {IP }}, \varepsilon_{\text {fail }}^{\mathrm{eq}}\right)\) values with respect to the specified \(a\)-direction stress. Here,
\[
\theta_{\mathrm{IP}}=\cos ^{-1}\left(\frac{\sigma_{22}}{\sqrt{\sigma_{22}^{2}+\sigma_{12}^{2}}}\right)
\]

FV3
Table ID for the table containing out-of-plane \(\left(\theta_{\mathrm{OOP}}, \varepsilon_{\text {fail }}^{\mathrm{eq}}\right)\) values with respect to the specified normal \(c\)-direction stress. Here,
\[
\theta_{O O P}=\cos ^{-1}\left(\frac{\sigma_{13}}{\sqrt{\sigma_{13}^{2}+\sigma_{23}^{2}}}\right)
\]

Viscoelasticity Card. BETA values only need to be specified when VEVP = 1 or 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & BETA11 & BETA22 & BETA33 & BETA44 & BETA55 & BETA66 & BETA12 & BETA23 \\
Type & F & F & F & F & F & F & F & F \\
Default & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & \(\downarrow\) & \(\downarrow\) \\
\hline
\end{tabular}

\section*{VARIABLE}

BETA11

BETA22

BETA33

BETA44

BETA55

BETA66 Decay constant for the relaxation matrix of the viscoelastic law in 13 -shear (default \(=0.001\)). This field is not required for shell elements. It must be greater than or equal to zero.

VARIABLE
BETA12

BETA23

\section*{DESCRIPTION}

Decay constant for the relaxation matrix of the viscoelastic law 12coupling (default \(=(\) BETA11 + BETA22 \() / 2)\). It must be greater than or equal to zero.

Decay constant for the relaxation matrix of the viscoelastic law 23coupling \((\) default \(=(\) BETA22 + BETA33 \() / 2)\). This field is not required for shell elements. It must be greater than or equal to zero.

Viscoelasticity Card. BETA values only need to be specified when VEVP \(=1\) or 2 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Card 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Variable & BETA13 & CP & TQC & TEMP & PMACC & & & \\
Type & F & F & F & F & F & & & \\
\hline
\end{tabular}

\section*{VARIABLE}

BETA13

CP
TQC
TEMP This is the reference (or initial) temperature used to obtain the corresponding stress-strain curves.

PMACC Plastic multiplier computational accuracy (see Remark 10):
EQ.O: Use up to a maximum of 1000 increments (default)
EQ.N: Specify a positive value, N, greater than 1 as the maximum number of increments. An error message is issued if a converged solution cannot be found.

\section*{Remarks:}
1. Flow rule coefficients. Flow rule coefficients are determined using the plastic Poisson's ratios. H33, H55 and H66 are not required for shell elements. See [10] for details on how to compute flow rule coefficients.
2. Temperature-strain rate test result tables. A minimum of two sets of (strain rate-temperature) curves are needed. If the material is not temperature and rate sensitive, make the two sets of table data identical. If the material is rate and temperature sensitive, the curve corresponding to the smallest total strain rate for the given reference temperature (TEMP in Card 10) is assumed to be the quasi-static, room temperature (QS-RT) curve and influences the viscoelasticplastic computations.

An example TABLE_3D (LTi) structure for 3 total strain rates and 3 temperatures for tension in the \(a\)-direction test is shown below. The total strain rates are converted within LS-DYNA into effective plastic strain rate (EPSR) for each of the input stress-strain curves. The EPSR value assigned for each stress-strain curve is used for yield stress interpolation.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{10}{*}{Tension a-direction} & \multicolumn{2}{|l|}{\begin{tabular}{l}
DEFINE_TABLE_3D \\
(Temperature)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
DEFINE_TABLE \\
(Total Strain Rate)
\end{tabular}} \\
\hline & \multirow{9}{*}{Table 1} & \multirow{3}{*}{Table 2: \(10^{\circ} \mathrm{C}\)} & \multirow{3}{*}{Table 2} & Curve \(1\left(10^{-3} / \mathrm{s}\right)\) \\
\hline & & & & Curve \(2(1 / \mathrm{s})\) \\
\hline & & & & Curve 3 (10/s) \\
\hline & & \multirow{3}{*}{Table 3: \(20^{\circ} \mathrm{C}\)} & \multirow{3}{*}{Table 3} & Curve \(4\left(10^{-3} / \mathrm{s}\right)\) \\
\hline & & & & Curve 5 (1/s) \\
\hline & & & & Curve 6 (10/s) \\
\hline & & \multirow{3}{*}{Table 4: \(50^{\circ} \mathrm{C}\)} & \multirow{3}{*}{Table 4} & Curve \(7\left(10^{-3} / \mathrm{s}\right)\) \\
\hline & & & & Curve 8 (1/s) \\
\hline & & & & Curve 9 (10/s) \\
\hline
\end{tabular}

Restrictions/assumptions about the input data are as follows:
a) For normal (tension and compression) and shear curve data: Use positive stress and positive strain values in the curve data.
b) For off-axis curve data: Use positive stress and positive strain values in the curve data if the off-axis test is a tension test. Use negative stress and positive strain values in the curve data if the off-axis test is a compressive test. The same combination of tension-compression tests is assumed for all *MAT_213 cards used in a specific model. For instance, if the LT10-LT11-

LT12 combination is tension-compression-compression for one set *MAT_213 data, then it is assumed that all other *MAT_213 data in the model use tension-compression-compression data.
c) All shear strain values are tensorial, not engineering (total strain rate input must be tensorial for shear component).
d) For an elastic component, meaning \(a\)-direction in a unidirectional composite, set the initial yield strain value (in YSC) greater than the failure strain (last strain value in the curve).
3. YSC. Curve of initial yield strain values (YSC) must list curves in ascending order as abscissa values with the corresponding yield strains given as the ordinate values. An example YSC data is shown below for a case with two sets of (temperature, strain rate) data.
\begin{tabular}{ccl}
\hline Load Curve & Yield Strain & Curves \\
\hline LC1 & \(\varepsilon_{y^{0}}^{L C 1}\) & Curve \(1\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC2 & \(\varepsilon_{y^{0}}^{L C 2}\) & Curve \(2\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC3 & \(\varepsilon_{y^{0}}^{L C 3}\) & Curve \(3\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC4 & \(\varepsilon_{y^{0}}^{L C 4}\) & Curve \(4\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC5 & \(\varepsilon_{y^{0}}^{L C 5}\) & Curve \(5\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC6 & \(\varepsilon_{y^{0}}^{L C 6}\) & Curve \(6\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC7 & \(\varepsilon_{y^{0}}^{L C 7}\) & Curve \(7\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC8 & \(\varepsilon_{y^{0}}^{L C 8}\) & Curve \(8\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC9 & \(\varepsilon_{y^{0}}^{L C 9}\) & Curve \(9\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC10 & \(\varepsilon_{y^{0}}^{L C 10}\) & Curve \(10\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC11 & \(\varepsilon_{y^{0}}^{L C 11}\) & Curve \(11\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC12 & \(\varepsilon_{y^{0}}^{L C 12}\) & Curve \(12\left(10^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC13 & \(\varepsilon_{y^{0}}^{L C 13}\) & Curve \(1\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC14 & \(\varepsilon_{y^{0}}^{L C 14}\) & Curve \(2\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC15 & \(\varepsilon_{y^{0}}^{L C 15}\) & Curve \(3\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ccl}
\hline Load Curve & Yield Strain & Curves \\
\hline LC16 & \(\varepsilon_{y^{0}}^{L L C 16}\) & Curve \(4\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC17 & \(\varepsilon_{y^{0}}^{L C 17}\) & Curve \(5\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 18 & \(\varepsilon_{y^{0}}^{L C 18}\) & Curve \(6\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 19 & \(\varepsilon_{y^{0}}^{L C 19}\) & Curve \(7\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 20 & \(\varepsilon_{y^{0}}^{L C 20}\) & Curve \(8\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 21 & \(\varepsilon_{y^{0}}^{L C 21}\) & Curve \(9\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 22 & \(\varepsilon_{y^{0}}^{L C 22}\) & Curve \(10\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 23 & \(\varepsilon_{y^{0}}^{L C 23}\) & Curve \(11\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
LC 24 & \(\varepsilon_{y^{0}}^{L C 24}\) & Curve \(12\left(20^{\circ} \mathrm{C}, 10^{-3} / \mathrm{s}\right)\) \\
\hline
\end{tabular}
4. Damage curve. Include in this curve only the active damage parameter ID and the corresponding curve or Table3D ID. Note that damage data can be rate and temperature dependent and are used with all relevant input stress-strain curves in MAT_213 V1.3.6 and later versions. The damage parameter ID definitions are shown in the following table. For shell elements, only in-plane damage is considered and only parameters \(1,2,4,5,7,13,15,16,18,21,23,24,26,37,38,40\), \(42,45,46,48,50,61,62,64,65\) are active.
\begin{tabular}{llllll}
\hline \begin{tabular}{l}
Damage \\
Parameter \\
ID
\end{tabular} & \begin{tabular}{lllll}
Damage \\
Parameter
\end{tabular} & \begin{tabular}{l}
Damage \\
Parameter \\
ID
\end{tabular} & \begin{tabular}{l}
Damage \\
Parameter
\end{tabular} & \begin{tabular}{l}
Damage \\
Parameter \\
ID
\end{tabular} & Damage \\
\hline 1 & \(d_{a a_{T}}^{a a_{T}}\left(\varepsilon_{a a_{T}}\right)\) & 29 & \(d_{b b_{T}}^{a a_{T}}\left(\varepsilon_{c c_{T}}\right)\) & 57 & \(d_{c c_{C}}^{b b_{C}}\left(\varepsilon_{c c_{C}}\right)\) \\
2 & \(d_{b b_{T}}^{b b_{T}}\left(\varepsilon_{b b_{T}}\right)\) & 30 & \(d_{c c_{T}}^{b b_{T}}\left(\varepsilon_{c c_{T}}\right)\) & 58 & \(d_{c c_{C}}^{a b}\left(\varepsilon_{c c_{C}}\right)\) \\
3 & \(d_{c c_{T}}^{c c_{T}}\left(\varepsilon_{c c_{T}}\right)\) & 31 & \(d_{c c_{T}}^{a a_{C}}\left(\varepsilon_{c c_{T}}\right)\) & 59 & \(d_{c c_{C}}^{b c}\left(\varepsilon_{c c_{C}}\right)\) \\
4 & \(d_{a a_{C}}^{a a_{C}}\left(\varepsilon_{a a_{C}}\right)\) & 32 & \(d_{c c_{T}}^{b b_{C}}\left(\varepsilon_{c c_{T}}\right)\) & 60 & \(d_{c c_{C}}^{a c}\left(\varepsilon_{c c_{C}}\right)\) \\
5 & \(d_{b b_{C}}^{b b_{C}}\left(\varepsilon_{b b_{C}}\right)\) & 33 & \(d_{c c_{T}}^{c c_{C}}\left(\varepsilon_{c c_{T}}\right)\) & 61 & \(d_{a b}^{a a_{T}}\left(\varepsilon_{a b}\right)\) \\
6 & \(d_{c c_{C}}^{c c_{C}}\left(\varepsilon_{c c_{C}}\right)\) & 34 & \(d_{c c_{T}}^{a b}\left(\varepsilon_{c c_{T}}\right)\) & 62 & \(d_{a b}^{b b_{T}}\left(\varepsilon_{a b}\right)\) \\
7 & \(d_{a b}^{a b}\left(\varepsilon_{a b}\right)\) & 35 & \(d_{c c_{T}}^{b c}\left(\varepsilon_{c c_{T}}\right)\) & 63 & \(d_{a b}^{c c_{T}}\left(\varepsilon_{a b}\right)\) \\
8 & \(d_{b c}^{b c}\left(\varepsilon_{b c}\right)\) & 36 & \(d_{c c_{T}}^{a c}\left(\varepsilon_{c c_{T}}\right)\) & 64 & \(d_{a b}^{a a_{C}}\left(\varepsilon_{a b}\right)\) \\
9 & \(d_{a c}^{a c}\left(\varepsilon_{a c}\right)\) & 37 & \(d_{a a_{C}}^{a a_{T}}\left(\varepsilon_{a a_{T}}\right)\) & 65 & \(d_{a b}^{b b_{C}}\left(\varepsilon_{a b}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Damage Parameter ID & Damage Parameter & Damage Parameter ID & Damage Parameter & Damage Parameter ID & Damage Parameter \\
\hline 10 & \(d_{o a b}^{o a b}\left(\varepsilon_{o a b}\right)\) & 38 & \(d_{a a_{C}}^{b b_{T}}\left(\varepsilon_{a a_{C}}\right)\) & 66 & \(d_{a b}^{c c_{c}}\left(\varepsilon_{a b}\right)\) \\
\hline 11 & \(d_{o b c}^{o b c}\left(\varepsilon_{o b c}\right)\) & 39 & \(d_{a a_{C}}^{c c_{T}}\left(\varepsilon_{a a_{C}}\right)\) & 67 & \(d_{a b}^{b c}\left(\varepsilon_{a b}\right)\) \\
\hline 12 & \(d_{o a c}^{o a c}\left(\varepsilon_{o a c}\right)\) & 40 & \(d_{a a_{C}}^{b b_{C}}\left(\varepsilon_{a a_{C}}\right)\) & 68 & \(d_{a b}^{a c}\left(\varepsilon_{a b}\right)\) \\
\hline 13 & \(d_{a a_{T}}^{b b_{T}}\left(\varepsilon_{a a_{T}}\right)\) & 41 & \(d_{a a_{C}}^{c c_{C}}\left(\varepsilon_{a a_{C}}\right)\) & 69 & \(d_{b c}^{a a_{T}}\left(\varepsilon_{b c}\right)\) \\
\hline 14 & \(d_{a a_{T}}^{c c_{T}}\left(\varepsilon_{a a_{T}}\right)\) & 42 & \(d_{a a_{C}}^{a b}\left(\varepsilon_{a a_{C}}\right)\) & 70 & \(d_{b c}^{b b_{T}}\left(\varepsilon_{b c}\right)\) \\
\hline 15 & \(d_{a a_{T}}^{a a_{C}}\left(\varepsilon_{a a_{T}}\right)\) & 43 & \(d_{a a_{C}}^{b c}\left(\varepsilon_{a a_{C}}\right)\) & 71 & \(d_{b c}^{c c_{T}}\left(\varepsilon_{b c}\right)\) \\
\hline 16 & \(d_{a a_{T}}^{b b_{C}}\left(\varepsilon_{a a_{T}}\right)\) & 44 & \(d_{a a_{C}}^{a c}\left(\varepsilon_{a a_{C}}\right)\) & 72 & \(d_{b c}^{a a_{c}}\left(\varepsilon_{b c}\right)\) \\
\hline 17 & \(d_{a a_{T}}^{c c_{C}}\left(\varepsilon_{a a_{T}}\right)\) & 45 & \(d_{b b_{C}}^{a a_{T}}\left(\varepsilon_{b b_{C}}\right)\) & 73 & \(d_{b c}^{b b_{c}}\left(\varepsilon_{b c}\right)\) \\
\hline 18 & \(d_{a a_{T}}^{a b}\left(\varepsilon_{a a_{T}}\right)\) & 46 & \(d_{b b_{C}}^{b b_{T}}\left(\varepsilon_{b b_{C}}\right)\) & 74 & \(d_{b c}^{c c_{c}}\left(\varepsilon_{b c}\right)\) \\
\hline 19 & \(d_{a a_{T}}^{b c}\left(\varepsilon_{a a_{T}}\right)\) & 47 & \(d_{b c_{C}}^{c c_{T}}\left(\varepsilon_{b b_{C}}\right)\) & 75 & \(d_{b c}^{a b}\left(\varepsilon_{b c}\right)\) \\
\hline 20 & \(d_{a a_{T}}^{a c}\left(\varepsilon_{a a_{T}}\right)\) & 48 & \(d_{b c_{C}}^{a a_{C}}\left(\varepsilon_{b b_{C}}\right)\) & 76 & \(d_{b c}^{a c}\left(\varepsilon_{b c}\right)\) \\
\hline 21 & \(d_{b b_{T}}^{a a_{T}}\left(\varepsilon_{b b_{T}}\right)\) & 49 & \(d_{b b_{C}}^{c c_{C}}\left(\varepsilon_{b b_{C}}\right)\) & 77 & \(d_{a c}^{a a_{T}}\left(\varepsilon_{a c}\right)\) \\
\hline 22 & \(d_{b b_{T}}^{c c_{T}}\left(\varepsilon_{b b_{T}}\right)\) & 50 & \(d_{b b_{C}}^{a b}\left(\varepsilon_{b b_{C}}\right)\) & 78 & \(d_{a c}^{b b_{T}}\left(\varepsilon_{a c}\right)\) \\
\hline 23 & \(d_{b b_{T}}^{a a_{C}}\left(\varepsilon_{b b_{T}}\right)\) & 51 & \(d_{b c_{C}}^{b c}\left(\varepsilon_{b b_{C}}\right)\) & 79 & \(d_{a c}^{c c_{T}}\left(\varepsilon_{a c}\right)\) \\
\hline 24 & \(d_{b b_{T}}^{b b_{C}}\left(\varepsilon_{b b_{T}}\right)\) & 52 & \(d_{b b_{C}}^{a c}\left(\varepsilon_{b b_{C}}\right)\) & 80 & \(d_{a c}^{a a_{C}}\left(\varepsilon_{a c}\right)\) \\
\hline 25 & \(d_{b b_{T}}^{c c_{C}}\left(\varepsilon_{b b_{T}}\right)\) & 53 & \(d_{c c_{C}}^{a a_{T}}\left(\varepsilon_{c c_{C}}\right)\) & 81 & \(d_{a c}^{b b c}\left(\varepsilon_{a c}\right)\) \\
\hline 26 & \(d_{b b_{T}}^{a b}\left(\varepsilon_{b b_{T}}\right)\) & 54 & \(d_{c c_{C}}^{b b_{T}}\left(\varepsilon_{c c_{C}}\right)\) & 82 & \(d_{a c}^{c c}\left(\varepsilon_{a c}\right)\) \\
\hline 27 & \(d_{b b_{T}}^{b c}\left(\varepsilon_{b b_{T}}\right)\) & 55 & \(d_{c c_{C}}^{c c_{T}}\left(\varepsilon_{c c_{C}}\right)\) & 83 & \(d_{a c}^{a b}\left(\varepsilon_{a c}\right)\) \\
\hline 28 & \(d_{b b_{T}}^{a c c}\left(\varepsilon_{b b_{T}}\right)\) & 56 & \[
d_{c c_{C}}^{a a_{C}}\left(\varepsilon_{c c_{C}}\right)
\] & 84 & \[
d_{a c}^{b c}\left(\varepsilon_{a c}\right)
\] \\
\hline
\end{tabular}
a) Example for rate and temperature independent damage data. To include damage information only for \(d_{b b_{C}}^{b b_{C}}\left(\varepsilon_{b b_{C}}\right)\) (uncoupled \(b\)-direction compression) and \(d_{a b}^{a b}\left(\varepsilon_{a b}\right)\) (uncoupled shear \(\left.a-b\right)\), the following input can be used:
```

*DEFINE CURVE

\$\$ Curve of Damage Index and Corresponding Damage Curves

\$\$ a-Damage Index
\$\# a
```

A typical damage curve has the total strain in the loading direction as abscissa values with the corresponding damage value given as the ordinate values as shown below. The final strain value in the curve must correspond to the final strain in the corresponding QS-RT input stress-strain curve.

| Total Strain | Damage |
| :--- | :---: |
| 0.0 | 0.0 |
| 0.01 | 0.0 |
| 0.02 | 0.0 |
| 0.03 | 0.05 |
| 0.04 | 0.08 |
| 0.05 | 0.12 |
| 0.06 | 0.17 |
| 0.07 | 0.23 |
| 0.08 | 0.3 |

b) Example for rate and temperature dependent damage data. To include damage information for three different strain rates $(0.0001 / \mathrm{s}, 0.001 / \mathrm{s}$ and $325 / \mathrm{s}$) at temperature $36^{\circ} \mathrm{C}$ for $d_{b b_{T}}^{b b_{T}}\left(\varepsilon_{b b_{T}}\right)$ (uncoupled b-direction tension) only, the following input can be used.

5. Failure criterion. Use Cards $8 n .1$ and $8 n .2$ for the failure criterion to be included in the failure model. The failure criterion and associated values are given as (see [58] for details)
a) Puck Failure Criterion (PFC). For this criterion, FTYPE $=1$ and FV0, ..., FV14 are the magnitudes of fracture energy, damage, magnification factor, slope parameters, and material parameters for the fiber.
b) Tsai-Wu Failure Criterion (TWFC). For this criterion, FTYPE $=2$ and FV1, ..., FV12 are the magnitudes of the failure stresses $\hat{\sigma}_{a a}^{T}, \hat{\sigma}_{a a}^{C}, \hat{\sigma}_{b b}^{T}, \hat{\sigma}_{b b}^{C}, \hat{\sigma}_{c c}^{T}, \hat{\sigma}_{c c}^{C}, \hat{\sigma}_{a b}$, $\hat{\sigma}_{b c}, \hat{\sigma}_{a c}, \hat{\sigma}_{a b}^{45}, \hat{\sigma}_{b c}^{45}$, and $\hat{\sigma}_{a c}^{45}$.
c) Generalized Tabulated Failure Criterion (GTFC). For solid elements with FTYPE $=3$, FV1 is n, the in-plane and out-of-plane interaction term. FV2 and FV3 are the Table IDs of the two tables for the in-plane and the out-ofplane $\left(\theta, \varepsilon_{\text {fail }}\right)$ values that define the in-plane and out-of-plane failure surfaces, respectively. For the in-plane failure surface, the table contains the a direction stress (S11) value-curve ID pairs. For the out-of-plane failure surface, the table contains the normal c-direction stress (S33) value-curve ID pairs. For shell elements, only FV2 is used with the preceding definition and the element fails when the damage is 1 . There is no data in card 8d.2.

A partial example is shown below for solid elements.

| \$\# Card 8d.1 | | | | | |
| :--- | :---: | :--- | ---: | ---: | ---: |
| \$\# | FTYPE | FV0 | FV1 | FV2 | FV3 |
| | 3 | | 2.0 | 9013 | 9014 |
| \$\# Card 8d.2 | | | | | |
| \$\# | | | | | |

```
$$ theta - equivalent failure strain (efs)
*DEFINE_TABLE
$# t\overline{b}id sfa offa
    9013 0 0.000
$# value curveid
                                    0.0 90131
                                    366000.0 90132
*DEFINE CURVE
$$ thet\overline{a}- equivalent failure strain for S11 = 0.0
$# lcid sidr sfa sfo offa
offo dattyp
    90131 0 0.000 0.000 0.000
0.000 0
$# a1 o1
            -180.000 0.02
                        180.000 0.02
*DEFINE_CURVE
$$ thet\overline{a}- equivalent failure strain for S11 = 366000.0
$# lcid sidr sfa sfo offa
offo dattyp
        90132 0 0.000 0.000 0.000
0.000 0
$# a1 01
-180.000 0.02
180.000 0.02
```

Repeat the *DEFINE_TABLE for Table ID 9014 with a set of normal c-direction stress (S33) values-curve ID pairs, followed by *DEFINE_CURVE for all the theta-equivalent failure strain curves for different normal c-direction stress (S33) data..
6. Element erosion. Element is eroded if failure occurs at any one Gauss point. Note that *DEFINE_ELEMENT_EROSION_SHELL is required for shell element erosion; the number of integration points needed to fail to erode the element is defined there.
7. Adjusting stress-strain curves. The user-defined stress-strain curves are adjusted when using TCSYM $=1,2$, and 3 as follows. If $E_{a}^{T_{0}}$ and $E_{a}^{C_{0}}$ represent the
original a-direction (1-direction) elastic tensile and compressive moduli respectively, then the modified elastic moduli are computed as
a) $\operatorname{TCSYM}=1 . E_{a}^{T}=E_{a}^{C}=0.5\left(E_{a}^{T_{0}}+E_{a}^{C_{0}}\right)$
b) $\operatorname{TCSYM}=2 . E_{a}^{T}=E_{a}^{T_{0}}$ and $E_{a}^{C}=E_{a}^{T_{0}}$
c) $\operatorname{TCSYM}=3 . E_{a}^{T}=E_{a}^{C_{0}}$ and $E_{a}^{C}=E_{a}^{C_{0}}$.

Let $R_{a}^{T}=E_{a}^{T} / E_{a}^{T_{0}}$ and $R_{a}^{C}=E_{a}^{C} / E_{a}^{C_{0}}$. The adjusted tensile strain is then computed as the original tensile strain divided by R_{a}^{T}, the adjusted compressive strain is computed as the original compressive strain divided by R_{a}^{C}, the adjusted tensile yield strain is computed as the original tensile yield strain divided by R_{a}^{T}, and the adjusted compressive yield strain is computed as the original compressive yield strain divided by R_{a}^{C}. The same process is then applied to the other two normal directions.
8. Curve discretization. For this material, only LCINT on *CONTROL_SOLUTION (not with *DEFINE_CURVE) can be used to specify the number of discretized points for the input curves. The default value is 100 .
9. Poisson's ratios. If necessary, the input Poisson's ratios are adjusted internally in LS-DYNA to satisfy the criteria described in [11].
10. Plastic multiplier. The plastic multiplier computations involve finding the root of the yield function. The root is computed numerically, not analytically. The first step is to find the interval bounding the root. The value of N set in field PMACC on Card 10 controls the discretization of the interval to find the bound. The larger the value of N , the more accurate the bound. However, the computational time is likely to increase with larger values of N .
11. Stochastic variation. A stochastic variation can be added using keyword *DEFINE_STOCHASTIC_VARIATION_PROPERTIES. There are six quantities (see table below) which can be varied, so Card 2 in *DEFINE_STOCHASTIC_VARIATION_PROPERTIES must be defined six times and assumes that the quantities being varied are in the order specified.

| Material Properties to be Varied
 in Predefined Order |
| :---: |
| E_{a} |
| $G_{a b}$ |
| $G_{b c}$ |
| $G_{c a}$ |

| Material Properties to be Varied |
| :---: |
| in Predefined Order |
| In-plane failure radius |
| Out-of-plane failure radius |

12. Damage formulation. By default, the damage calculations are carried out using effective stress as the internal state variable for tracking growth of damage parameters $d_{c d}^{a b}$. An alternate formulation is available where the damage parameters are taken as functions of directional plastic strains to track damage growth. Details of both the formulations are available in [7].
13. Tsai-Wu Criterion for solid and shell elements. If using FTYPE $=2$ with solid elements, define FV1 through FV12. If using FTYPE $=2$ with shell elements, define FV1, FV2, FV3, FV4, FV7, and FV10.
14. Linear stress degradation for Tsai-Wu Criterion. To invoke linear stress degradation, define FV13 and FV14.

External Files Generated by MAT_213:

Two sets of external files are generated which contain information connected with the input stress-strain curves. The first set of files have a naming convention of "MAT_213-__input_curve__stress-strain__curve_id_i.plt" Here, i is the $i^{\text {th }}$ load curve input into *MAT_213. Each of these files contain LCINT (see Remark 8) stress-strain curve data points. An example of the set of files generated is shown below.

| Filename | Load Curve |
| :--- | :---: |
| MAT_213__input_curve__stress-strain__curve_id_1.plt | LC1 |
| MAT_213__input_curve__stress-strain__curve_id_2.plt | LC2 |
| MAT_213__input_curve__stress-strain__curve_id_3.plt | LC3 |
| MAT_213__input_curve__stress-strain__curve_id_4.plt | LC4 |
| MAT_213__input_curve__stress-strain__curve_id_5.plt | LC5 |
| MAT_213__input_curve__stress-strain__curve_id_6.plt | LC6 |
| MAT_213__input_curve__stress-strain__curve_id_7.plt | LC7 |
| MAT_213__input_curve__stress-strain__curve_id_8.plt | LC8 |
| MAT_213__input_curve__stress-strain__curve_id_9.plt | LC9 |
| MAT_213__input_curve__stress-strain__curve_id_10.plt | LC10 |
| MAT_213__input_curve__stress-strain__curve_id_11.plt | LC11 |

| Filename | Load Curve |
| :--- | :---: |
| MAT_213__input_curve__stress-strain__curve_id_12.plt | LC12 |
| MAT_213__input_curve__stress-strain__curve_id_13.plt | LC13 |
| MAT_213__input_curve__stress-strain__curve_id_14.plt | LC14 |
| MAT_213__input_curve__stress-strain__curve_id_15.plt | LC15 |
| MAT_213__input_curve__stress-strain__curve_id_16.plt | LC16 |
| MAT_213__input_curve__stress-strain__curve_id_17.plt | LC17 |
| MAT_213__input_curve__stress-strain__curve_id_18.plt | LC18 |
| MAT_213__input_curve__stress-strain__curve_id_19.plt | LC19 |
| MAT_213__input_curve__stress-strain__curve_id_20.plt | LC20 |
| MAT_213__input_curve__stress-strain__curve_id_21.plt | LC21 |
| MAT_213__input_curve__stress-strain__curve_id_22.plt | LC22 |
| MAT_213__input_curve__stress-strain__curve_id_23.plt | LC23 |
| MAT_213__input_curve__stress-strain__curve_id_24.plt | LC24 |

The second set of files have a naming convention of "MAT_213__modified_curve_-stress-pl_strain_curve_id_i.plt". As above, i is the $i^{\text {th }}$ load curve input into ${ }^{*} \mathrm{MAT}_{2} 213$. Each of these files contains LCINT stress-effective plastic strain curve data points. We urge you to use these plot files to check if the stress-effective plastic strain curves for each of the 12 components intersect or not when rate and temperature sensitive data are input. Intersecting curves or intersecting extrapolated curves for a component are likely to lead to inconsistent results. An example of the set of files generated is shown below.

| Filename | Load Curve |
| :--- | :--- | :---: |
| MAT_213__modified_curve__stress-pl_strain__curve_id_1.plt | LC1 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_2.plt | LC2 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_3.plt | LC3 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_4.plt | LC4 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_5.plt | LC5 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_6.plt | LC6 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_7.plt | LC7 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_8.plt | LC8 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_9.plt | LC9 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_10.plt | LC10 |

| Filename | Load Curve |
| :--- | :--- | :--- |
| MAT_213__modified_curve__stress-pl_strain__curve_id_11.plt | LC11 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_12.plt | LC12 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_13.plt | LC13 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_14.plt | LC14 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_15.plt | LC15 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_16.plt | LC16 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_17.plt | LC17 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_18.plt | LC18 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_19.plt | LC19 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_20.plt | LC20 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_21.plt | LC21 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_22.plt | LC22 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_23.plt | LC23 |
| MAT_213__modified_curve__stress-pl_strain__curve_id_24.plt | LC24 |

Each of the aforementioned "MAT_213__modified_curve_stress-pl_strain_curve_id_i.plt" files have similar headings

Curveplot
MAT213 mod crv i (EPSR =
effective plastic strain
stress
stress curve
stress \#pts= "LCINT"

List of History Variables for Solid Elements (LS-PrePost):

| History Variable \# | Symbols | Description |
| :---: | :---: | :--- |
| 15 | c_{1}^{d} | Damage in a-direction, tension |
| 16 | c_{2}^{d} | Damage in b-direction, tension |
| 17 | c_{3}^{d} | Damage in c-direction, tension |
| 18 | c_{4}^{d} | Damage in a-direction, compression |
| 19 | c_{5}^{d} | Damage in b-direction, compression |
| 20 | c_{6}^{d} | Damage in c-direction, compression |
| 21 | c_{7}^{d} | Damage in $a b$-plane, shear |

| History Variable \# | Symbols | Description |
| :---: | :---: | :---: |
| 22 | c_{8}^{d} | Damage in $b c$-plane, shear |
| 23 | c_{9}^{d} | Damage in ac-plane, shear |
| 24 | d | Failure term ($\mathrm{FTYPE}=3$) |
| 25 | $\varepsilon_{a a T}^{p}$ | Tensile plastic strain in a-direction (FTYPE $\neq 1$) |
| 26 | $\varepsilon_{b b T}^{p}$ | Tensile plastic strain in b-direction ($\mathrm{FTYPE} \neq 1$) |
| 27 | $r_{\text {IP }}^{f}$ | Equivalent failure strain for in-plane mode (FTYPE = 3) |
| 28 | $r_{\text {IP }}$ | Equivalent strain for in-plane mode ($\mathrm{FTYPE}=3$) |
| 29 | $\theta_{\text {IP }}$ | Failure angle for in-plane mode ($\mathrm{FTYPE}=3$) |
| 30 | r_{OOP}^{f} | Equivalent failure strain for out-of-plane mode $(\text { FTYPE = } 3)$ |
| 31 | $r_{\text {OOP }}$ | Equivalent strain for out-of-plane mode (FTYPE = 3) |
| 32 | $\theta_{\text {OOP }}$ | Failure angle for out-of-plane mode (FTYPE $=3$) |
| 33 | $\varepsilon_{c c T}^{p}$ | Tensile plastic strain in c-direction (FTYPE $\neq 1$) |
| 34 | $\varepsilon_{a a C}^{p}$ | Compressive plastic strain in a-direction (FTYPE \neq 1) |
| 35 | $\varepsilon_{b b C}^{p}$ | Compressive plastic strain in b-direction (FTYPE \neq 1) |
| 36 | $\varepsilon_{c c C}^{p}$ | Compressive plastic strain in c-direction (FTYPE \neq 1) |
| 37 | $\varepsilon_{a b}^{p}$ | Plastic tensorial strain in $a b$-plane (FTYPE $\neq 1$) |
| 24 | $\varepsilon_{a a}^{0}$ | Strain at failure onset in a-direction ($\mathrm{FTYPE}=1$) |
| 25 | $\varepsilon_{a a}^{f}$ | Strain for erosion in a-direction ($\mathrm{FTYPE}=1$) |
| 26 | $\varepsilon_{b b}^{0}$ | Strain at failure onset in b-direction ($\mathrm{FTYPE}=1$) |
| 27 | $\varepsilon_{b b}^{f}$ | Strain for erosion in b-direction ($\mathrm{FTYPE}=1$) |
| 28 | $\varepsilon_{c c}^{0}$ | Strain at failure onset in c-direction ($\mathrm{FTYPE}=1$) |
| 29 | $\varepsilon_{c c}^{f}$ | Strain for erosion in c-direction ($\mathrm{FTYPE}=1$) |
| 30 | $\varepsilon_{a b}^{0}$ | Tensorial shear strain at failure onset in $a b$-plane (FTYPE = 1) |
| 31 | $\varepsilon_{a b}^{f}$ | Tensorial shear strain for erosion in $a b$-plane $(\text { FTYPE }=1)$ |

| History Variable \# | Symbols | Description |
| :---: | :---: | :---: |
| 32 | $\varepsilon_{b c}^{0}$ | Tensorial shear strain at failure onset in bc-plane (FTYPE = 1) |
| 33 | $\varepsilon_{b c}^{f}$ | Tensorial shear strain for erosion in $b c$-plane (FTYPE = 1) |
| 34 | $\varepsilon_{a c}^{0}$ | Tensorial shear strain at failure onset in ac-plane (FTYPE = 1) |
| 35 | $\varepsilon_{a c}^{f}$ | Tensorial shear strain for erosion in ac-plane (FTYPE = 1) |
| 36 | FF | Flag for fiber-fracture |
| 37 | IFF | Flag for inter-fiber-fracture |
| 38 | T | Temperature |
| 39 | $\dot{\varepsilon}_{a a_{T}}$ | Tensile strain rate in a-direction |
| 40 | $\dot{\varepsilon}_{b b_{T}}$ | Tensile strain rate in b-direction |
| 41 | $\dot{\varepsilon}_{c c_{T}}$ | Tensile strain rate in c-direction |
| 42 | $\dot{\varepsilon}_{a a_{C}}$ | Compressive strain rate in a-direction |
| 43 | $\dot{\varepsilon}_{b b_{C}}$ | Compressive strain rate in b-direction |
| 44 | $\dot{\varepsilon}_{c c_{C}}$ | Compressive strain rate in c-direction |
| 45 | $\dot{\varepsilon}_{a b}$ | Tensorial shear strain rate in $a b$-plane |
| 46 | $\dot{\varepsilon}_{b c}$ | Tensorial shear strain rate in bc-plane |
| 47 | $\dot{\varepsilon}_{a c}$ | Tensorial shear strain rate in ac-plane |
| 48 | $\sigma_{a a_{T}}^{\text {eff }}$ or $\varepsilon_{a a_{T}}^{\text {cp }}$ | DFLAG.EQ.O: Effective tensile stress in the a-direction
 DFLAG.EQ.1: Corrected tensile plastic strain the a direction |
| 49 | $\sigma_{b b_{T}}^{\text {eff }} \text { or } \varepsilon_{b b_{T}}^{\mathrm{cp}}$ | DFLAG.EQ.0: Effective tensile stress in the b-direction
 DFLAG.EQ.1: Corrected tensile plastic strain the b direction |
| 50 | $\sigma_{c c_{T}}^{\text {eff }}$ or $\varepsilon_{c c_{T}}^{\text {cp }}$ | DFLAG.EQ.O: Effective tensile stress in the c-direction
 DFLAG.EQ.1: Corrected tensile plastic strain the c direction |
| 51 | $\sigma_{a a_{C}}^{\mathrm{eff}} \text { or } \varepsilon_{a a_{C}}^{\mathrm{cp}}$ | DFLAG.EQ.O: Effective compressive stress in the a direction |

| History Variable \# | Symbols | Description |
| :---: | :---: | :---: |
| | | DFLAG.EQ.1: Corrected compressive plastic strain the a-direction |
| 52 | $\sigma_{b b_{C}}^{\text {eff }}$ or $\varepsilon_{b c_{C}}^{\mathrm{cp}}$ | DFLAG.EQ.0: Effective compressive stress in the b direction
 DFLAG.EQ.1: Corrected compressive plastic strain the b-direction |
| 53 | $\sigma_{c c_{C}}^{\text {eff }}$ or $\varepsilon_{c c c_{C}}^{\text {cp }}$ | DFLAG.EQ.0: Effective compressive stress in the c direction
 DFLAG.EQ.1: Corrected compressive plastic strain the c-direction |
| 54 | $\sigma_{a b}^{\text {eff }}$ or $\varepsilon_{a b}^{\mathrm{cp}}$ | DFLAG.EQ.0: Effective shear stress in the $a b$-plane
 DFLAG.EQ.1: Corrected plastic tensorial strain the $a b$-plane |
| 55 | $\sigma_{b c}^{\text {eff }}$ or $\varepsilon_{b c}^{\mathrm{cp}}$ | DFLAG.EQ.0: Effective shear stress in the bc-plane
 DFLAG.EQ.1: Corrected plastic tensorial strain the bc-plane |
| 56 | $\sigma_{a c}^{\text {eff }}$ or $\varepsilon_{a c}^{\mathrm{cp}}$ | DFLAG.EQ.0: Effective shear stress in the ac-plane
 DFLAG.EQ.1: Corrected plastic tensorial strain the ac-plane |
| 57 | λ | Effective plastic strain |
| 58 | $\varepsilon_{a a}$ | Strain in a-direction |
| 59 | $\varepsilon_{b b}$ | Strain in b-direction |
| 60 | $\varepsilon_{c c}$ | Strain in c-direction |
| 61 | $\varepsilon_{a b}$ | Tensorial shear strain in $a b$-plane |
| 62 | $\varepsilon_{b c}$ | Tensorial shear strain in bc-plane |
| 63 | $\varepsilon_{a c}$ | Tensorial shear strain in ac-plane |
| 64 | $\sigma_{a a_{T}}^{y}$ | Yield stress in tension a-direction |
| 65 | $\sigma_{b b_{T}}^{y}$ | Yield stress in tension b-direction |
| 66 | $\sigma_{c c_{T}}^{y}$ | Yield stress in tension c-direction |
| 67 | $\sigma_{a a_{C}}^{y}$ | Yield stress in compression a-direction |
| 68 | $\sigma_{b b_{c}}^{y}$ | Yield stress in compression b-direction |
| 69 | $\sigma_{c c_{C}}^{y}$ | Yield stress in compression c-direction |
| 70 | $\sigma_{a b}^{y}$ | Yield stress in shear $a b$-plane |

| History Variable \# | Symbols | Description |
| :---: | :---: | :--- |
| 71 | $\sigma_{b c}^{y}$ | Yield stress in shear $b c$-plane |
| 72 | $\sigma_{a c}^{y}$ | Yield stress in shear $a c$-plane |
| 73 | T | Current cycle |
| 74 | $\sigma_{a a}^{e}$ | Equilibrium stress in a-direction |
| 75 | $\sigma_{b b}^{e}$ | Equilibrium stress in b-direction |
| 76 | $\sigma_{c c}^{e}$ | Equilibrium stress in c-direction |
| 77 | $\sigma_{a b}^{e}$ | Equilibrium shear stress in $a b$-plane |
| 78 | $\sigma_{b c}^{e}$ | Equilibrium shear stress in $b c$-plane |
| 79 | $\sigma_{a c}^{e}$ | Equilibrium shear stress in $a c$-plane |
| 80 | $\sigma_{a a}^{v}$ | Viscous stress in a-direction |
| 81 | $\sigma_{b b}^{v}$ | Viscous stress in b-direction |
| 82 | $\sigma_{c c}^{v}$ | Viscous stress in c-direction |
| 83 | $\sigma_{a b}^{v}$ | Viscous shear stress in $a b$-plane |
| 90 | $\sigma_{b c}^{v}$ | Viscous shear stress in $b c$-plane |
| 91 | $\sigma_{a c}^{v}$ | Viscous shear stress in $a c$-plane |
| 92 | $\dot{\lambda}$ | Effective plastic strain rate |
| 93 | $\varepsilon_{b c}^{p}$ | Plastic tensorial strain in $b c$-plane $($ FTYPE $\neq 1)$ |
| 94 | $\varepsilon_{a c}^{p}$ | Plastic tensorial strain in $a c$-plane $($ FTYPE $\neq 1)$ |

List of History Variables for Shell Elements (LS-PrePost):

| History Variable \# | Symbols | Description |
| :---: | :---: | :--- |
| 13 | $d_{\max }$ | Maximum damage parameter |
| 14 | c_{1}^{d} | Damage in a-direction, tension |
| 15 | c_{2}^{d} | Damage in b-direction, tension |
| 16 | c_{4}^{d} | Damage in a-direction, compression |
| 17 | c_{5}^{d} | Damage in b-direction, compression |
| 18 | c_{7}^{d} | Damage in a - b plane, shear |
| 19 | d | Failure term (FTYPE $=3$) |
| 20 | $r_{\text {IP }}$ | Equivalent strain for in-plane mode |
| 21 | $\theta_{\text {IP }}$ | Failure angle for in-plane mode |

| History Variable \# | Symbols | Description |
| :---: | :---: | :---: |
| 22 | F | Flag for failure of integration point. " 1 " if $d \geq 1$ |
| 23 | T | Temperature |
| 24 | $\dot{\lambda}$ | Effective plastic strain rate |
| 25 | $\dot{\varepsilon}_{a a_{T}}$ | Tensile strain rate in the a-direction |
| 26 | $\dot{\varepsilon}_{b b_{T}}$ | Tensile strain rate in the b-direction |
| 27 | $\dot{\varepsilon}_{a a_{C}}$ | Compressive strain rate in the a-direction |
| 28 | $\dot{\varepsilon}_{b b_{C}}$ | Compressive strain rate in the b-direction |
| 29 | $\dot{\varepsilon}_{a b}$ | Tensorial shear strain rate in the $a b$-plane |
| 30 | $\varepsilon_{a a_{T}}^{p}$ | Tensile plastic strain in the a-direction |
| 31 | $\varepsilon_{b b_{T}}^{p}$ | Tensile plastic strain in the b-direction |
| 32 | $\varepsilon_{c c_{T}}^{p}$ | Tensile plastic strain in the c-direction |
| 33 | $\varepsilon_{a a_{C}}^{p}$ | Compressive plastic strain in the a-direction |
| 34 | $\varepsilon_{b b_{C}}^{p}$ | Compressive plastic strain in the b-direction |
| 35 | $\varepsilon_{c c_{C}}^{p}$ | Compressive plastic strain in the c-direction |
| 36 | $\varepsilon_{a b}^{p}$ | Plastic tensorial shear strain in the $a b$-plane |
| 37 | λ | Effective plastic strain |
| 38 | $\varepsilon_{a a}$ | Strain in a-direction |
| 39 | $\varepsilon_{b b}$ | Strain in b-direction |
| 40 | $\varepsilon_{c c}$ | Strain in c-direction |
| 41 | $\varepsilon_{a b}$ | Tensorial shear strain in $a b$-plane |
| 42 | $\varepsilon_{b c}$ | Tensorial shear strain in $b c$-plane |
| 43 | $\varepsilon_{a c}$ | Tensorial shear strain in ac-plane |
| 44 | $\sigma_{a a}$ | Stress in a-direction |
| 45 | $\sigma_{b b}$ | Stress in b-direction |
| 46 | $\sigma_{a b}$ | Shear stress in $a b$-plane |
| 47 | $\sigma_{b c}$ | Shear stress in bc-plane |
| 48 | $\sigma_{a c}$ | Shear stress in ac-plane |
| 49 | $\sigma_{a a}^{e}$ | Equilibrium stress in a-direction |
| 50 | $\sigma_{b b}^{e}$ | Equilibrium stress in b-direction |

| History Variable \# | Symbols | Description |
| :---: | :---: | :--- |
| 51 | $\sigma_{a b}^{e}$ | Equilibrium shear stress in $a b$-plane |
| 52 | $\sigma_{a a}^{v}$ | Viscous stress in a-direction |
| 53 | $\sigma_{b b}^{v}$ | Viscous stress in b-direction |
| 54 | $\sigma_{a b}^{v}$ | Viscous shear stress in $a b$-plane |
| 55 | $\varepsilon_{a a_{T}}^{\mathrm{cp}}$ | Corrected plastic strain in a-direction, tension |
| 56 | $\varepsilon_{b b_{T}}^{\mathrm{cp}}$ | Corrected plastic strain in b-direction, tension |
| 57 | $\varepsilon_{a a_{C}}^{\mathrm{cp}}$ | Corrected plastic strain in a-direction, compres- |
| sion | | |
| 58 | $\varepsilon_{b b_{C}}^{\mathrm{cp}}$ | Corrected plastic strain in b-direction, compres- |
| sion | | |
| 59 | $\sigma_{a a_{T}}^{y}$ | Yield stress in tension a-direction |
| 60 | $\sigma_{b b_{T}}^{y}$ | Yield stress in tension b-direction |
| 61 | $\sigma_{a a_{C}}^{y}$ | Yield stress in compression a-direction |
| 62 | $\sigma_{b b_{c}}^{y}$ | Yield stress in compression b-direction |
| 63 | $\sigma_{a b}^{y}$ | Yield stress in shear $a b$-plane |
| 64 | $\sigma_{a b}^{y, 45}$ | Yield stress in 45 ${ }^{\circ}$ off-axis $a b$-plane |
| 65 | E_{p} | Dissipated plastic energy |

References:

[1] R. Goldberg, K. Carney, P. DuBois, C. Hoffarth, J. Harrington, S. Rajan, and G. Blankenhorn (2014). Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model, NASA TM-2014-218347, https://ntrs.nasa.gov/citations/20140017766.
[2] C. Hoffarth (2017). A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis, DOT/FAA/TC-TT17/54, https:/ /www.tc.faa.gov/its/worldpac/techrpt/tctt17-54.pdf.
[3] C. Hoffarth, B. Khaled, L. Shyamsunder, and S. Rajan (2020). Development of a Tabulated Material Model for Composite Material Failure, MAT213, Part 1: Theory, Implementation, Verification \& Validation, DOT/FAA/TC-19/50, P1, https: / /www.tc.faa.gov/its/worldpac/techrpt/tc19-50-p1.pdf.
[4] B. Khaled, L. Shyamsunder, N. Schmidt, C. Hoffarth, and S. Rajan (2020). Development of a Tabulated Material Model for Composite Material Failure, MAT213, Part 2: Experimental Tests to Characterize the Behavior and Properties of T800-F3900 Toray Composite, DOT/FAA/TC-19/50, P2, http:/ /www.tc.faa.gov/its/worldpac/techrpt/tc19-50-p2.pdf.
[5] T. Achstetter, C.K. Park, and C-D Kan (2020). Development of a Tabulated Material Model for Composite Material Failure, MAT213, Part 3: Implementation of Probabilistic Modeling Capability in the Tabulated Composite Failure Model MAT213, DOT/FAA/TC-19/50, P3, http:/ /www.tc.faa.gov/its/worldpac/techrpt/tc19-50-p3.pdf.
[6] R.K. Goldberg, K. Carney, P. DuBois, C. Hoffarth, S. Rajan, and G. Blankenhorn (2016). Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model

Suitable for Use in Impact Problems", NASA TM-2016-218959, https://ntrs.nasa.gov/api/citations/20160002089/downloads/20160002089.pdf.
[7] B. Khaled (2019). Experimental Characterization and Finite Element Modeling of Composites to Support a Generalized Orthotropic Elasto-Plastic Damage Material Model for Impact Analysis, PhD Dissertation, Arizona State University, https://keep.lib.asu.edu/items/157550.
[8] L. Shyamsunder (2020). Failure Modeling in an Orthotropic Plastic Material Model under Static and Impact Loading, PhD Dissertation, Arizona State University, 2020, https://keep.lib.asu.edu/items/158738.
[9] T. Achstetter (2019). Development of a composite material shell-element model for impact applications", PhD Dissertation, George Mason University.
[10] S.D. Rajan, C. Hoffarth, B. Khaled, and L. Shyamsunder (2021). MAT_213 User Guide, https://awg.lstc.com/tiki-download_file.php?fileld = 1567.
[11] L. Shyamsunder, B. Khaled, S.D. Rajan, K.S. Carney, P. DuBois, and G. Blankenhorn (2020). "Enhancement of deformation sub-model in an Orthotropic Material Model", $16^{\text {th }}$ international LS-DYNA Users Conference, Detroit, June 2020.
[12] N. Holt, B. Khaled, L. Shyamsunder and S. Rajan (2021). T800-F3900 Composite Stacked Ply Laminate Testing and Modeling Using MAT_213, DOT/FAA/TC-21/56, https://www.tc.faa.gov/its/world-pac/techrpt/tc21-56.pdf

*MAT_DRY_FABRIC

This is Material Type 214. This material model can be used to model high strength woven fabrics, such as Kevlar ${ }^{\circledR} 49$, with transverse orthotropic behavior for use in structural systems where high energy absorption is required (Bansal et al., Naik et al., Stahlecker et al.). The major applications of the model are for the materials used in propulsion engine containment system, body armor and personal protections.

Woven dry fabrics are described in terms of two principal material directions, longitudinal warp and transverse fill yarns. The primary failure mode in these materials is the breaking of either transverse or longitudinal yarn. An equivalent continuum formulation is used and an element is designated as having failed when it reaches some critical value for strain in either directions. A linearized approximation to a typical stress-strain curve is shown in Figure M214-1 and to a typical engineering shear stress-strain curve is shown in the figure corresponding to the GABi field in the variable list. Note that the principal directions are labeled a for the warp and b for the fill, and the direction c is orthogonal to a and b.

The material model is available for membrane elements and it is recommended to use a double precision version of LS-DYNA.

Card Summary:

Card 1. This card is required.

| MID | R0 | EA | EB | GAB1 | GAB2 | GAB3 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |

Card 2. This card is required.

| GBC | GCA | GAMAB1 | GAMAB2 | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 3. This card is required.

| AOPT | | | | | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 4. This card is required.

| V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 5. This card is required.

| EACRF | EBCRF | EACRP | EBCRP | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 6. This card is required.

| EASF | EBSF | EUNLF | ECOMF | EAMAX | EBMAX | SIGPOST | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 7. This card is required.

| CCE | PCE | CSE | PSE | DFAC | EMAX | EAFAIL | EBFAIL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Data Card Definitions:

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | RO | EA | EB | GAB1 | GAB2 | GAB3 | |
| Type | A | F | F | F | F | F | F | |

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | GBC | GCA | GAMAB1 | GAMAB2 | | | | |
| Type | F | F | F | F | | | | |

VARIABLE

MID

RO
EA

EB

GABi /
GAMABi

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Continuum equivalent mass density
Modulus of elasticity in the longitudinal (warp) direction, which corresponds to the slope of segment AB in Figure M214-1

Modulus of elasticity in the transverse (fill) direction, which corresponds to the slope of segment of AB in Figure M214-1

Shear stress-strain behavior is modeled as piecewise linear in three segments. See the figure to the right. The shear moduli GABi correspond to the slope of the $i^{\text {th }}$ segment. The start and end points for the segments are specified in the GAMAB[1-2] fields.

Figure M214-1. Stress - Strain curve for *MAT_DRY_FABRIC. This curve models the force-response in the longitudinal and transverse directions.

VARIABLE

DESCRIPTION

GBC $\quad G_{b c}$, shear modulus in $b c$ direction
GCA $\quad G_{c a}$, shear modulus in ca direction

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | AOPT | | XP | YP | ZP | A1 | A2 | A3 |
| Type | F | | F | F | F | F | F | F |

VARIABLE
AOPT

DESCRIPTION

Material axes option. See *MAT_OPTIONTROPIC_ELASTIC for a more complete description:

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the element normal by an angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle, BETA, from a line in the plane of the element defined by

VARIABLE

DESCRIPTION

the cross product of the vector \mathbf{v} with the element normal
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for $\mathrm{AOPT}=2$

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| Type | F | F | F | F | F | F | F | |

VARIABLE
V1, V2, V3
D1, D2, D3
BETA Material angle in degrees for AOPT $=0$ and 3. BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA.

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | EACRF | EBCRF | EACRP | EBCRP | | | | |
| Type | F | F | F | F | | | | |
| Remarks | 2 | 2 | | | | | | |

VARIABLE

EACRF

DESCRIPTION

Factor for crimp region modulus of elasticity in longitudinal direction (see Figure M214-1):

$$
E_{a, \text { crimp }}=E_{a, \text { crimpfac }} E, \quad E_{a, \text { crimpfac }}=\mathrm{EACRF}
$$

VARIABLE
EBCRF

EACRP

EBCRP

| Card 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | EASF | EBSF | EUNLF | ECOMF | EAMAX | EBMAX | SIGPOST | |
| Type | F | F | F | F | F | F | F | |
| Remarks | 2 | 2 | 2 | 2 | | | | |

DESCRIPTION

EASF

EBSF

EUNLF

ECOMPF

EAMAX

EBMAX

Factor for post-peak region modulus of elasticity in longitudinal direction (see Figure M214-1):

$$
E_{a, \text { soft }}=E_{a, \text { softfac }} E, \quad E_{a, \text { softfac }}=\mathrm{EASF}
$$

Factor for post-peak region modulus of elasticity in transverse direction (see Figure M214-1):

$$
E_{b, \text { soft }}=E_{b, \text { softfac }} E, \quad E_{b, \text { softfac }}=\text { EBSF }
$$

Factor for unloading modulus of elasticity (see Figure M214-1):

$$
E_{\text {unload }}=E_{\text {unloadfac }} E, \quad E_{\text {unloadfac }}=\text { EUNLF }
$$

Factor for compression zone modulus of elasticity (see Figure M214-1):

$$
E_{\text {comp }}=E_{\text {compfac }} E, \quad E_{\text {compfac }}=\text { ECOMPF }
$$

Strain at peak stress in longitudinal direction (see Figure M214-1), $\varepsilon_{a, \text { max }}$

Strain at peak stress in transverse direction (see Figure M214-1), $\varepsilon_{b, \text { max }}$

VARIABLE
SIGPOST

DESCRIPTION

Stress value in post-peak region at which nonlinear behavior begins (see Figure M214-1), $\sigma_{\text {post }}$

| Card 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | CCE | PCE | CSE | PSE | DFAC | EMAX | EAFAIL | EBFAIL |
| Type | F | F | F | F | F | F | F | F |
| Remarks | 1 | 1 | 1 | 1 | 2 | 3 | 2,3 | 2,3 |

VARIABLE

CCE

PCE Strain rate parameter P, Cowper-Symonds factor for modulus. If zero, rate effects are not considered.

CSE

PSE

DFAC Damage factor, d_{fac}
EMAX \quad Erosion strain of element, $\varepsilon_{\max }$
EAFAIL Erosion strain in longitudinal direction (see Figure M214-1), $\varepsilon_{a, \text { fail }}$
EBFAIL Erosion strain in transverse direction (see Figure M214-1), $\varepsilon_{b, \text { fail }}$

Remarks:

1. Strain rate effects. Strain rate effects are accounted for using a CowperSymonds model which scales the stress according to the strain rate:

$$
\sigma^{\text {adj }}=\sigma\left(1+\frac{\dot{\varepsilon}}{C}\right)^{\frac{1}{P}}
$$

In the above equation σ is the quasi-static stress, $\sigma^{\text {adj }}$ is the adjusted stress accounting for strain rate $\dot{\varepsilon}$, and C (CCE) and P (PCE) are the Cowper-Symonds factors which must be determined experimentally for each material.

The model captures the non-linear strain rate effects in many materials. With its less than unity exponent, $1 / p$, this model captures the rapid increase in material properties at low strain rate, while increasing less rapidly at very high strain rates. Because stress is a function of strain rate the elastic stiffness also is:

$$
\mathbf{E}^{\mathrm{adj}}=\mathbf{E}\left(1+\frac{\dot{\varepsilon}}{C}\right)^{\frac{1}{P}}
$$

where $\mathbf{E}^{\text {adj }}$ is the adjusted elastic stiffness. Additionally, the strains to peak and strains to failure are assumed to follow a Cowper-Symonds model with, possibly different, constants

$$
\varepsilon^{\mathrm{adj}}=\varepsilon\left(1+\frac{\dot{\varepsilon}}{C_{s}}\right)^{\frac{1}{P_{s}}}
$$

where, $\varepsilon^{\text {adj }}$ is the adjusted effective strain to peak stress or strain to failure, and C_{s} and P_{s} are CSE and PSE respectively.
2. Stress-strain beyond peak stress. When strained beyond the peak stress, the stress decreases linearly until it attains a value equal to SIGPOST, at which point the stress-strain relation becomes nonlinear. In the non-linear region the stress is given by

$$
\sigma=\sigma_{\text {post }}\left[1-\left(\frac{\varepsilon-\varepsilon_{[a / b], \text { post }}}{\varepsilon_{[a / b], \text { fail }}-\varepsilon_{[a / b], \text { post }}}\right)^{d_{\mathrm{fac}}}\right],
$$

where $\sigma_{\text {post }}$ and $\varepsilon_{\text {post }}$ are, respectively, the stress and strain demarcating the onset of nonlinear behavior. The value of SIGPOST is the same in both the transverse and longitudinal directions, whereas $\varepsilon_{\mathrm{a}, \text { post }}$ and $\varepsilon_{\mathrm{b}, \text { post }}$ depend on direction and are derived internally from EASF, EBSF, and SIGPOST. The failure strain, $\varepsilon_{[a / b], \text { fail }}$, specifies the onset of failure and differs in the longitudinal and transverse directions. Lastly the exponent, d_{fac}, determines the shape of nonlinear stress-strain curve between $\varepsilon_{\text {post }}$ and $\varepsilon_{[a / b], \text { fail }}$.
3. Element erosion. The element is eroded if either (a) or (b) is satisfied:
a) $\varepsilon_{a}>\varepsilon_{a, \text { fail }}$ and $\varepsilon_{b}>\varepsilon_{b, \text { fail }}$
b) $\varepsilon_{a}>\varepsilon_{\max }$ and $\varepsilon_{b}>\varepsilon_{\max }$.

*MAT_4A_MICROMEC

This is Material Type 215. A micromechanical material that distinguishes between a fiber/inclusion and a matrix material, developed by 4 a engineering GmbH . It is available for the explicit code for shell, thick shell, and solid elements. Useful hints and an input example can be found in [1]. More theory and application notes are provided in [2].

This material is intended for anisotropic composite materials, especially for short (SFRT) and long fiber thermoplastics (LFRT). The matrix behavior is modeled with an isotropic elasto-viscoplastic von Mises model. The fiber/inclusion behavior is transverse isotropic elastic. This material model can be used for classical endless fiber composites.

The inelastic homogenization for describing the composite deformation behavior is based on:

- Mori Tanaka Meanfield Theory $[3,4]$
- ellipsoidal inclusions using Eshelby's solution [5,6]
- orientation averaging [7]
- a linear fitted closure approximation to determine the $4^{\text {th }}$ order fiber orientation tensor out of the user provided $2^{\text {nd }}$ order fiber orientation tensor.

The software product 4a micromec can calculate and export the thermo-elastic composite properties [8].

Failure/damage of the composite can be considered with:

- a ductile damage initiation and evolution model for the matrix (DIEM)
- fiber failure with a maximum stress criterion

References [9] and [10] provide more details on the material characterization.
The (fiber) orientation can be defined either for the whole material using Cards 2 and 3 or elementwise using *ELEMENT_(T)SHELL_BETA or *ELEMENT_SOLID_ORTHO. The manufacturing process highly influences the mechanical properties of SFRT and LFRT in injection molded parts. By mapping the fiber orientation from the process simulation to the structural analysis the local anisotropy can be considered [11,12]. The fiber orientation, length and volume fraction can therefore as well be defined for each integration point by using *INITIAL_STRESS_(T)SHELL(SOLID) [2]. Details on the history variables that can be initialized (extra history variables 9-18) can be found in the output section.

Card Summary:

Cards 2 through 4 specify fiber orientation. They may be overwritten with may be overwritten by *INITIAL_STRESS_(T)SHELL/SOLID. Cards 5 and 6 are for specifying parameters for the fiber/inclusion material. Cards 7 through 9 give properties associated with the matrix material.

Card 1. This card is required.

| MID | MMOPT | BUPD | | | FAILM | FAILF | NUMINT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 2. This card is required.

| AOPT | MACF | XP | YP | ZP | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 3. This card is required.

| V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 4. This card is required.

| FVF | | FL | FD | | A11 | A22 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 5. This card is required.

| ROF | EL | ET | GLT | PRTL | PRTT | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 6. This card is required.

| XT | | | | | | SLIMXT | NCYRED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 7. This card is required.

| ROM | E | PR | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 8. This card is required.

| SIGYT | ETANT | | | EPSO | C | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 9. This card is required.

| LCIDT | | | | LCDI | UPF | | NCYRED2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Data Card Definitions:

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | MMOPT | BUPD | | | FAILM | FAILF | NUMINT |
| Type | A | F | F | | | F | F | F |
| Default | none | 0.0 | 0.01 | | | 0.0 | 0.0 | 1.0 |

VARIABLE

MID

MMOPT Option to define micromechanical material behavior:
EQ.0.0: Elastic
EQ.1.0: Elastic-plastic
BUPD Tolerance for update of Strain-Concentration Tensor
FAILM Option for matrix failure using a ductile DIEM model. See sections Damage Initiation and Damage Evolution in the manual page for *MAT_ADD_DAMAGE_DIEM for a description of ductile damage initialization (DITYP $=0$) based on stress triaxiality and a linear damage evolution (DETYP $=0$) type. Also see fields LCDI and UPF on Card 9.

LT.O.O: |FAILM| is effective plastic matrix strain at failure. When the matrix plastic strain reaches this value, the element is deleted from the calculation.

EQ.0.0: Only visualization (triaxiality of matrix stresses)
EQ.1.0: Active DIEM (triaxiality of matrix stresses)
EQ.10.0: Only visualization (triaxiality of composite stresses)
EQ.11.0: Active DIEM (triaxiality of composite stresses)
FAILF Option for fiber failure:
EQ.0.0: Only visualization (equivalent fiber stresses)
EQ.1.0: Active (equivalent fiber stresses)

VARIABLE

DESCRIPTION

Number or percentage of failed integration points prior to element deletion (default value is 1):

GT.0.0: Number of integration points which must fail before element is deleted.

LT.0.0: Applies only to shells. |NUMINT| is the percentage of layers which must fail before an element fails. For shell formulations with 4 integration points per layer, the layer is considered failed if any of the integration points in the layer fails.

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | AOPT | MACF | XP | YP | ZP | A 1 | A 2 | A 3 |
| Type | F | F | F | F | F | F | F | F |
| Default | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

VARIABLE

DESCRIPTION

AOPT
Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, $\mathrm{AOPT}=3$ is only available for hexahedrons. a is

VARIABLE

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes b and c before BETA rotation
EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation
EQ.4: Switch material axes b and c after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT $=3$, the BETA input on Card 3 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

XP, YP, ZP \quad Coordinates of point p for AOPT $=1$ and 4
A1, A2, A3 Components of vector a for AOPT $=2$

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| Type | F | F | F | F | F | F | F | |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

DESCRIPTION

Define components of vector \mathbf{v} for AOPT $=3$ and 4 .
Define components of vector \mathbf{d} for AOPT $=2$.
Angle in degrees of a material rotation about the c-axis, available for AOPT $=0$ (shells and tshells only) and AOPT $=3$ (all element types). This angle may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, and *ELEMENT_SOLID_ORTHO.

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | FVF | | FL | FD | | A11 | A22 | |
| Type | F | | F | F | | F | F | |
| Default | 0.0 | | 0.0 | 1.0 | | 1.0 | 0.0 | |

VARIABLE

FVF

FL

FD Fiber diameter

VARIABLE

A11

A22

DESCRIPTION

Value of first principal fiber orientation (may be overwritten by *INITIAL_STRESS_(T)SHELL/SOLID)

Value of second principal fiber orientation (may be overwritten by *INITIAL_STRESS_(T)SHELL/SOLID)

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | ROF | EL | ET | GLT | PRTL | PRTT | | |
| Type | F | F | F | F | F | F | | |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | |

VARIABLE
ROF Mass density of fiber
EL $\quad E_{L}$, Young's modulus of fiber in the longitudinal direction
ET $\quad E_{T}$, Young's modulus of fiber in the transverse direction
GLT $\quad G_{L T}$, shear modulus LT
PRTL $\quad \nu_{T L}$, Poisson's ratio TL
PRTT $\quad v_{T T}$, Poisson's ratio TT

| Card 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | XT | | | | | | SLIMXT | NCYRED |
| Type | F | | | | | | | |
| Default | 0.0 | | | | | | | |

VARIABLE
XT

DESCRIPTION
Fiber tensile strength in the longitudinal direction

VARIABLE

SLIMXT

NCYRED

DESCRIPTION

Factor to determine the minimum stress limit in the fiber after stress maximum (fiber tension)

Number of cycles for stress reduction from maximum to minimum (fiber tension)

| Card 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | ROM | E | PR | | | | | |
| Type | F | F | F | | | | | |
| Default | 0.0 | 0.0 | 0.0 | | | | | |

VARIABLE

ROM
E Young's modulus of matrix
PR Poisson's ratio of matrix

| Card 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | SIGYT | ETANT | | | EPSO | C | | |
| Type | F | F | | | F | F | | |
| Default | 0.0 | 0.0 | | | 0.0 | 0.0 | | |

VARIABLE

SIGYT
ETANT

EPS0

DESCRIPTION

Yield stress of matrix in tension
Tangent modulus of matrix in tension, ignore if LCIDT >0 is defined.

Quasi-static threshold strain rate (Johnson-Cook model) for bilinear hardening

VARIABLE

C

DESCRIPTION

Johnson-Cook constant for bilinear hardening

| Card 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | LCIDT | | | | LCDI | UPF | | NCYRED2 |
| Type | F | | | | F | F | | F |
| Default | 0 | | | | 0 | 0.0 | | 1 |

VARIABLE
LCIDT

LCDI Curve/table for ductile damage initiation parameter. The definitions depend on if the element is a shell or solid.
Shell elements. LCDI can be a load curve or table ID. A load curve represents plastic strain at onset of damage as function of stress triaxiality. A table represents plastic strain at onset of damage as function of stress triaxiality and plastic strain rate.
Solid elements. LCDI can be a load curve, table, or 3D table ID. A load curve represents plastic strain at onset of damage as function of stress triaxiality. A table represents plastic strain at onset of damage as function of stress triaxiality and lode angle. A 3D table represents plastic strain at onset of damage as function of stress triaxiality, lode angle and plastic strain rate.

UPF Damage evolution parameter GT.0.0: Plastic displacement at failure, u_{f}^{p}
LT.O.O: |UPF| is a table ID for u_{f}^{p} as a function of triaxiality and damage

NCYRED2 In case of matrix failure (IFAILM = 1 or 11), number of cycles for stress reduction of fiber stresses until the integration point will be marked as failed.

Output:

For this material, "Plastic Strain" is the equivalent plastic strain in the matrix. Extra history variables may be requested for (t)shell (NEIPS) and solid (NEIPH) elements with *DATABASE_EXTENT_BINARY. Extra history variables 1 through 8 are intended for post-processing while 9 through18 are intended for initialization with *INITIAL_STRESS_(T)SHELL/SOLID. They have the following meaning:

| History Variable \# | Description |
| :---: | :---: |
| 1 | Equivalent plastic strain rate of matrix |
| 2 | Triaxiality of matrix, $\eta=-p / q$ |
| 3 | Lode parameter of matrix, $\xi=-\frac{27 J_{3}}{2 q}$ |
| 4 | Damage initiation, d, of matrix (Ductile Criteria) |
| 5 | Damage evolution, D, of matrix |
| 6 | Fiber reserve factor |
| 7 | Fiber damage variable |
| 8 | Fiber stress reduction variable (NCYRED2) |
| 9 | Value of first principal fiber orientation, A11 |
| 10 | Value of second principal fiber orientation, A22 |
| 11 | For shells, $\cos \alpha$ where α is the in-plane angle between the material coordinate system and the element coordinate system. For solids, q_{11} where q_{11} is the x-direction component of the first orientation direction in the element coordinate system. |
| 12 | For shells, $-\sin \alpha$ where α is the in-plane angle between the material coordinate system and the element coordinate system. For solids, q_{12} where q_{12} is the y-direction component of the first orientation direction in the element coordinate system. |
| 13 | For shells, unused. For solids, q_{13} where q_{13} is the z direction component of the first orientation direction in the element coordinate system. |

| History Variable \# | Description |
| :---: | :--- |
| 14 | For shells, unused. For solids, q_{31} where q_{31} is the $x-$
 direction component of the third orientation direc-
 tion in the element coordinate system.
 15
 For shells, unused. For solids, q_{32} where q_{32} is the $y-$
 direction component of the third orientation direc-
 tion in the element coordinate system.
 16 |
| For shells, unused. For solids, q_{33} where q_{33} is the $z-$
 direction component of the third orientation direc-
 tion in the element coordinate system. | |
| 17 | Fiber volume fraction, FVF |
| 18 | Fiber length, FL |

Material Orientation:

Figure 4 of Reference 13 shows the 2 nd order orientation tensor for which there are eigenvectors and corresponding eigenvalues. The coordinate system based on the eigenvectors is the material coordinate system. The values q_{11}, \ldots, q_{33} for solids (history variables 11 through 16) and the values $\cos (\alpha)$ and $-\sin \alpha$ for shells (history variables 11 and 12) specify this material coordinate system with respect to the element coordinate system. The values a_{1} and a_{2} (A11 and A22 of history variables 9 and 10) shown in the figure represent the eigenvalues, or in other words, the lengths of the ellipsoid. Thus. history variables 9 and 10 give the shape of the ellipsoid while history variables 11 through 16 give the orientation.

References:

[1] Reithofer, P., et. al, *MAT_4A_MICROMEC - micro mechanic based material model, $14^{\text {th }}$ German LS-DYNA Conference (2016), Bamberg.
[2] Reithofer, P., et. al, *MAT_4A_MICROMEC - Theory and application notes, $11^{\text {th }}$ European LS-DYNA Conference (2017), Salzburg.
[3] Mori, T., Tanaka, K., Average Stress in Matrix and Average elastic Energy of Materials with misfitting Inclusions, Acta Metallurgica, Vol.21, pp.571-574, (1973).
[4] Tucker Ch. L. III, Liang Erwin: Stiffness Predictions for Unidirectional Short-Fibre Composites: Review and Evaluation, Composites Science and Technology, 59, (1999).
[5] Maewal A., Dandekar D.P., Effective Thermoelastic Properties of Short-Fibre Composites, Acta Mechanica, 66, (1987).
[6] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society, London, Vol.A, No241, pp.376-396, (1957).
[7] Mlekusch, B., Kurzfaserverstärkte Thermoplaste, Dissertation, Montanuniversität Leoben (1997).
[8] http://micromec.4a.co.at
[9] Reithofer et al., Material characterization of composites using micro mechanic models as key enabler, NAFEMS DACH, Bamberg 2016.
[10] http://impetus.4a.co.at
[11] Reithofer et al., Short and long fiber reinforced thermoplastics material models in LS-DYNA, 10th European LS-DYNA Conference, Würzburg 2015.
[12] http://fibermap.4a.co.at
[13] Liebold et al., The Significance of the Production Process of FRP Parts for the Performance in Crashworthiness, 14th International LS-DYNA Users Conference, 2016, http://www.dyna-look.com/14th-international-Is-dyna-conference/simulation/the-significance-of-the-production-process-of-frp-parts-for-the-performance-in-crashworthiness

*MAT_ELASTIC_PHASE_CHANGE

This is Material Type 216, a generalization of Material Type 1, for which material properties change on an element-by-element basis upon crossing a plane in space. This is an isotropic hypoelastic material and is available only for shell element types.

Phase 1 Properties.

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | R01 | E1 | PR1 | | | | |
| Type | A | F | F | F | | | | |
| Default | none | none | none | 0.0 | | | | |

Phase 2 Properties.

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | | R02 | E2 | PR2 | | | | |
| Type | | F | F | F | | | | |
| Default | | none | none | 0.0 | | | | |

Transformation Plane Card.

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | X 1 | Y 1 | Z 1 | X 2 | Y 2 | $\mathrm{Z2}$ | THKFAC | |
| Type | F | F | F | F | F | F | F | |
| Default | none | none | none | none | none | none | 1.0 | |

VARIABLE

MID
$\mathrm{RO} i \quad$ Mass density for phase i
Ei
PRi
X1, Y1, Z1
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2 \quad$ Coordinates of a point that defines the exterior normal with the first point

THKFAC Scale factor applied to the shell thickness after the phase transformation

Phases:

The material properties for each element are initialized using the data for the first phase. After the center of the element passes through the transition plane defined by the two points, the material properties are irreversibly changed to the second phase.

The plane is defined by two points. The first point, coordinates $\mathrm{X} 1, \mathrm{Y} 1$, and Z 1 , lies on the plane. The second point, coordinates $\mathrm{X} 2, \mathrm{Y} 2$, and Z 2 , defines the exterior normal as a unit vector in the direction from the first point to the second point.

Remarks:

This hypoelastic material model may not be stable for finite (large) strains. If large strains are expected, a hyperelastic material model, such as *MAT_002 or *MAT_217, would be more appropriate.

*MAT_ORTHOTROPIC_ELASTIC_PHASE_CHANGE

This is Material Type 217. It is a generalization of the orthotropic version of Material Type 2 for which material properties change on an element-by-element basis upon crossing a plane in space.

This material is valid only for shells. The stress update is incremental. The elastic constants are formulated in terms of Cauchy stress and true strain.

Phase 1 Material Parameters Card 1.

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | R01 | EA1 | EB1 | EC1 | PRBA1 | PRCA1 | PRCB1 |
| Type | A | F | F | F | F | F | F | F |

Phase 1 Material Parameters Card 2.

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | GAB1 | GBC1 | GCA1 | A0PT1 | | | | |
| Type | F | F | F | F | | | | |

Local Coordinate System Card 1 (phase 1).

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | | | | A11 | A21 | A31 | | |
| Type | | | | F | F | F | | |

Local Coordinate System Card 2 (phase 1).

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V11 | V21 | V31 | D11 | D21 | D31 | BETA1 | |
| Type | F | F | F | F | F | F | F | |

Phase 2 Material Parameters Card 1.

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | | R02 | EA2 | EB2 | EC2 | PRBA2 | PRCA2 | PRCB2 |
| Type | | F |

Phase 2 Material Parameters Card 2.

| Card 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | GAB2 | GBC2 | GCA2 | | | | | |
| Type | F | F | F | | | | | |

Local Coordinate System Card 1 (phase 2).

| Card 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | | | | A12 | A22 | A32 | | |
| Type | | | | F | F | F | | |

Local Coordinate System Card 2 (phase 2).

| Card 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V12 | V22 | V32 | D12 | D22 | D32 | BETA2 | |
| Type | F | F | F | F | F | F | F | |

Transformation Plane Card.

| Card 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | X 1 | Y 1 | Z 1 | X 2 | Y 2 | $\mathrm{Z2}$ | THKFAC | |
| Type | F | F | F | F | F | F | F | |
| Default | none | none | none | none | none | none | 1.0 | |

| VARIABLE | DESCRIPTION |
| :---: | :---: |
| MID | Material identification. A unique number or label must be specified (see *PART). |
| $\mathrm{RO} i$ | Mass density for phase i |
| EAi | E_{a}, Young's modulus in a-direction for phase i |
| EB i | E_{b}, Young's modulus in b-direction for phase i |
| ECi | E_{c}, Young's modulus in c-direction phase i (nonzero value required but not used for shells) |
| PRBA i | $v_{b a}$, Poisson's ratio in the ba direction for phase i |
| PRCA i | $v_{c a}$, Poisson's ratio in the ca direction for phase i |
| PRCB i | $v_{c b}$, Poisson's ratio in the $c b$ direction for phase i |
| GAB i | $G_{a b}$, shear modulus in the $a b$ direction for phase i |
| GBC i | $G_{b c}$, shear modulus in the $b c$ direction for phase i |
| GCA i | $G_{c a}$, shear modulus in the $c a$ direction for phase i |
| AOPTi | Material axes option for phase i (see *MAT_OPTIONTROPIC for more details): |
| | EQ.0.0: Locally orthotropic with material axes determined by element nodes as shown in part (a) of Figure M2-1. The adirection is from node 1 to node 2 of the element. The \mathbf{b}-direction is orthogonal to the a-direction and is in the plane formed by nodes 1,2 , and 4 . The material axes are then rotated about the normal vector to the surface of the shell by the angle BETA. |

VARIABLE

A1i, A2i, A3i
V1i, V2i, V3i
D1i, D2i, D3i
BETA i
$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1 \quad$ Coordinates of a point on the phase transition page
X2, Y2, Z2 Coordinates of a point that defines the exterior normal with the first point

THKFAC Scale factor applied to the shell thickness after the phase transformation.

Phases:

The material properties for each element are initialized using the data for the first phase. After the center of the element passes through the transition plane defined by the two points, the material properties are irreversibly changed to the second phase.

The plane is defined by two points. The first point, defined by the coordinates X1, Y1, and Z1, lies on the plane. The second point, defined by the coordinates X2, Y2, and Z2, define the exterior normal as a unit vector in the direction from the first point to the second point.

Material Formulation:

The material law that relates stresses to strains is defined as:

$$
\mathbf{C}=\mathbf{T}^{\mathrm{T}} \mathbf{C}_{L} \mathbf{T}
$$

where \mathbf{T} is a transformation matrix, and C_{L} is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$. The inverse of \mathbf{C}_{L} is defined as:

$$
\mathbf{C}_{L}^{-1}=\left[\begin{array}{cccccc}
\frac{1}{E_{a}} & -\frac{v_{b a}}{E_{b}} & -\frac{v_{c a}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a b}}{E_{a}} & \frac{1}{E_{b}} & -\frac{v_{c b}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a c}}{E_{a}} & -\frac{v_{b c}}{E_{b}} & \frac{1}{E_{c}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{a b}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{b c}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{c a}}
\end{array}\right]
$$

where,

$$
\frac{v_{a b}}{E_{a}}=\frac{v_{b a}}{E_{b}}, \frac{v_{c a}}{E_{c}}=\frac{v_{a c}}{E_{a}}, \frac{v_{c b}}{E_{c}}=\frac{v_{b c}}{E_{b}}
$$

*MAT_MOONEY-RIVLIN_PHASE_CHANGE

This is Material Type 218. It is a generalization of Material Type 27, for which material properties change on an element-by-element basis upon crossing a plane in space.

Phase 1 Card 1.

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | R01 | PR1 | A1 | B1 | REF | | |
| Type | A | F | F | F | F | F | | |

Phase 1 Card 2.

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | SGL1 | SW1 | ST1 | LCID1 | | | | |
| Type | F | F | F | F | | | | |

Phase 2 Card 1.

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | | R02 | PR2 | A2 | B2 | | | |
| Type | | F | F | F | F | | | |

Phase 2 Card 2.

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | SGL2 | SW2 | ST2 | LCID2 | | | | |
| Type | F | F | F | F | | | | |

Figure M218-1. Uniaxial specimen for experimental data

Transformation Plane Card.

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | X 1 | Y 1 | Z 1 | X 2 | Y 2 | $\mathrm{Z2}$ | THKFAC | |
| Type | F | F | F | F | F | F | F | |
| Default | none | none | none | none | none | none | 1.0 | |

VARIABLE

MID
$\mathrm{RO} i$
PRi

Ai

Constant for the $i^{\text {th }}$ phase. See the literature and the equations defined in Material Formulation.

VARIABLE

Bi

REF Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY (see there for more details).

EQ.0.0: Off,
EQ.1.0: On.

If $A=B=0.0$, then a least squares fit is computed from tabulated uniaxial data via a load curve. The following information should be defined:

VARIABLE

SGLi
SWi
STi
LCID $i \quad$ Curve ID for the $i^{\text {th }}$ phase (see *DEFINE_CURVE) giving the force as a function of actual change, ΔL, in the gauge length. See also Figure M218-2 for an alternative definition.
$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1 \quad$ Coordinates of a point on the phase transition plane.
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2 \quad$ Coordinates of a point that defines the exterior normal with the first point.

THKFAC Scale factor applied to the shell thickness after the phase transformation.

Phases:

The material properties for each element are initialized using the data for the first phase. After the center of the element passes through the transition plane defined by the two points, the material properties are irreversibly changed to the second phase.

The plane is defined by two points. The first point, defined by the coordinates X1, Y1, and Z1, lies on the plane. The second point, defined by the coordinates X2, Y2, and Z2, define the exterior normal as a unit vector in the direction from the first point to the second point.

Figure M218-2 The stress as a function strain curve can be used instead of the force as a function of the change in the gauge length by setting the gauge length, thickness, and width to unity (1.0) and defining the engineering strain in place of the change in gauge length and the nominal (engineering) stress in place of the force.

Material Formulation:

The strain energy density function is defined as:

$$
W=A(I-3)+B(I I-3)+C\left(I I I^{-2}-1\right)+D(I I I-1)^{2}
$$

where

$$
\begin{aligned}
C & =0.5 A+B \\
D & =\frac{A(5 v-2)+B(11 v-5)}{2(1-2 v)} \\
v & =\text { Poisson's ratio } \\
2(A+B) & =\text { shear modulus of linear elasticity } \\
\text { I,II,III } & =\text { invariants of right Cauchy-Green Tensor C. }
\end{aligned}
$$

The load curve definition that provides the uniaxial data should give the change in gauge length, ΔL, as a function of the corresponding force. In compression, both the force and the change in gauge length must be specified as negative values. In tension the force and change in gauge length should be input as positive values. The principal stretch ratio in the uniaxial direction, λ_{1}, is then given by

$$
\lambda_{1}=\frac{L_{0}+\Delta L}{L_{0}}
$$

with L_{0} being the initial length and L being the actual length.

Alternatively, the stress as a function strain curve can also be input by setting the gauge length, thickness, and width to unity (1.0) and defining the engineering strain in place of the change in gauge length and the nominal (engineering) stress in place of the force. See Figure M218-1.

The initialization phase performs a least squares fit to the experimental data. The d3hsp file provides a comparison between the fit and the actual input. It is a good idea to visually check to make sure it is acceptable. The coefficients A and B are also printed in the output file. It is also advised to use the material driver (see Appendix K) for checking out the material model.

*MAT_CODAM2

This is Material Type 219. This material model is the second generation of the UBC Composite Damage Model (CODAM2) for solid, shell, and thick shell elements developed at The University of British Columbia. The model is a sub-laminate-based continuum damage mechanics model for fiber reinforced composite laminates made up of transversely isotropic layers. The material model includes an optional non-local averaging and element erosion.

Card Summary:

Card 1. This card is required.

| MID | RO | EA | EB | | PRBA | | PRCB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 2. This card is required.

| GAB | | | NLAYER | R1 | R2 | NFREQ | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 3. This card is required.

| $X P$ | $Y P$ | ZP | A1 | A2 | A3 | AOPT | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 4. This card is required.

| V1 | V2 | V3 | D1 | D2 | D3 | BETA | MACF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 5. For each of the NLAYER layers specify on angle. Include as many cards as needed to set NLAYER values.

| ANGLE1 | ANGLE2 | ANGLE3 | ANGLE4 | ANGLE5 | ANGLE6 | ANGLE7 | ANGLE8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 6. This card is required.

| IMATT | IFIBT | ILOCT | IDELT | SMATT | SFIBT | SLOCT | SDELT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 7. This card is required.

| IMATC | IFIBC | ILOCC | IDELC | SMATC | SFIBC | SLOCC | SDELC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 8. This card is required.

| ERODE | ERPAR1 | ERPAR2 | RESIDS | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Data Card Definitions:

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | RO | EA | EB | | PRBA | | PRCB |
| Type | A | F | F | F | | F | | F |
| Default | none | none | none | none | | none | | none |

VARIABLE
MID

RO Mass density
EA $\quad E_{a}$, Young's modulus in a-direction. This is the modulus along the direction of fibers.

EB $\quad E_{b}$, Young's modulus in b-direction. This is the modulus transverse to fibers.

PRBA $\quad v_{b a}$, Poisson's ratio, $b a$ (minor in-plane Poisson's ratio).
PRCB $\quad v_{c b}$, Poisson's ratio, $c b$ (Poisson's ratio in the plane of isotropy).

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | GAB | | | NLAYER | R1 | R2 | NFREQ | |
| Type | F | | | I | F | F | I | |
| Default | none | | | 0 | 0.0 | 0.0 | 0 | |

VARIABLE
GAB
NLAYER

DESCRIPTION

$G_{b a}$, Shear modulus, $a b$ (in-plane shear modulus).
Number of layers in the sub-laminate excluding symmetry. As an example, in a $[0 / 45 /-45 / 90]_{3 s}$, NLAYER $=4$.

VARIABLE

R1
R2
NFREQ

DESCRIPTION

Non-local averaging radius
Currently not used
Number of time steps between update of neighbor list for nonlocal smoothing.

EQ.0: do only one search at the start of the calculation.

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | XP | YP | ZP | A 1 | A 2 | A 3 | AOPT | |
| Type | F | F | F | F | F | F | I | |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | |

VARIABLE

XP, YP, ZP
A1, A2, A3
AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center. This is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors a and d, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between

VARIABLE

DESCRIPTION

the inner surface and outher surface defined by the first four nodes and the last four nodes of the connectivity, respectively. Thus, for solid elements, AOPT $=3$ is only available for hexahedrons. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then, \mathbf{a} and \mathbf{b} are rotated about c by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis. This option is for solid elements only.
LT.0.0: | AOPT | is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V1 | V2 | V3 | D1 | D2 | D3 | BETA | MACF |
| Type | F | F | F | F | F | F | F | 1 |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |

VARIABLE

DESCRIPTION

V1, V2, V3
D1, D2, D3
BETA Material angle in degrees for $\mathrm{AOPT}=0$ (shells only) and $\mathrm{AOPT}=3$. BETA may be overriden on the element card. See *ELEMENT_SHELL_BETA or *ELEMENT_SOLID_ORTHO.

MACF Material axes change flag for solid elements:
EQ.-4: Switch material axes b and c before BETA rotation

VARIABLE

DESCRIPTION

EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation
EQ.4: Switch material axes b and c after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT $=3$, the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes switch as specified by MACF, but no BETA rotation is performed.

Angle Cards. For each of the NLAYER layers specify on angle. Include as many cards as needed to set NLAYER values.

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | ANGLE1 | ANGLE2 | ANGLE3 | ANGLE4 | ANGLE5 | ANGLE6 | ANGLE7 | ANGLE8 |
| Type | F | F | F | F | F | F | F | F |

VARIABLE
ANGLE i

DESCRIPTION

Rotation angle in degrees of the layers with respect to the material axes. Input one for each layer.

| Card 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | IMATT | IFIBT | ILOCT | IDELT | SMATT | SFIBT | SLOCT | SDELT |
| Type | F | F | F | F | F | F | F | F |

VARIABLE

IMATT

IFIBT

ILOCT

IDELT

SFIBT

SLOCT

SDELT

SMATT Saturation strain for damage in the matrix (transverse) under tensile conditions

DESCRIPTION

Initiation strain for damage in the matrix (transverse) under tensile conditions

Initiation strain for damage in the fiber (longitudinal) under tensile conditions

Initiation strain for the anti-locking mechanism. This parameter should be equal to the saturation strain for the fiber damage mechanism under tensile conditions.

Not working in the current version. It can be used for visualization purposes only. Saturation strain for damage in the fiber (longitudinal) under tensile conditions

Stuation strain for the anti-locking mechanism under tensile conditions. The recommended value for this parameter is ILOCT + 0.02.

Not working for the current version. It can be used for visualization purposes only.

| Card 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | IMATC | IFIBC | ILOCC | IDELC | SMATC | SFIBC | SLOCC | SDELC |
| Type | F | F | F | F | F | F | F | F |

VARIABLE
IMATC

DESCRIPTION

Initiation strain for damage in matrix (transverse) under compressive condition

Initiation strain for damage in the fiber (longitudinal) under compressive condition

Initiation strain for the anti-locking mechanism. This parameter should be equal to the saturation strain for the fiber damage mechanism under compressive condition.

VARIABLE

IDELC

SMATC Saturation strain for damage in matrix (transverse) under compressive condition

SFIBC Saturation strain for damage in the fiber (longitudinal) under compressive condition

SLOCC Saturation strain for the anti-locking mechanism under compressive condition. The recommended value for this parameter is ILOCC + 0.02.

Delamination strain. Not working in the current version. Can be used for visualization purpose only.

| Card 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | ERODE | ERPAR1 | ERPAR2 | RESIDS | | | | |
| Type | I | F | F | F | | | | |
| Default | 0 | none | none | 0.0 | | | | |

VARIABLE

ERODE

ERPAR1

ERPAR2 The erosion parameter \#2 used in ERODE types 2 and 3. The recommended value is five times SLOCC defined in Card 7.

RESIDS

DESCRIPTION

Erosion Flag (see Element Erosion in the remarks)
EQ.O: erosion is turned off.
EQ.1: non-local strain based erosion criterion
EQ.2: local strain based erosion criterion
EQ.3: use both $\mathrm{ERODE}=1$ and $\mathrm{ERODE}=2$ criteria.

The erosion parameter \#1 used in ERODE types 1 and 3. ERPAR1 ≥ 1.0. The recommended value of ERPAR1 is 1.2. Residual strength for layer damage

Model Description:

CODAM2 is developed for modeling the nonlinear, progressive damage behavior of laminated fiber-reinforced plastic materials. The model is based on the work by (Forghani, 2011; Forghani et al. 2011a; Forghani et al. 2011b) and is an extension of the original model, CODAM (Williams et al. 2003).

Briefly, the model uses a continuum damage mechanics approach and the following assumptions have been made in its development:

1. The material is an orthotropic medium consisting of a number of repeating units through the thickness of the laminate, called sub-laminates. For example, $[0 / \pm 45 / 90]$ is in a $[0 / \pm 45 / 90]_{8 S}$ laminate.
2. The nonlinear behavior of the composite sub-laminate is only caused by damage evolution. Nonlinear elastic or plastic deformations are not considered.

Formulation:

The in-plane secant stiffness of the damaged laminate is represented as the summation of the effective contributions of the layers in the laminate as shown.

$$
\mathbf{A}^{d}=\sum t_{k} \mathbf{T}_{k}^{\mathrm{T}} \mathbf{Q}_{k}^{d} \mathbf{T}_{k}
$$

where \mathbf{T}_{k} is the transformation matrix for the strain vector, and \mathbf{Q}_{k}^{d} is the in-plane secant stiffness of $k^{\text {th }}$ layer in the principal orthotropic plane, and t_{k} is the thickness of the $k^{\text {th }}$ layer of an n-layered laminate.

A physically-based and yet simple approach has been employed here to derive the damaged stiffness matrix. Two reduction coefficients, R_{f} and R_{m}, that represent the reduction of stiffness in the longitudinal (fiber) and transverse (matrix) directions have been employed. The shear modulus has also been reduced by the matrix reduction parameter. The major and minor Poisson's ratios have been reduced by R_{f} and R_{m} respectively. A sub-laminate-level reduction, R_{L}, is incorporated to avoid spurious stress locking in the damaged zone. This would lead to an effective reduced stiffness matrix \mathbf{Q}_{k}^{d}. The reduction coefficients are equal to 1 in the undamaged condition and gradually decrease to 0 for a saturated damage condition.

$$
\mathbf{Q}_{k}^{d}=R_{L}\left[\begin{array}{ccc}
\frac{\left(R_{f}\right)_{k} E_{1}}{1-\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} v_{21}} & \frac{\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} E_{2}}{1-\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} v_{21}} & 0 \\
\frac{\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} E_{2}}{1-\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} v_{21}} & \frac{\left(R_{m}\right)_{k} E_{2}}{1-\left(R_{f}\right)_{k}\left(R_{m}\right)_{k} v_{12} v_{21}} & 0 \\
0 & 0 & \left(R_{m}\right)_{k} G_{12}
\end{array}\right]=\mathbf{Q}_{k}^{d^{\mathrm{T}}},
$$

where $E_{1}, E_{2}, v_{12}, v_{21}$, and G_{12} are the elastic constants of the lamina.

Damage Evolution:

In CODAM2, the evolution of damage mechanisms is expressed in terms of equivalent strain parameters. The equivalent strain function that governs the fiber stiffness reduction parameter is written in terms of the longitudinal normal strains by

$$
\varepsilon_{f, k}^{\mathrm{eq}}=\varepsilon_{11, k}, \quad k=1, \ldots, n
$$

The equivalent strain function that governs the matrix stiffness reduction parameter is written in an interactive form in terms of the transverse and shear components of the local strain:

$$
\varepsilon_{m, k}^{\mathrm{eq}}=\operatorname{sign}\left(\varepsilon_{22, k}\right) \sqrt{\left(\varepsilon_{22, k}\right)^{2}+\left(\frac{\gamma_{12, k}}{2}\right)^{2}}, \quad k=1, \ldots, n
$$

The sign of the transverse normal strain plays a very important role in the initiation and growth of damage since it indicates the compressive or tensile nature of the transverse stress. Therefore, the equivalent strain for the matrix damage carries the sign of the transverse normal strain.

Evolution of the overall damage mechanism (anti-locking) is written in terms of the maximum principal strains:

$$
\varepsilon_{L}^{\mathrm{eq}}=\max [\operatorname{prn}(\varepsilon)] .
$$

Within the framework of non-local strain-softening formulations adopted here, all damage modes, be it intra-laminar (i.e. fiber and matrix damage) or overall sub-laminate modes are considered to be a function of the non-local (averaged) equivalent strain defined as:

$$
\bar{\varepsilon}_{\alpha}^{\mathrm{eq}}=\int_{\Omega_{\mathrm{x}}} \varepsilon_{\alpha}^{\mathrm{eq}}(\mathbf{x}) w_{\alpha}(\mathbf{X}-\mathbf{x}) d \Omega,
$$

where the subscript α denotes the mode of damage: fiber $(\alpha=f)$ and matrix $(\alpha=m)$ damage in each layer, k, within the sub-laminate or associated with the overall sub-laminate, namely, locking $(\alpha=L)$. Thus, for a given sub-laminate with n layers, $\varepsilon_{\alpha}^{\text {eq }}$ and $\bar{\varepsilon}_{\alpha}^{\text {eq }}$ are vectors of size $2 n+1$. X represents the position vector of the original point of interest and \mathbf{x} denotes the position vector of all other points (Gauss points) in the averaging zone denoted by Ω. In classical isotropic non-local averaging approach, this zone is taken to be spherical (or circular in 2D) with a radius of r (named R1 in the material input card). The parameter, r, which affects the size of the averaging zone, introduces a length scale into the model that is linked directly to the predicted size of the damage zone. Averaging is done with a bell-shaped weight function, w_{α}, evaluated by

$$
w_{\alpha}=\left[1-\left(\frac{d}{r}\right)^{2}\right]^{2}
$$

Figure M219-1. Illustrations of (a) damage parameter and (b) reduction parameter.
where d is the distance from the integration point of interest to another integration point within the averaging zone.

The damage parameters, ω_{α}, are calculated as a function of the corresponding averaged equivalent strains. In CODAM2 the damage parameters are assumed to grow as a hyperbolic function of the damage potential (non-local equivalent strains) such that when used in conjunction with stiffness reduction factors that vary linearly with the damage parameters they result in a linear strain-softening response (or a bilinear stress-strain curve) for each mode of damage

$$
\omega_{\alpha}=\frac{\left(\left|\bar{\varepsilon}_{\alpha}^{\mathrm{eq}}\right|-\varepsilon_{\alpha}^{i}\right)}{\left(\varepsilon_{\alpha}^{s}-\varepsilon_{\alpha}^{i}\right)} \frac{\varepsilon_{\alpha}^{s}}{\left|\bar{\varepsilon}_{\alpha}^{e q}\right|}, \quad\left|\bar{\varepsilon}_{\alpha}^{\mathrm{eq}}\right|-\varepsilon_{\alpha}^{i}>0
$$

where superscripts i and s denote, respectively, the damage initiation and saturation values of the strain quantities to which they are assigned. The initiation and saturation parameters are defined in Cards 6 and 7. Damage is considered to be a monotonically increasing function of time, t, such that

$$
\omega_{\alpha}=\max _{\tau<\mathrm{t}}\left(\omega_{\alpha}^{\tau}\right)
$$

where ω_{α}^{t} is the value of ω_{α} for the current time (load state), and ω_{α}^{τ} represents the state of damage at previous times $\tau \leq t$.

Damage is applied by scaling the layer stress by reduction parameters

$$
R_{\alpha}=1-\omega_{\alpha}
$$

where $\alpha=f$ and $\alpha=m$. The layer stresses are summed and then then scaled by reduction parameter

$$
R_{L}=1-\omega_{L} .
$$

Figures M219-1 (a) and (b) show the relationship between the damage and reduction parameters

If the parameter RESIDS >0, damage in the layers is limited such that

$$
\begin{aligned}
R_{f} & =\max \left(\operatorname{RESIDS}, 1-\omega_{f}\right) \\
R_{m} & =\max \left(\text { RESIDS, } 1-\omega_{m}\right)
\end{aligned}
$$

Element Erosion:
When ERODE >0, an erosion criterion is checked at each integration point. Shell elements and thick shell elements will be deleted when the erosion criterion has been met at all integration points. Brick elements will be deleted when the erosion criterion is met at any of the integration points. For ERODE $=1$, the erosion criterion is met when maximum principal strain exceeds either SLOCT \times ERPAR1 for elements in tension, or SLOCC \times ERPAR1 for elements in compression. Elements are in tension when the magnitude of the first principal strain is greater than the magnitude of the third principal strain and in compression when the third principal strain is larger. When R1>0, the ERODE $=1$ criterion is checked using the non-local (averaged) principal strain. For ERODE $=2$, the erosion criterion is met when the local (non-averaged) maximum principal strain exceeds ERPAR2. For ERODE = 3, both of these erosion criteria are checked. For visualization purposes, the ratio of the maximum principal strain over the limit is stored in the location of plastic strain which is written by default to the elout and d3plot files.

History Variables:

History variables for CODAM2 are enumerated in the following tables. To include them in the d3plot database, use NEIPH (solids) or NEIPS (shells) on *DATABASE_EXTENT_BINARY. For solid elements, add 4 to the variable numbers in the table because the first 6 history variables are reserved.

Damage parameters

| VARIABLE \# | DESCRIPTION |
| :---: | :---: |
| 3 | Overall (anti-locking) Damage. |
| 4 | Delamination Damage (for visualization only) |
| 5 | Fiber damage in the first layer |
| 6 | Matrix damage in the first layer |
| 7 | Fiber damage in the second layer |
| 8 | Matrix damage in the second layer |
| . | \vdots |
| $3+2 \times$ NLAYER | Fiber damage in the last layer |
| $4+2 \times$ NLAYER | Matrix damage in the last layer |
| Equivalent Strains used to evaluate damage (averaged if R1>0) | |
| VARIABLE \# | DESCRIPTION |
| $5+2 \times$ NLAYER | $\varepsilon_{R}^{\text {eq }}$ |
| $6+2 \times$ NLAYER | $\varepsilon_{f, 1}^{\mathrm{eq}}$ |
| $7+2 \times$ NLAYER | $\varepsilon_{m, 1}^{\text {eq }}$ |
| $8+2 \times$ NLAYER | $\varepsilon_{f, 2}^{\mathrm{eq}}$ |
| $9+2 \times$ NLAYER | $\varepsilon_{m, 2}^{\text {eq }}$ |
| \vdots | \vdots |
| $4+4 \times$ NLAYER | $\varepsilon_{f, n}^{\mathrm{eq}}$ |
| $5+4 \times$ NLAYER | $\varepsilon_{f, n}^{\mathrm{eq}}$ |

Total Strain

| VARIABLE \# | DESCRIPTION |
| :---: | :---: |
| $6+4 \times$ NLAYER | ε_{x} |
| $7+4 \times$ NLAYER | ε_{y} |
| $8+4 \times$ NLAYER | ε_{z} |
| $9+4 \times$ NLAYER | $\gamma_{x y}$ |
| $10+4 \times$ NLAYER | $\gamma_{y z}$ |
| $11+4 \times$ NLAYER | $\gamma_{z x}$ |

*MAT_RIGID_DISCRETE

This is Material Type 220. It is a rigid material for shells or solids. Unlike *MAT_020, a *MAT_220 part can be discretized into multiple disjoint pieces and have each piece behave as an independent rigid body. The inertia properties for the disjoint pieces are determined directly from the finite element discretization.

Nodes of a *MAT_220 part cannot be shared by any other rigid part. A *MAT_220 part may share nodes with deformable structural and solid elements.

This material option can be used to model granular material where the grains interact through an automatic single surface contact definition. Another possible use includes modeling bolts as rigid bodies where the bolts belong to the same part ID. This model eliminates the need to represent each rigid piece with a unique part ID.

| Card | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | R0 | E | PR | | | | |
| Type | A | F | F | F | | | | |
| Default | none | none | none | none | | | | |

VARIABLE

MID

RO Mass density
E Young's modulus
PR Poisson's ratio fied (see *PART).

DESCRIPTION

Material identification. A unique number or label must be speci-

*MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE

This is Material Type 221. It is an orthotropic material with optional simplified damage and optional failure for composites. This model is valid for 3D solid elements, for thick shell formulations 3,5, and 7, and for SPH elements. The elastic behavior is the same as *MAT_022. Nine damage variables are defined such that damage is different in tension and compression. These damage variables are applicable to $E_{a}, E_{b}, E_{c}, G_{a b}, G_{b c}$ and $G_{c a}$. In addition, nine failure criteria on strains are available. When failure occurs, elements are deleted (erosion). Failure depends on the number of integration points failed through the element. See the material description below.

Card Summary:

Card 1. This card is required.

| MID | RO | EA | EB | EC | PRBA | PRCA | PRCB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Card 2. This card is required.

| GAB | GBC | GCA | | AOPT | MACF | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 3. This card is required.

| $X P$ | YP | ZP | A1 | A2 | A3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 4. This card is required.

| V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 5. This card is required.

| NERODE | NDAM | EPS1TF | EPS2TF | EPS3TF | EPS1CF | EPS2CF | EPS3CF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 6. This card is required.

| EPS12F | EPS23F | EPS13F | EPSD1T | EPSC1T | CDAM1T | EPSD2T | EPSC2T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 7. This card is required.

| CDAM2T | EPSD3T | EPSC3T | CDAM3T | EPSD1C | EPSC1C | CDAM1C | EPSD2C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 8. This card is required.

| EPSC2C | CDAM2C | EPSD3C | EPSC3C | CDAM3C | EPSD12 | EPSC12 | CDAM12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 9. This card is required.

| EPSD23 | EPSC23 | CDAM23 | EPSD31 | EPSC31 | CDAM31 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Data Card Definitions:

| Card 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | MID | RO | EA | EB | EC | PRBA | PRCA | PRCB |
| Type | A | F | F | F | F | F | F | F |
| Default | none |

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
EA $\quad E_{a}$, Young's modulus in a-direction
EB $\quad E_{b}$, Young's modulus in b-direction
EC $\quad E_{c}$, Young's modulus in c-direction
PRBA $\quad v_{b a}$, Poisson ratio
PRCA $\quad v_{c a}$, Poisson ratio
PRCB $\quad v_{c b}$, Poisson ratio

| Card 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | GAB | GBC | GCA | | AOPT | MACF | | |
| Type | F | F | F | | F | 1 | | |
| Default | none | none | none | | 0.0 | 0 | | |

$G_{a b}$, Shear modulus
GBC
$G_{b c}$, Shear modulu
$G_{c a}$, Shear modulus
AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.
EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT $=3$ is only available for hexahedrons. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

VARIABLE

MACF

DESCRIPTION
Material axes change flag for solid elements:
EQ.-4: Switch material axes b and c before BETA rotation
EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation
EQ.4: Switch material axes b and c after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT $=3$, the BETA input on Card 4 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

| Card 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | XP | YP | ZP | A 1 | A 2 | A 3 | | |
| Type | F | F | F | F | F | F | | |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | |

VARIABLE

DESCRIPTION

$\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad$ Coordinates of point p for $\mathrm{AOPT}=1$ and 4
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for $\mathrm{AOPT}=2$

| Card 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | V1 | V2 | V3 | D1 | D2 | D3 | BETA | |
| Type | F | F | F | F | F | F | F | |
| Default | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |

VARIABLE

DESCRIPTION

V1, V2, V3
D1, D2, D3
BETA

Components of vector \mathbf{v} for AOPT $=3$ and 4
Components of vector \mathbf{d} for AOPT $=2$
Material angle in degrees for AOPT = 3. It may be overridden on the element card, see *ELEMENT_SOLID_ORTHO.

| Card 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | NERODE | NDAM | EPS1TF | EPS2TF | EPS3TF | EPS1CF | EPS2CF | EPS3CF |
| Type | I | I | F | F | F | F | F | F |
| Default | 0 | 0 | 10^{20} | 10^{20} | 10^{20} | -10^{20} | -10^{20} | -10^{20} |

VARIABLE

DESCRIPTION

NERODE
Element erosion flag. For multi-integration point elements, each of the failure strains mentioned below for NERODE ≥ 2 need only occur in one integration point to trigger element erosion. For NERODE values 6 to 11, which require more than one failure strain be reached, those failure strains need not occur in the same integration point.

EQ.O: No erosion (default)
EQ.1: Erosion occurs when one failure strain is reached in all integration points.
EQ.2: Erosion occurs when one failure strain is reached.
EQ.3: Erosion occurs when a tension or compression failure strain in the a-direction is reached.

EQ.4: Erosion occurs when as a tension or compression failure strain in the b-direction is reached.

EQ.5: Erosion occurs when a tension or compression failure strain in the c-direction is reached.

EQ.6: Erosion occurs when tension or compression failure strain in both the a - and b-directions are reached.

EQ.7: Erosion occurs when tension or compression failure strain in both the b - and c-directions are reached.

EQ.8: Erosion occurs when tension or compression failure strain in both the a - and c-directions are reached.

EQ.9: Erosion occurs when tension or compression failure strain in all 3 directions are reached.

EQ.10: Erosion occurs when tension or compression failure strain in both the a - and b-directions is reached and either of the out-of-plane failure shear strains ($b c$ or $a c$) is reached.

EQ.11: Erosion occurs when tension failure strain in either the a - or b-directions is reached and either of the out-of-plane failure shear strains ($b c$ or $a c$) is reached.

NDAM Damage flag:
EQ.0: No damage (default)
EQ.1: Damage in tension only (null for compression)
EQ.2: Damage in tension and compression
EPS1TF \quad Failure strain in tension along the a-direction
EPS2TF \quad Failure strain in tension along the b-direction
EPS3TF \quad Failure strain in tension along the c-direction
EPS1CF \quad Failure strain in compression along the a-direction
EPS2CF \quad Failure strain in compression along the b-direction
EPS3CF Failure strain in compression along the c-direction

| Card 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | EPS12F | EPS23F | EPS13F | EPSD1T | EPSC1T | CDAM1T | EPSD2T | EPSC2T |
| Type | F |
| Default | 10^{20} | 10^{20} | 10^{20} | 0. | 0. | 0. | 0. | 0. |

VARIABLE
EPS12F

EPS23F
EPS13F
EPSD1T
EPSC1T

CDAM1T
EPSD2T
EPSC2T Critical damage threshold in tension along the b-direction, $\varepsilon_{2 t}^{c}$

| Card 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | CDAM2T | EPSD3T | EPSC3T | CDAM3T | EPSD1C | EPSC1C | CDAM1C | EPSD2C |
| Type | I | I | F | F | F | F | F | F |
| Default | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. |

VARIABLE

DESCRIPTION

CDAM2T
Critical damage in tension along the b-direction, $D_{2 t}^{c}$
EPSD3T Damage threshold in tension along the c-direction, $\varepsilon_{3 t}^{s}$
EPSC3T Critical damage threshold in tension along the c-direction, $\varepsilon_{3 t}^{c}$

VARIABLE

CDAM3T
EPSD1C Damage threshold in compression along the a-direction, $\varepsilon_{1 c}^{s}$
EPSC1C Critical damage threshold in compression along the a-direction, $\varepsilon_{1 c}^{c}$
CDAM1C Critical damage in compression along the a-direction, $D_{1 c}^{c}$
EPSD2C Damage threshold in compression along the b-direction, $\varepsilon_{2 c}^{s}$

| Card 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | EPSC2C | CDAM2C | EPSD3C | EPSC3C | CDAM3C | EPSD12 | EPSC12 | CDAM12 |
| Type | F | F | F | F | F | F | F | F |
| Default | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. |

VARIABLE
EPSC2C
CDAM2C Critical damage in compression along the b-direction, $D_{2 c}^{c}$
EPSD3C Damage threshold in compression along the c-direction, $\varepsilon_{3 c}^{\mathcal{S}}$
EPSC3C Critical damage threshold in compression along the c-direction, $\varepsilon_{3 c}^{c}$
CDAM3C Critical damage in compression along the c-direction, $D_{3 c}^{c}$
EPSD12 Damage threshold for shear in the ab-plane, ε_{12}^{S}
EPSC12 Critical damage threshold for shear in the $a b$-plane, ε_{12}^{c}
CDAM12 Critical damage for shear in the $a b$-plane, D_{12}^{c}

| Card 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | EPSD23 | EPSC23 | CDAM23 | EPSD31 | EPSC31 | CDAM31 | | |
| Type | F | F | F | F | F | F | | |
| Default | 0. | 0. | 0. | 0. | 0. | 0. | | |

VARIABLE

EPSD23
EPSC23

CDAM23

EPSD31

EPSC31
CDAM31

DESCRIPTION

Damage threshold for shear in the $b c$-plane, ε_{23}^{s}
Critical damage threshold for shear in the $b c$-plane, ε_{23}^{c}
Critical damage for shear in the $b c$-plane, D_{23}^{c}
Damage threshold for shear in the $a c$-plane, ε_{31}^{S}
Critical damage threshold for shear in the ac-plane, ε_{31}^{c}
Critical damage for shear in the $a c$-plane, D_{31}^{c}

Remarks:

If $\varepsilon_{k}^{c}<\varepsilon_{k}^{s}$, no damage is considered. Failure occurs only when failure strain is reached.
Failure can occur along the 3 orthotropic directions, in tension, in compression and for shear behavior. Nine failure strains drive the failure. When failure occurs, elements are deleted (erosion). Under the control of the NERODE flag, failure may occur either when only one integration point has failed, when several integration points have failed or when all integrations points have failed.

Damage applies to the 3 Young's moduli and the 3 shear moduli. Damage is different for tension and compression. Nine damage variables are used: $d_{1 t}, d_{2 t}, d_{3 t}, d_{1 c}, d_{2 c}, d_{3 c}, d_{12}$, d_{23}, d_{13}. The damaged flexibility matrix is:

$$
-S^{\mathrm{dam}}=\left(\begin{array}{llllll}
\frac{1}{E_{a}\left(1-d_{1[t, c]}\right)} & \frac{-v_{b a}}{E_{b}} & \frac{-v_{c a}}{E_{c}} & 0 & 0 & 0 \\
\frac{-v_{b a}}{E_{b}} & \frac{1}{E_{b}\left(1-d_{2[t, c]}\right)} & \frac{-v_{c b}}{E_{c}} & 0 & 0 & 0 \\
\frac{-v_{c a}}{E_{c}} & \frac{-v_{c b}}{E_{c}} & \frac{1}{E_{c}\left(1-d_{3[t, c]}\right)} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{a b}\left(1-d_{12}\right)} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{b c}\left(1-d_{23}\right)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{c a}\left(1-d_{31}\right)}
\end{array}\right)
$$

The nine damage variables are calculated as follows:

$$
d_{k}=\max \left(d_{k}, D_{k}^{c}\left\langle\frac{\varepsilon_{k}-\varepsilon_{k}^{s}}{\varepsilon_{k}^{c}-\varepsilon_{k}^{s}}\right\rangle_{+}\right)
$$

with $k=1 t, 2 t, 3 t, 1 c, 2 c, 3 c, 12,23,31$.

$$
\langle\quad\rangle_{+} \text {is the positive part: }\langle x\rangle_{+}= \begin{cases}x & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

Damage in compression may be deactivated with the NDAM flag. In this case, damage in compression is null, and only damage in tension and for shear behavior are taken into account.

The nine damage variables may be post-processed through additional variables. The number of additional variables for solids written to the d3plot and d3thdt databases is input by the optional *DATABASE_EXTENT_BINARY card as variable NEIPH. These additional variables are tabulated below:

| History Variable | Description | Value | LS-PrePost History Variable |
| :---: | :---: | :---: | :---: |
| $d_{1 t}$ | damage in traction along a | $0-$ no damage$0<d_{k}<D_{k}^{c}$ - damage | plastic strain |
| $d_{2 t}$ | damage in traction along b | | 1 |
| $d_{3 t}$ | damage in traction along c | | 2 |
| $d_{1 c}$ | damage in compression along a | | 3 |
| $d_{2 c}$ | damage in compression along b | | 4 |
| $d_{3 c}$ | damage in compression along c | | 5 |
| d_{12} | shear damage in $a b$-plane | | 6 |
| d_{23} | shear damage in $b c$-plane | | 7 |
| d_{13} | shear damage in $a c$-plane | | 8 |

The first damage variable is stored in the place of effective plastic strain. The eight other damage variables may be plotted in LS-PrePost as element history variables.

*MAT_TABULATED_JOHNSON_COOK_\{OPTION\}

This is Material Type 224. With this type, you can model an elasto-viscoplastic material with arbitrary stress versus strain curve(s) and arbitrary strain rate dependency. Plastic heating causes temperature to increase adiabatically and material softening. Optional plastic failure strain can be a function of triaxiality, strain rate, temperature and/or element size. Please take careful note of the sign convention for triaxiality as illustrated in Figure M224-1. This material model resembles the original Johnson-Cook material (see *MAT_015) but with the possibility of general tabulated input parameters.

An equation of state (*EOS) is optional for solid elements, tshell formulations 3 and 5, and 2D continuum elements. It is invoked by setting EOSID to a nonzero value in *PART. If an equation of state is used, only the deviatoric stresses are calculated by the material model, and the pressure is calculated by the equation of state.

Available options include:

```
<BLANK>
```


LOG_INTERPOLATION

With LOG_INTERPOLATION, the strain rate effect in table LCK1 is interpolated with logarithmic interpolation.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	CP	TR	BETA	NUMINT
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	none	0.0	1.0	1.0

Card 2	1	2	3	4	5	6	7	8
Variable	LCK1	LCKT	LCF	LCG	LCH	LCI	BFLG	
Type	1	1	1	1	1	1	1	
Default	0	0	0	0	0	0	0	

This card is optional.

Card 3	1	2	3	4	5	6	7	8
Variable	FAILOPT	NUMAVG	NCYFAIL	ERODE	LCPS			
Type	1	1	1	1	1			
Default	0	1	1	0	0			

VARIABLE

MID

RO Mass density
E Young's modulus:
GT.0.0: Constant value is used.
LT.0.0: -E gives curve ID for temperature dependence.
PR Poisson's ratio
CP Specific heat (superseded by heat capacity in *MAT_THERMAL_OPTION if a coupled thermal/structural analysis)

TR Room temperature
BETA Fraction of plastic work converted into heat (supersedes FWORK in *CONTROL_THERMAL_SOLVER if a coupled thermal/structural analysis):

EQ.0.0: Defaults to 1.0.
GT.0.0: Constant value is used.
LT.O.O: -BETA gives a curve ID for strain rate dependence, a table ID for strain rate and temperature dependence, a 3dimensional table ID for temperature (TABLE_3D), strain rate (TABLE) and plastic strain (CURVE) dependence, or a 4-dimensional table ID for triaxiality (TABLE_4D), temperature (TABLE_3D), strain rate (TABLE) and plastic strain (CURVE) dependence. Please see the description of BFLG below for an alternative interpretation of TABLE_3D arguments.

VARIABLE

NUMINT

LCK1 Load curve ID, table ID, or 3D table ID. The load curve gives effective stress as a function of effective plastic strain. The table gives for each plastic strain rate value a load curve ID specifying the (isothermal) effective stress as a function of effective plastic strain for that rate. As in *MAT_024, natural logarithmic strain rates can be used by setting the first strain rate to a negative value. See Remark 1.
If referring to a three-dimensional table ID, the yield stress can be a function of temperature (TABLE_3D), plastic strain rate (TABLE), and plastic strain (CURVE). LCKT is ignored in that case.

LCKT Table ID defining for each temperature value a load curve ID giving the (quasi-static) effective stress versus effective plastic strain for that temperature. See Remark 1.

LCF Load curve ID or table ID. The load curve ID defines plastic failure strain (or scale factor - see Remark 2) as a function of triaxiality. The table ID defines for each Lode parameter a load curve ID giving the plastic failure strain versus triaxiality for that Lode parameter. See Remark 2 for a description of the combination of LCF, LCG, LCH, and LCI.

LCG Load curve ID defining plastic failure strain (or scale factor - see Remark 2) as a function of plastic strain rate (The curve should not extrapolate to zero or failure may occur at low strain). If the first abscissa value in the curve corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all abscissa values. See Remark 2 for a description of the combination of LCF, LCG, LCH, and LCI.

VARIABLE

LCH

LCI

BFLG Flag for treatment of case BETA < 0 with TABLE_3D (available for solid elements only):

EQ.0: Dissipation factor β is a function of temperature, strain rate, and plastic strain (as already described above).

EQ.1: Dissipation factor β is a function of maximum shear strain (TABLE_3D), strain rate (TABLE), and element size (CURVE).

Flag for additional failure criterion F_{2} (see Remark 3).
EQ.0: Off (default)
EQ.1: On

Number of time steps for running average of plastic failure strain in the additional failure criterion. Default is 1 (no averaging). See Remark 3.

NCYFAIL Number of time steps that the additional failure criterion must be met before element deletion. Default is 1 . See Remark 3.

ERODE Erosion flag (only for solid elements):
EQ.O: Default, element erosion is allowed.
EQ.1: Element does not erode; deviatoric stresses set to zero when element fails.

EQ.2: Element does not erode. The stress response is uncoupled from material damage. We intend this option for forging simulations with 3D r-adaptivity.

Figure M224-1. Typical failure curve for metal sheet, modeled with shell elements.

VARIABLE
 LCPS

DESCRIPTION

Table ID with first principal stress limit as a function of plastic strain (curves) and plastic strain rate (table). This option is for postprocessing purposes only and gives an indication of areas in the structure where failure is likely to occur. History variable \#17 shows a value of 1.0 for integration points that exceeded the limit, else a value of 0.0.

Remarks:

1. Flow stress. The flow stress σ_{y} is expressed as a function of plastic strain ε_{p}, plastic strain rate $\dot{\varepsilon}_{p}$ and temperature T through the following formula (using load curves/tables LCK1 and LCKT):

$$
s_{y}=k_{1}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}\right) \frac{k_{t}\left(\varepsilon_{p}, T\right)}{k_{t}\left(\varepsilon_{p}, T_{R}\right)}
$$

Note that T_{R} is a material parameter and should correspond to the temperature used when performing the room temperature tensile tests. If simulations are to be performed with an initial temperature T_{I} deviating from T_{R}, then this temperature should be set using *INITIAL_STRESS_SOLID/SHELL by setting history variable \#14 for solid elements or history variable \#10 for shell elements.
2. Plastic failure strain. Optional plastic failure strain is defined as a function of triaxiality p / σ_{vm}, Lode parameter, plastic strain rate $\dot{\varepsilon}_{p}$, temperature T and initial element size l_{c} (square root of element area for shells and volume over maximum area for solids) by

$$
\varepsilon_{\mathrm{pf}}=f\left(\frac{p}{\sigma_{\mathrm{vm}}}, \frac{27 J_{3}}{2 \sigma_{\mathrm{vm}}^{3}}\right) g\left(\dot{\varepsilon}_{p}\right) h(T) i\left(l_{c}, \frac{p}{\sigma_{\mathrm{vm}}}\right)
$$

using load curves/tables LCF, LCG, LCH and LCI. If more than one of these four variables LCF, LCG, LCH and LCI are defined, be aware that the net plastic failure strain is essentially the product of multiple functions as shown in the above equation. This means that one and only one of the variables LCF, LCG, LCH , and LCI can point to curve(s) that have plastic strain along the curve ordinate. The remaining nonzero variable(s) LCF, LCG, LCH, and LCI should point to curve(s) that have a unitless scaling factor along the curve ordinate.

A typical failure curve LCF for metal sheet, modeled with shell elements is shown in Figure M224-1. Triaxiality should be monotonically increasing in this curve. A reasonable range for triaxiality is $-2 / 3$ to $2 / 3$ if shell elements are used (plane stress). For 3-dimensional stress states (solid elements), the possible range of triaxiality goes from $-\infty$ to $+\infty$, but to get a good resolution in the internal load curve discretization (depending on parameter LCINT of *CONTROL_SOLUTION) you should define lower limits, e.g. -1 to 1 if LCINT $=100$ (default).
3. Failure criterion. The default failure criterion of this material model depends on plastic strain evolution $\dot{\varepsilon}_{p}$ and on plastic failure strain $\varepsilon_{\mathrm{pf}}$ and is obtained by accumulation over time:

$$
F=\int \frac{\dot{\varepsilon}_{p}}{\varepsilon_{p f}} d t
$$

where element erosion takes place when $F \geq 1$. This accumulation provides load-path dependent treatment of failure. The value of F is stored as history variable \#8 for shells and \#12 for solids.

An additional, load-path independent, failure criterion can be invoked by setting FAILOPT = 1, where the current state of plastic strain is used:

$$
F_{2}=\frac{\varepsilon_{p}}{\varepsilon_{p f}}
$$

Two additional parameters can be used as countermeasures against stress oscillations for this failure criterion. With NUMAVG active, plastic failure strain is averaged over NUMAVG time steps for the F_{2} criterion. The value of F_{2}, taking into account any averaging per NUMAVG, is stored as history variable \#14 for shells and \#16 for solids. NUMAVG cannot exceed 30. NCYFAIL defines the number of time steps that $F_{2} \geq 1$ must be met before element deletion takes place. The number of time steps that $F_{2} \geq 1$ is stored as history variable \#15 for shells and \#19 for solids.
4. Change in temperature. Temperature increase is caused by plastic work

$$
T=T_{R}+\frac{\beta}{C_{p} \rho} \int \sigma_{y} \dot{\varepsilon}_{p} d t
$$

with room temperature T_{R}, dissipation factor β, specific heat C_{p}, and density ρ. If a coupled thermal/structural analysis is performed, temperatures from the thermal solver are used. In that case, the plastic work that is to be converted to heat is transferred to the thermal solver as additional volumetric heat source. If no dissipation factor is defined, the value of FWORK in *CONTROL_THERMAL_SOLVER is used.
5. Failure when used with *CONSTRAINED_TIED_NODES_WITH_FAILURE. For *CONSTRAINED_TIED_NODES_WITH_FAILURE, the failure is based on the damage instead to the plastic strain.
6. History variables. History variables may be post-processed through additional variables. The number of additional variables for shells/solids written to the d3plot and d3thdt databases is input by the optional *DATABASE_EXTENT_BINARY card as variable NEIPS/NEIPH. Specifically, when used with shell element type 14 or 15 , history variable output will be as a solid element, not a shell element. The relevant additional variables of this material model are tabulated below:

History Variable \#	Description for Shell Elements	History Variable \#	Description for Solid Elements
1	Plastic strain rate	5	Plastic strain rate
7	Plastic work	8	Plastic failure strain
8	Ratio of plastic strain to plastic failure strain	9	Triaxiality
9	Element size	10	Lode parameter
10	Temperature	11	Plastic work
11	Plastic failure strain	12	Ratio of plastic strain to plastic failure strain
12	Triaxiality	13	Element size
16	Fraction of plastic work to heat	14	Temperature
17	LCPS: critical value	17	LCPS: critical value

History Variable \#	Description for Shell Ele- ments	History Variable \#	Description for Solid Ele- ments
		18	Fraction of plastic work to heat

*MAT_TABULATED_JOHNSON_COOK_GYS_\{OPTION\}

This is Material Type 224_GYS. It is an isotropic, elastic-plastic material law with a J3dependent yield surface. This material considers tensile/compressive asymmetry in the material response, which is essential for HCP metals. It is available for solid elements.

Available options include:
<BLANK>
LOG_INTERPOLATION
With LOG_INTERPOLATION, the strain rate effect in table LCK1 (Card 2) is interpolated with logarithmic interpolation.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	CP	TR	BETA	NUMINT
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	none	0.0	1.0	1.0

Card 2	1	2	3	4	5	6	7	8
Variable	LCK1	LCKT	LCF	LCG	LCH	LCI		
Type	1	1	1	1	1	1		
Default	0	0	0	0	0	0		

Card 3	1	2	3	4	5	6	7	8
Variable	LCCR	LCCT	LCSR	LCST	IFLAG	SFIEPM	NITER	
Type	1	1	1	1	1	F	1	
Default	0	0	0	0	0	1	100	

VARIABLE
MID

RO Mass density

E

PR
CP
TR
BETA

NUMINT Number of integration points which must fail before the element is deleted.

EQ.-200: Turns off erosion for solids. Not recommended unless used in conjunction with *CONSTRAINED_TIED_NODES_FAILURE.

LCK1 Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) effective stress as a function of effective plastic strain for that rate.

LCKT Table ID defining for each temperature value a load curve ID giving the (qu asi-static) effective stress as a function of effective plastic strain for that temperature.

VARIABLE

LCF

LCG Load curve ID for specifying plastic failure strain as a function of plastic strain rate.

LCH

LCI

LCCR

LCCT

LCSR

LCST Table ID defining for each temperature value a load curve ID giving the (quasi-static) shear yield stress as a function of strain for that temperature. The load curves define shear yield stress as a function of plastic strain or effective plastic strain (see IFLAG).

VARIABLE
IFLAG

SFIEPM
NITER

DESCRIPTION

Flag to specify abscissa for LCCR, LCCT, LCSR, LCST:
EQ.0: Compressive and shear yields are given as functions of plastic strain as defined in Remark 1 (default).
EQ.1: Compressive and shear yields are given as functions of effective plastic strain.

Scale factor on the initial estimate of the plastic multiplier
Number of secant iterations to be performed

Remarks:

1. IFLAG. If IFLAG $=0$, the compressive and shear curves are defined as follows:

$$
\begin{array}{lll}
\sigma_{c}\left(\varepsilon_{p c}, \dot{\varepsilon}_{p c}\right), & \varepsilon_{p c}=\varepsilon_{c}-\frac{\sigma_{c}}{E}, & \dot{\varepsilon}_{p c}=\frac{\partial \varepsilon_{p c}}{\partial t} \\
\sigma_{s}\left(\gamma_{p s}, \dot{\gamma}_{p s}\right), & \gamma_{p s}=\gamma_{s}-\frac{\sigma_{s}}{G}, & \dot{\gamma}_{p s}=\frac{\partial \gamma_{p s}}{\partial t}
\end{array}
$$

Two history variables (\#16 plastic strain in compression and \#17 plastic strain in shear) are stored in addition to those history variables already stored for *MAT_224.

If IFLAG $=1$, the compressive and shear curves are defined as follows:

$$
\sigma_{c}(\dot{\lambda}, \lambda), \quad \sigma_{s}(\dot{\lambda}, \lambda), \quad \dot{W}_{p}=\sigma_{\mathrm{eff}} \dot{\lambda}
$$

2. History variables. History variables may be post-processed through additional variables. The number of additional variables for solids written to the d3plot and d3thdt databases is input through NEIPH on optional *DATABASE_EXTENT_BINARY. The relevant additional history variables for this material model are listed below:

History Variable \#	Description
5	Plastic strain rate
8	Plastic failure strain
9	Triaxiality
10	Lode parameter
11	Plastic work
12	Damage
13	Element size

History Variable \#	Description
14	Temperature
16	Plastic strain in compression
17	Plastic strain in shear

*MAT_VISCOPLASTIC_MIXED_HARDENING

This is Material Type 225. An elasto-viscoplastic material with an arbitrary stress as a function of strain curve and arbitrary strain rate dependency can be defined. Kinematic, isotropic, or a combination of kinematic and isotropic hardening can be specified. Also, failure based on plastic strain can be defined.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	LCSS	BETA		
Type	A	F	F	F	I	F		
Default	none	none	none	none	none	0.0		

Card 2	1	2	3	4	5	6	7	8
Variable	FAIL							
Type	F							
Default	10^{20}							

VARIABLE

MID

RO Mass density
E Young's modulus
PR Poisson's ratio
LCSS Load curve ID or Table ID. Load curve ID defining effective stress as a function of effective plastic strain The table ID defines for each strain rate value a load curve ID giving the stress as a function of effective plastic strain for that rate, See Figure M24-1. The stress as a function of effective plastic strain curve for the lowest value of strain rate is used if the strain rate falls below the minimum value. Likewise, the stress as a function of effective plastic strain curve for

VARIABLE

BETA Hardening parameter, $0.0<$ BETA <1.0 :
EQ.0.0: Pure kinematic hardening
EQ.1.0: Pure isotropic hardening
$0.0<$ BETA < 1.0: Mixed hardening
FAIL Failure flag:
LT.0.0: User-defined failure subroutine is called to determine failure

EQ.0.0: Failure is not considered. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

*MAT_KINEMATIC_HARDENING_BARLAT89_\{OPTION\}

This is Material Type 226. This model combines the Yoshida \& Uemori non-linear kinematic hardening rule (${ }^{*} \mathrm{MAT}_{2} 125$) with the 3-parameter material model of Barlat and Lian [1989] (*MAT_36) to model metal sheets under cyclic plasticity loading with anisotropy in plane stress condition. Lankford parameters are used for the definition of the anisotropy. Yoshida's theory describes the hardening rule with a "two surfaces" method: the yield surface and the bounding surface. In the forming process, the yield surface does not change in size, but its center moves with deformation; the bounding surface changes both in size and location.

Available options include:

```
<BLANK>
NLP
```

The NLP option estimates necking failure using the Formability Index (F.I.), which accounts for the non-linear strain paths seen in metal forming applications (see Remark 4). When using this option, specify IFLD in Card 3. Since the NLP option also works with a linear strain path, it is recommended to be used as the default failure criterion in metal forming. The NLP option is also available for *MAT_036, *MAT_037, and *MAT_226.

Card Summary:

Card 1. This card is required.

MID	R0	E	PR	M	R00	R45	R90

Card 2. This card is required.

CB	Y	SC	K	RSAT	SB	H	HLCID

Card 3. This card is required.

AOPT	IOPT	C1	C2	IFLD	EA	COE	

Card 4. This card is required.

			A1	A2	A3		

Card 5. This card is required.

V1	V2	V3	D1	D2	D3	BETA	

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	M	R00	R45	R90
Type	A	F	F	F	F	F	F	F
Default	none	0.0	0.0	0.0	0.0	0.0	0.0	none

VARIABLE

MID

RO
E

PR Poisson's ratio, v
M the exponent in Barlat's yield criterion, m
R00 $\quad R_{00}$, Lankford parameter in 0° direction
R45 $\quad R_{45}$, Lankford parameter in 45° direction
R90

DESCRIPTION

 fied (see *PART).Mass density is the initial Young's modulus.
R_{90}, Lankford parameter in 90° direction

Material identification. A unique number or label must be speci-

Young's modulus, E. Optionally, the Young's modulus can be a function of effective plastic strain. See Remark 5. In that case this

Card 2	1	2	3	4	5	6	7	8
Variable	CB	Y	SC	K	RSAT	SB	H	HLCID
Type	F	F	F	F	F	F	F	I
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	none

VARIABLE
CB

DESCRIPTION

The uppercase B defined in Yoshida's equations
*MAT_KINEM
VARIABLE

Y

SC The lowercase c defined in the Yoshida \& Uemori's equations
K Hardening parameter as defined in the Yoshida \& Uemori's equations

RSAT Hardening parameter as defined in the Yoshida and Uemori's equations

The lowercase b as defined in the Yoshida \& Uemori's equations
Anisotropic parameter associated with work-hardening stagnation, defined in the Yoshida and Uemori's equations

DESCRIPTION

Hardening parameter as defined in Yoshida's equations

HLCID
SB
H

Load curve ID (see *DEFINE_CURVE) giving true strain as a function of true stress. The load curve is optional and is used for error calculation only.

Card 3	1	2	3	4	5	6	7	8
Variable	AOPT	IOPT	C 1	C 2	IFLD	EA	COE	
Type	F	I	F	F	I	F	F	
Default	none	none	0.0	0.0	none	0.0	0.0	

VARIABLE

AOPT

DESCRIPTION

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle BETA
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an

VARIABLE

DESCRIPTION

angle, BETA, from a line in the plane of the element defined by the cross product of the vector v with the element normal

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE__COORDINATE_VECTOR)..

IOPT Kinematic hardening rule flag:
EQ.0: Original Yoshida \& Uemori formulation,
EQ.1: Modified formulation; define C1, C2 as below.

C1, C2 Constants used to modify R :

$$
R=\operatorname{RSAT} \times\left[\left(C_{1}+\bar{\varepsilon}^{p}\right)^{c_{2}}-C_{1}{ }^{c_{2}}\right]
$$

IFLD ID of a load curve of the traditional Forming Limit Diagram (FLD) for the linear strain paths. In the load curve, abscissas represent minor strains while ordinates represent major strains. Define only when the NLP option is used.

EA Variable controlling the change of Young's modulus, E^{A}. See Remark 5.

COE Variable controlling the change of Young's modulus, ζ. See Remark 5.

Card 4	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		

VARIABLE
A1, A2, A3

DESCRIPTION

Components of vector \mathbf{a} for $\mathrm{AOPT}=2$

$$
\text { AOPT = } 2
$$

AOPT $=3$

Figure M226-1. Defining sheet metal rolling direction.

Card 5	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	
Type	F	F	F	F	F	F	F	

VARIABLE

V1, V2, V3
D1, D2, D3
BETA

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3$
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for $\mathrm{AOPT}=0$ and 3, may be overridden on the element card; see *ELEMENT_SHELL_BETA.

Remarks:

1. Barlat and Lian's yield vriterion. The R-values are defined as the ratio of instantaneous width change to instantaneous thickness change. That is, assume that the width W and thickness T are measured as functions of strain, then the corresponding R-value is given by:

$$
R=\frac{\frac{d W}{d \varepsilon} / W}{\frac{d T}{d \varepsilon} / T}
$$

Input R00, R45 and R90 to define sheet anisotropy in the rolling, 45° and 90° direction.

Barlat and Lian's [1989] anisotropic yield criterion Φ for plane stress is defined as:

$$
\Phi=a\left|K_{1}+K_{2}\right|^{m}+a\left|K_{1}-K_{2}\right|^{m}+c\left|2 K_{2}\right|^{m}=2 \sigma_{Y}^{m}
$$

for face centered cubic (FCC) materials exponent $m=8$ is recommended and for body centered cubic (BCC) materials $m=6$ may be used. Detailed description on the criterion can be found in the *MAT_036 manual pages.
2. Yoshida \& Uemori nonliner kinematic hardening model. See manual pages for *MAT_125 for more details.
3. Rolling direction of sheet metal. The variable AOPT is used to define the rolling direction of the sheet metals. When AOPT $=2$, define vector components of a in the direction of the rolling (R_{00}); when $\mathrm{AOPT}=3$, define vector components of \mathbf{v} perpendicular to the rolling direction, as shown in Figure M226-1.
4. A failure criterion for nonlinear strain paths (NLP). The NLP failure criterion and corresponding post processing procedures are described in the entries for *MAT_036 and *MAT_037. The history variables for every element stored in d3plot files include:
a) Formability Index (F.I.): \#1
b) Strain ratio β (in-plane minor strain increment/major strain increment): \#2
c) Effective strain from the planar isotropic assumption: \#3

To enable the output of these history variables to the d3plot files, NEIPS on the *DATABASE_EXTENT_BINARY card must be set to at least 3 .
5. Change in Young's modulus. The optional change in Young's modulus is defined as a function of effective plastic strain,

$$
E=E_{0}-\left(E_{0}-E_{A}\right)\left[1-\exp \left(-\zeta \bar{\varepsilon}^{p}\right)\right]
$$

*MAT_PML_ELASTIC

This is Material Type 230. This is a perfectly-matched layer (PML) material - an absorbing layer material used to simulate wave propagation in an unbounded isotropic elastic medium - and is available only for solid 8-node bricks (element type 2). This material implements the three-dimensional version of the Basu-Chopra PML [Basu and Chopra (2003,2004), Basu (2009)].

Card	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR				
Type	A	F	F	F				
Default	none	none	none	none				

VARIABLE

MID

RO Mass density
E Young's modulus
PR Poisson's ratio

Remarks:

1. Unboundedness. A layer of this material may be placed at a boundary of a bounded domain to simulate unboundedness of the domain at that boundary: the layer absorbs and attenuates waves propagating outward from the domain, without any significant reflection of the waves back into the bounded domain. The layer cannot support any static displacement.
2. Bounded Domain Material Properties. It is assumed the material in the bounded domain near the layer is, or behaves like, an isotropic linear elastic material. The material properties of the layer should be set to the corresponding properties of this material.
3. Layer Geometry. The layer should form a cuboid box around the bounded domain, with the axes of the box aligned with the coordinate axes. Various faces
of this box may be open, as required by the geometry of the problem. For example, for a half-space problem, the "top" of the box should be open.

Internally, LS-DYNA will partition the entire PML into regions which form the "faces," "edges" and "corners" of the above cuboid box, and generate a new material for each region. This partitioning will be visible in the d3plot file. The user may safely ignore this partitioning.
4. Number of Elements in Layer. The layer should have 5-10 elements through its depth. Typically, 5-6 elements are sufficient if the excitation source is reasonably distant from the layer, and 8-10 elements if it is close. The size of the elements should be similar to that of elements in the bounded domain near the layer and should be small enough to sufficiently discretize all significant wavelengths in the problem.
5. Nodal Constraints. The nodes on the outer boundary of the layer should be fully constrained using either *BOUNDARY_SPC or TC on *NODE. Other constraints, such as *CONSTRAINED_GLOBAL or *BOUNDARY_PRESCRIBED_MOTION with a zero-valued load curve, will not be recognized.

Note that Ansys Mechanical uses *BOUNDARY_PRESCRIBED_MOTION with a zero-value load curve for constraining nodal degrees-of-freedom. Because of this limitation, you will have to edit the input file with a text editor.
6. Stress and Strain. The stress and strain values reported by this material do not have any physical significance.

*MAT_PML_ELASTIC_FLUID

This is Material Type 230_FLUID. This model is a perfectly-matched layer (PML) material with a pressure fluid constitutive law, to be used in a wave-absorbing layer adjacent to a fluid material (*MAT_ELASTIC_FLUID) in order to simulate wave propagation in an unbounded fluid medium. See the Remarks sections of *MAT_PML_ELASTIC (${ }^{*}$ MAT_230) and *MAT_ELASTIC_FLUID (*MAT_001_FLUID) for further details.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	K	VC				
Type	A	F	F	F				
Default	none	none	none	none				
VARIABLE		DESCRIPTION						
MID		Material identification. A unique number or label must be specified (see ${ }^{*}$ PART).						
RO		Mass density						
K		Bulk modulus						
VC		Tensor viscosity coefficient						

*MAT_PML_ACOUSTIC

This is Material Type 231. This is a perfectly-matched layer (PML) material - an absorbing layer material used to simulate wave propagation in an unbounded acoustic medium - and can be used only with the acoustic pressure element formulation (element type 14). This material implements the three-dimensional version of the Basu-Chopra PML for anti-plane motion [Basu and Chopra $(2003,2004)$, Basu (2009)].

Card	1	2	3	4	5	6	7	8
Variable	MID	RO	C					
Type	A	F	F					
Default	none	none	none					

VARIABLE

MID

RO Mass density
C Sound speed

Remarks:

1. Unboundedness. A layer of this material may be placed at a boundary of a bounded domain to simulate unboundedness of the domain at that boundary: the layer absorbs and attenuates waves propagating outward from the domain, without any significant reflection of the waves back into the bounded domain. The layer cannot support any hydrostatic pressure.
2. Material in Bounded Domain. It is assumed the material in the bounded domain near the layer is an acoustic material. The material properties of the layer should be set to the corresponding properties of this material.
3. Layer Geometry. The layer should form a cuboid box around the bounded domain, with the axes of the box aligned with the coordinate axes. Various faces of this box may be open, as required by the geometry of the problem, e.g., for a half-space problem, the "top" of the box should be open.

Internally, LS-DYNA will partition the entire PML into regions which form the "faces," "edges" and "corners" of the above cuboid box, and generate a new material for each region. This partitioning will be visible in the d3plot file. The user may safely ignore this partitioning.
4. Number of Elements in Layer. The layer should have 5-10 elements through its depth. Typically, 5-6 elements are sufficient if the excitation source is reasonably distant from the layer, and 8-10 elements if it is close. The size of the elements should be similar to that of elements in the bounded domain near the layer, and should be small enough to sufficiently discretize all significant wavelengths in the problem.
5. Nodal Constraints. The nodes on the outer boundary of the layer should be fully constrained using either *BOUNDARY_SPC or TC on *NODE. Other constraints, such as *CONSTRAINED_GLOBAL or *BOUNDARY_PRESCRIBED_MOTION with a zero-valued load curve, will not be recognized.

Note that Ansys Mechanical uses *BOUNDARY_PRESCRIBED_MOTION with a zero-value load curve for constraining nodal degrees-of-freedom. Because of this limitation, you will have to edit the input file with a text editor.
6. Pressure Values. The pressure values reported by this material do not have any physical significance.

*MAT_BIOT_HYSTERETIC

This is Material Type 232. This is a Biot linear hysteretic material, to be used for modeling the nearly-frequency-independent viscoelastic behavior of soils subjected to cyclic loading, such as in soil-structure interaction analysis [Spanos and Tsavachidis (2001), Makris and Zhang (2000), Muscolini, Palmeri and Ricciardelli (2005)]. The hysteretic damping coefficient for the model is computed from a prescribed damping ratio by calibrating with an equivalent viscous damping model for a single-degree-of-freedom system. The damping increases the stiffness of the model and thus reduces the computed time-step size.

Card	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	ZT	FD		
Type	A	F	F	F	F	F		
Default	none	none	none	none	0.0	3.25		

VARIABLE

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
ZT Damping ratio
FD Dominant excitation frequency in Hz

Remarks:

1. Stress. The stress is computed as a function of the strain rate as

$$
\sigma(t)=\int_{0}^{t} C_{R}(t-\tau) \dot{\varepsilon}(\tau) d \tau
$$

where

$$
C_{R}(t)=C\left[1+\frac{2 \eta}{\pi} E_{1}(\beta t)\right] .
$$

In the above, C is the elastic isotropic constitutive tensor, η is the hysteretic damping factor, and $\beta=2 \pi f_{d} / 10$, where f_{d} is the dominant excitation frequency in Hz. The function E_{1} is given by

$$
E_{1}(s)=\int_{s}^{\infty} \frac{\mathrm{e}^{-\xi}}{\xi} d \xi
$$

For efficient implementation, this function is approximated by a 5-term Prony series as

$$
E_{1}(s) \approx \sum_{k=1}^{5} b_{k} \mathrm{e}^{a_{k} s}
$$

such that $b_{k}>0$.
2. Hysteretic damping factor. The hysteretic damping factor η is obtained from the prescribed damping ratio ς as

$$
\eta=\pi \zeta / \operatorname{atan}(10)=2.14 \zeta
$$

by assuming that, for a single degree-of-freedom system, the energy dissipated per cycle by the hysteretic material is the same as that by a viscous damper, if the excitation frequency matches the natural frequency of the system.
3. Young's modulus. The consistent Young's modulus for this model is given by

$$
E_{c}=E\left[1+\frac{2 \eta}{\pi} g\right]
$$

where

$$
g=\sum_{k=1}^{5} b_{k} \frac{1}{a_{k} \beta \Delta t_{n}}\left[\exp \left(a_{k} \beta \Delta t_{n}\right)-1\right] .
$$

Because $g>0$, the computed element time-step size is smaller than that for the corresponding elastic element. Furthermore, the time-step size computed at any time depends on the previous time-step size. It can be demonstrated that the new computed time-step size stays within a narrow range of the previous timestep size and for a uniform mesh, converges to a constant value. For $f_{d}=3.25 \mathrm{~Hz}$ and $\varsigma=0.05$, the percentage decrease in time-step size can be expected to be about $12-15 \%$ for initial time-step sizes of less than 0.02 secs, and about $7-10 \%$ for initial time-step sizes larger than 0.02 secs.
4. Dominant frequency. The default value of the dominant frequency is chosen to be valid for earthquake excitation.

*MAT_CAZACU_BARLAT

This is Material Type 233. This material model is for Hexagonal Closed Packet (HCP) metals and is based on the work by Cazacu et al. (2006). This model is capable of describing the yielding asymmetry between tension and compression for such materials. Moreover, a parameter fit is optional and can be used to find the material parameters that describe the experimental yield stresses. The experimental data that you should supply consists of yield stresses for tension and compression in the 00 direction, tension in the 45 and the 90 directions, and a biaxial tension test.

Available options include:
<BLANK>

MAGNESIUM

Including MAGNESIUM invokes a material model developed by the USAMP consortium to simulate cast Magnesium under impact loading. The model includes rate effects having a tabulated failure model including equivalent plastic strain to failure as a function of stress triaxiality and effective plastic strain rate. Element erosion will occur when the number of integration points where the damage variable has reached unity reaches some specified threshold (NUMINT). Alternatively, a Gurson type failure model can be activated, which requires less experimental data.

You must provide the evolution of the Cazacu-Barlat effective stress as a function of the energy conjugate plastic strain in the input for the hardening curve for MAT_233. With the MAGNESIUM option an alternative option for the hardening curve is available: von Mises effective stress as a function of equivalent plastic strain, which is energy conjugate to the von Mises stress.

Finally, the MAGNESIUM option allows for distortional hardening by providing hardening curves as measured in tension and compression tests. This option is however incompatible with the activation of rate effects (visco-plasticity).

With the MAGNESIUM option this material model is also available for solid elements.
NOTE: Activating the MAGNESIUM options requires setting $\mathrm{HR}=3$ and FIT $=0.0$ (also see below).

Card Summary:

Card 1. This card is required.

MID	R0	E	PR	HR	P1	P2	ITER

Card 2. This card is required.

A	C11	C22	C33	LCID	E0	K	P3

Card 3. This card is required.

AOPT				C 12	C 13	C 23	C 44

Card 4. This card is required.

$X P$	$Y P$	$Z P$	A1	A2	A3		

Card 5. This card is required.

V1	V2	V3	D1	D2	D3	BETA	FIT

Card 6. This card is included if and only if the MAGNESIUM keyword option is used.

LC1ID	LC2ID	NUMINT	LCCID	ICFLAG	IDFLAG	LC3ID	EPSFG

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	HR	P1	P2	ITER
Type	A	F	F	F	F	F	F	F

VARIABLE

MID

RO
E

PR

DESCRIPTION

Material identification. A unique number or label must be used (see *PART).

Constant mass density
Young's modulus:
GT.0.0: constant value
LT.O.O: $|\mathrm{E}|$ is a load curve ID which defines the Young's modulus as a function of plastic strain.

Poisson's ratio

VARIABLE
HR

P1

P2

ITER

DESCRIPTION

Hardening rules:
EQ.1.0: linear hardening (default)
EQ.2.0: exponential hardening (Swift)
EQ.3.0: load curve
EQ.4.0: exponential hardening (Voce)
EQ.5.0: exponential hardening (Gosh)
EQ.6.0: exponential hardening (Hocken-Sherby)
HR must be set to 3 if the MAGNESIUM keyword option is active.

Material parameter:
HR.EQ.1.0: tangent modulus
HR.EQ.2.0: q, coefficient for exponential hardening law (Swift)
HR.EQ.4.0: a, coefficient for exponential hardening law (Voce)
HR.EQ.5.0: q, coefficient for exponential hardening law (Gosh)
HR.EQ.6.0: a, coefficient for exponential hardening law (HocketSherby)

Material parameter:
HR.EQ.1.0: yield stress for the linear hardening law
HR.EQ.2.0: n, coefficient for (Swift) exponential hardening
HR.EQ.4.0: c, coefficient for exponential hardening law (Voce)
HR.EQ.5.0: n, coefficient for exponential hardening law (Gosh)
HR.EQ.6.0: c, coefficient for exponential hardening law (HocketSherby)

Iteration flag for speed:
EQ.0.0: fully iterative
EQ.1.0: fixed at three iterations. Generally, ITER $=0.0$ is recommended. However, ITER $=1.0$ is faster and may give acceptable results in most problems.

Card 2	1	2	3	4	5	6	7	8
Variable	A	C11	C22	C33	LCID	E0	K	P3
Type	F	F	F	F	I	F	F	F

VARIABLE
A
C11

C22

C33

LCID Load curve ID for the hardening law ($\mathrm{HR}=3.0$), 2D Table ID for rate dependent hardening or 3D Table ID for rate-and-tempera-ture-dependent hardening if the MAGNESIUM option is active. For the 3D table case, *MAT_ADD_THERMAL_EXPANSION could be used for thermal stress/strain effects. Note that the 3D table option is only valid for shell elements.

Material parameter:
HR.EQ.2.0: ε_{0}, initial yield strain for exponential hardening law $($ Swift $)($ default $=0.0)$

HR.EQ.4.0: b, coefficient for exponential hardening (Voce)
HR.EQ.5.0: ε_{0}, initial yield strain for exponential hardening (Gosh); default $=0.0$
HR.EQ.6.0: b, coefficient for exponential hardening law (HocketSherby)

VARIABLE

K
K Material parameter (see Card 5 pos.8):
FIT.EQ.1.0 or EQ.2.0: yield stress for compression in the 00 direction

FIT.EQ.0.0: material parameter $(-1<k<1)$
P3 Material parameter:
HR.EQ.5.0: p, coefficient for exponential hardening (Gosh)
HR.EQ.6.0: n, exponent for exponential hardening law (HocketSherby)

DESCRIPTION

Card 3	1	2	3	4	5	6	7	8
Variable	AOPT				C 12	C 13	C 23	C 44
Type	F				F	F	F	F

VARIABLE

AOPT

VARIABLE

DESCRIPTION

EQ.4.0: locally orthotropic in cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, p, which define the centerline axis. This option is for solid elements only.

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM, or *DEFINE_COORDINATE_VECTOR).

C12 Material parameter, c_{12}. If parameter identification ($\mathrm{FIT}=1.0$) is turned on, C12 is not used.

C13 Material parameter, c_{13}. If parameter identification ($\mathrm{FIT}=1.0$) is turned on, C13 $=0.0$

C23 Material parameter. If parameter identification (FIT = 1.0) is turned on, C23 $=0.0$

C44 Material parameter (see Card 5 pos.8)
FIT.EQ.1.0 or EQ.2.0: yield stress for the balanced biaxial tension test.

FIT.EQ.0.0: material parameter, c_{44}

Card 4	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

VARIABLE

XP - ZP
A1-A3

DESCRIPTION

Coordinates of point p for AOPT = 1 and 4
Components of vector \mathbf{a} for $\mathrm{AOPT}=2.0$

Card 5	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	FIT
Type	F	F	F	F	F	F	F	I

VARIABLE

V1 - V3

D1-D3

BETA

FIT

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3.0$
Components of vector \mathbf{d} for $\mathrm{AOPT}=2.0$
Material angle in degrees for AOPT $=0$ and 3. Note that BETA may be overridden on the element card; see *ELEMENT_SHELL_BETA

Flag for parameter identification algorithm:
EQ.0.0: No parameter identification routine is used. The variables $\mathrm{K}, \mathrm{C} 11, \mathrm{C} 22, \mathrm{C} 33, \mathrm{C} 44, \mathrm{C} 12, \mathrm{C} 13$ and C23 are interpreted as material parameters. FIT MUST be set to zero if MAGNESIUM option is active

EQ.1.0: Parameter fit is used. The variables C11, C22, C33, C44 and K are interpreted as yield stresses in the 00 degree direction, the 45 degree direction, the 90 degree direction, the balanced biaxial tension, and the 00 degree compression, respectively. It is recommended to always check the d3hsp file to see the fitted parameters before complex jobs are submitted.

EQ.2.0: Same as EQ.1.0 but also produce contour plots of the yield surface. For each material three xy-data files are created: Contour1_n, Contour2_n and Contour3_n where n equals the material number.

Magnesium Card. Additional card for MAGNESIUM keyword option.

Card 6	1	2	3	4	5	6	7	8
Variable	LC1ID	LC2ID	NUMINT	LCCID	ICFLAG	IDFLAG	LC3ID	EPSFG
Type	I	I	F	।	।	।	।	F

VARIABLE	DESCRIPTIONLoad curve ID giving equivalent plastic strain to failure as a func- tion of stress triaxiality or a table ID giving plastic strain to failure as a function of Lode parameter and stress triaxiality (solids)
LC2ID	Load curve ID giving equivalent plastic strain to failure as a func- tion of equivalent plastic strain rate. The failure strain will be com- puted as the product of the values on LC1ID and LC2ID.
LCCID	Number of through thickness integration points which must fail before the element is deleted (inactive for solid elements)
Load curve ID giving effective stress as a function of plastic strain obtained from a compression stress. This load curve will activate distortional hardening. It is not compatible with the use of strain rate effects.	
Automated input conversion flag: EQ.0: load curves provided under LCID and LCCID contain Ca- zacu-Barlat effective stress as a function of energy conju- gate plastic strain.	
EQ.1: both load curves are given in terms of von Mises stress as	
a function of equivalent plastic strain	

Remarks:

This material model (*MAT_CAZACU_BARLAT) aims to model materials with strength differential and orthotropic behavior under plane stress. The yield condition includes a parameter k that describes the asymmetry between yield in tension and compression. Moreover, to include the anisotropic behavior the stress deviator, \mathbf{S}, undergoes a linear
transformation. The principal values of the Cauchy stress deviator are substituted with the principal values of the transformed tensor, \mathbf{Z}, which is represented as a vector field, defined as:

$$
\begin{equation*}
\mathbf{Z}=\mathbf{C S} \tag{233.1}
\end{equation*}
$$

Here \mathbf{S} is the field comprised of the four stresses deviator components, $S_{I}=$ $\left(s_{11}, s_{22}, s_{33}, s_{12}\right)$,

$$
\mathbf{s}=\sigma-\frac{1}{3} \operatorname{tr}(\sigma) \delta
$$

In the above equation, $\operatorname{tr}(\sigma)$ is the trace of the Cauchy stress tensor and δ is the Kronecker delta. For the 2D plane stress condition, the orthotropic condition gives 7 independent coefficients. The tensor \mathbf{C} is represented by the 4×4 matrix

$$
C_{I J}=\left(\begin{array}{llll}
c_{11} & c_{12} & c_{13} & \\
c_{12} & c_{22} & c_{23} & \\
c_{13} & c_{23} & c_{33} & \\
& & & c_{44}
\end{array}\right)
$$

The principal values of \mathbf{Z} are denoted Σ_{1}, Σ_{2}, and Σ_{3} and are given as the eigenvalues to the matrix composed by the components $\Sigma_{x x}, \Sigma_{y y}, \Sigma_{z z}$, and $\Sigma_{x y}$ through

$$
\begin{aligned}
& \Sigma_{1}=\frac{1}{2}\left(\Sigma_{x x}+\Sigma_{y y}+\sqrt{\left(\Sigma_{x x}-\Sigma_{y y}\right)^{2}+4 \Sigma_{x y}^{2}}\right), \\
& \Sigma_{2}=\frac{1}{2}\left(\Sigma_{x x}+\Sigma_{y y}-\sqrt{\left(\Sigma_{x x}-\Sigma_{y y}\right)^{2}+4 \Sigma_{x y}^{2}}\right), \\
& \Sigma_{3}=\Sigma_{z z}
\end{aligned}
$$

where

$$
\begin{aligned}
3 \Sigma_{x x} & =\left(2 c_{11}-c_{12}-c_{13}\right) \sigma_{x x}+\left(-c_{11}+2 c_{12}-c_{13}\right) \sigma_{y y} \\
3 \Sigma_{y y} & =\left(2 c_{12}-c_{22}-c_{23}\right) \sigma_{x x}+\left(-c_{12}+2 c_{22}-c_{23}\right) \sigma_{y y} \\
3 \Sigma_{z z} & =\left(2 c_{13}-c_{23}-c_{33}\right) \sigma_{x x}+\left(-c_{13}+2 c_{23}-c_{33}\right) \sigma_{y y} \\
\Sigma_{x y} & =c_{44} \sigma_{12}
\end{aligned}
$$

Note that the symmetry of $\Sigma_{x y}$ follows from the symmetry of the Cauchy stress tensor.
The yield condition is written in the following form:

$$
\begin{equation*}
f\left(\Sigma, k, \varepsilon_{\mathrm{ep}}\right)=\sigma_{\mathrm{eff}}\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, k\right)-\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right) \leq 0 \tag{233.2}
\end{equation*}
$$

where $\sigma_{y}\left(\varepsilon_{\text {ep }}\right)$ is a function representing the current yield stress dependent on current effective plastic strain and k is the asymmetric parameter for yield in compression and tension. The effective stress $\sigma_{\text {eff }}$ is given by

$$
\begin{equation*}
\sigma_{\mathrm{eff}}=\left[\left(\left|\Sigma_{1}\right|-k \Sigma_{1}\right)^{a}+\left(\left|\Sigma_{2}\right|-k \Sigma_{2}\right)^{a}+\left(\left|\Sigma_{3}\right|-k \Sigma_{3}\right)^{a}\right]^{1 / a}, \tag{233.3}
\end{equation*}
$$

where $k \in[-1,1]$ and $a \geq 1$. Now, let σ_{00}^{T} and σ_{00}^{C} represent the yield stress along the rolling (00 degree) direction in tension and compression, respectively. Furthermore let σ_{45}^{T} and σ_{90}^{T} represent the yield stresses in the 45 and the 90 degree directions, and last let
σ_{B}^{T} be the balanced biaxial yield stress in tension. Following Cazacu et al. (2006) the yield stresses can easily be derived.

To simplify the equations it is preferable to make the following definitions:

$$
\begin{array}{ll}
\Phi_{1}=\frac{1}{3}\left(2 c_{11}-c_{12}-c_{13}\right) & \Psi_{1}=\frac{1}{3}\left(-c_{11}+2 c_{12}-c_{13}\right) \\
\Phi_{2}=\frac{1}{3}\left(2 c_{12}-c_{22}-c_{23}\right) \text { and } & \Psi_{2}=\frac{1}{3}\left(-c_{12}+2 c_{22}-c_{23}\right) \\
\Phi_{3}=\frac{1}{3}\left(2 c_{13}-c_{23}-c_{33}\right) & \Psi_{3}=\frac{1}{3}\left(-c_{13}+2 c_{23}-c_{33}\right)
\end{array}
$$

The yield stresses can now be written as:

1. In the 00 degree direction:

$$
\begin{align*}
& \sigma_{00}^{T}=\left[\frac{\left(\sigma_{\mathrm{eff}}\right)^{a}}{\left(\left|\Phi_{1}\right|-k \Phi_{1}\right)^{a}+\left(\left|\Phi_{2}\right|-k \Phi_{2}\right)^{a}+\left(\left|\Phi_{3}\right|-k \Phi_{3}\right)^{a}}\right]^{1 / a}, \tag{233.4}\\
& \sigma_{00}^{C}=\left[\frac{\left(\sigma_{\mathrm{eff}}\right)^{a}}{\left(\left|\Phi_{1}\right|+k \Phi_{1}\right)^{a}+\left(\left|\Phi_{2}\right|+k \Phi_{2}\right)^{a}+\left(\left|\Phi_{3}\right|+k \Phi_{3}\right)^{a}}\right]^{1 / a}
\end{align*}
$$

2. In the 45 degree direction:

$$
\begin{equation*}
\sigma_{45}^{T}=\left[\frac{\left(\sigma_{\mathrm{eff}}\right)^{a}}{\left(\left|\Lambda_{1}\right|-k \Lambda_{1}\right)^{a}+\left(\left|\Lambda_{2}\right|-k \Lambda_{2}\right)^{a}+\left(\left|\Lambda_{3}\right|-k \Lambda_{3}\right)^{a}}\right]^{1 / a} \tag{233.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Lambda_{1}=\frac{1}{4}\left[\Phi_{1}+\Phi_{2}+\Psi_{1}+\Psi_{2}+\sqrt{\left(\Phi_{1}+\Psi_{1}-\Phi_{2}-\Psi_{2}\right)^{2}+4 c_{44}^{2}}\right] \\
& \Lambda_{2}=\frac{1}{4}\left[\Phi_{1}+\Phi_{2}+\Psi_{1}+\Psi_{2}-\sqrt{\left(\Phi_{1}+\Psi_{1}-\Phi_{2}-\Psi_{2}\right)^{2}+4 c_{44}^{2}}\right] \\
& \Lambda_{3}=\frac{1}{2}\left[\Phi_{3}+\Psi_{3}\right] .
\end{aligned}
$$

3. In the 90 degree direction:

$$
\begin{equation*}
\sigma_{90}^{T}=\left[\frac{\left(\sigma_{\mathrm{eff}}\right)^{a}}{\left(\left|\Psi_{1}\right|-k \Psi_{1}\right)^{a}+\left(\left|\Psi_{2}\right|-k \Psi_{2}\right)^{a}+\left(\left|\Psi_{3}\right|-k \Psi_{3}\right)^{a}}\right]^{1 / a} \tag{233.6}
\end{equation*}
$$

4. In the balanced biaxial yield occurs when both $\sigma_{x x}$ and $\sigma_{y y}$ are equal to:

$$
\begin{equation*}
\sigma_{B}^{T}=\left[\frac{\left(\sigma_{\mathrm{eff}}\right)^{a}}{\left(\left|\Omega_{1}\right|-k \Omega_{1}\right)^{a}+\left(\left|\Omega_{2}\right|-k \Omega_{2}\right)^{a}+\left(\left|\Omega_{3}\right|-k \Omega_{3}\right)^{a}}\right]^{1 / a} \tag{233.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}=\frac{1}{3}\left(c_{11}+c_{12}-2 c_{13}\right) \\
& \Omega_{2}=\frac{1}{3}\left(c_{12}+c_{22}-2 c_{23}\right) \\
& \Omega_{3}=\frac{1}{3}\left(c_{13}+c_{23}-2 c_{33}\right)
\end{aligned}
$$

Hardening laws:

The following hardening laws are implemented:

1. Swift hardening law
2. Voce hardening law
3. Gosh hardening law
4. Hocket-Sherby hardening law
5. Loading curve, where the yield stress is given as a function of the effective plastic strain

The Swift's hardening law can be written as

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=q\left(\varepsilon_{0}+\varepsilon_{\mathrm{ep}}\right)^{n}
$$

where q and n are material parameters.
The Voce's equation says that the yield stress can be written in the following form

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=a-b e^{-c \varepsilon_{\mathrm{ep}}}
$$

where a, b, and c are material parameters. The Gosh's equation is similar to Swift's equation. They only differ by a constant

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=q\left(\varepsilon_{0}+\varepsilon_{\mathrm{ep}}\right)^{n}-p
$$

Here q, ε_{0}, n and p are material constants. The Hocket-Sherby equation resembles the Voce's equation, but with an additional parameter added

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=a-b e^{-c \varepsilon_{\mathrm{ep}}^{n}}
$$

where a, b, c and n are material parameters.

Constitutive relation and material stiffness:

The classical elastic constitutive equation for linear deformations is the well-known Hooke's law. This relation written in a rate formulation is given by

$$
\begin{equation*}
\dot{\boldsymbol{\sigma}}=\mathbf{D} \dot{\varepsilon}_{e}, \tag{233.8}
\end{equation*}
$$

where ε_{e} is the elastic strain and \mathbf{D} is the constitutive matrix. An over imposed dot indicates differentiation respect to time. Introducing the total strain, ε, and the plastic strain, ε_{p}, Eq. (233.8) is classically rewritten as

$$
\begin{equation*}
\dot{\sigma}=\mathbf{D}\left(\dot{\varepsilon}-\dot{\varepsilon}_{p}\right) \tag{233.9}
\end{equation*}
$$

where

$$
\mathbf{D}=\frac{E}{1-v^{2}}\left(\begin{array}{lllll}
1 & v & & & \\
v & 1 & 1-v \\
& & \frac{1-v}{2} & \frac{1-v}{2} & \\
& & & \frac{1-v}{2}
\end{array}\right) \text { and }\left(\dot{\varepsilon}-\dot{\varepsilon}_{p}\right)=\left(\begin{array}{l}
\dot{\varepsilon}_{11}-\left(\dot{\varepsilon}_{p}\right)_{11} \\
\dot{\varepsilon}_{22}-\left(\dot{\varepsilon}_{p}\right)_{22} \\
2\left[\dot{\varepsilon}_{12}-\left(\dot{\varepsilon}_{p}\right)_{12}\right] \\
2\left[\dot{\varepsilon}_{13}-\left(\dot{\varepsilon}_{p}\right)_{13}\right] \\
2\left[\dot{\varepsilon}_{23}-\left(\dot{\varepsilon}_{p}\right)_{23}\right]
\end{array}\right) .
$$

The parameters Eand v are the Young's modulus and Poisson's ratio, respectively.
The material stiffness \mathbf{D}_{p} that is needed for implicit analysis can be calculated from Equation (233.9) as

$$
\mathbf{D}_{p}=\frac{\partial \dot{\sigma}}{\partial \dot{\varepsilon}} .
$$

The associative flow rule for the plastic strain is usually written as

$$
\begin{equation*}
\dot{\varepsilon}_{p}=\dot{\lambda} \frac{\partial f}{\partial \sigma} \tag{233.10}
\end{equation*}
$$

and the consistency condition reads as

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} \sigma} \dot{\sigma}+\frac{\mathrm{d} f}{\mathrm{~d} \varepsilon_{\text {ep }}} \dot{\varepsilon}_{\text {ep }}=0 \tag{233.11}
\end{equation*}
$$

Note that the centralized "dot" means scalar product between two vectors. Using standard calculus one easily derives from Equations (233.9), (233.10) and (233.11) an expression for the stress rate

$$
\begin{equation*}
\dot{\sigma}=\left[\mathbf{D}-\frac{\left(\mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \sigma}\right) \cdot\left(\mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \sigma}\right)}{\frac{d f}{d \sigma} \cdot\left(\mathbf{D} \frac{\mathrm{~d} f}{\mathrm{~d} \sigma}\right)-\frac{\mathrm{d} f}{\mathrm{~d} \varepsilon_{e p}}}\right] \dot{\varepsilon} \tag{233.12}
\end{equation*}
$$

That means that the material stiffness used for implicit analysis is given by

$$
\begin{equation*}
\mathbf{D}_{p}=\mathbf{D}-\frac{\left(\mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \sigma}\right) \cdot\left(\mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \sigma}\right)}{\frac{\mathrm{d} f}{\mathrm{~d} \sigma} \cdot\left(\mathbf{D} \frac{\mathrm{~d} f}{\mathrm{~d} \sigma}\right)-\frac{\mathrm{d} f}{\mathrm{~d} \varepsilon_{\mathrm{ep}}}} \tag{233.13}
\end{equation*}
$$

To be able to do a stress update we need to calculate the tangent stiffness and the derivative with respect to the corresponding hardening law.

When a suitable hardening law has been chosen the corresponding derivative is simple and will be left out from this document. However, the stress gradient of the yield surface is more complicated and will be outlined here.

$$
\begin{align*}
& \frac{\partial f}{\partial \sigma_{11}}=\frac{\partial f}{\partial \Sigma_{3}} \frac{1}{2} \frac{\partial f}{\partial \Sigma_{1}}\left[\left(1+\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Phi_{1}+\left(1-\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Phi_{2}\right] \\
&+\frac{1}{2} \frac{\partial f}{\partial \Sigma_{2}}\left[\left(1-\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Phi_{1}+\left(1+\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Phi_{2}\right]+\Phi_{3} \tag{233.14}\\
& \frac{\partial f}{\partial \sigma_{22}}=\frac{1}{2} \frac{\partial f}{\partial \Sigma_{1}}[\left.\left(1+\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Psi_{1}+\left(1-\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Psi_{2}\right] \\
&+\frac{1}{2} \frac{\partial f}{\partial \Sigma_{2}}\left[\left(1-\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Psi_{1}+\left(1+\frac{\Sigma_{x x}-\Sigma_{y y}}{\sqrt{\Sigma_{T}}}\right) \Psi_{2}\right]+\frac{\partial f}{\partial \Sigma_{3}} \Psi_{3} \tag{233.15}
\end{align*}
$$

and the derivative with respect to the shear stress component is

$$
\begin{equation*}
\frac{\partial f}{\partial \sigma_{12}}=c_{44} \frac{2 \Sigma_{x y}}{\sqrt{\Sigma_{T}}}\left(\frac{\partial f}{\partial \Sigma_{1}}-\frac{\partial f}{\partial \Sigma_{2}}\right) \tag{233.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{T}=\left(\Sigma_{x x}-\Sigma_{y y}\right)^{2}+4 \Sigma_{x y}^{2} \tag{233.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial \Sigma_{i}}=f\left(\Sigma, k, \varepsilon_{e p}\right)^{\frac{1}{a}-1}\left(\left|\Sigma_{i}\right|-k \Sigma_{i}\right)^{a-1}\left(\operatorname{sgn}\left(\Sigma_{i}\right)-k\right) \text { for } i=1,2,3 \tag{233.18}
\end{equation*}
$$

Implementation:

Assume that the stress and strain is known at time t^{n}. A trial stress $\widetilde{\sigma}^{n+1}$ at time t^{n+1} is calculated by assuming a pure elastic deformation, that is,

$$
\begin{equation*}
\widetilde{\boldsymbol{\sigma}}^{n+1}=\sigma^{n}+\mathbf{D}\left(\varepsilon^{n+1}-\varepsilon^{n}\right) \tag{233.19}
\end{equation*}
$$

Now, if $f\left(\Sigma, k, \varepsilon_{e p}\right) \leq 0$, the deformation is purely elastic, and the new stress and plastic strain are determined as

$$
\begin{align*}
\sigma^{n+1} & =\widetilde{\sigma}^{n+1} \\
\varepsilon_{\mathrm{ep}}^{n+1} & =\varepsilon_{\mathrm{ep}}^{n} \tag{233.20}
\end{align*}
$$

The thickness strain increment is given by

$$
\begin{equation*}
\Delta \varepsilon_{33}=\varepsilon_{33}^{n+1}-\varepsilon_{33}^{n}=-\frac{v}{1-v}\left(\Delta \varepsilon_{11}+\Delta \varepsilon_{22}\right) \tag{233.21}
\end{equation*}
$$

If the deformation is not purely elastic, the stress is not inside the yield surface and a plastic iterative procedure must take place as described in the following:

1. Set $m=0, \sigma_{(0)}^{n+1}=\widetilde{\boldsymbol{\sigma}}^{n+1}, \varepsilon_{\mathrm{ep}(0)}^{n+1}=\varepsilon_{\mathrm{ep}}^{n}$ and $\Delta \varepsilon_{11}^{p(0)}=\Delta \varepsilon_{22}^{p(0)}=0$
2. Determine the plastic multiplier as

$$
\begin{equation*}
\Delta \lambda=\frac{f\left(\sigma_{(m)}^{n+1}, \varepsilon_{\mathrm{ep}(m)}^{n+1}\right)}{\frac{\mathrm{d} f}{\mathrm{~d} \sigma}\left(\sigma_{(m)}^{n+1}\right) \cdot \mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \sigma}\left(\sigma_{(m)}^{n+1}\right)-\frac{\mathrm{d} f}{\mathrm{~d} \varepsilon_{\mathrm{ep}}}\left(\varepsilon_{\mathrm{ep}(m)}^{n+1}\right)} \tag{233.22}
\end{equation*}
$$

3. Perform a plastic corrector step: $\boldsymbol{\sigma}_{(m+1)}^{n+1}=\boldsymbol{\sigma}_{(m)}^{n+1}-\Delta \lambda \mathbf{D} \frac{\mathrm{d} f}{\mathrm{~d} \boldsymbol{\sigma}}\left(\boldsymbol{\sigma}_{(m)}^{n+1}\right)$ and find the increments in plastic strain according to

$$
\begin{align*}
\varepsilon_{\mathrm{ep}(m+1)}^{n+1} & =\varepsilon_{\mathrm{ep}(m)}^{n+1}+\Delta \lambda \\
\Delta \varepsilon_{11}^{p(n+1)} & =\Delta \varepsilon_{11}^{p(n)}+\Delta \lambda \frac{\partial f}{\partial \sigma_{11}}\left(\sigma_{(m)}^{n+1}\right) \tag{233.23}\\
\Delta \varepsilon_{22}^{p(n+1)} & =\Delta \varepsilon_{22}^{p(n)}+\Delta \lambda \frac{\partial f}{\partial \sigma_{22}}\left(\sigma_{(m)}^{n+1}\right)
\end{align*}
$$

4. If $\left|f\left(\mathbf{\sigma}_{(m+1)}^{n+1}, \varepsilon_{\mathrm{ep}}^{n}\right)\right|<$ tol or $m=m_{\text {max }}$; stop and set

$$
\begin{align*}
\boldsymbol{\sigma}^{n+1} & =\boldsymbol{\sigma}_{(m+1)}^{n+1}, \\
\varepsilon_{\mathrm{ep}}^{n+1} & =\varepsilon_{\mathrm{ep}(m+1)}^{n+1}, \tag{233.24}\\
\Delta \varepsilon_{11}^{p} & =\Delta \varepsilon_{11}^{p(m+1)}, \\
\Delta \varepsilon_{22}^{p} & =\Delta \varepsilon_{22}^{p(m+1)} .
\end{align*}
$$

Otherwise set $m=m+1$ and return to 2 .
The thickness strain increment for plastic yield is calculated as

$$
\begin{equation*}
\Delta \varepsilon_{33}=-\frac{1}{1-v}\left(\Delta \varepsilon_{11}+\Delta \varepsilon_{22}\right)-\left(1-\frac{v}{1-v}\right)\left(\Delta \varepsilon_{11}^{p}+\Delta \varepsilon_{22}^{p}\right) \tag{233.25}
\end{equation*}
$$

History Variables for the MAGNESIUM keyword option:

The following history variables will be stored for the MAGNESIUM option:

History Variable \#	Description
10	Gurson damage
11	Void fraction

History Variable \#	Description
12	Void fraction star
14	Damage
15	Plastic strain to failure
17	Equivalent plastic strain (energy conjugate to von Mises stress) Effective stress (Cazacu-Barlat)

*MAT_VISCOELASTIC_LOOSE_FABRIC

This is Material Type 234 developed and implemented by Tabiei et al [2004]. The model is a mechanism incorporating the crimping of the fibers as well as the trellising with reorientation of the yarns and the locking phenomenon observed in loose fabric. The equilibrium of the mechanism allows the straightening of the fibers depending on the fiber tension. The contact force at the fiber cross over point determines the rotational friction that dissipates a part of the impact energy. The stress-strain relationship is viscoelastic based on a three-element model. The failure of the fibers is strain rate dependent. *DAMPING_PART_MASS is recommended to be used in conjunction with this material model. This material is valid for modeling the elastic and viscoelastic response of loose fabric used in body armor, blade containments, and airbags.

Figure M234-1. Representative Volume Cell (RVC) of the model

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E1	E2	G12	EU	THL	THI
Type	A	F	F	F	F	F	F	F
Card 2	1	2	3	4	5	6	7	8
Variable	TA	W	s	T	H	S	EKA	EUA
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	VMB	C	G23	EKB	AOPT			
Type	F	F	F	F	F			

Card 4	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		

Card 5	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		

VARIABLE

MID Material identification. A unique number or label must be specified (see *PART).
E_{2}, Young's modulus in the yarn transverse-direction

DESCRIPTION

Mass density
E_{1}, Young's modulus in the yarn axial direction

G12 $\quad G_{12}$, shear modulus of the yarns
EU Ultimate strain at failure
THL Yarn locking angle
THI
TA
W
RO
E1
E2

Initial braid angle
Transition angle to locking
Fiber width

VARIABLE

S

T
H
S
EKA
EUA
VMB

C
G23
EKB
AOPT

DESCRIPTION

Span between the fibers
Real fiber thickness
Effective fiber thickness
Fiber cross-sectional area
Elastic constant of element "a"
Ultimate strain of element "a"
Damping coefficient of element " b "
Coefficient of friction between the fibers
Transverse shear modulus
Elastic constant of element " b "
Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description).

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2 and 4, as with *DEFINE_COORDINATE_NODES

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINED_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes defined by the cross product of the vector \mathbf{v} with the element normal
LT.O.O: The absolute value of AOPT is a coordinate system ID (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM, or *DEFINE_COORDINATE_VECTOR).
$\mathrm{A} 1-\mathrm{A} 3 \quad$ Components of vector \mathbf{a} for $\mathrm{AOPT}=2.0$
V1 - V3 Components of vector \mathbf{v} for $\mathrm{AOPT}=3.0$
D1-D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2.0$

Figure M234-2. Plain woven fabric as trellis mechanism: a) initial state; b) slightly stretched in bias direction; c) stretched to locking.

Remarks:

The parameters of the Representative Volume Cell (RVC) are: the yarn span, s, the fabric thickness, t, the yarn width, w, and the yarn cross-sectional area, A. The initially orthogonal yarns (see Figure M234-2a) are free to rotate (see Figure M234-2b) up to some angle and after that the lateral contact between the yarns causes the locking of the trellis mechanism and the packing of the yarns (see Figure M234-2c). The minimum braid angle, $\theta_{\text {min }}$, can be calculated from the geometry and the architecture of the fabric material having the yarn width, w, and the span between the yarns, s :

$$
\sin \left(2 \theta_{\min }\right)=\frac{w}{s} .
$$

The range angle, $\theta_{\text {lock }}$, and the maximum braid angle, $\theta_{\text {max }}$, are then easily determined as:

$$
\theta_{\text {lock }}=45^{\circ}-\theta_{\min }, \quad \theta_{\max }=45^{\circ}+\theta_{\text {lock }}
$$

The material behavior of the yarn can be simply described by a combination of one Maxwell element without the dashpot and one Kelvin-Voigt element. The 1-D model of viscoelasticity is shown in Figure M234-3. The differential equation of viscoelasticity of the yarns can be derived from the model equilibrium as in the following equation:

$$
\left(K_{a}+K_{b}\right) \sigma+\mu_{b} \dot{\sigma}=K_{a} K_{b} \varepsilon+\mu_{b} K_{a} \dot{\varepsilon}
$$

The input parameters for the viscoelasticity model of the material are only the static Young's modulus E_{1}, the Hookian spring coefficient (EKA) K_{a}, the viscosity coefficient

Figure M234-3. Three-element viscoelasticity model

Figure M234-4. The lateral contact factor as a function of average braid angle, θ.
(VMB) μ_{b}, the static ultimate strain (EU) $\varepsilon_{\max }$, and the Hookian spring ultimate strain (EUA) $\varepsilon_{a, \text { max }}$. The other parameters can be obtained as follows:

$$
\begin{aligned}
K_{b} & =\frac{K_{a} E_{1}}{K_{a}-E_{1}} \\
\varepsilon_{b, \max } & =\frac{K_{a}-E_{1}}{K_{a}} \varepsilon_{\max }
\end{aligned}
$$

The stress in the yarns for the fill and warp is updated for the next time step as:

$$
\sigma_{f}^{(n+1)}=\sigma_{f}^{(n)}+\Delta \sigma_{f}^{(n)}, \quad \sigma_{w}^{(n+1)}=\sigma_{w}^{(n)}+\Delta \sigma_{w}^{(n)}
$$

where $\Delta \sigma_{f}$ and $\Delta \sigma_{w}$ are the stress increments in the yarns. We can imagine that the RVC is smeared to the parallelepiped in order to transform the stress acting on the yarn crosssection to the stress acting on the element wall. The thickness of the membrane shell element used should be equal to the effective thickness, t_{e}, that can be found by dividing the areal density of the fabric by its mass density. The in-plane stress components acting on the RVC walls in the material direction of the yarns are calculated as follows for the fill and warp directions:

$$
\begin{array}{ll}
\sigma_{f 11}^{(n+1)}=\frac{2 \sigma_{f}^{(n+1)} S}{s t_{e}} & \sigma_{w 11}^{(n+1)}=\frac{2 \sigma_{w}^{(n+1)} S}{s t_{e}} \\
\sigma_{f 22}^{(n+1)}=\sigma_{f 22}^{(n)}+\alpha E_{2} \Delta \varepsilon_{f 22}^{(n)} & \sigma_{w 22}^{(n+1)}=\sigma_{w 22}^{(n)}+\alpha E_{2} \Delta \varepsilon_{w 22}^{(n)} \\
\sigma_{f 12}^{(n+1)}=\sigma_{f 12}^{(n)}+\alpha G_{12} \Delta \varepsilon_{f 12}^{(n)} & \sigma_{w 12}^{(n+1)}=\sigma_{w 12}^{(n)}+\alpha G_{12} \Delta \varepsilon_{w 12}^{(n)}
\end{array}
$$

where E_{2} is the transverse Young's modulus of the yarns, G_{12} is the longitudinal shear modulus, and α is the lateral contact factor. The lateral contact factor is zero when the trellis mechanism is open and unity if the mechanism is locked with full lateral contact between the yarns. There is a transition range, $\Delta \theta \times \mathrm{TA}$, of the average braid angle, θ, in which the lateral contact factor, α, is a linear function of the average braid angle. The graph of the function $\alpha(\theta)$ is shown in Figure M234-4.

*MAT_MICROMECHANICS_DRY_FABRIC

This is Material Type 235 developed and implemented by Tabiei et al [2001]. The material model derivation includes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state which allows the simulation of the trellis mechanism before packing the yarns. This material is valid for modeling the elastic response of loose fabric used in inflatable structures, parachutes, body armor, blade containments, and airbags.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E1	E2	G12	G23	V12	V23
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	XT	THI	THL	BFI	BWI	DSCF	CNST	ATLR
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	VME	VMS	TRS	FFLG	AOPT			
Type	F	F	F	F	F			

Card 4	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		

Card 5	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		

VARIABLE
MID

RO
E1
E2
G12
G23
V12
V23
XT
THI
THL
BFI
BWI
DSCF
CNST
ATLR
VME
VMS
TRS

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density
E_{1}, Young's modulus of the yarn in the axial-direction
E_{2}, Young's modulus of the yarn in the transverse-direction
G_{12}, shear modulus of the yarns.
G_{23}, transverse shear modulus of the yarns.
Poisson's ratio
Transverse Poisson's ratio
Stress or strain to failure (see FFLG)
Initial braid angle
Yarn locking angle
Initial undulation angle in fill direction
Initial undulation angle in warp direction
Discount factor
Reorientation damping constant
Angle tolerance for locking
Viscous modulus for normal strain rate
Viscous modulus for shear strain rate
Transverse shear modulus of the fabric layer

Figure M235-1. Yarn orientation schematic.

VARIABLE
FFLG

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for more complete description).

EQ.0.0: locally orthotropic with material axes determined by element nodes 1, 2 and 4, as with *DEFINE_COORDINATE_NODES

EQ.2.0: globally orthotropic with material axes determined by vectors defined below, as with *DEFINED_COORDINATE_VECTOR

EQ.3.0: locally orthotropic material axes defined by the cross product of the vector vwith the element normal

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM, or *DEFINE_COORDINATE_VECTOR).

A1-A3 Components of vector a for $\mathrm{AOPT}=2.0$
V1 - V3 Components of vector \mathbf{v} for $\mathrm{AOPT}=3.0$
D1-D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2.0$

Remarks:

The Representative Volume Cell (RVC) approach is used in the micro-mechanical model development. The direction of the yarn in each sub-cell is determined by two angles the braid angle, θ (the initial braid angle is 45 degrees), and the undulation angle of the yarn, which is different for the fill and warp-yarns, β_{f} and β_{w} (the initial undulations are normally a few degrees), respectively. The starting point for the homogenization of the material properties is the determination of the yarn stiffness matrices.

The elasticity tensor is given by

$$
\left[C^{\prime}\right]=\left[S^{\prime}\right]^{-1}=\left[\begin{array}{cccccc}
\frac{1}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & 0 & 0 & 0 \\
-\frac{v_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{v_{23}}{E_{2}} & 0 & 0 & 0 \\
-\frac{\nu_{12}}{E_{1}} & -\frac{v_{23}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\mu G_{12}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\mu G_{23}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\mu G_{12}}
\end{array}\right]^{-1}
$$

where $E_{1}, E_{2}, v_{12}, v_{23}, G_{12}$ and G_{23} are Young's moduli, Poisson's ratios, and the shear moduli of the yarn material, respectively. μ is a discount factor, which is function of the braid angle, θ, and has value between μ_{0} and 1 as shown in the next figure. Initially, in a free stress state, the discount factor is a small value (DSCF $=\mu_{0} \ll 1$) and the material has very small resistance to shear deformation if any.

Figure M235-2. Free state of the plain woven fabric

Figure M235-3. Stretched state of the plain woven fabric

Figure M235-4. Compacted state of the plain woven fabric
When locking occurs, the fabric yarns are packed and behave like elastic media. The discount factor is unity as shown in the next figure. The micro-mechanical model is developed to account for the reorientation of the yarns up to the locking angle. The locking angle, $\theta_{\text {lock }}$, can be obtained from the yarn width and the spacing parameter of the fabric using simple geometrical relationship. The transition range, $\Delta \theta$ (angle tolerance for locking), can be chosen to be as small as possible, but big enough to prevent high frequency oscillations during the transition to the compacted state which depends on the range to the locking angle and the dynamics of the simulated problem. The reorientation damping constant damps some of the high frequency oscillations. A simple rate effect is added by defining the viscous modulus for normal or shear strain rate (VME $\times \dot{\varepsilon}_{11}$ or 22 for normal components and VMS $\times \dot{\varepsilon}_{12}$ for the shear components).

Figure M235-5. Locking angles

Figure M235-6. Discount factor as a function of braid angle, θ

*MAT_SCC_ON_RCC

This is Material Type 236 developed by Carney, Lee, Goldberg, and Santhanam [2007]. This model simulates silicon carbide coating on Reinforced Carbon-Carbon (RCC), a ceramic matrix. It is based upon a quasi-orthotropic, linear-elastic, plane-stress model. Additional constitutive model attributes include a simple (meaning non-damage model based) option that can model the tension crack requirement: a "stress-cutoff" in tension. This option satisfies the tension crack requirements by limiting the stress in tension but not compression and having the tensile "yielding" (that is, the stress-cutoff) be fully recoverable - not plasticity or damage based.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E0	E1	E2	E3	E4	E5
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	PR	G	G_SCL	TSL	EPS_TAN			
Type	F	F	F	F	F			

VARIABLE
MID

RO Mass density
E0 $\quad E_{0}$; see Remarks below.
E1 $\quad E_{1}$; see Remarks below.
E2 $\quad E_{2}$; see Remarks below.
E3 $\quad E_{3}$; see Remarks below.
E4 $\quad E_{4}$; see Remarks below.
E5 $\quad E_{5}$, Young's modulus of the yarn in transverse-direction
PR Poisson's ratio

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

VARIABLE	DESCRIPTION
G_SCL	
Shear modulus	
TSL	Shear modulus multiplier (default = 1.0)
EPS_TAN	Strain at which E = tangent to the polynomial curve

Remarks:

This model for the silicon carbide coating on RCC is based upon a quasi-orthotropic, lin-ear-elastic, plane-stress model, given by:

$$
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{E}{1-v^{2}} & \frac{v E}{1-v^{2}} & 0 \\
\frac{v E}{1-v^{2}} & \frac{E}{1-v^{2}} & 0 \\
0 & 0 & G_{12}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right\}
$$

Additional constitutive model requirements include a simple (meaning non-damage model based) option that can model the tension crack requirement: a "stress-cutoff" in tension. This option satisfies the tension crack requirements by limiting the stress in tension but not compression and having the tensile "yielding" (that is, the stress-cutoff) be fully recoverable - not plasticity or damage based.

The tension stress-cutoff separately resets the stress to a limit value when it is exceeded in each of the two principal directions. There is also a strain-based memory criterion that ensures unloading follows the same path as loading: the "memory criterion" is the tension stress assuming that no stress cutoffs were in effect. In this way, when the memory criterion exceeds the user-specified cutoff stress, the actual stress will be set to that value. When the element unloads and the memory criterion falls back below the stress cutoff, normal behavior resumes. Using this criterion is a simple way to ensure that unloading does not result in any hysteresis. The cutoff criterion cannot be based on an effective stress value because effective stress does not discriminate between tension and compression while also including shear. This means that the in plane, 1- and 2-directions must be modeled as independent to use the stress cutoff. Because the Poisson's ratio is not zero, this assumption is not true for cracks that may arbitrarily lie along any direction. However, careful examination of damaged RCC shows that the surface cracks do, generally, tend to lie in the fabric directions, meaning that cracks tend to open in the 1- or the 2- direction independently. So the assumption of directional independence for tension cracks may be appropriate for the coating because of this observed orthotropy.

The quasi-orthotropic, linear-elastic, plane-stress model with tension stress cutoff (to simulate tension cracks) can model the as-fabricated coating properties, which do not show
nonlinearities, but not the non-linear response of the flight-degraded material. Explicit finite element analysis (FEA) lends itself to nonlinear-elastic stress-strain relation instead of linear-elastic. Thus, instead of $\sigma=\mathrm{E} \varepsilon$, the modulus will be defined as a function of some effective strain quantity, or $\sigma=\mathbf{E}\left(\varepsilon_{\text {eff }}\right) \varepsilon$, even though it is uncertain, from the available data, whether the coating response is completely nonlinear-elastic and does not include some damage mechanism.

This nonlinear-elastic model cannot be implemented into a closed form solution or into an implicit solver; however, for explicit FEA such as is used for LS-DYNA impact analysis, the modulus can be adjusted at each time step to a higher or lower value as desired. In order to model the desired S-shape response curve of flight-degraded RCC coating, a function of strain that replicates the desired response must be found. The nonlinearities in the material are assumed recoverable (elastic) and the modulus is assumed to be communicative between the 1- and 2- directions (going against the tension-crack assumption that the two directions do not interact). Sometimes stability can be a problem for this type of nonlinearity modeling; however, stability was not found to be a problem with the material constants used for the coating.

The von Mises strain is selected for the effective strain definition as it couples the 3-dimensional loading but reduces to uniaxial data, so that the desired uniaxial compressive response can be reproduced. So,

$$
\varepsilon_{\mathrm{eff}}=\frac{1}{\sqrt{2}} \frac{1}{1+v} \sqrt{\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+\left(\varepsilon_{2}-\varepsilon_{3}\right)^{2}+\left(\varepsilon_{1}-\varepsilon_{3}\right)^{2}+3 \gamma_{12}^{2}}
$$

where for a two-dimensional, isotropic shell element case, the z-direction strain is given by:

$$
\varepsilon_{3}=\frac{-v}{1-v}\left(\varepsilon_{1}+\varepsilon_{2}\right) .
$$

The function for modulus is implemented as an arbitrary $5^{\text {th }}$ order polynomial:

$$
E\left(\varepsilon_{\mathrm{eff}}\right)=A_{0} \varepsilon_{\mathrm{eff}}^{0}+A_{1} \varepsilon_{\mathrm{eff}}^{1}+\cdots+A_{5} \varepsilon_{\mathrm{eff}}^{5} .
$$

In the case of as-fabricated material the first coefficient, A_{0}, is simply the modulus E, and the other coefficients, $A_{n>0}$, are zero, reducing to a $0^{\text {th }}$ order polynomial, or linear. To match the degraded stress-strain compression curve, a higher order polynomial is needed. Six conditions on stress were used (stress and its derivative at beginning, middle, and end of the curve) to obtain a $5^{\text {th }}$ order polynomial, and then the derivative of that equation was taken to obtain modulus as a function of strain, yielding a $4^{\text {th }}$ order polynomial that represents the degraded coating modulus as strain curve.

For values of strain which exceed the failure strain observed in the laminate compression tests, the higher order polynomial will no longer match the test data. Therefore, after a specified effective-strain, representing failure, the modulus is defined to be the tangent of the polynomial curve. As a result, the stress/strain response has a continuous derivative, which aids in avoiding numerical instabilities. The test data does not clearly define
the failure strain of the coating, but in the impact test it appears that the coating has a higher compressive failure strain in bending than the laminate failure strain.

The two dominant modes of loading which cause coating loss on the impact side of the RCC (the front-side) are in-plane compression and transverse shear. The in-plane compression is measured by the peak out of plane tensile strain, ε_{3}. As there is no direct loading of a shell element in this direction, ε_{3} is computed through Poisson's relation:

$$
\varepsilon_{3}=\frac{-v}{1-v}\left(\varepsilon_{1}+\varepsilon_{2}\right) .
$$

When ε_{3} is tensile, it implies that the average of ε_{1} and ε_{2} is compressive. This failure mode will likely dominate when the RCC undergoes large bending, putting the frontside coating in high compressive strains. A transverse shear failure mode is expected to dominate when the debris source is very hard or very fast. By definition, the shell element cannot give a precise account of the transverse shear throughout the RCC's thickness. However, the Belytschko-Tsay shell element formulation in LS-DYNA has a firstorder approximation of transverse shear that is based on the out-of-plane nodal displacements and rotations that should suffice to give a qualitative evaluation of the transverse shear. By this formulation, the transverse shear is constant through the entire shell thickness and thus violates surface-traction conditions. The constitutive model implementation records the peak value of the tensile out-of-plane strain $\left(\varepsilon_{3}\right)$ and peak root-mean-sum transverse-shear: $\sqrt{\varepsilon_{13}^{2}+\varepsilon_{23}^{2}}$.

*MAT_PML_HYSTERETIC

This is Material Type 237. This is a perfectly-matched layer (PML) material with a Biot linear hysteretic constitutive law, to be used in a wave-absorbing layer adjacent to a Biot hysteretic material (*MAT_BIOT_HYSTERETIC) in order to simulate wave propagation in an unbounded medium with material damping. This material is the visco-elastic counterpart of the elastic PML material (*MAT_PML_ELASTIC). See the Remarks sections of *MAT_PML_ELASTIC (*MAT_230) and *MAT_BIOT_HYSTERETIC (*MAT_232) for further details.

Card	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	ZT	FD		
Type	A	F	F	F	F	F		
Default	none	none	none	none	0.0	3.25		

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's modulus
PR Poisson's ratio
ZT Damping ratio
FD Dominant excitation frequency in Hz

*MAT_PERT_PIECEWISE_LINEAR_PLASTICITY

This is Material Type 238. It is a duplicate of Material Type 24 (*MAT_PIECEWISE_LINEAR_PLASTICITY) modified for use with *PERTURBATION_MATERIAL and solid elements in an explicit analysis. It should give exactly the same values as the original material, if used exactly the same. It exists as a separate material type because of the speed penalty (an approximately 10% increase in the overall execution time) associated with the use of a material perturbation.

See Material Type 24 (*MAT_PIECEWISE_LINEAR_PLASTICITY) for a description of the material parameters. All of the documentation for Material Type 24 applies. First creating the input deck using Material Type 24 is recommended. Additionally, the CMP variable in the *PERTURBATION_MATERIAL must be set to affect a specific variables in the MAT_238 definition as defined in the following table; for example, CMP $=5$ will perturb the yield stress.

CMP Value	Material Variable
3	E
5	SIGY
6	ETAN
7	FAIL

*MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE_\{OPTION\}

Available options include:
<BLANK>
THERMAL
3MODES
FUNCTIONS
This is Material Type 240. This model is a rate-dependent, elastic-ideally plastic cohesive zone model. It includes a tri-linear traction-separation law with a quadratic yield and damage initiation criterion in mixed-mode loading (mode I - mode II), while the damage evolution is governed by a power-law formulation. It can be used only with cohesive element formulations; see the variable ELFORM in *SECTION_SOLID and *SECTION_SHELL.

With the THERMAL option, some properties are defined as functions of temperature, meaning fields EMOD, GMOD, G1C_0, G2C_0, T0, S0, FG1, and FG2 must be defined as curve IDs instead of scalar values.

With the FUNCTIONS option, some properties are defined as functions of connection partner properties, meaning fields EMOD, GMOD, G1C_0, G2C_0, T0, S0, FG1, and FG2 must be defined as function IDs instead of scalar values. See remarks for details.

The keyword option 3MODES activates the possibility to include deformation/fracture mode III which could be useful for cohesive shells. Corresponding fields can be defined on optional Cards 4 and 5.

Note that 3MODES is compatible with THERMAL and FUNCTIONS, but THERMAL and FUNCTIONS cannot be used together. In other words, THERMAL_3MODES and FUNCTIONS_3MODES are allowed as keyword options, but THERMAL_FUNCTIONS is not allowed.

Card Summary:

Card 1. This card is required.

MID	RO	ROFLG	INTFAIL	EMOD	GMOD	THICK	INICRT

Card 2. This card is required.

G1C_0	G1C_INF	ED0T_G1	T0	T1	ED0T_T	FG1	LCG1C

Card 3. This card is required.

G2C_0	G2C_INF	EDOT_G2	S0	S1	EDOT_S	FG2	LCG2C

Card 4. This card is included if the 3MODES keyword option is used.

G3C_0	G3C_INF	EDOT_G3	R0	R1	EDOT_R	FG3	LCG3C

Card 5. This card is included if the 3MODES keyword option is used.

GMOD3							

Card 6. This card is optional.

RFILTF	COMPY	SMOLIM	XMU				

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	ROFLG	INTFAIL	EMOD	GMOD	THICK	INICRT
Type	A	F	I	I	F/I	F/I	F	F

VARIABLE
 MID

RO Mass density
ROFLG Flag for whether density is specified per unit area or volume:
EQ.O: Specified density per unit volume (default)
EQ.1: Specifies the density is per unit area for controlling the mass of cohesive elements with an initial volume of zero

INTFAIL Number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 the recommended value.
LT.O.O: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration points have failed.

VARIABLE

EMOD Young's modulus of the material (Mode I). It is a curve ID if the THERMAL keyword option is used. It is a function ID if the FUNCTIONS keyword option is used.

GMOD The shear modulus of the material (Mode II). Curve ID for THERMAL keyword option. GMOD is a function ID for the FUNCTIONS keyword option.

THICK

INICRT Yield and damage initiation criterion:
EQ.0.0: Quadratic nominal stress (default)
EQ.1.0: Maximum nominal stress
EQ.2.0: Maximum nominal stress (same as INICRT = 1.0). Additionally, it flags outputting the maximum strain as history variable \#15.
LT.O.O: Mixed mode with flexible exponent |INICRT |

Card 2	1	2	3	4	5	6	7	8
Variable	G1C_0	G1C_INF	EDOT_G1	T0	T1	EDOT_T	FG1	LCG1C
Type	F/I	F	F	F/I	F	F	F/I	I

VARIABLE

G1C_0

DESCRIPTION

GT.0.0: Energy release rate $G_{I C}$ in Mode I. G1C_0 is a curve ID if the THERMAL keyword option is used. G1C_0 is a function ID if the FUNCTIONS keyword option is used.
LE.O.O: Lower bound value of rate-dependent $G_{\text {IC }}$

VARIABLE
G1C_INF

EDOT_G1

T0

T1

EDOT_T

FG1

DESCRIPTION

Upper bound value of rate-dependent $G_{I C}$ (only considered if G1C_0 < 0)

Equivalent strain rate at yield initiation to describe the rate dependency of $G_{I C}$ (only considered if G1C_0 < 0)

GT.0.0: Yield stress in Mode I. T0 is a curve ID if the THERMAL keyword option is used. T0 is a function ID if the FUNCTIONS keyword option is used.

LT.O.O: Rate-dependency is considered; see T1 and EDOT_T.
Field T1, only considered if $\mathrm{T} 0<0$:
GT.0.0: Quadratic logarithmic model
LT.0.0: Linear logarithmic model

Equivalent strain rate at yield initiation to describe the rate dependency of the yield stress in Mode I (only considered if T0 < 0)
$f_{G 1}$, describes the tri-linear shape of the traction-separation law in Mode I. See remarks. It is a curve ID if the THERMAL keyword option is used. It is a function ID if the FUNCTIONS keyword option is used.

GT.0.0: FG 1 is the ratio of fracture energies, $G_{I, P} / G_{I C}$.
LT.0.0: $|\mathrm{FG} 1|$ is ratio of displacements, $\left(\delta_{n 2}-\delta_{n 1}\right) /\left(\delta_{n f}-\delta_{n 1}\right)$.

Load curve ID which defines fracture energy GIC as a function of cohesive element thickness. G1C_0 and G1C_INF are ignored in this case.

Card 3	1	2	3	4	5	6	7	8
Variable	G2C_0	G2C_INF	EDOT_G2	S0	S1	EDOT_S	FG2	LCG2C
Type	F/I	F	F	F/I	F	F	F/I	I

DESCRIPTION
GT.0.0: Energy release rate $G_{I I C}$ in Mode II. If the THERMAL keyword option is used, it is a load curve ID. For the FUNCTIONS keyword option, it is a function ID.

LE.0.0: Lower bound value of rate-dependent $G_{\text {IIC }}$
Upper bound value of $G_{\text {IIC }}$ (only considered if G2C_0 < 0)
Equivalent strain rate at yield initiation to describe the rate dependency of $G_{\text {IIC }}$ (only considered if G2C_0 < 0)

GT.0.0: Yield stress in Mode II. It is a load curve ID for the THERMAL keyword option. It is a function ID for the FUNCTIONS keyword option.
LT.0.0: Rate-dependency is considered; see S1 and EDOT_S
Parameter S 1 , only considered if $\mathrm{S} 0<0$:
GT.O.O: Quadratic logarithmic model is applied.
LT.O.O: Linear logarithmic model is applied.
Equivalent strain rate at yield initiation to describe the rate dependency of the yield stress in Mode II (only considered if S0 < 0)
$f_{G 2}$, describes the tri-linear shape of the traction-separation law in Mode II, see remarks. It is a load curve ID for the THERMAL keyword option. It is a function ID for the FUNCTIONS keyword option.

GT.0.0: FG2 is the ratio of fracture energies, $G_{I I, P} / G_{I I C}$.
LT.0.0: |FG2| is the ratio of displacements, $\left(\delta_{t 2}-\delta_{t 1}\right) /\left(\delta_{t f}-\right.$ $\left.\delta_{t 1}\right)$.

Load curve ID which defines fracture energy GIIC as a function of cohesive element thickness. G2C_0 and G2C_INF are ignored in that case.

Additional Cards 4 and 5 for 3MODES keyword option. Properties for Mode III (out-of-plane mode in cohesive shell elements).

Card 4	1	2	3	4	5	6	7	8
Variable	G3C_0	G3C_INF	EDOT_G3	R0	R1	EDOT_R	FG3	LCG3C
Type	F/I	F	F	F/I	F	F	F/I	I

Card 5	1	2	3	4	5	6	7	8
Variable	GMOD3							
Type	F/I							

VARIABLE

G3C_0

G3C_INF Upper bound value of rate-dependent $G_{\text {IIIC }}$ (only considered if G3C_0 < 0)

R0
GT.0.0: Yield stress in Mode III. R0 is a load curve ID for the THERMAL keyword option. R0 is a function ID for the FUNCTIONS keyword option.
LT.0.O: Rate-dependency is considered
R1 Parameter R1, only considered if $\mathrm{R} 0<0$:
GT.0.0: Quadratic logarithmic model
LT.0.O: Linear logarithmic model
EDOT_R Equivalent strain rate at yield initiation to describe the rate dependency of the yield stress in Mode III (only considered if R0 < 0)

VARIABLE

FG3

LCG3C

GMOD3 Shear modulus for Mode III. GMOD3 is a load curve ID for the
THERMAL keyword option. GMOD3 is a function ID for the
Shear modulus for Mode III. GMOD3 is a load curve ID for the
THERMAL keyword option. GMOD3 is a function ID for the FUNCTIONS keyword option.
Load curve ID which defines fracture energy GIIIC as a function of cohesive element thickness. G3C_0 and G3C_INF are ignored in that case. $f_{G 33}$, describes the tri-linear shape of the traction-separation law in
Mode III; see remarks. It is a load curve ID if the THERMAL keyword option is used. It is a function ID if the FUNCTIONS keyword option is used.

GT.0.0: FG3 is ratio of fracture energies, $G_{I I I, P} / G_{\text {IIIC }}$.
LT.0.0: |FG3| is ratio of displacements, $\left(\delta_{s 2}-\delta_{s 1}\right) /\left(\delta_{s f}-\delta_{s 1}\right)$.

This card is optional.

Card 6	1	2	3	4	5	6	7	8
Variable	RFILTF	COMPY	SMOLIM	XMU				
Type	F	F	F	F				

VARIABLE

RFILTF
ma

DESCRIPTION

Smoothing factor on the equivalent strain rate using an exponential moving average method:

$$
\dot{\varepsilon}_{n}^{\text {avg }}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
$$

This option invokes a modified handling of strain rates (see Remarks).

GT.O.O: RFILTF applied on the equivalent plastic strain rate.
LT.O.O: |RFILTF| applied on the equivalent total strain rate.
COMPY Yield under compression flag:
EQ.O: Off (default)
EQ.1: On

VARIABLE

SMOLIM

XMU Exponent of the mixed mode failure criterion. Default is 1.0.

Remarks:

The model is a tri-linear elastic-ideally plastic Cohesive Zone Model, developed by Marzi et al. [2009]. It looks similar to *MAT_185 but considers effects of plasticity and ratedependency. Since the entire separation at failure is plastic, no brittle fracture behavior can be modeled with this material type.

The following description of the model is for two deformation/fracture modes (I and II) only, meaning without the option 3MODES. This is a natural choice for cohesive solid elements, where no specific distinction between in-plane and out-of-plane shear can be made. On the other hand, if this material model is used with the cohesive shell element type ± 29, shear deformation can clearly be separated into in-plane shear (Mode II) and out-of-plane shear (Mode III). This can be taken into account by adding 3MODES to the keyword and defining additional Cards 4 and 5 . Corresponding equations including Mode III are not explicitly given here (for the sake of brevity), but derivation of them is straightforward.

The separations, Δ_{n} and Δ_{t}, in the normal (peel) and tangential (shear) directions, respectively, are calculated from the element's separations in the integration points,

$$
\Delta_{n}=\max \left(u_{n}, 0\right)
$$

and

$$
\Delta_{t}=\sqrt{u_{t 1}^{2}+u_{t 2}^{2}} .
$$

u_{n} is the separation in the normal direction while $u_{t 1}$ and $u_{t 2}$ is the separation in both tangential directions of the element coordinate system. The total (mixed-mode) separation Δ_{m} is determined by

$$
\Delta_{m}=\sqrt{\Delta_{n}^{2}+\Delta_{t}^{2}}
$$

The initial stiffnesses in both modes are calculated from the elastic Young's and shear moduli and are respectively,

$$
\begin{aligned}
& E_{n}=\frac{\text { EMOD }}{\text { THICK }} \\
& E_{t}=\frac{\text { GMOD }}{\text { THICK }},
\end{aligned}
$$

Figure M240-1. Trilinear traction separation law
where THICK, the element's thickness, is an input parameter. If THICK ≤ 0, it is calculated from the distance between the initial positions of the element's corner nodes (Nodes $1-5,2-6,3-7$ and 4-8, respectively).

While the total energy under the traction-separation law is given by G_{C}, one further parameter is needed to describe the exact shape of the tri-linear material model. If the area (energy) under the constant stress (plateau) region is denoted G_{P} (see Figure M240-1), a parameter f_{G} defines the shape of the traction-separation law,

$$
\begin{aligned}
& 0 \leq f_{G 1}=\frac{G_{I, P}}{G_{I C}}<1-\frac{T^{2}}{2 G_{I C} E_{n}}<1 \text { for mode I loading } \\
& 0 \leq f_{G 2}=\frac{G_{I I, P}}{G_{I I C}}<1-\frac{S^{2}}{2 G_{I I C} E_{t}}<1 \text { for mode II loading }
\end{aligned}
$$

As a recommended alternative, the shape of the tri-linear model can be described by the following displacement ratios (triggered by negative input values for f_{G}):

$$
\begin{aligned}
& 0<\left|f_{G 1}\right|=\left|\frac{\delta_{n 2}-\delta_{n 1}}{\delta_{n f}-\delta_{n 1}}\right|<1 \quad \text { for mode I loading } \\
& 0<\left|f_{G 2}\right|=\left|\frac{\delta_{t 2}-\delta_{t 1}}{\delta_{t f}-\delta_{t 1}}\right|<1 \quad \text { for mode II loading }
\end{aligned}
$$

While $f_{G 1}$ and $f_{G 2}$ are always constant values, $T, S, G_{I C}$, and $G_{I I C}$ may be chosen as functions of an equivalent strain rate $\dot{\varepsilon}_{\text {eq }}$, which is evaluated by

$$
\dot{\varepsilon}_{\mathrm{eq}}=\frac{\sqrt{\dot{u}_{n}^{2}+\dot{u}_{t 1}^{2}+\dot{u}_{t 2}^{2}}}{\text { THICK }} .
$$

Here $\dot{u}_{n}, \dot{u}_{t 1}$, and $\dot{u}_{t 2}$ are the velocities corresponding to the separations $u_{n}, u_{t 1}$, and $u_{t 2}$, respectively.

For the yield stresses, two rate dependent formulations are implemented:

1. A quadratic logarithmic function:

$$
\begin{aligned}
& T\left(\dot{\varepsilon}_{\text {eq }}\right)=|\mathrm{T} 0|+|\mathrm{T} 1|\left[\max \left(0, \ln \frac{\dot{\varepsilon}_{\mathrm{eq}}}{\mathrm{EDOT} \mathrm{~T}}\right)\right]^{2} \text { for mode I if T0 }<0 \text { and } \mathrm{T} 1>0 \\
& S\left(\dot{\varepsilon}_{\mathrm{eq}}\right)=|\mathrm{S} 0|+|\mathrm{S} 1|\left[\operatorname { m a x } \left(0, \ln \frac{\dot{\varepsilon}_{\text {eq }}}{\text { EDOT_S })]^{2} \quad \text { for mode II if } \mathrm{S} 0<0 \text { and S1 }>0}\right.\right.
\end{aligned}
$$

2. A linear logarithmic function:

$$
\begin{aligned}
& T\left(\dot{\varepsilon}_{\text {eq }}\right)=|\mathrm{T} 0|+|\mathrm{T} 1| \max \left(0, \ln \frac{\dot{\varepsilon}_{\mathrm{eq}}}{\text { EDOT_T }}\right) \text { for mode I if } \mathrm{T} 0<0 \text { and } \mathrm{T} 1<0 \\
& S\left(\dot{\varepsilon}_{\mathrm{eq}}\right)=|\mathrm{SO} 0|+|\mathrm{S} 1| \max \left(0, \ln \frac{\dot{\varepsilon}_{\mathrm{eq}}}{\text { EDOT_S }}\right) \quad \text { for mode II if S0 }<0 \text { and S1<0 }
\end{aligned}
$$

Alternatively, T and S can be set to constant values:

$$
\begin{array}{ll}
T\left(\dot{\varepsilon}_{\mathrm{eq}}\right)=\mathrm{T} 0 & \text { for mode I if } \mathrm{T} 0>0 \\
S\left(\dot{\varepsilon}_{\mathrm{eq}}\right)=\mathrm{S} 0 & \text { for mode II if } \mathrm{S} 0>0
\end{array}
$$

The rate-dependency of the fracture energies are given by:

$$
\begin{aligned}
& G_{\text {IIC }}\left(\dot{\varepsilon}_{\text {eq }}\right)=\left|G 2 C _0\right|+\left(G 2 C _I N F-\left|G 2 C _0\right|\right) \exp \left(-\frac{E D O T _G 2}{\dot{\varepsilon}_{\text {eq }}}\right) \text { if G2C_0 }<0
\end{aligned}
$$

If positive values are chosen for G1C_0 or G2C_0, no rate-dependency is considered for this parameter and its value remains constant as specified by the user.

As an alternative, fracture energies GIC and GIIC can be defined as functions of cohesive element thickness by using load curves LCG1C and LCG2C, respectively. In that case, parameters G1C_0, G1C_INF, G2C_0, and G2C_INF will be ignored, and no rate dependence is considered.

Note that the equivalent strain rate $\dot{\varepsilon}_{\text {eq }}$ is updated until $\Delta_{m}>\delta_{m 1}$. Then, the model behavior depends on the equivalent strain rate at yield initiation. A modified handling of strain rates is invoked by RFILTF $\neq 0$ with which filtered strain rates are updated throughout the whole process.

Having defined the parameters describing the single modes, the mixed-mode behavior is formulated by quadratic initiation criteria for both yield stress and damage initiation, while the damage evolution follows a Power-Law. Due to reasons of readability, the following simplifications are made,

$$
\begin{aligned}
T & =T\left(\dot{\varepsilon}_{\mathrm{eq}}\right) \\
S & =S\left(\dot{\varepsilon}_{\mathrm{eq}}\right) \\
G_{I C} & =G_{I C}\left(\dot{\varepsilon}_{\mathrm{eq}}\right) \\
G_{I I C} & =G_{I I C}\left(\dot{\varepsilon}_{\mathrm{eq}}\right)
\end{aligned}
$$

If the quadratic nominal stress criterion is used (INICRT $=0$), the mixed-mode yield initiation displacement $\delta_{m 1}$ is defined as

$$
\delta_{m 1}=\delta_{n 1} \delta_{t 1} \sqrt{\frac{1+\beta^{2}}{\delta_{t 1}^{2}+\left(\beta \delta_{n 1}\right)^{2}}}
$$

where $\delta_{n 1}=T / E_{n}$ and $\delta_{t 1}=S / E_{t}$ are the single-mode yield initiation displacements and $\beta=\Delta_{t} / \Delta_{n}$ is the mixed-mode ratio. As an analog to the yield initiation, the damage initiation displacement $\delta_{m 2}$ is defined as:

$$
\delta_{m 2}=\delta_{n 2} \delta_{t 2} \sqrt{\frac{1+\beta^{2}}{\delta_{t 2}^{2}+\left(\beta \delta_{n 2}\right)^{2}}}
$$

where

$$
\begin{aligned}
\delta_{n 2} & =\delta_{n 1}+\frac{f_{G 1} G_{I C}}{T} \\
\delta_{t 2} & =\delta_{t 1}+\frac{f_{G 2} G_{I I C}}{S}
\end{aligned}
$$

As an alternative, a maximum nominal stress criterion could be used (INICRT =1) which results in the following expressions for yield and damage initiation displacements:

$$
\begin{aligned}
& \delta_{m 1}= \begin{cases}\delta_{n 1} \sqrt{1+\beta^{2}} & \text { if } \beta \leq \frac{\delta_{t 1}}{\delta_{n 1}} \\
\frac{\delta_{t 1}}{\beta} \sqrt{1+\beta^{2}} & \text { if } \beta>\frac{\delta_{t 1}}{\delta_{n 1}}\end{cases} \\
& \delta_{m 2}= \begin{cases}\delta_{n 2} \sqrt{1+\beta^{2}} & \text { if } \beta \leq \frac{\delta_{t 2}}{\delta_{n 2}} \\
\frac{\delta_{t 2}}{\beta} \sqrt{1+\beta^{2}} & \text { if } \beta>\frac{\delta_{t 2}}{\delta_{n 2}}\end{cases}
\end{aligned}
$$

A third possibility is to choose INICRT <0, which invokes a nominal stress criterion with flexible exponent:

$$
\begin{aligned}
& \delta_{m 1}=\delta_{n 1} \delta_{t 1} \sqrt{1+\beta^{2}}\left(\delta_{t 1}^{\mid \mathrm{INICRT\mid}}+\left(\beta \delta_{n 1}\right)^{|\mathrm{INICRT}|}\right)^{-1 /|\mathrm{INICRT}|} \\
& \delta_{m 2}=\delta_{n 2} \delta_{t 2} \sqrt{1+\beta^{2}}\left(\delta_{t 2}^{\mid \mathrm{INICRT\mid}}+\left(\beta \delta_{n 2}\right)^{|\mathrm{INICRT}|}\right)^{-1 /|\mathrm{INICRT}|}
\end{aligned}
$$

Obviously, the special case of INICRT $=-2$ would lead to the same result as the quadratic criterion, INICRT $=0$.

With $\gamma=\arccos \left(\frac{\left\langle u_{n}\right\rangle}{\Delta_{m}}\right)$, the ultimate (failure) displacement $\delta_{m f}$ can be written,

Figure M240-2. Trilinear mixed mode traction-separation law

$$
\delta_{m f}=\frac{\delta_{m 1}\left(\delta_{m 1}-\delta_{m 2}\right) E_{n} G_{I I C} \cos ^{2} \gamma+G_{I C}\left(2 G_{I I C}+\delta_{m 1}\left(\delta_{m 1}-\delta_{m 2}\right) E_{t} \sin ^{2} \gamma\right)}{\delta_{m 1}\left(E_{n} G_{I I C} \cos ^{2} \gamma+E_{t} G_{I C} \sin ^{2} \gamma\right)}
$$

This formulation describes a power-law damage evolution with an exponent $\eta=1.0$ (see *MAT_138). This is the case for $\mathrm{XMU}=0.0$ or 1.0.

With the definition of an arbitrary value for XMU , the failure displacement is given by

$$
\delta_{m f}=\max \left(\delta_{m 2}, \delta_{m 1}-\delta_{m 2}+\frac{2}{\delta_{m 1}}\left[\left(\frac{E_{n} \cos ^{2} \gamma}{G_{I C}}\right)^{\mathrm{XMU}}+\left(\frac{E_{t} \sin ^{2} \gamma}{G_{I I C}}\right)^{\mathrm{XMU}}\right]^{-1 / \mathrm{XMU}}\right)
$$

After the shape of the mixed-mode traction-separation law has been determined by $\delta_{m 1}$, $\delta_{m 2}$, and $\delta_{m f}$, the plastic separation in each element direction, $u_{n, P}, u_{t 1, P}$, and $u_{t 2, P}$ can be calculated. The plastic separation in peel direction is given by

$$
u_{n, P}=\max \left(u_{n, P, \Delta t-1}, u_{n}-\delta_{m 1} \cos (\gamma), 0\right)
$$

In the shear direction, a shear yield separation $\delta_{t, y}$,

$$
\delta_{t, y}=\sqrt{\left(u_{t 1}-u_{t 1, P, \Delta t-1}\right)^{2}+\left(u_{t 2}-u_{t 2, P, \Delta t-1}\right)^{2}}
$$

is defined. If $\delta_{t, y}>\delta_{m 1} \sin \gamma$, the plastic shear separations in the element coordinate system are updated,

$$
\begin{aligned}
& u_{t 1, P}=u_{t 1, P, \Delta t-1}+u_{t 1}-u_{t 1, \Delta t-1} \\
& u_{t 2, P}=u_{t 2, P, \Delta t-1}+u_{t 2}-u_{t 2, \Delta t-1}
\end{aligned}
$$

In the formulas above, $\Delta t-1$ indicates the individual value from the last time increment. In case $\Delta_{m}>\delta_{m 2}$, the damage initiation criterion is satisfied and a damage variable D increases monotonically,

$$
D=\max \left(\frac{\Delta_{m}-\delta_{m 2}}{\delta_{m f}-\delta_{m 2}}, D_{\Delta t-1}, 0\right) .
$$

When $\Delta_{m}>\delta_{m f}$, complete damage $(D=1)$ is reached and the element fails in the corresponding integration point.

Finally, the peel and the shear stresses in element directions are calculated,

$$
\begin{aligned}
& \sigma_{t 1}=E_{t}(1-D)\left(u_{t 1}-u_{t 1, P}\right) \\
& \sigma_{t 2}=E_{t}(1-D)\left(u_{t 2}-u_{t 2 P}\right)
\end{aligned}
$$

In the peel direction, no damage under pressure loads is considered if $u_{n}-u_{n, P}>0$

$$
\sigma_{n}=E_{n}\left(u_{n}-u_{n, P}\right)
$$

Otherwise,

$$
\sigma_{n}=E_{n}(1-D)\left(u_{n}-u_{n, P}\right) .
$$

If the FUNCTIONS keyword option is used, parameters EMOD, GMOD, G1C_0, G2C_0, T0, S0, FG1, and FG2 (as well as GMOD3, G3C_0, R0, and FG3 if combined with 3MODES) should refer to *DEFINE_FUNCTION IDs. The arguments of those functions include several properties of both connection partners if corresponding solid elements are in a tied contact with shell elements.

These functions depend on:
$(\mathrm{t} 1, \mathrm{t} 2)=$ thicknesses of both bond partners
(sy1, sy2) $=$ initial yield stresses at plastic strain of 0.002
(sm1, sm2) $=$ maximum engineering yield stresses (necking points)
$\mathrm{r}=$ strain rate
$\mathrm{a}=$ element area
(e1, e2) = Young's moduli
For $\mathrm{T} 0=-100$ such a function could look like:

```
*DEFINE_FUNCTION
            100
    func(t1,t2, sy1, sy2,sm1,sm2,r,a,e1, e2) =0.5* (sy1+sy2)
```

Since material parameters must be identified from both bond partners during initialization, this feature is only available for a subset of material models at the moment, namely material models $24,36,120,123,124,251$, and 258.

Reference:

S. Marzi, O. Hesebeck, M. Brede and F. Kleiner (2009), A Rate-Dependent, Elasto-Plastic Cohesive Zone Mixed-Mode Model for Crash Analysis of Adhesively Bonded Joints, In Proceeding: $7^{\text {th }}$ European LS-DYNA Conference, Salzburg

*MAT_JOHNSON_HOLMQUIST_JH1

This is Material Type 241. This Johnson-Holmquist Plasticity Damage Model is useful for modeling ceramics, glass and other brittle materials. This version corresponds to the original version of the model, JH1, and Material Type 110 corresponds to JH2, the updated model.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	G	P1	S1	P2	S2	C
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	EPS0	T		ALPHA	SFMAX	BETA	DP1	
Type	F	F		F	F	F	F	

Card 3	1	2	3	4	5	6	7	8
Variable	EPFMIN	EPFMAX	K1	K2	K3	FS	FDAM	
Type	F	F	F	F	F	F	F	

VARIABLE

MID

RO
G
P1

S1

P2
S2

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Density
Shear modulus

Pressure point 1 for intact material
Effective stress at P1

Pressure point 2 for intact material
Effective stress at P2

VARIABLE

C
EPS0
T

ALPHA Initial slope of the fractured material strength curve. See Figure M241-1.

SFMAX Maximum strength of the fractured material
BETA

DP1

EPFMIN
EPFMAX Plastic strain for fracture at compressive pressure DP1. See Figure M241-1.

K1
K2
K3
FS

FDAM Failure damage value. If this damage value is reached, the element is deleted. A meaningful value would be FDAM = 1.0, for instance.

EQ.0.0: No element deletion due to damage (default)

Remarks:

The equivalent stress for both intact and fractured ceramic-type materials is given by:

Figure M241-1. Strength: equivalent stress versus pressure.

Figure M241-2. Fracture strain versus pressure.

$$
\sigma_{y}=\left(1+c \ln \dot{\varepsilon}^{*}\right) \sigma(P)
$$

where $\sigma(P)$ is evaluated according to Figure M241-1.

$$
D=\sum \Delta \varepsilon^{p} / \varepsilon_{f}^{p}(P)
$$

represents the accumulated damage (history variable 2) based upon the increase in plastic strain per computational cycle and the plastic strain to fracture is evaluated according to Figure M241-2.

In undamaged material, the hydrostatic pressure is given by

$$
P=k_{1} \mu+k_{2} \mu^{2}+k_{3} \mu^{3}+\Delta P
$$

in compression and by

$$
P=k_{1} \mu+\Delta P
$$

in tension, where $\mu=\rho / \rho_{0}-1$. A fraction, between 0 and 1 , of the elastic energy loss, β, is converted into hydrostatic potential energy (pressure). The pressure increment, ΔP, associated with the increment in the hydrostatic potential energy is calculated at fracture, where σ_{y} and σ_{y}^{f} are the intact and failed yield stresses, respectively. This pressure increment is applied in both compression and tension, which is not true for JH2 where the increment is added only in compression.

$$
\begin{aligned}
& \Delta P=-k_{1} \mu_{f}+\sqrt{\left(k_{1} \mu_{f}\right)^{2}+2 \beta k_{1} \Delta U} \\
& \Delta U=\frac{\sigma_{y}-\sigma_{y}^{f}}{6 G}
\end{aligned}
$$

*MAT_KINEMATIC_HARDENING_BARLAT2000

This is Material Type 242. This model combines the Yoshida non-linear kinematic hardening rule (${ }^{*} \mathrm{MAT}_{2} 125$) with the 8-parameter material model (${ }^{*} \mathrm{MAT}_{-} 133$) of Barlat et al. (2003) to model metal sheets under cyclic plasticity loading with anisotropy in plane stress conditions (see also *MAT_226). This material is available only for shell elements.

Card Summary:

Card 1. This card is required.

MID	RO	E	PR	EA	COE	M	

Card 2. This card is required.

ALPHA1	ALPHA2	ALPHA3	ALPHA4	ALPHA5	ALPHA6	ALPHA7	ALPHA8

Card 3. This card must be included as a blank card.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Card 4. This card must be included as a blank card.

Card 5. This card is required.

CB	Y	SC1	K	RSAT	SB	H	SC2

Card 6. This card is required.

AOPT		IOPT	C1	C2			

Card 7. This card is required.

			A1	A2	A3		

Card 8. This card is required.

V1	V2	V3	D1	D2	D3		

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	E	PR	EA	COE	M	
Type	A	F	F	F	F	F	F	
Default	none	0.0	0.0	0.0	0.0	0.0	none	

VARIABLE

RO Mass density
E Young's modulus, E
PR Poisson's ratio, v
EA $\quad E^{A}$, parameter controlling the change of Young's modulus; see the remarks of *MAT_125.

LT.O.O: |EA| is a curve ID giving the change of Young's modulus as a function of effective plastic strain.

COE $\quad \zeta$, parameter controlling the change of Young's modulus; see the remarks of *MAT_125.

M Flow potential exponent. For face centered cubic (FCC) materials $m=8$ is recommended and for body centered cubic (BCC) materials $m=6$ may be used.
LT.O.O: $|\mathrm{M}|$ is a load curve ID specifying the flow potential exponent as a function of effective plastic strain.

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA1	ALPHA2	ALPHA3	ALPHA4	ALPHA5	ALPHA6	ALPHA7	ALPHA8
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE

DESCRIPTION

ALPHA i
α_{i}, material constants in Barlat's yield equation
LT.O.O: |ALPHA $i \mid$ is a load curve ID specifying α_{i} as a function of effective plastic strain.

Card 3	1	2	3	4	5	6	7	8
Variable								
Type								
Default								

Card 4	1	2	3	4	5	6	7	8
Variable								
Type								
Default								

Card 5	1	2	3	4	5	6	7	8
Variable	CB	Y	$\mathrm{SC1}$	K	RSAT	SB	H	$\mathrm{SC2}$
Type	F	F	F	F	F	F	F	F
Default	none	0.0						

RSAT Hardening parameter as defined in Yoshida's equations
SB The lowercase b as defined in Yoshida's equations
H Anisotropic parameter associated with work-hardening stagna-

VARIABLE

CB

Y

SC1

K

SC2

DESCRIPTION

The uppercase B defined in Yoshida's equations.
Anisotropic parameter associated with work-hardening stagnation, defined in Yoshida's equations

The lowercase c_{2} defined in Yoshida \& Uemori's equations. Note the equation below from the paper:

$$
c= \begin{cases}c_{1} & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ c_{2} & \text { otherwise }\end{cases}
$$

See more details in About SC1 and SC2 in the remarks section of *MAT_125.

Hardening parameter as defined in Yoshida's equations tion, defined in Yoshida's equations

The lowercase c_{1} defined in the Yoshida and Uemori's equations. Note the equation below from the paper:

$$
c= \begin{cases}c_{1} & \max \left(\bar{\alpha}_{*}\right)<B-Y \\ c_{2} & \text { otherwise }\end{cases}
$$

See more details in About SC1 and SC2 in the remarks section of *MAT_125. If SC2 equals 0.0, is left blank, or equals SC1, then it turns into the basic model (the one c model).

Card 6	1	2	3	4	5	6	7	8
Variable	AOPT		IOPT	C1	C2			
Type	1		1	F	F			
Default	none		none	0.0	0.0			

IOPT Kinematic hardening rule flag:

VARIABLE

AOPT

C1, C2

IOPT Kinematic hardening rule flag:
EQ.O: Original Yoshida formulation
EQ.1: Modified formulation. Define C1, C2 below.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

C1, C2 Constants used to modify R :

$$
R=\operatorname{RSAT} \times\left[\left(C_{1}+\bar{\varepsilon}^{p}\right)^{c_{2}}-C_{1}^{c_{2}}\right]
$$

Card 7	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		
Default				none	none	none		

VARIABLE

DESCRIPTION

$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for AOPT $=2$

Card 8	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	none		

VARIABLE
V1, V2, V3
D1, D2, D3

DESCRIPTION

Components of vector \mathbf{v} for AOPT $=3$
Components of vector \mathbf{d} for AOPT $=2$

Remarks:

1. Yield Surface. A total of eight parameters (α_{1} to α_{8}) are needed to describe the yield surface. The parameters can be determined with tensile tests in three directions and one equal biaxial tension test. For detailed theoretical background and material parameters of some typical FCC materials, see Remarks in *MAT_133 and Barlat et al. (2003) paper.
2. Yoshida Model. For a more detailed description on the Yoshida model and parameters, see Remarks in *MAT_226 and *MAT_125.
3. AOPT. For information on the variable AOPT, see Remarks in *MAT_226.
4. Convergence and Springback. To improve convergence, it is recommended that *CONTROL_IMPLICIT_FORMING type ' 1 ' be used when conducting a springback simulation.

Revisions:

1. This material model is available starting in LS-DYNA R5 Revision 58432.
2. The variables EA, COE, SC1, and SC2 are available starting in Revision 133318.

*MAT_HILL_90

This is Material Type 243. This model was developed by Hill [1990] for modeling sheets with anisotropic materials under plane stress conditions. This material allows the use of the Lankford parameters for the definition of the anisotropy. All features of this model are the same as in *MAT_036, only the yield condition and associated flow rules are replaced by the Hill90 equations.

Card Summary:

Card 1. This card is required.

MID	R0	E	PR	HR	P1	P2	ITER

Card 2a. This card is included if FLAG $=0$ (see Card 4).

M	R00	R45	R90	LCID	E0	SPI	P3

Card 2b. This card is included if FLAG = 1 (see Card 4).

M	AH	BH	CH	LCID	E0	SPI	P3

Card 3. This card is included if $\mathrm{M}<0$ on Card $2 \mathrm{a} / 2 \mathrm{~b}$.

CRC1	CRA1	CRC2	CRA2	CRC3	CRA3	CRC4	CRA4

Card 4. This card is required.

AOPT	C	P	VLCID		FLAG	

Card 5. This card is required.

			A1	A2	A3		

Card 6. This card is required.

V1	V2	V3	D1	D2	D3	BETA	

Card 7. This card is optional.

USRFAIL							

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	HR	P1	P2	ITER
Type	A	F	F	F	F	F	F	F

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be specified (see *PART).
RO	Mass density
E	Young's modulus, E
	GT.0.0: Constant value
	LT.0.0: Load curve ID $=(-E)$ which defines Young's modulus as a function of plastic strain. See Remark 1.
PR	Poisson's ratio, v
HR	Hardening rule:
	EQ.1.0: Linear (default)
	EQ.2.0: Exponential (Swift; see Remark 3)
	EQ.3.0: Load curve or table with strain rate effects (see Remark 1)
	EQ.4.0: Exponential (Voce; see Remark 3)
	EQ.5.0: Exponential (Gosh; see Remark 3)
	EQ.6.0: Exponential (Hocket-Sherby; see Remark 3)
	EQ.7.0: Load curves in three directions (see Remark 1)
	EQ.8.0: Table with temperature dependence (see Remark 1)
	EQ.9.0: 3D table with temperature and strain rate dependence (see Remark 1)
P1	Material parameter:
	HR.EQ.1.0: Tangent modulus,

VARIABLE

P2

ITER

DESCRIPTION

HR.EQ.2.0: k, strength coefficient for Swift exponential hardening
HR.EQ.4.0: a, coefficient for Voce exponential hardening
HR.EQ.5.0: k, strength coefficient for Gosh exponential hardening

HR.EQ.6.0: a, coefficient for Hocket-Sherby exponential hardening

HR.EQ.7.0: Load curve ID for hardening in 45 degree direction. See Remark 1.

Material parameter:
HR.EQ.1.0: Yield stress
HR.EQ.2.0: n, exponent for Swift exponential hardening
HR.EQ.4.0: c, coefficient for Voce exponential hardening
HR.EQ.5.0: n, exponent for Gosh exponential hardening
HR.EQ.6.0: c, coefficient for Hocket-Sherby exponential hardening

HR.EQ.7.0: Load curve ID for hardening in 90 degree direction. See Remark 1.

Iteration flag for speed:
EQ.0.0: Fully iterative
EQ.1.0: Fixed at three iterations
Generally, we recommend $\operatorname{ITER}=0.0$. However, $\operatorname{ITER}=1.0$ is somewhat faster and may give acceptable results in most problems.

Lankford Parameters Card. This card is included if FLAG $=0$ on Card 4.

Card 2a	1	2	3	4	5	6	7	8
Variable	M	R00	R45	R90	LCID	E0	SPI	P3
Type	F	F	F	F	I	F	F	F

VARIABLE

M

LCID Load curve/table ID for hardening in the 0 degree direction (applies for $\mathrm{HR}=3,7,8$, and 9). See Remark 1 .

Material parameter (see Remark 3):
HR.EQ.2.0: ε_{0} for determining initial yield stress for Swift exponential hardening (default $=0.0$)
HR.EQ.4.0: b, coefficient for Voce exponential hardening
HR.EQ.5.0: ε_{0} for determining initial yield stress for Gosh exponential hardening (default $=0.0$)
HR.EQ.6.0: b, coefficient for Hocket-Sherby exponential hardening

SPI Case I: If ε_{0} is zero above and $\mathrm{HR}=2.0$ (see Remark 3). (Default $=0.0$)

$$
\text { EQ.0.0: } \varepsilon_{0}=(E / k)^{1 /(n-1)}
$$

VARIABLE

P3

DESCRIPTION

LE.0.02: $\varepsilon_{0}=$ SPI
GT.0.02: $\varepsilon_{0}=(\mathrm{SPI} / k)^{1 / n}$
Case II: If $\mathrm{HR}=5.0$ the strain at plastic yield is determined by an iterative procedure based on the same principles as for $\mathrm{HR}=2.0$ (see Remark 3).

Material parameter (see Remark 3):
HR.EQ.5.0: p, parameter for Gosh exponential hardening
HR.EQ.6.0: n, exponent for Hocket-Sherby exponential hardening

Hill90 Parameters Card. This card is included for FLAG $=1$.

Card 2b	1	2	3	4	5	6	7	8
Variable	M	AH	BH	CH	LCID	E0	SPI	P3
Type	F	F	F	F	I	F	F	F

VARIABLE

M

AH $\quad a$, Hill90 parameter (see Remark 3)
BH b, Hill90 parameter (see Remark 3)
CH c, Hill90 parameter (see Remark 3)
LCID Load curve/table ID for hardening in the 0 degree direction (applies for $\mathrm{HR}=3,7,8$, and 9). See Remark 1 .

E0 Material parameter (see Remark 3):
HR.EQ.2.0: ε_{0} for determining initial yield stress for Swift exponential hardening $($ default $=0.0)$

HR.EQ.4.0: b, coefficient for Voce exponential hardening

HR.EQ.5.0: ε_{0} for determining initial yield stress for Gosh exponential hardening $($ default $=0.0)$

HR.EQ.6.0: b, coefficient for Hocket-Sherby exponential hardening

SPI

P3 Material parameter (see Remark 3):
HR.EQ.5.0: p, parameter for Gosh exponential hardening
HR.EQ.6.0: n, exponent for Hocket-Sherby exponential hardening

Hardening Card. Additional Card for $\mathrm{M}<0$.

Card 3	1	2	3	4	5	6	7	8
Variable	CRC1	CRA1	CRC2	CRA2	CRC3	CRA3	CRC4	CRA4
Type	F	F	F	F	F	F	F	F

VARIABLE
CRCn
CRAn Chaboche-Rousselier hardening parameters. See Remark 4.

Card 4	1	2	3	4	5	6	7	8
Variable	AOPT	C	P	VLCID		FLAG		
Type	F	F	F	I		F		

VARIABLE
AOPT

DESCRIPTION

Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES. The material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.
EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

C \quad C in Cowper-Symonds strain rate model (see Remark 3)
P $\quad p$ in Cowper-Symonds strain rate model (see Remark 3). $p=0.0$ for no strain rate effects.

VLCID Volume correction curve ID defining the relative volume change (change in volume relative to the initial volume) as a function of the effective plastic strain. This is only used when nonzero. See Remark 1.

VARIABLE

FLAG

DESCRIPTION

Flag for interpretation of parameters. If FLAG $=1$, parameters AH, BH, and CH are read instead of R00, R45, and R90. See Remark 3.

Card 5	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		

VARIABLE

DESCRIPTION

A1, A2, A3 Components of vector a for $\mathrm{AOPT}=2$

Card 6	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	
Type	F	F	F	F	F	F	F	

VARIABLE
V1, V2, V3
D1, D2, D3
BETA

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3$
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for $\mathrm{AOPT}=0$ and 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA.

This card is optional.

Card 7	1	2	3	4	5	6	7	8
Variable	USRFAlL							
Type	F							

VARIABLE

VARIABLE

DESCRIPTION

EQ.O: No user subroutine is called
EQ.1: User subroutine matusr_24 in dyn21.f is called.

Remarks:

1. Plastic Strain in Curve Definitions. The effective plastic strain used in this model is defined to be plastic work equivalent. A consequence of this is that for parameters defined as functions of effective plastic strain, the rolling (00) direction should be used as reference direction. For instance, the hardening curve for $\mathrm{HR}=3$ is the stress as function of strain for uniaxial tension in the rolling direction, the curve VLCID should give the relative volume change as function of strain for uniaxial tension in the rolling direction, and the load curve with ID -E should give the Young's modulus as function of strain for uniaxial tension in the rolling direction. Optionally the curve can be substituted for a table defining hardening as function of plastic strain rate $(\mathrm{HR}=3)$, temperature $(\mathrm{HR}=8)$, or both ($\mathrm{HR}=9$).

Exceptions from this rule are curves defined as functions of plastic strain in the 45 and 90 directions, such as P1 and P2 for HR $=7$ and negative R45 or R90. The hardening curves are here defined as measured stress as function of measured plastic strain for uniaxial tension in the direction of interest, meaning as determined from experimental testing using a standard procedure. Moreover, the curves defining the R-values are functions of the measured plastic strain for uniaxial tension in the direction of interest. These curves are transformed internally to be used with the effective stress and strain properties in the actual model. The effective plastic strain does not coincide with the plastic strain components in directions other than the rolling direction and may be somewhat confusing. Therefore, the von Mises work equivalent plastic strain is output as history variable \#2 if $H R=7$ or if any R-value is defined as function of the plastic strain.
2. Determining R-Values from Curves. The R-values in curves are defined as the ratio of instantaneous width change to instantaneous thickness change. That is, assume that the width W and thickness T are measured as a function of strain. Then the corresponding R-value is given by:

$$
R=\frac{\frac{d W}{d \varepsilon} / W}{\frac{d T}{d \varepsilon} / T}
$$

3. Yield Criterion, Hill90 Parameters, and Hardening Models. The anisotropic yield criterion Φ for plane stress is defined as:

$$
\Phi=K_{1}^{m}+K_{3} K_{2}^{(m / 2)-1}+c^{m} K_{4}^{m / 2}=\left(1+c^{m}-2 a+b\right) \sigma_{Y}^{m}
$$

where σ_{Y} is the yield stress. $K_{i}, i=1, \ldots, 4$ are given by:

$$
\begin{aligned}
& K_{1}=\left|\sigma_{x}+\sigma_{y}\right| \\
& K_{2}=\left|\sigma_{x}^{2}+\sigma_{y}^{2}+2 \sigma_{x y}^{2}\right| \\
& K_{3}=-2 a\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)+b\left(\sigma_{x}-\sigma_{y}\right)^{2} \\
& K_{4}=\left|\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \sigma_{x y}^{2}\right|
\end{aligned}
$$

If FLAG $=0$, the anisotropic material constants a, b, and c are obtained through R_{00}, R_{45}, and R_{90} using these 3 equations:

$$
\begin{aligned}
& 1+2 R_{00}=\frac{c^{m}-a+\{(m+2) / 2 m\} b}{1-a+\{(m-2) / 2 m\} b} \\
& 1+2 R_{45}=c^{m} \\
& 1+2 R_{90}=\frac{c^{m}+a+\{(m+2) / 2 m\} b}{1+a+\{(m-2) / 2 m\} b}
\end{aligned}
$$

If FLAG $=1$, material parameters $a(\mathrm{AH}), b(\mathrm{BH})$, and $c(\mathrm{CH})$ are used directly.
For material parameters a, b, c, and m, the following condition must be fulfilled, otherwise an error termination occurs:

$$
1+c^{m}-2 a+b>0
$$

Two even more strict conditions should be satisfied to ensure convexity of the yield surface according to Hill (1990). A warning message will be output if at least one of them is violated:

$$
\begin{aligned}
& b>-2^{\left(\frac{m}{2}\right)-1} c^{m} \\
& b>a^{2}-c^{m}
\end{aligned}
$$

For the Swift hardening law $(\mathrm{HR}=2)$, the yield strength of the material can be expressed in terms of k and n :

$$
\sigma_{Y}=k \varepsilon^{n}=k\left(\varepsilon_{0}+\bar{\varepsilon}^{p}\right)^{n}
$$

where ε_{0} is the elastic strain to yield and $\bar{\varepsilon}^{p}$ is the effective plastic strain (logarithmic). ε_{0} can be given in the input with E0 or determined using SPI. If E0 and SPI are both set to zero, the strain to yield is found by solving for the intersection of the linearly elastic loading equation with the strain hardening equation:

$$
\begin{aligned}
& \sigma=E \varepsilon \\
& \sigma=k \varepsilon^{n}
\end{aligned}
$$

which gives the elastic strain at yield as:

$$
\varepsilon_{0}=\left(\frac{E}{k}\right)^{\left[\frac{1}{n-1}\right]}
$$

If EO is zero and SPI is nonzero and greater than 0.02 then:

$$
\varepsilon_{0}=\left(\frac{\sigma_{Y}}{k}\right)^{\left[\frac{1}{n}\right]}
$$

The other available hardening models include the Voce equation $(\mathrm{HR}=4)$ given by

$$
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=a-b e^{-c \varepsilon_{p}}
$$

the Gosh equation $(\mathrm{HR}=5)$ given by

$$
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}-p,
$$

and finally, the Hocket-Sherby equation $(\mathrm{HR}=6)$ given by

$$
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}\right)=a-b e^{-c \varepsilon_{p}^{n}}
$$

For the Gosh hardening law, the interpretation of the variable SPI is the same as for the Swift hardening law, meaning if set to zero (along with E0), the strain at yield is determined implicitly from the intersection of the strain hardening equation with the linear elastic equation.

To include strain rate effects in the model, we multiply the yield stress by a factor depending on the effective plastic strain rate. We use the Cowper-Symonds model, hence the yield stress can be written

$$
\sigma_{\mathrm{Y}}\left(\varepsilon_{p}, \dot{\varepsilon}_{p}\right)=\sigma_{\mathrm{Y}}^{S}\left(\varepsilon_{p}\right)\left[1+\left(\frac{\dot{\varepsilon}_{p}}{C}\right)^{1 / p}\right]
$$

Here σ_{Y}^{s} denotes the static yield stress, C and p are material parameters, and $\dot{\varepsilon}_{p}$ is the effective plastic strain rate.
4. Kinematic Hardening Model. A kinematic hardening model is implemented following the works of Chaboche and Roussilier. A back stress α is introduced such that the effective stress is computed as

$$
\sigma_{\mathrm{eff}}=\sigma_{\mathrm{eff}}\left(\sigma_{11}-2 \alpha_{11}-\alpha_{22}, \sigma_{22}-2 \alpha_{22}-\alpha_{11}, \sigma_{12}-\alpha_{12}\right)
$$

The back stress is the sum of up to four terms according to

$$
\alpha_{i j}=\sum_{k=1}^{4} \alpha_{i j}^{k}
$$

and the evolution of each back stress component is as follows

$$
\delta \alpha_{i j}^{k}=C_{k}\left(a_{k} \frac{s_{i j}-\alpha_{i j}}{\sigma_{\mathrm{eff}}}-\alpha_{i j}^{k}\right) \delta \varepsilon_{p}
$$

where C_{k} and a_{k} are material parameters, $s_{i j}$ is the deviatoric stress tensor, $\sigma_{\text {eff }}$ is the effective stress, and ε_{p} is the effective plastic strain.

*MAT_UHS_STEEL

This is Material Type 244. This material model is developed for both shell and solid models. It is mainly suited for hot stamping processes where phase transformations are crucial. It has five phases, and it is assumed that the blank is fully austenitized before cooling. The model also includes optional algorithms for switching between heating and cooling. The basic constitutive model is based on the work done by P. Akerstrom [2, 7].

NOTE 1: For this material "weight\%" means "ppm $\times 10^{-4}$ ".

NOTE 2: We include baseline values in the variable tables as possible starting values that lead to reasonable results for an alloy called 22 MnB 5 . The values are taken from the literature.

Card Summary:

Card 1. This card is required.

MID	RO	E	PR	TUNIT	CRSH	PHASE	HEAT

Card 2. This card is required.

LCY1	LCY2	LCY3	LCY4	LCY5	KFER	KPER	B

Card 3. This card is required.

C	Co	Mo	Cr	Ni	Mn	Si	V

Card 4. This card is required.

W	Cu	P	Al	As	Ti	CWM	LCTRE

Card 5. This card is required.

THEXP1	THEXP5	LCTH1	LCTH5	TREF	LAT1	LAT5	TABTH

Card 6. This card is required.

QR2	QR3	QR4	ALPHA	GRAIN	TOFFE	TOFPE	TOFBA

Card 7. This card is required.

PLMEM2	PLMEM3	PLMEM4	PLMEM5	STRC	STRP	REACT	TEMPER

Card 8. This card is included if HEAT $=1$.

AUST	FERR	PEAR	BAIN	MART	GRK	GRQR	TAU1

Card 9. This card is included if HEAT $=1$.

GRA	GRB	EXPA	EXPB	GRCC	GRCM	HEATN	TAU2

Card 10. This card is included if REACT $=1$.

FS	PS	BS	MS	MSIG	LCEPS23	LCEPS4	LCEPS5

Card 11. This card is included if TEMPER $=1$.

LCH4	LCH5	DTCRIT	TSAMP				

Card 12. This card is included if $\mathrm{CWM}=1$.

TASTART	TAEND	TLSTART	TLEND	EGHOST	PGHOST	AGHOST	

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	TUNIT	CRSH	PHASE	HEAT
Type	A	F	F	F	F	1	1	1
Defaults	none	none	none	none	3600	0	0	0

VARIABLE

MID Material identification. A unique number or label must be specified (see *PART).

Material density
Young's modulus:
GT.0.0: Constant value
LT.O.O: Temperature dependent Young's modulus given by

BASELINE VALUE

$$
7830 \mathrm{Kg} / \mathrm{m}^{3}
$$

$$
100 \mathrm{GPa} \text { [1] }
$$

VARIABLE	DESCRIPTION	BASELINE VALUE
	load curve or table ID = -E. See Remark 9 for more information about using a table to specify the Young's modulus.	
PR	Poisson's ratio: GT.0.0: Constant value LT.0.0: Temperature dependent Poisson ratio given by load curve or table ID = -PR. The table input is described in Remark 9.	0.30 [1]
TUNIT	Number of time units per hour. Default is seconds, that is, 3600 time units per hour. TUNIT is used only for hardness calculations.	3600.
CRSH	Switch to use a simple and fast material model but with the actual phases active. EQ.0: The original model where phase transitions are active and trip is used. EQ.1: A simpler and faster version. This option is mainly used when transferring the quenched blank into a crash analysis where all properties from the cooling are maintained. This option must be used with a *INTERFACE_SPRINGBACK keyword and should be used after a quenching analysis. EQ.2: Same as 0 but trip effect is not used.	0
PHASE	Switch to include or exclude middle phases from the simulation. EQ.0: All phases active (default) EQ.1: Pearlite and bainite excluded	0

VARIABLE

DESCRIPTION

EQ.2: Bainite excluded
EQ.3: Ferrite and pearlite excluded
EQ.4: Ferrite and bainite excluded
EQ.5: Exclude middle phases (only austenite \rightarrow martensite)

HEAT Switch to activate the heating algorithms (see Remarks 7 and 8):

EQ.O: Heating is not activated which means that no transformation to austenite is possible.

EQ.1: Heating is activated which means that only transformation to austenite is possible.

EQ.2: Automatic switching between cooling and heating. LS-DYNA checks the temperature gradient and calls the appropriate algorithms. For example, this can be used to simulate the heat affected zone during welding.

LT.O: The switch between cooling and heating is defined by a time dependent load curve with ID $=\mid$ HEAT \mid. The ordinate should be 1.0 when heating is applied and 0.0 if cooling is preferable.

Card 2	1	2	3	4	5	6	7	8
Variable	LCY1	LCY2	LCY3	LCY4	LCY5	KFER	KPER	B
Type	I	I	I	I	I	F	F	F
Defaults	none	none	none	none	none	0.0	0.0	0.0

VARIABLE	DESCRIPTION
LCY1	Load curve or table ID for austenite hardening.
	Load Curve. When LCY1 is a load curve ID, it defines input yield stress as a function of effective plastic strain.
	Tabular Data (LCY1 > 0). When LCY1 is greater than 0 and references a table ID, a 2D table references for each temperature value a hardening curve.
	Tabular Data (LCY1 < 0). When LCY1 is less than $0,\|\mathrm{LCY} 1\|$ is a 3D table ID. Each input temperature value gives a table ID which defines for each a strain rate a hardening curve.
LCY2	Load curve ID for ferrite hardening (stress as a function of effective plastic strain)
LCY3	Load curve or table ID for pearlite. See LCY1 for description.
LCY4	Load curve or table ID for bainite. See LCY1 for description.
LCY5	Load curve or table ID for martensite. See LCY1 for description.
KFERR	Correction factor for boron in the ferrite reaction.
KPEAR	Correction factor for boron in the pearlite reaction.
B	Boron [weight \%]

Load curve or table ID for austenite hardening.

Load Curve. When LCY1 is a load curve ID, it defines input yield stress as a function of effective plastic strain.

Tabular Data (LCY1 > 0). When LCY1 is greater than 0 and references a table ID, a 2D table references for each temperature value a hardening curve.

Tabular Data (LCY1 < 0). When LCY1 is less than $0,|L C Y 1|$ is a 3D table ID. Each input temperature value gives a table ID which defines for each a strain rate a hardening curve.

LCY2 Load curve ID for ferrite hardening (stress as a function of effective plastic strain)

LCY3 Load curve or table ID for pearlite. See LCY1 for description.

Load curve or table ID for bainite. See LCY1 for description.

Load curve or table ID for martensite. See LCY1 for description.

Correction factor for boron in the ferrite 1.9×10^{5} [2] $3.1 \times 10^{3}[2]$
0.003 [2]

Card 3	1	2	3	4	5	6	7	8
Variable	C	Co	Mo	Cr	Ni	Mn	Si	V
Type	F	F	F	F	F	F	F	F
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE	DESCRIPTION		BASELINE VALUE
C	Carbon [weight \%]	0.23 [2]	
Co	Cobolt [weight \%]	0.0 [2]	
Mo	Molybdenum [weight \%]	0.0 [2]	
Cr	Chromium [weight \%]	$0.21[2]$	
Ni	Nickel [weight \%]	0.0 [2]	
Mn	Manganese [weight \%]	1.25 [2]	
Si	Silicon [weight \%]	$0.29[2]$	
V	Vanadium [weight \%]	$0.0[2]$	

Card 4	1	2	3	4	5	6	7	8
Variable	W	Cu	P	Al	As	Ti	CWM	LCTRE
Type	F	F	F	F	F	F	I	I
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0	none

VARIABLE
W
Cu

P

DESCRIPTION

Tungsten [weight \%]
Copper [weight \%]
Phosphorous [weight \%]

BASELINE VALUE
0.0 [2]
0.0 [2]
0.013 [2]

VARIABLE	DESCRIPTION	BASELINE VALUE
Al	Aluminum [weight \%]	0.0 [2]
As	Arsenic [weight \%]	0.0 [2]
Ti	Titanium [weight \%]	0.0 [2]
CWM	Flag for computational welding mechanics input. One additional input card is read. EQ.1.0: Active EQ.0.0: Inactive	
LCTRE	Load curve for transformation induced strains. See Remark 14.	

Card 5	1	2	3	4	5	6	7	8
Variable	THEXP1	THEXP5	LCTH1	LCTH5	TREF	LAT1	LAT5	TABTH
Type	F	F	I	I	F	F	F	I
Defaults	0.0	0.0	none	none	273.15	0.0	0.0	none

VARIABLE
 THEXP1

THEXP5

LCTH1 Load curve for the thermal expansion coefficient for austenite:

LT.0: Curve ID = -LCTH1 and TREF is used as reference temperature

GT.0: Curve ID = LCTH1

LCTH5
DESCRIPTION
Coefficient of thermal expansion in austenite

Coefficient of thermal expansion in martensite

Load curve for the thermal expansion co-

BASELINE VALUE efficient for martensite:

0

DESCRIPTION

baseline value

LT.0: Curve ID = -LCTH5 and TREF is used as reference temperature

GT.0: Curve ID = LCTH5

TREF

LAT1

LAT5

TABTH
Reference temperature for thermal expansion. Used if LCTH1 < 0.0, LCTH5 < 0.0, or TABTH <0.

Latent heat for the decomposition of austenite into ferrite, pearlite and bainite.

GT.0.0: Constant value
LT.0.0: Load curve ID or table ID. See Remark 10 for more information.

Latent heat for the decomposition of austenite into martensite.

GT.0.0: Constant value
LT.O.O: Load curve ID giving latent heat as a function of temperature
Note that LAT5 is ignored if a table ID is used in LAT1.

Table ID for thermal expansion coeffi- cient. With this option active THEXP1, THEXP2, LCTH1 and LCTH5 are ignored. See Remark 11.

GT.0: A table for instantaneous thermal expansion (TREF is ignored).

LT.O: A table with thermal expansion with reference to TREF.

Card 6	1	2	3	4	5	6	7	8
Variable	QR2	QR3	QR4	ALPHA	GRAIN	TOFFE	TOFPE	TOFBA
Type	F	F	F	F	F	F	F	F
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE
 QR2
 QR3

QR4

ALPHA

TOFBA

GRAIN ASTM grain size number for austenite, usually a number between 7 and 11 .

TOFFE Number of degrees that the ferrite is bleeding over into the pearlite reaction

TOFPE Number of degrees that the pearlite is bleeding over into the bainite reaction

DESCRIPTION

Activation energy divided by the universal gas constant for the diffusion reaction of the austenite-ferrite reaction: Q2/R. $R=8.314472[\mathrm{~J} / \mathrm{mol} \mathrm{K}]$.

Activation energy divided by the universal gas constant for the diffusion reaction for the austenite-pearlite reaction: Q3/R. $R=8.314472[\mathrm{~J} / \mathrm{mol} \mathrm{K}]$.

Activation energy divided by the universal gas constant for the diffusion reaction for the austenite-bainite reaction: $\mathrm{Q} 4 / R$. $\mathrm{R}=8.314472[\mathrm{~J} / \mathrm{mol} \mathrm{K}]$.

Material constant for the martensite phase. A value of 0.011 means that 90% of the available austenite is transformed into martensite at 210 degrees below the martensite start temperature (see messag file for information), whereas a value of 0.033 means a 99.9% transformation.

Number of degrees that the bainite is

BASELINE VALUE

[^1]13432. K [3]
15068. K [3]

VARIABLE

DESCRIPTION

bASELINE VALUE
bleeding over into the martensite reaction

Card 7	1	2	3	4	5	6	7	8
Variable	PLMEM2	PLMEM3	PLMEM4	PLMEM5	STRC	STRP	REACT	TEMPER
Type	I	F	F	F	F	F	1	1
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0	0

VARIABLE
PLMEM2

DESCRIPTION

Memory coefficient for the plastic strain that is carried over from the austenite. A value of 1 means that all plastic strains from austenite is transferred to the ferrite phase and a value of 0 means that nothing is transferred.

PLMEM3	Same as PLMEM2 but between austenite and pearlite	0.0
PLMEM4	Same as PLMEM2 but between austenite and bainite	0.0
PLMEM5	Same as PLMEM3 but between austenite and martensite	0.0
STRC	Effective strain rate parameter C. LT.0.0: load curve ID $=-$ STRC	0.0
	GT.0.0: constant value EQ.0.0: strain rate NOT active	0.0
	Effective strain rate parameter P.	
	LT.0.0: load curve ID $=-$ STRP	
	GT.0.0: constant value EQ.O.0: strain rate NOT active	

VARIABLE
REACT

DESCRIPTION
BASELINE VALUE
Flag for advanced reaction kinetics input.
One additional input card is read.
EQ.1.0: active
EQ.0.0: inactive

Flag for tempering input. One additional input card is read.

EQ.1.0: active
EQ.0.0: inactive

Heat Card 1. Additional Card for HEAT = 1.

Card 8	1	2	3	4	5	6	7	8
Variable	AUST	FERR	PEAR	BAIN	MART	GRK	GRQR	TAU1
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$2.08 E 8$

VARIABLE
AUST

DESCRIPTION
BASELINE VALUE

If a heating process is initiated at $t=0$, this field sets the initial amount of austenite in the blank. If heating is activated at $\mathrm{t}>0$ during a simulation, this value is ignored. Note that,

$$
\begin{aligned}
& \text { AUST + FERR + PEAR + BAIN } \\
& \text { + MART } \\
& =1.0
\end{aligned}
$$

FERR See AUST for description 0.0
PEAR See AUST for description 0.0
BAIN See AUST for description 0.0
$\begin{array}{lll}\text { MART } & \text { See AUST for description } & 0.0\end{array}$

VARIABLE	DESCRIPTION		BASELINE VALUE
GRK		$10^{11}[9]$	
GRQR		Grain growth parameter $k\left(\mu \mathrm{~m}^{2} / \mathrm{sec}\right)$ divided by the universal gas constant: TAU1	Empirical grain growth parameter c_{1} de-
	Emere $R=8.314472(\mathrm{~J} / \mathrm{mol} \mathrm{K})$ scribing the function $\tau(T)$	$2.08 \times 10^{8}[9]$	

Heat Card 2. Additional Card for HEAT =1.

Card 9	1	2	3	4	5	6	7	8
Variable	GRA	GRB	EXPA	EXPB	GRCC	GRCM	HEATN	TAU2
Type	F	F	F	F	F	F	F	F
Default	3.11	7520.	1.0	1.0	none	none	1.0	4.806

VARIABLE

GRA
GRB

EXPA
EXPB
GRCC

GRCM

HEATN

DESCRIPTION

Grain growth parameter A
Grain growth parameter B. A table of recommended values of GRA and GRB is included in Remark 8.

BASELINE VALUE

VARIABLE
TAU2

DESCRIPTION
BASELINE VALUE
4.806 [9]

Reaction Card. Addition card for REACT $=1$.

Card 10	1	2	3	4	5	6	7	8
Variable	FS	PS	BS	MS	MSIG	LCEPS23	LCEPS4	LCEPS5
Type	F	F	F	F	F	1	1	1
Default	0.0	0.0	0.0	0.0	none	none	none	none

VARIABLE
FS Manual start temperature Ferrite
GT.0.0: Same temperature is used for heating and cooling.
LT.O.0: Different start temperatures for cooling and heating given by load curve ID = -FS. First ordinate value is used for cooling, last ordinate value for heating.

PS Manual start temperature Pearlite. See FS for description.

BS Manual start temperature Bainite. See FS for description.

MS Manual start temperature Martensite. See FS for description.

MSIG Describes the increase of martensite start temperature for cooling due to applied stress.

LT.0: Load curve ID describes MSIG as a function of triaxiality (pressure

VARIABLE

LCEPS23

LCEPS4

LCEPS5

DESCRIPTION

BASELINE VALUE
/ effective stress).

$$
\mathrm{MS}^{*}=\mathrm{MS}+\mathrm{MSIG} \times \sigma_{\mathrm{eff}}
$$

Load curve ID dependent on plastic strain that scales the activation energy QR2 and QR3.

$$
\mathrm{QR} x=Q x \times \operatorname{LCEPS} 23\left(\varepsilon_{\mathrm{pl}}\right) / R
$$

Load Curve ID dependent on plastic strain that scales the activation energy QR4.

$$
\mathrm{QR} 4=\mathrm{Q} 4 \times \operatorname{LCEPS} 4\left(\varepsilon_{\mathrm{pl}}\right) / R
$$

Load curve ID which describe the increase of the martensite start temperature for cooling as a function of plastic strain.

$$
\begin{aligned}
\text { MS }^{*}=\operatorname{MS}+ & \operatorname{MSIG} \times \sigma_{\text {eff }} \\
& +\operatorname{LCEPS5}\left(\varepsilon_{\mathrm{pl}}\right)
\end{aligned}
$$

Tempering Card. Additional card for TEMPR $=1$.

Card 11	1	2	3	4	5	6	7	8
Variable	LCH4	LCH5	DTCRIT	TSAMP				
Type	I	1	F	F				
Default	0	0	0.0	0.0				

VARIABLE
LCH4 Load curve ID of Vicker hardness as a function of temperature for Bainite hardness calculation

LCH5 Load curve ID of Vicker hardness as a function of temperature for Martensite hardness calculation

VARIABLE
DTCRIT

TSAMP

DESCRIPTION
BASELINE VALUE

> Critical cooling rate to detect holding phase

Sampling interval for temperature rate monitoring to detect the holding phase

Computational Welding Mechanics Card. Additional card for CWM=1.

Card 12	1	2	3	4	5	6	7	8
Variable	TASTART	TAEND	TLSTART	TLEND	EGHOST	PGHOST	AGHOST	
Type	F	F	F	F	F	F	F	
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

VARIABLE	DESCRIPTION
TASTART	
TAEND	Annealing temperature start
TLSTART	Birth temperature start
EGHOST	Young's modulus for ghost (quiet) mate- rial
PGHOST	Poisson's ratio for ghost (quiet) material
AGHOST	Thermal expansion coefficient for ghost (quiet) material

Discussion:

The phase distribution during cooling is calculated by solving the following rate equation for each phase transition

$$
\dot{X}_{k}=g_{k}\left(G, C, T_{k}, Q_{k}\right) f_{k}\left(X_{k}\right), \quad k=2,3,4
$$

where g_{k} is a function, taken from Li et al., dependent on the grain number G, the chemical composition C, the temperature T, and the activation energy Q. Moreover, the function f_{k} is dependent on the actual phase $X_{k}=x_{k} / x_{\text {eq }}$

$$
f_{k}\left(X_{k}\right)=X_{k}^{0.4\left(X_{k}-1\right)}\left(1-X_{k}\right)^{0.4 X_{k}}, \quad k=2,3,4
$$

The true amount of martensite, that is, $k=5$, is modelled by using the true amount of the austenite left after the bainite phase:

$$
x_{5}=x_{1}\left[1-e^{-\alpha(\mathrm{MS}-T)}\right],
$$

where x_{1} is the true amount of austenite left for the reaction, α is a material dependent constant and MS is the start temperature of the martensite reaction.

The start temperatures are automatically calculated based on the composition:

1. Ferrite,

$$
\begin{aligned}
\mathrm{FS}=1185- & 203 \times \sqrt{\mathrm{C}}-15.2 \times \mathrm{Ni}+44.7 \times \mathrm{Si}+104 \times \mathrm{V}+31.5 \times \mathrm{Mo}+13.1 \times \mathrm{W} \\
& -30 \times \mathrm{Mn}-11 \times \mathrm{Cr}-20 \times \mathrm{Cu}+700 \times \mathrm{P}+400 \times \mathrm{Al}+120 \times \mathrm{As} \\
& +400 \times \mathrm{Ti}
\end{aligned}
$$

2. Pearlite,

$$
\mathrm{PS}=996-10.7 \times \mathrm{Mn}-16.9 \times \mathrm{Ni}+29 \times \mathrm{Si}+16.9 \times \mathrm{Cr}+290 \times \mathrm{As}+6.4 \times \mathrm{W}
$$

3. Bainite,

$$
\mathrm{BS}=910-58 \times \mathrm{C}-35 \times \mathrm{Mn}-15 \times \mathrm{Ni}-34 \times \mathrm{Cr}-41 \times \mathrm{Mo}
$$

4. Martensite,

$$
\begin{aligned}
\mathrm{MS}=812- & 423 \times \mathrm{C}-30.4 \times \mathrm{Mn}-17.7 \times \mathrm{Ni}-12.1 \times \mathrm{Cr}-7.5 \times \mathrm{Mo}+10 \times \mathrm{Co} \\
& -7.5 \times \mathrm{Si}
\end{aligned}
$$

where the element weight values are input on Cards 2 through 4.

The automatic start temperatures are printed to the messag file and if they are not accurate enough you can manually set them in the input deck (must be set in absolute temperature, Kelvin). If HEAT >0, the temperature FSnc (ferrite without C) is also echoed. If the specimen exceeds that temperature, all remaining ferrite is instantaneously transformed to austenite.

Remarks:

1. History Variables. History variables 1 through 8 include the different phases, the Vickers hardness, the yield stress and the ASTM grain size number. Set NEIPS $=8$ (shells) or NEIPH $=8$ (solids) on *DATABASE_EXTENT_BINARY.

History Variable	Description
1	Amount austenite
2	Amount ferrite
3	Amount pearlite

History Variable	Description
4	Amount bainite
5	Amount martensite
6	Vickers hardness
7	Yield stress
8	ASTM grain size number (a low value means large grains and vice versa)

2. Excluding Phases. To exclude a phase from the simulation, set the PHASE parameter accordingly.
3. STRC and STRP. Note that both strain rate parameters must be set to include the effect. It is possible to use a temperature dependent load curve for both parameters simultaneously or for one parameter keeping the other constant.
4. TUNIT. TUNIT is time units per hour and is only used for calculating the Vicker Hardness. By default, it is assumed that the time unit is seconds. If another time unit is used, for example milliseconds, then TUNIT must be changed to TUNIT $=3.6 \times 10^{6}$
5. TSF. The thermal speedup factor TSF of *CONTROL_THERMAL_SOLVER is used to scale reaction kinetics and hardness calculations in this material model. Strain rate dependent properties (see LCY1 to LCY5 or STRC/STRP), however, are not scaled by TSF.
6. CRSH. With the CRSH = 1 option it is now possible to transfer the material properties from a hot stamping simulation $(\mathrm{CRSH}=0)$ into another simulation. The CRSH $=1$ option reads a dynain file from a simulation with CRSH $=0$ and keeps all the history variables (austenite, ferrite, pearlite, bainite, martensite, etc.) constant. This will allow steels with inhomogeneous strength to be analyzed in, for example, a crash simulation. The speed with the CRSH = 1 option is comparable with *MAT_024. Note that for keeping the speed the temperature used in the CRSH simulation should be constant and the thermal solver should be inactive.
7. Heating and Cooling and Transformation Temperatures. To activate the heating algorithm, set HEAT $=1$ or 2 . HEAT $=0$ (default) activates only the cooling algorithm. Note that for HEAT $=0$ you must check that the initial temperature of this material is above the start temperature for the ferrite transformation. The transformation temperatures are echoed in the messag and d3hsp files.

If HEAT > 0 the temperature that instantaneously transforms all ferrite back to austenite is also echoed in the messag file. If you want to heat up to 100% austenite, you must let the specimen's temperature exceed that temperature.
8. HEAT, Grain Growth, and Re-austenization. When HEAT is activated the reaustenitization and grain growth algorithms are also activated. The grain growth is activated when the temperature exceeds a threshold value that is given by

$$
T=\frac{B}{A-\log _{10}\left[(\mathrm{GRCM})^{a}(\mathrm{GRCC})^{b}\right]},
$$

and the rate equation for the grain growth is,

$$
\dot{g}=\frac{k}{2 g} e^{-\frac{Q}{R T}}
$$

The rate equation for the phase re-austenitization is given in Oddy (1996) and is here mirrored

$$
\dot{x}_{a}=n\left[\ln \left(\frac{x_{e u}}{x_{e u}-x_{a}}\right)\right]^{\frac{n-1}{n}}\left[\frac{x_{e u}-x_{a}}{\tau(T)}\right],
$$

where n is the parameter HEATN. The temperature dependent function $\tau(T)$ is given from Oddy as $\tau(T)=c_{1}\left(T-T_{s}\right)^{c_{2}}$. The empirical parameters c_{1} and c_{2} are calibrated in Oddy to 2.06×10^{8} and 4.806 respectively. Note that τ above given in seconds.

Recommended values for GRA and GRB are given in the following table.

Compound	Metal	Non-metal	GRA	GRB
$\mathrm{Cr}_{23} \mathrm{C}_{6}$	Cr	C	5.90	7375
$\mathrm{~V}_{4} \mathrm{C}_{3}$	V	$\mathrm{C}_{0.75}$	5.36	8000
TiC	Ti	C	2.75	7000
NbC	Nb	$\mathrm{C}_{0.7}$	3.11	7520
$\mathrm{Mo}_{2} \mathrm{C}$	Mo	C	5.0	7375
$\mathrm{Nb}(\mathrm{CN})$	Nb	(CN)	2.26	6770
VN	V	N	$3.46+0.12 \% \mathrm{Mn}$	8330
AlN	Al	N	1.03	6770
NbN	Nb	N	4.04	10230
TiN	Ti	N	0.32	8000

9. Using the Table Capability for Temperature Dependence of Young's Modulus. Use *DEFINE_TABLE_2D and set the abscissa value equal to 1 for the austenite YM-curve, equal to 2 for the ferrite YM-curve, equal to 3 for the pearlite YM curve, equal to 4 for the bainite YM-curve and finally equal to 5 for the martensite YM-curve. If you use the PHASE option you only need to define the curves for the included phases, but you can define all five. LS-DYNA uses the number 1-5 to get the right curve for the right phase. The total YM is calculated by a linear mixture law: YM $=\mathrm{YM} 1 \times$ PHASE1 $+\cdots+\mathrm{YM} 5 \times$ PHASE5. For example:
```
*DEFINE_TABLE_2D
$ The number \overline{b}efore curve id:s define which phase the curve
$ will be applied to. 1 = Austenite, 2 = Ferrite, 3 = Pearlite,
$ 4 = Bainite and 5 = Martensite.
        1000 0.0 0.0
\begin{tabular}{ll}
1.0 & 100 \\
2.0 & 200 \\
3.0 & 300 \\
4.0 & 400 \\
5.0 & 500
\end{tabular}
$
$ Define curves 100 - 500
*DEFINE_CURVE
$ Austenite Temp (K) - YM-Curve (MPa)
    100 100.0 % 1.0 
```

10. Using the Table Capability for Latent Heat. When using a table ID for the latent heat (LAT1) you can describe all phase transition individually. Use *DEFINE_TABLE_2D and set the abscissa values to the corresponding phase transition number, that is, 2 for austenite to ferrite, 3 for austenite to pearlite, 4 for austenite to bainite and 5 for austenite to martensite. Remark 9 demonstrates the form of a correct table definition. If a curve is missing, the corresponding latent heat for that transition will be set to zero. Also, when a table is used the LAT5 is ignored. If HEAT >0, you also have the option to include latent heat for the transition back to Austenite. This latent heat curve is marked as 1 in the table definition of LAT1.
11. Using the Table Capability for Thermal Expansion. When using a table ID for the thermal expansion you can specify the expansion characteristics for each phase. That is, you can have a curve for each of the 5 phases (austenite, ferrite, pearlite, bainite, and martensite). The input is identical to the above table definitions. The table must have the abscissa values between 1 and 5 where the number correspond to phase 1 to 5 . To exclude one phase from influencing the thermal expansion you simply input a curve that is zero for that phase or even easier, exclude that phase number in the table definition. For example, to exclude the bainite phase you only define the table with curves for the indices 1,2, 3 and 5.
12. TEMPER. Tempering is activated by setting TEMPER to 1 . When active, the default hardness calculation for bainite and martensite is altered to use an incremental update formula. The total hardness is given by $\sum_{i=1}^{5} \mathrm{HV}_{i} \times x_{i}$. When holding phases are detected, the hardness for Bainite and Martensite is updated according to

$$
\begin{array}{ll}
\mathrm{HV}_{4}^{n+1}=\frac{x_{4}^{n}}{x_{4}^{n+1}} \mathrm{HV}_{4}^{n}+\frac{\Delta x_{4}}{x_{4}^{n+1}} h_{4}(T), & \Delta x_{4}=x_{4}^{n+1}-x_{4}^{n} \\
\mathrm{HV}_{5}^{n+1}=\frac{x_{5}^{n}}{x_{5}^{n+1}} \mathrm{HV}_{5}^{n}+\frac{\Delta x_{5}}{x_{5}^{n+1}} h_{5}(T), & \Delta x_{5}=x_{5}^{n+1}-x_{5}^{n}
\end{array}
$$

We detect the holding phase for Bainite and Martensite when the temperature is in the appropriate range and if average temperature rate is below DTCRIT. The average temperature rate is calculated as $T_{\text {tresh }} / t_{\text {tresh }}$, where $T_{\text {tresh }}^{n+1}=T_{\text {tresh }}^{n}+|\dot{T}| \Delta t$ and $t_{\text {tresh }}^{n+1}=t_{\text {tresh }}^{n}+\Delta t$. The average temperature and time are updated until $t_{\text {tresh }} \geq t_{\text {samp }}$.
13. CWM (Welding). When computational welding mechanics is activated with $\mathrm{CWM}=1$, the material can be defined to be initially in a quiet state. In this state the material (often referred to as ghost material) has thermo-mechanical properties defined by an additional card. The material is activated when the temperature reaches the birth temperature. See MAT_CWM (MAT_270) for a detailed description.
14. LCTRE (Transformation Induced Strains). Transformation induced strains can be included with a load curve LCTRE as a function of temperature. The load curve represents the difference between the hard phases and the austenite phase in the dilatometer curves. Therefore, positive curve values result in a negative transformation strain for austenitization and a positive transformation strain for the phase transformation from austenite to one of the hard phases.

Boron steel composition from the literature:

Element	HAZ code	Akerstrom (2)	Naderi (8)	ThyssenKrupp (5) (max amount)
B		0.003	0.003	0.005
C	0.168	0.23	0.230	0.250
Co				
Mo	0.036			0.250
Cr	0.255	0.211	0.160	0.250
Ni	0.015			
Mn	1.497	1.25	1.18	1.40
Si	0.473	0.29	0.220	0.400

Element	HAZ code	Akerstrom (2)	Naderi (8)	ThyssenKrupp (5) (max amount)
V	0.026			
W				
Cu	0.025			
P	0.012	0.013	0.015	0.025
Al	0.020			
As			0.040	0.05
Ti		0.003	0.001	0.010
S				

References:

[1] Numisheet 2008 Proceedings, The Numisheet 2008 Benchmark Study, Chapter 3, Benchmark 3, Continuous Press Hardening, Interlaken, Switzerland, Sept. 2008.
[2] P. Akerstrom and M. Oldenburg, "Austenite Decomposition During Press hardening of a Boron Steel - Computer Simulation and Test", Journal of Material processing technology, 174 (2006), pp399-406.
[3] M.V Li, D.V Niebuhr, L.L Meekisho and D.G Atteridge, "A Computatinal model for the prediction of steel hardenability", Metallurgical and materials transactions B, 29B, 661-672, 1998.
[4] D.F. Watt, "An Algorithm for Modelling Microstructural Development in Weld Heat-Affected Zones (Part A) Reaction Kinetics", Acta metal. Vol. 36., No. 11, pp. 3029-3035, 1988.
[5] ThyssenKrupp Steel, "Hot Press hardening Manganese-boron Steels MBW", product information Manganese-boron Steels, Sept. 2008.
[6] Malek Naderi, "Hot Stamping of Ultra High Strength Steels", Doctor of Engineering Dissertation, Technical University Aachen, Germany, 2007.
[7] P. Akerstrom, "Numerical Implementation of a Constitutive model for Simulation of Hot Stamping", Division of Solid Mechanics, Lulea University of technology, Sweden.
[8] Malek Naderi, "A numerical and Experimental Investigation into Hot Stamping of Boron Alloyed Heat treated Steels", Steel research Int. 79 (2008) No. 2.
[9] A.S. Oddy, J.M.J. McDill and L. Karlsson, "Microstructural predictions including arbitrary thermal histories, reaustenitization and carbon segregation effects" (1996).

*MAT_PML_OPTIONTROPIC_ELASTIC

This is Material Type 245. This is a perfectly-matched layer (PML) material for orthotropic or anisotropic media. It is to be used in a wave-absorbing layer adjacent to an orthotropic/anisotropic material (*MAT_OPTIONTROPIC_ELASTIC) in order to simulate wave propagation in an unbounded ortho/anisotropic medium.

This material is a variant of *MAT_PML_ELASTIC (*MAT_230). It is available only for solid 8-node bricks (element type 2). The input cards exactly follow *MAT_OPTIONTROPIC_ELASTIC as shown below. See the variable descriptions and Remarks section of *MAT_OPTIONTROPIC_ELASTIC (*MAT_002) for further details.

Available options include:

ORTHO

ANISO
such that the keyword cards appear:
*MAT_PML_ORTHOTROPIC_ELASTIC or MAT_245
*MAT_PML_ANISOTROPIC_ELASTIC or MAT_245_ANISO (5 cards follow)

Card Summary:

Card 1a.1. This card is required for the ORTHO keyword option.

MID	RO	EA	EB	EC	PRBA	PRCA	PRCB

Card 1a.2. This card is required for the ORTHO keyword option.

GAB	GBC	GCA	AOPT	G	SIGF		

Card 1b.1. This card is required for the ANISO keyword option.

MID	R0	C11	C12	C22	C13	C23	C33

Card 1b.2. This card is required for the ANISO keyword option.

C14	C24	C34	C44	C15	C25	C35	C45

Card 1b.3. This card is required for the ANISO keyword option.

C55	C16	C26	C36	C46	C56	C66	AOPT

Card 2. This card is required.

XP	YP	ZP	A1	A2	A3	MACF	

Card 3.

V1	V2	V3	D1	D2	D3	BETA	REF

Data Card Definitions:

Orthotropic Card 1. Included for the ORTHO keyword option.

Card 1a.1	1	2	3	4	5	6	7	8
Variable	MID	RO	EA	EB	EC	PRBA	PRCA	PRCB
Type	A	F	F	F	F	F	F	F

Orthotropic Card 2. Included for the ORTHO keyword option.

Card 1a.2	1	2	3	4	5	6	7	8
Variable	GAB	GBC	GCA	AOPT	G	SIGF		
Type	F	F	F	F	F	F		

Anisotropic Card 1. Included for the ANISO keyword option.

Card 1b.1	1	2	3	4	5	6	7	8
Variable	MID	R0	C11	C 12	C 22	C 13	C 23	C 33
Type	A	F	F	F	F	F	F	F

Anisotropic Card 2. Included for the ANISO keyword option.

Card 1b.2	1	2	3	4	5	6	7	8
Variable	C 14	C 24	C 34	C 44	C 15	C 25	C 35	C 45
Type	F	F	F	F	F	F	F	F

Anisotropic Card 3. Included for the ANISO keyword option.

Card 1b.3	1	2	3	4	5	6	7	8
Variable	C55	C16	C26	C36	C46	C56	C66	A0PT
Type	F	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3	MACF	
Type	F	F	F	F	F	F	I	

Card 3	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	REF
Type	F	F	F	F	F	F	F	F

Remarks:

1. Unboundedness. A layer of this material may be placed at a boundary of a bounded domain to simulate unboundedness of the domain at that boundary. The layer absorbs and attenuates waves propagating outward from the domain, without any significant reflection of the waves back into the bounded domain. The layer cannot support any static displacement.
2. Material Properties of Bounded Domain. The material in the bounded domain near the layer is assumed to be, or behaves like, a linear ortho/anisotropic
material. The material properties of the layer should be set to the corresponding properties of this material.
3. Layer Geometry. The layer should form a cuboid box around the bounded domain, with the axes of the box aligned with the coordinate axes. Various faces of this box may be open, as required by the geometry of the problem. For instance, for a half-space problem, the "top" of the box should be open.

Internally, LS-DYNA partitions the entire PML into regions which form the "faces", "edges" and "corners" of the above cuboid box. LS-DYNA generates a new material for each region. This partitioning will be visible in the d3plot file. You may safely ignore this partitioning.
4. Number of Elements in the Layer. The layer should have 5-10 elements through its depth. Typically, 5-6 elements are sufficient if the excitation source is reasonably distant from the layer, and 8-10 elements if it is close. The size of the elements should be similar to that of elements in the bounded domain near the layer and should be small enough to sufficiently discretize all significant wavelengths in the problem.
5. Nodal Constraints. The nodes on the outer boundary of the layer should be fully constrained using either *BOUNDARY_SPC or TC on *NODE. Other constraints - such as *CONSTRAINED_GLOBAL, or *BOUNDARY_PRESCRIBED_MOTION with a zero-valued load curve - will not be recognized. (Ansys Workbench uses the latter approach).
6. Stress and Strain. The stress and strain values reported by this material do not have any physical significance.

*MAT_PML_NULL

This is Material Type 246. This is a perfectly-matched layer (PML) material with a pressure fluid constitutive law computed using an equation of state, to be used in a waveabsorbing layer adjacent to a fluid material (*MAT_NULL with an EOS) in order to simulate wave propagation in an unbounded fluid medium. Only *EOS_LINEAR_POLYNOMIAL and *EOS_GRUNEISEN are allowed with this material. See the Remarks section of *MAT_NULL (*MAT_009) for further details. Accurate results are to be expected only for the case where the EOS presents a linear relationship between the pressure and volumetric strain.

This material is a variant of *MAT_PML_ELASTIC (*MAT_230) and is available only for solid 8-node bricks (element type 2).

Card	1	2	3	4	5	6	7	8
Variable	MID	R0	MU					
Type	A	F	F					
Default	none	none	0.0					

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

Mass density
MU Dynamic viscosity coefficient

Remarks:

1. Unboundedness. A layer of this material may be placed at a boundary of a bounded domain to simulate unboundedness of the domain at that boundary: the layer absorbs and attenuates waves propagating outward from the domain, without any significant reflection of the waves back into the bounded domain. The layer cannot support any static displacement.
2. Material Properties of Bounded Domain. It is assumed the material in the bounded domain near the layer is, or behaves like, a linear fluid material. The material properties of the layer should be set to the corresponding properties of this material.
3. Layer Geometry. The layer should form a cuboid box around the bounded domain, with the axes of the box aligned with the coordinate axes. Various faces of this box may be open, as required by the geometry of the problem. For example, for a half-space problem, the "top" of the box should be open.

Internally, LS-DYNA will partition the entire PML into regions which form the "faces," "edges" and "corners" of the above cuboid box and generate a new material for each region. This partitioning will be visible in the d3plot file. The user may safely ignore this partitioning.
4. Number of Elements in the Layer. The layer should have 5-10 elements through its depth. Typically, 5-6 elements are sufficient if the excitation source is reasonably distant from the layer, and $8-10$ elements if it is close. The size of the elements should be similar to that of elements in the bounded domain near the layer, and should be small enough to sufficiently discretize all significant wavelengths in the problem.
5. Nodal Constraints. The nodes on the outer boundary of the layer should be fully constrained using either *BOUNDARY_SPC or TC on *NODE. Other constraints, such as *CONSTRAINED_GLOBAL or *BOUNDARY_PRESCRIBED_MOTION with a zero-valued load curve, will not be recognized.

Note that Ansys Mechanical uses *BOUNDARY_PRESCRIBED_MOTION with a zero-value load curve for fully constraining nodal degrees-of-freedom. Because of this limitation, you will have to edit the input file with a text editor.
6. Stress and Strain. The stress and strain values reported by this material do not have any physical significance.

*MAT_PHS_BMW

This is Material Type 248. This model is intended for hot stamping processes with phase transformation effects. It is available for shell elements only and is based on Material Type 244 (${ }^{*}$ MAT_UHS_STEEL). As compared with Material Type 244, Material Type 248 features:

1. a more flexible choice of evolution parameters,
2. an approach for transformation induced strains,
3. and a more accurate density calculation of individual phases.

Thus, the physical effects of the metal can be taken into account calculating the volume fractions of ferrite, pearlite, bainite and martensite for fast supercooling as well as for slow cooling conditions. Furthermore, this material model features cooling-rate dependence for several of its more crucial material parameters in order to accurately calculate the Time-Temperature-Transformation diagram dynamically. A detailed description can be found in Hippchen et al. [2013] and Hippchen [2014].

NOTE 1: For this material "weight\%" means " $\mathrm{ppm} \times 10^{-4}$ ".

NOTE 2: For this material the phase fractions are calculated in volume percent (vol\%).

NOTE 3: The baseline values for this material are mainly taken from those for *MAT_244. They are provided to give reasonable starting results. These values may not reproduce the results from the papers by Hippchen.

Card Summary:

Card 1. This card is required.

MID	RO	E	PR	TUNIT	TRIP	PHASE	HEAT

Card 2. This card is required.

LCY1	LCY2	LCY3	LCY4	LCY5	C_F	C_P	C_B

Card 3. This card is required.

C	Co	Mo	Cr	Ni	Mn	Si	V

Card 4. This card is required.

W	Cu	P	Al	As	Ti	B	

Card 5. This card is required.

		TABRH0		TREF	LAT1	LAT5	TABTH

Card 6. This card is required.

QR2	QR3	QR4	ALPHA	GRAIN	TOFFE	TOFPE	TOFBA

Card 7. This card is required.

PLMEM2	PLMEM3	PLMEM4	PLMEM5	STRC	STRP		

Card 8. This card is required.

FS	PS	BS	MS	MSIG	LCEPS23	LCEPS4	LCEPS5

Card 9. This card is required.

LCH4	LCH5	DTCRIT	TSAMP	ISLC	IEXTRA		

Card 10. This card is required.

ALPH_M	N_M	PHI_M	PSI_M	OMG_F	PHI_F	PSI_F	CR_F

Card 11. This card is required.

OMG_P	PHI_P	PSI_P	CR_P	OMG_B	PHI_B	PSI_B	CR_B

Card 12. This card is included if HEAT $\neq 0$.

AUST	FERR	PEAR	BAIN	MART	GRK	GRQR	TAU1

Card 13. This card is included if HEAT $\neq 0$.

GRA	GRB	EXPA	EXPB	GRCC	GRCM	HEATN	TAU2

Card 14. This card is included if IEXTRA ≥ 1.

FUNCA	FUNCB	FUNCM	TCVUP	TCVLO	CVCRIT	TCVSL	

Card 15. This card is included if IEXTRA ≥ 2.

EPSP	EXPON						

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	TUNIT	TRIP	PHASE	HEAT
Type	A	F	F	F	F	I	I	I
Defaults	none	none	none	none	3600	0	0	0

VARIABLE

MID

RO

E

PR

TUNIT

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Material density at room temperature (necessary for calculating transformation induced strains)

Youngs' modulus:
GT.0.0: Constant value is used.
LT.O.O: Temperature dependent Young's modulus given by load curve or table ID = -E. The table input is described in Remark 10.

Poisson's ratio:
GT.0.0: Constant value is used.
LT.O.O: Temperature dependent Poisson's ratio given by load curve or table ID = -PR. The table input is described in Remark 10.

BASELINE VALUE

VARIABLE	DESCRIPTION	BASELINE VALUE	
TRIP	Flag to activate (0) or deactivate (1) trip effect calculation	0	
PHASE	Switch to exclude middle phases from the simulation: EQ.0: All phases active (default) EQ.1: Pearlite and bainite active EQ.2: Bainite active EQ.3: Ferrite and pearlite active EQ.4: Ferrite and bainite active EQ.5: No active middle phases (only austenite \rightarrow martensite)	0	
HEAT	Heat flag as in MAT_244: EQ.0: Heating is not activated. EQ.1: Heating is activated. EQ.2: Automatic switching between cooling and heating LT.O: Switch between cooling and heating is defined by a time dependent load curve with ID \|HEAT	.	

Card 2	1	2	3	4	5	6	7	8
Variable	LCY1	LCY2	LCY3	LCY4	LCY5	C_F	C_P	C_B
Type	I	I	I	I	I	F	F	F
Defaults	none	none	none	none	none	0.0	0.0	0.0

VARIABLE
LCY1 Load curve or table ID for austenite hardening.

LCY2 Load curve or table ID for ferrite. See LCY1 for description.

LCY3 Load curve or table ID for pearlite. See LCY1 for description.

LCY4 Load curve or table ID for bainite. See LCY1 for description.

LCY5 Load curve or table ID for martensite. See LCY1 for description.

C_F Alloy dependent factor C_{f} for ferrite (controls the alloying effects beside of Boron on the time-temperature-transformation start line of ferrite)

C_P Alloy dependent factor C_{p} for pearlite (see C_F for description)

C_B Alloy dependent factor C_{b} for bainite (see C_F for description)

Card 3	1	2	3	4	5	6	7	8
Variable	C	Co	Mo	Cr	Ni	Mn	Si	V
Type	F	F	F	F	F	F	F	F
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE	DESCRIPTION	BASELINE VALUE
C	Carbon [weight \%]	0.23 [2]
Co	Cobolt [weight \%]	0.0 [2]
Mo	Molybdenum [weight \%]	0.0 [2]
Cr	Chromium [weight \%]	0.21 [2]
Ni	Nickel [weight \%]	0.0 [2]
Mn	Manganese [weight \%]	1.25 [2]
Si	Silicon [weight \%]	0.29 [2]
V	Vanadium [weight \%]	0.0 [2]

Card 4	1	2	3	4	5	6	7	8
Variable	W	Cu	P	Al	As	Ti	B	
Type	F	F	F	F	F	F	F	
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

VARIABLE

W

Cu

P

DESCRIPTION

Tungsten [weight \%]
Copper [weight \%]
Phosphorous [weight \%]

BASELINE VALUE
0.0 [2]
0.0 [2]
0.013 [2]

VARIABLE	DESCRIPTION		
		Aluminum [weight \%]	
As		Arsenic [weight \%]	0.0 [2]
Ti		Titanium [weight \%]	0.0 [2]
B		Boron [weight \%]	0.0 [2]
			0.0

Card 5	1	2	3	4	5	6	7	8
Variable			TABRH0		TREF	LAT1	LAT5	TABTH
Type			1		F	F	F	1
Defaults			none		none	0.0	0.0	none

VARIABLE

TABRHO

TREF

LAT1

LAT5

DESCRIPTION

Table definition for phase and temperature dependent densities. Needed for calculation of transformation induced strains.

Reference temperature for thermal expansion (only necessary for thermal expansion calculation with the secant method).

Latent heat for the decomposition of austenite into ferrite, pearlite and bainite.

GT.0.0: Constant value
LT.0.0: Curve ID or table ID. See Remark 11 for more information.

Latent heat for the decomposition of aus- $\quad 640 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$ [2] tenite into martensite.

GT.0.0: Constant value
LT.0.0: Curve ID. Note that LAT 5 is ignored if a table ID is used in LAT1.

BASELINE VALUE
293.15
$590 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}[2]$

VARIABLE
TABTH

DESCRIPTION
BASELINE VALUE

Table definition for thermal expansion coefficient. See Remark 12.

GT.0: A table for instantaneous thermal expansion (TREF is ignored)

LT.O: A table with thermal expansion with reference to TREF

Card 6	1	2	3	4	5	6	7	8
Variable	QR2	QR3	QR4	ALPHA	GRAIN	TOFFE	TOFPE	TOFBA
Type	F	F	F	F	F	F	F	F
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE

QR2

QR3

QR4

DESCRIPTION

Activation energy divided by the universal gas constant for the diffusion reaction of the austenite-ferrite reaction: Q2/R. $R=$ 8.314472 [J/mol K]. Load curve ID if ISLC $=2$ on Card 9 (function of cooling rate).

Activation energy divided by the universal gas constant for the diffusion reaction for the austenite-pearlite reaction: Q3/R. $R=8.314472$ [J/mol K]. Load curve ID if ISLC $=2$ on Card 9 (function of cooling rate).

Activation energy divided by the universal gas constant for the diffusion reaction for the austenite-bainite reaction: $\mathrm{Q} 4 / R$. $R=8.314472$ [J/mol K]. Load curve ID if ISLC $=2$ on Card 9 (function of cooling rate).

BASELINE VALUE

10324 K [3] = ($23000 \mathrm{cal} /$ mole) \times ($4.184 \mathrm{~J} / \mathrm{cal}$) / ($8.314 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$)
13432. K [3]
15068. K [3]

VARIABLE
 ALPHA

GRAIN

TOFFE

TOFPE

TOFBA

DESCRIPTION
Material constant for the martensite phase. A value of 0.011 means that 90% of the available austenite is transformed into martensite at 210 degrees below the martensite start temperature (see messag file for information), whereas a value of 0.033 means a 99.9% transformation.

ASTM grain size number G for austenite, usually a number between 7 and 11 .

Number of degrees that the ferrite is bleeding over into the pearlite reaction: $T_{\text {off }, f}$

Number of degrees that the pearlite is bleeding over into the bainite reaction: $T_{\text {off }, p}$

Number of degrees that the bainite is bleeding over into the martensite reaction: $T_{\text {off }, b}$

BASELINE VALUE
0.011
6.8

Card 7	1	2	3	4	5	6	7	8
Variable	PLMEM2	PLMEM3	PLMEM4	PLMEM5	STRC	STRP		
Type	F	F	F	F	F	F		
Defaults	0.0	0.0	0.0	0.0	0.0	0.0		

VARIABLE
PLMEM2

DESCRIPTION
Memory coefficient for the plastic strain that is carried over from the austenite. A value of 1 means that all plastic strains from austenite is transferred to the ferrite phase and a value of 0 means that nothing is transferred.

BASELINE VALUE

VARIABLE	DESCRIPTION	BASELINE VALUE
PLMEM3	Same as PLMEM2 but between austenite and pearlite	0.0
PLMEM4	Same as PLMEM2 but between austenite and bainite	0.0
PLMEM5	Same as PLMEM3 but between austenite and martensite	0.0
STRC	Cowper and Symonds strain rate parameter C LT.0.0: Load curve ID = -STRC GT.0.0: Constant value EQ.O.O: Strain rate not active	0.0
STRP	Cowper and Symonds strain rate parameter P LT.0.0: Load curve ID = -STRP GT.0.0: Constant value EQ.0.0: Strain rate not active	0.0

Card 8	1	2	3	4	5	6	7	8
Variable	FS	PS	BS	MS	MSIG	LCEPS23	LCEPS4	LCEPS5
Type	F	F	F	F	F	1	1	1
Defaults	0.0	0.0	0.0	0.0	none	none	none	none

VARIABLE
FS Manual start temperature ferrite, F_{S}.
GT.O.O: Same temperature is used for heating and cooling.

LT.O.O: Different start temperatures for cooling and heating given by load curve ID = -FS. First

DESCRIPTION

bASELINE VALUE
ordinate value is used for cooling, last ordinate value for heating.

Manual start temperature pearlite, P_{S}. See FS for description.

Manual start temperature bainite, B_{S}. See FS for description.

MS Manual start temperature martensite, M_{S}. See FS for description.

MSIG Describes the increase of martensite start temperature for cooling due to applied stress.

LT.O: Load curve ID describes MSIG as a function of triaxiality (pressure / effective stress).

$$
\mathrm{MS}^{*}=\mathrm{MS}+\mathrm{MSIG} \times \sigma_{\mathrm{eff}}
$$

LCEPS23 Load curve ID dependent on plastic strain that scales the activation energy QR2 and QR3.

$$
\mathrm{QRn}=\mathrm{Qn} \times \operatorname{LCEPS} 23\left(\varepsilon_{\mathrm{pl}}\right) / R
$$

LCEPS4 Load curve ID dependent on plastic strain that scales the activation energy QR4.

$$
\mathrm{QR} 4=\mathrm{Q} 4 \times \operatorname{LCEPS} 4\left(\varepsilon_{\mathrm{pl}}\right) / R
$$

LCEPS5 Load Curve ID which describe the increase of the martensite start temperature for cooling as a function of plastic strain.

$$
\begin{aligned}
\mathrm{MS}^{*}=\mathrm{MS}+ & \mathrm{MSIG} \times \sigma_{\text {eff }} \\
& +\operatorname{LCEPS5}\left(\varepsilon_{\mathrm{pl}}\right)
\end{aligned}
$$

Card 9	1	2	3	4	5	6	7	8
Variable	LCH4	LCH5	DTCRIT	TSAMP	ISLC	IEXTRA		
Type	I	I	F	F	I	1		
Defaults	0	0	0.0	0.0	0	0		

VARIABLE

LCH4

LCH5

DTCRIT

TSAMP

ISLC

DESCRIPTION

Load curve ID of Vickers hardness as a function of temperature for bainite hardness calculation

Load curve ID of Vickers hardness as a function of temperature for martensite hardness calculation

Critical cooling rate to detect holding phase

Sampling interval for temperature rate monitoring to detect the holding phase

Flag for definition of evolution parameters on Cards 10 and 11.

EQ.O.O: All 16 fields on Cards 10 and 11 are constant values.

EQ.1.0: PHI_F, CR_F, PHI_P, CR_P, PHI_B, and CR_B are load curves defining values as functions of cooling rate. The remaining 10 fields on Cards 10 and 11 are constant values.

EQ.2.0: QR2, QR3, and QR4 from Card 6 and all 16 fields on Cards 10 and 11 are load curves defining values as functions of cooling rate.

VARIABLE
IEXTRA

BASELINE VALUE
Flag to read extra cards (see Cards 14 and 15)

Card 10	1	2	3	4	5	6	7	8
Variable	ALPH_M	N_M	PHI_M	PSI_M	OMG_F	PHI_F	PSI_F	CR_F
Type	F	F	F	F	F	F	F	F
Defaults	0.0428	0.191	0.382	2.421	0.41	0.4	0.4	0.0

VARIABLE
ALPH_M
N_M
PHI_M
PSI_M

OMG_F

PHI_F

PSI_F

CR_F

DESCRIPTION
Martensite evolution parameter α_{m}
Martensite evolution parameter n_{m}
Martensite evolution parameter φ_{m}
Martensite evolution exponent ψ_{m}. If $\psi_{m}<0$, then $\psi_{m}=\left|\psi_{m}\right|\left(2-\zeta_{a}\right)$.

Ferrite grain size factor ω_{f} (mainly controls the alloying effect of Boron on the time-temperature-transformation start line of ferrite)

Ferrite evolution parameter φ_{f} (controls the incubation time till $1 \mathrm{vol} \%$ of ferrite is built)

Ferrite evolution parameter ψ_{f} (controls the time till $99 \mathrm{vol} \%$ of ferrite is built without effect on the incubation time)

Ferrite evolution parameter $C_{r, f}$ (retardation coefficient to influence the kinetics of phase transformation of ferrite, should be determined at slow cooling conditions, can also be defined in dependency to the
bASELINE VALUE
0.0428
0.382
2.421

VARIABLE
DESCRIPTION
BASELINE VALUE
cooling rate)

Card 11	1	2	3	4	5	6	7	8
Variable	OMG_P	PHI_P	PSI_P	CR_P	OMG_B	PHI_B	PSI_B	CR_B
Type	F	F	F	F	F	F	F	F
Defaults	0.32	0.4	0.4	0.0	0.29	0.4	0.4	0.0

VARIABLE
OMG_P

PHI_P Pearlite evolution parameter φ_{p} (see PHI_F for description)

PSI_P Pearlite evolution parameter ψ_{p} (see PSI_F for description)

CR_P Pearlite evolution parameter $C_{r, p}$ (see CR_F for description)

OMG_B \quad Bainite grain size factor ω_{b} (see OMG_F for description)

PHI_B Bainite evolution parameter φ_{b} (see PHI_F for description)

PSI_B Bainite evolution parameter ψ_{b} (see PSI_F for description)

CR_B Bainite evolution parameter $C_{r, b}$ (see 0.0 CR_F for description)

Heat Card 1. Additional Card for HEAT $\neq 0$.

Card 12	1	2	3	4	5	6	7	8
Variable	AUST	FERR	PEAR	BAIN	MART	GRK	GRQR	TAU1
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$2.08 \mathrm{E}+8$

VARIABLE

AUST

DESCRIPTION

If a heating process is initiated at $t=0$, this field sets the initial amount of austenite in the blank. If heating is activated at $t>0$ during a simulation, this value is ignored. Note that,

$$
\begin{aligned}
\text { AUST }+ \text { FERR } & + \text { PEAR } \\
& + \text { BAIN }+ \text { MART } \\
& =1.0
\end{aligned}
$$

FERR
PEAR
BAIN

MART
GRK
GRQR

TAU1

See AUST for description
See AUST for description
See AUST for description
See AUST for description
Growth parameter $k\left(\mu \mathrm{~m}^{2} / \mathrm{sec}\right)$
Grain growth activation energy ($\mathrm{J} / \mathrm{mol}$) divided by the universal gas constant: $Q / R . R=8.314472(\mathrm{~J} / \mathrm{mol} \mathrm{K})$

Empirical grain growth parameter c_{1} describing the function $\tau(T)$

BASELINE VALUE
0.0
0.0

$$
0.0
$$

$$
0.0
$$

0.0
10^{11} [9]
$3.0 \times 10^{4}[9]$
$2.08 \times 10^{8}[9]$

Heat Card 2. Additional Card for HEAT $\neq 0$.

Card 13	1	2	3	4	5	6	7	8
Variable	GRA	GRB	EXPA	EXPB	GRCC	GRCM	HEATN	TAU2
Type	F	F	F	F	F	F	F	F
Default	3.11	7520.	1.0	1.0	none	none	1.0	4.806

VARIABLE

GRA
GRB

EXPA
ЕХРB
GRCC

GRCM

HEATN

TAU2

DESCRIPTION
Grain growth parameter A
Grain growth parameter B. A table of recommended values of GRA and GRB is included in Remark 8 of *MAT_244.

Grain growth parameter a

Grain growth parameter with the concentration of nonmetals in the blank, weight\% of C or N

Grain growth parameter with the concentration of metals in the blank, lowest weight $\%$ of $\mathrm{Cr}, \mathrm{V}, \mathrm{Nb}, \mathrm{Ti}, \mathrm{Al}$

Grain growth parameter n for the austenite formation

Empirical grain growth parameter c_{2} describing the function $\tau(T)$

BASELINE VALUE

Extra Card 1. Additional Card for IEXTRA ≥ 1

Card 14	1	2	3	4	5	6	7	8
Variable	FUNCA	FUNCB	FUNCM	TCVUP	TCVLO	CVCRIT	TCVSL	
Type	F	F	F	F	F	F	F	
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

VARIABLE

FUNCA

FUNCB ID of a *DEFINE_FUNCTION for initial yield stress B (Hockett-Sherby approach)

FUNCM ID of a *DEFINE_FUNCTION for saturation rate M (Hockett-Sherby approach)

TCVUP Upper temperature for determination of average cooling velocity
TCVLO

CVCRIT Critical cooling velocity. If the average cooling velocity is less than or equal to CVCRIT, the cooling rate at temperature TCVSL is used.

TCVSL
ID of a *DEFINE_FUNCTION for saturation stress A (Hockett-Sherby approach)

Temperature for determination of cool-

DESCRIPTION
BASELINE VALUE ing velocity for small cooling velocities.

Extra Card 2. Additional Card for IEXTRA ≥ 2

Card 15	1	2	3	4	5	6	7	8
Variable	EPSP	EXPON						
Type	F	F						
Default	0.0	0.0						

VARIABLE

EPSP

EXPON Exponent in Hockett-Sherby approach

Remarks:

1. Start temperatures. Start temperatures for ferrite, pearlite, bainite, and martensite can be defined manually using FS, PS, BS, and MS. Or they are initially defined using the following composition equations:

$$
\begin{aligned}
F_{S}=273.15 & +912-203 \times \sqrt{\mathrm{C}}-15.2 \times \mathrm{Ni}+44.7 \times \mathrm{Si}+104 \times \mathrm{V}+31.5 \times \mathrm{Mo} \\
& +13.1 \times \mathrm{W}-30 \times \mathrm{Mn}-11 \times \mathrm{Cr}-20 \times \mathrm{Cu}+700 \times \mathrm{P}+400 \times \mathrm{Al} \\
& +120 \times \mathrm{As}+400 \\
P_{S}=273.15 & +723-10.7 \times \mathrm{Mn}-16.9 \times \mathrm{Ni}+29 \times \mathrm{Si}+16.9 \times \mathrm{Cr}+290 \times \mathrm{As} \\
& +6.4 \times \mathrm{W} \\
B_{S}=273.15 & +637-58 \times \mathrm{C}-35 \times \mathrm{Mn}-15 \times \mathrm{Ni}-34 \times \mathrm{Cr}-41 \times \mathrm{Mo} \\
M_{S}=273.15 & +539-423 \times \mathrm{C}-30.4 \times \mathrm{Mn}-17.7 \times \mathrm{Ni}-12.1 \times \mathrm{Cr}-7.5 \times \mathrm{Mo} \\
& +10 \times \mathrm{Co}-7.5 \times \mathrm{Si}
\end{aligned}
$$

2. Martensite phase evolution. Martensite phase evolution according to Lee et al. [2008, 2010] if PSI_M > 0:

$$
\frac{\mathrm{d} \xi_{m}}{\mathrm{~d} T}=\alpha_{m}\left(M_{S}-T\right)^{n} \tilde{\xi}_{m}^{\varphi_{m}}\left(1-\xi_{m}\right)^{\psi_{m}}
$$

Martensite phase evolution according to Lee et al. [2008, 2010] with extension by Hippchen et al. [2013] if PSI_M <0 :

$$
\frac{\mathrm{d} \xi_{m}}{\mathrm{~d} T}=\alpha_{m}\left(M_{S}-T\right)^{n} \tilde{\zeta}_{m}^{\varphi_{m}}\left(1-\xi_{m}\right)^{\psi_{m}\left(2-\zeta_{a}\right)}
$$

3. Phase change kinetics for ferrite, pearlite and bainite.

$$
\begin{aligned}
& \frac{\mathrm{d} \xi_{f}}{\mathrm{~d} t}=2^{\omega_{f} G} \frac{\exp \left(-\frac{Q_{f}}{R T}\right)}{C_{f}}\left(F_{S}-T\right)^{3} \frac{\xi^{\varphi_{f}\left(1-\xi_{f}\right)}\left(1-\xi_{f}\right)^{\psi_{f} \xi_{f}}}{\exp \left(C_{r, f} \xi_{f}^{2}\right)} \\
& \text { for } \quad F_{S} \geq T \geq\left(P_{S}-T_{\text {off }, f}\right) \\
& \frac{\mathrm{d} \xi_{p}}{\mathrm{~d} t}=2^{\omega_{p} G} \frac{\exp \left(-\frac{Q_{p}}{R T}\right)}{C_{p}}\left(P_{S}-T\right)^{3} \frac{\xi^{\varphi_{p}\left(1-\xi_{p}\right)}\left(1-\xi_{p}\right)^{\psi_{p} \xi_{p}}}{\exp \left(C_{r, p} \xi_{p}^{2}\right)} \\
& \text { for } \quad P_{S} \geq T \geq\left(B_{S}-T_{\text {off }, p}\right) \\
& \frac{\mathrm{d} \xi_{b}}{\mathrm{~d} t}=2^{\omega_{b} G} \frac{\exp \left(-\frac{Q_{b}}{R T}\right)}{C_{b}}\left(B_{S}-T\right)^{2} \frac{\xi^{\varphi_{b}\left(1-\xi_{b}\right)}\left(1-\xi_{b}\right)^{\psi_{b} \xi_{b}}}{\exp \left(C_{r, b} \xi_{b}^{2}\right)} \\
& \text { for } \quad M_{S} \geq T \geq\left(M_{S}-T_{\text {off }, b}\right)
\end{aligned}
$$

4. History variables. History variables of this material model are listed in the following table. To be able to post-process that data, parameters NEIPS (shells) or NEIPH (solids) must be defined on *DATABASE_EXTENT_BINARY.

History Variable \#	Description
1	Amount austenite
2	Amount ferrite
3	Amount pearlite
4	Amount bainite
5	Amount martensite
6	Vickers hardness
7	Yield stress
8	ASTM grain size number
9	Young's modulus
10	Saturation stress A (H-S approach)
11	Initial yield stress B (H-S approach)
12	Saturation rate M (H-S approach)
13	Yield stress of H-S approach
	$\sigma_{y}=A-(A-B) \times e^{-M \times E P S P}{ }^{\mathrm{EXPON}}$
17	Temperature rate
19	Current temperature

History Variable \#	Description
25	Plastic strain rate
26	Effective thermal expansion coefficient

5. Choosing/excluding phases. To exclude a phase from the simulation, set the PHASE parameter accordingly.
6. Strain rate effects. Note that both strain rate parameters (STRC and STRP) must be set to include the effect. It is possible to use a temperature dependent load curve for both parameters simultaneously or for one parameter keeping the other constant.
7. Time units. TUNIT is time units per hour and is only used for calculating the Vicker Hardness. By default, it is assumed that the time unit is seconds. If another time unit is used, for example milliseconds, then TUNIT must be changed to TUNIT $=3.6 \times 10^{6}$.
8. Thermal speedup factor. The thermal speedup factor TSF of *CONTROL_THERMAL_SOLVER is used to scale reaction kinetics and hardness calculations in this material model. Strain rate dependent properties (see LCY1 to LCY5 or STRC/STRP), however, are not scaled by TSF.
9. Re-austenization and grain growth with the HEAT field. When HEAT is activated, the re-austenitization and grain growth algorithms are also activated. See Remark 8 of MAT_244 for details.
10. Phase indexed tables. When using a table ID to describe the Young's modulus as dependent on the temperature, use *DEFINE_TABLE_2D. Set the abscissa value equal to 1 for the austenite YM-curve, equal to 2 for the ferrite YM-curve, equal to 3 for the pearlite YM curve, equal to 4 for the bainite YM-curve and finally equal to 5 for the martensite YM-curve. When using the PHASE option only the curves for the included phases are required, but all five phases may be included. The total YM is calculated by a linear mixture law:

$$
\mathrm{YM}=\mathrm{YM} 1 \times \text { PHASE1 }+\cdots+\mathrm{YM} 5 \times \text { PHASE5 }
$$

For example:

```
*DEFINE_TABLE_2D
$ The number before curve id:s define which phase the curve
$ will be applied to. 1 = Austenite, 2 = Ferrite, 3 = Pearlite,
$ 4 = Bainite and 5 = Martensite.
    1000 0.0 0.0
    1.0 100
    2.0 200
    3.0 300
    4.0 400
    5.0 500
```

\$

```
$ Define curves 100 - 500
*DEFINE_CURVE
$ Austenite Temp (K) - YM-Curve (MPa)
    100 1300.0 1.0 1.0
    223.0 210.E+3
```

11. Phase-indexed latent heat table. A table ID may be specified for the Latent heat (LAT1) to describe each phase change individually. Use *DEFINE_TABLE_2D and set the abscissa values to the corresponding phase transition number. That is, 2 for the Austenite - Ferrite, 3 for the Austenite - Pearlite, 4 for the Austenite - Bainite and 5 for the Austenite - Martensite. See Remark 10 for an example of a correct table definition. If a curve is missing, the corresponding latent heat for that transition will be set to zero. Also, when a table is used, LAT2 is ignored. If HEAT >0, the latent for the transition back to Austenite can also be included. This latent heat curve is marked as 1 in the table definition of LAT1.
12. Phase-indexed thermal expansion table. Tables are supported for defining different thermal expansion properties for each phase. The input is identical to the above table definitions. The table must have the abscissa values between 1 and 5 where the number correspond to phase 1 to 5 . To exclude one phase from influencing the thermal expansion you simply input a curve that is zero for that phase or even easier, exclude that phase number in the table definition. For example, to exclude the bainite phase you only define the table with curves for the indices $1,2,3$ and 5 .
13. Phase-indexed transformation induced strain properties. Transformation induced strains can be define with a table TABRHO, where densities are defined as functions of phase (table abscissas) and temperature (load curves).

*MAT_REINFORCED_THERMOPLASTIC

This is Material Type 249. This material model describes a reinforced thermoplastic composite material. The reinforcement is defined as an anisotropic hyper-elastic material with up to three distinct fiber directions. It can be used to model unidirectional layers as well as woven and non-crimped fabrics. The matrix is modeled with a simple thermal elasto-plastic material formulation. For a composite, the overall stress is found by adding the fiber and matrix stresses.

Card Summary:

Card 1. This card is required.

MID	RO	EM	LCEM	PRM	LCPRM	LCSIGY	BETA

Card 2. This card is required.

NFIB	AOPT				A1	A2
A3						

Card 3. This card is required.

V1	V2	V3	D1	D2	D3	MANGL	THICK

Card 4. This card is required.

IDF1	ALPH1	EF1	LCEF1	G23_1	G31_1		

Card 5. This card is required.

G12	LCG12	ALOC12	GLOC12	METH12			

Card 6. This card is required.

IDF2	ALPH2	EF2	LCEF2	G23_2	G31_2		

Card 7. This card is required.

G23	LCG23	ALOC23	GLOC23	METH23			

Card 8. This card is required.

IDF3	ALPH3	EF3	LCEF3	G23_3	G31_3		

Card 9. This card is optional.

POSTV	IHIS						

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	EM	LCEM	PRM	LCPRM	LCSIGY	BETA
Type	A	F	F	I	F	I	।	F

VARIABLE

MID

RO Density

LCSIGY

BETA

EM Young's modulus of matrix material
LCEM Curve ID for Young's modulus of matrix material as a function of temperature. With this option active, EM is ignored.

PR Poisson's ratio for matrix material
LCPR Curve ID for Poisson's ratio of matrix material versus temperature. With this option active, PR is ignored.

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART). Load curve or table ID for strain hardening of the matrix. If a curve, then it specifies yield stress as a function of effective plastic strain. If a table, then temperatures are the table values indexing curves giving yield stress as a function of effective plastic strain (see *DEFINE_TABLE).

Parameter for mixed hardening, $0.0 \leq \beta \leq 1.0$. Set $\beta=0.0$ for pure kinematic hardening and $\beta=1.0$ for pure isotropic hardening.

Card 2	1	2	3	4	5	6	7	8
Variable	NFIB	AOPT				A1	A2	A3
Type	I	F				F	F	F

VARIABLE

DESCRIPTION

NFIB
Number of fiber families to be considered

VARIABLE	DESCRIPTION
AOPT	Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):
	EQ.0.0: Locally orthotropic with material axes determined by element nodes, as with *DEFINE_COORDI-NATE_NODES, and then rotated about the shell element normal by the angle MANGL.
	EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.
	EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle. The angle may be set in the keyword input for the element or in the input for this keyword with MANGL.
	LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for $\mathrm{AOPT}=2$.

Card 3	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGL	THICK
Type	F	F	F	F	F	F	F	F

VARIABLE
V1, V2, V3
D1, D2, D3
MANGL Material angle in degrees for AOPT $=0$ and 3. It may be overwritten on the element card; see *ELEMENT_SHELL_BETA.

VARIABLE

THICK

DESCRIPTION

Balance thickness changes of the material due to the matrix description by scaling fiber stresses

EQ.0: No scaling
EQ.1: Scaling

Card 4	1	2	3	4	5	6	7	8
Variable	IDF1	ALPH1	EF1	LCEF1	G23_1	G31_1		
Type	I	F	F	I	F	F		

VARIABLE

IDF1

G23_1
G31_1

ALPH1 Orientation angle α_{1} for $1^{\text {st }}$ fiber with respect to overall material direction

EF1 Young's modulus for $1^{\text {st }}$ fiber family
LCEF1 Load curve for stress as a function of fiber strain of $1^{\text {st }}$ fiber. With this option active, EF1 is ignored. If a curve, then it specifies input stress as a function of fiber strain. If a table, then temperatures are the table values indexing curves giving stress as function of fiber strain. The table data will be extrapolated for both strains and temperatures where necessary.

Transverse shear modulus orthogonal to direction of $1^{\text {st }}$ fiber

DESCRIPTION

ID for $1^{\text {st }}$ fiber family for post-processing
P Pun

Transverse shear modulus in direction of $1^{\text {st }}$ fiber

Card 5	1	2	3	4	5	6	7	8
Variable	G12	LCG12	ALOC12	GLOC12	METH12			
Type	F	I	F	F	I			

VARIABLE
G12
LCG12

ALOC12

GLOC12
METH12

DESCRIPTION

Linear shear modulus for shearing between fiber families 1 and 2
Curve ID for shear stress as a function of shearing type as specified with METH12 between the $1^{\text {st }}$ and $2^{\text {nd }}$ fibers. See Remark 1.

Locking angle (in radians) for shear between fiber families 1 and 2
Linear shear modulus for shear angles larger than ALOC12
Option for shear response between fiber 1 and 2 (see Remark 1):
EQ.0: Elastic shear response. Curve LCG12 specifies shear stress as a function of the scalar product of the fiber directions.

EQ.1: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of the normalized scalar product of the fiber directions.
EQ.2: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers.

EQ.3: Elasto-plastic shear response. Curve LCG12 defines yield shear stress as a function of normalized shear angle between the fibers.

EQ.4: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers. This option is a special implementation for noncrimped fabrics, where one of the fiber families corresponds to a stitching.
EQ.5: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of normalized shear angle between the fibers. This option is a special implementation for non-crimped fabrics, where one of the fiber families corresponds to a stitching.
EQ.10: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers. This option is tailored for woven fabrics and guarantees a pure shear stress response.
EQ.11: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of normalized shear angle. This option is tailored for woven fabrics and guarantees a pure shear stress response.

Card 6	1	2	3	4	5	6	7	8
Variable	IDF2	ALPH2	EF2	LCEF2	G23_2	G31_2		
Type	I	F	F	I	F	F		

VARIABLE

IDF2
ALPH2 Orientation angle α_{2} for $2^{\text {nd }}$ fiber with respect to overall material direction

EF2 Young's modulus for 2 ${ }^{\text {nd }}$ fiber family
LCEF2 Load curve for stress as a function of fiber strain of $2^{\text {nd }}$ fiber. With this option active, EF2 is ignored. If a curve, then it specifies input stress as a function of fiber strain. If a table, then temperatures are the table values indexing curves giving stress as function of fiber strain. The table data will be extrapolated for both strains and temperatures where necessary.

G23_2 Transverse shear modulus orthogonal to direction of $2^{\text {nd }}$ fiber
G31_2 Transverse shear modulus in direction of 2nd fiber

Card 7	1	2	3	4	5	6	7	8
Variable	G23	LCG23	ALOC23	GLOC23	METH23			
Type	F	I	F	F	I			

VARIABLE

G23
LCG23

ALOC23
GLOC23

DESCRIPTION

Linear shear modulus for shearing between fiber families 2 and 3
Curve ID for shear stress as a function of shearing type as specifies with METH23 between the $2^{\text {nd }}$ and $3^{\text {rd }}$ fibers. See Remark 1.

Locking angle (in radians) for shear between fiber families 2 and 3
Linear shear modulus for shear angles larger than ALOC23

VARIABLE

METH23

DESCRIPTION

Option for shear response between fibers 2 and 3 (see METH12 for input options and Remark 1).

Card 8	1	2	3	4	5	6	7	8
Variable	IDF3	ALPH3	EF3	LCEF3	G23_3	G31_3		
Type	I	F	F	I	F	F		

VARIABLE

IDF3
ALPH3 Orientation angle α_{3} for $3^{\text {rd }}$ fiber with respect to overall material direction

EF3 Young's modulus for $3^{\text {rd }}$ fiber family
LCEF3 Load curve for stress versus fiber strain of $3^{\text {rd }}$ fiber. With this option active, EF3 is ignored. If a curve, then it specifies input stress as a function of fiber strain. If a table, then temperatures are the table values indexing curves giving stress as function of fiber strain. The table data will be extrapolated for both strains and temperatures where necessary.

G23_3 Transverse shear modulus orthogonal to direction of $3^{\text {rd }}$ fiber
G31_3 Transverse shear modulus in direction of $3^{\text {rd }}$ fiber

This card is optional.

Card 9	1	2	3	4	5	6	7	8
Variable	POSTV	IHIS						
Type	1							

VARIABLE

POSTV

DESCRIPTION

Defines additional history variables that might be useful for postprocessing. See Remark 2.

VARIABLE

IHIS

DESCRIPTION

Flag for material properties initialization:
EQ.0: Material properties defined in Cards 1-8 are used.
GE.1: Use *INITIAL_STRESS_SHELL to initialize some material properties on an element-by-element basis (see Remark 3 below).

Remarks:

1. Stress Calculation. This material features an additive split of the matrix and reinforcement contributions to the stress. Therefore, the combined stress response, σ, equals the sum $\sigma^{m}+\sigma^{f}$.

The matrix model uses an elastic-plastic material formulation with a von-Mises yield criterion. Material parameters, such as Young's modulus, Poisson's ratio and yield stress, can be given as functions of temperature. This material supports a mixed hardening approach.

We formulated the contribution of the fiber reinforcement as a hyperelastic material. Based on the orientation angle, α_{i}, of the $i^{\text {th }}$ fiber family, LS-DYNA computes an initial fiber direction in the element coordinate system \mathbf{m}_{i}^{0}. By using the deformation gradient, \mathbf{F}, the current fiber configuration is given as $\mathbf{m}_{\mathbf{i}}=\mathbf{F} \mathbf{m}_{i}^{0}$, containing all necessary information on fiber strain and reorientation. Here, this vector is always orthogonal to the shell normal and can, thus, be represented by the two in-plane vector components.

Following standard textbook mechanics for anisotropic and hyperelastic materials, the elastic stresses within the fibers due to tension or compression are given as

$$
\sigma_{T}^{f}=\sum_{i=1}^{n} \sigma_{T, i}^{f}\left(\lambda_{i}\right)=\sum_{i=1}^{n} \frac{1}{J} f_{i}\left(\lambda_{i}\right)\left(\mathbf{m}_{\mathrm{i}} \otimes \mathbf{m}_{\mathrm{i}}\right)
$$

where the function f_{i} of the fiber strain λ_{i} corresponds to the load curve LCEF i. n is the number of fiber families.

The shear behavior of the reinforcement can be controlled by METH $i j$. For values less than 10, the behavior is again standard textbook mechanics:

$$
\sigma_{S}^{f}=\sum_{i=1}^{n-1} \sigma_{S, i, i+1}^{f}=\sum_{i=1}^{n-1} \frac{1}{J} g_{i, i+1}\left(\kappa_{i, i+1}\right)\left(\mathbf{m}_{\mathbf{i}} \otimes \mathbf{m}_{\mathrm{i}+1}\right)
$$

Here $\kappa_{i, i+1}$ represents the employed shear measure (scalar product or shear angle in radians). In general, the dyadic product $\mathbf{m}_{\mathbf{i}} \otimes \mathbf{m}_{\mathbf{i}+1}$ does not define a shear
stress tensor. This formulation might result in unphysical shear behavior in the case of woven fabrics. Therefore, we devised METH $i j=10$ and 11 to always give a pure shear stress tensor, σ_{S}^{f}.

For even values of METH $i j$, an elastic shear response is assumed. If defined, the load curve LCG $i j$ corresponds to function $g_{i, j}$. In this case the values of $G i j$, ALOC $i j$ and GLOC $i j$ are ignored.

For odd values of METH $i j$ on the other hand, an elasto-plastic shear behavior is assumed and the load curve LCGij defines the yield stress value as function of a normalized shear parameter. This implies that the load curve needs to be defined for abscissa values between 0.0 and 1.0. A first elastic regime, which is controlled by the linear shear stiffness Gij, is assumed until the yield stress given in the load curve for normalized shear value 0.0 is reached. A second linear elastic regime is defined for shear angles $\left(\xi_{i j}\right)$ / fiber angles $\left(\eta_{i j}\right)$ larger than the locking angle ALOC $i j$. The corresponding stiffness in that regime is GLOC $i j$. At the transition point to the second elastic regime, the shear stress corresponds to the load curve value for a normalized shear of 1.0.
2. History Data. This material formulation outputs to d3plot additional data for post-processing to the set of history variables if requested. The parameter POSTV specifies the data to be written. Its value is calculated as

$$
\text { POSTV }=a_{1}+2 a_{2}+4 a_{3}+8 a_{4}+16 a_{5}+32 a_{6}+64 a_{7}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular type of post-processing variable according to the following table.

Flag	Description	Variables	\# History Var
a_{1}	Fiber angle	η_{12}, η_{23}	2
a_{2}	Fiber ID	IDF1, IDF2, IDF3	3
a_{3}	Fiber strain	$\lambda_{1}, \lambda_{2}, \lambda_{3}$	3
a_{4}	Fiber direction (in global coordinates)	$\mathbf{m}_{1}^{\mathrm{g}}, \mathbf{m}_{2}^{\mathrm{g}}, \mathbf{m}_{3}^{\mathrm{g}}$	
a_{5}	Individual fiber stresses a_{6}	$f_{1}\left(\lambda_{1}\right), f_{2}\left(\lambda_{2}\right), f_{3}\left(\lambda_{3}\right)$ Fiber stress tensor a_{7}	Fiber direction (in material coordinates $)$
$\sigma_{11}^{f}, \sigma_{22}^{f}, \sigma_{33}^{f}, \sigma_{12}^{f}, \sigma_{23}^{f}, \sigma_{31}^{f}$			
$\mathbf{m}_{1}^{\mathrm{m}}, \mathbf{m}_{2}^{\mathrm{m}}, \mathbf{m}_{3}^{\mathrm{m}}$	6		

The above table also shows the order of output as well as the number of extra history variables associated with the particular flag. In total NXH extra variables are required depending on the choice of parameter POSTV. For example, the maximum number of additional variables is $\mathrm{NXH}=32$ for $\mathrm{POSTV}=127$.

As mentioned in Remark 1 fiber orientation is represented in the material subroutine as vector \mathbf{m}_{i} defined in the element coordinate system. Prior to writing to the list of histories the vector is transformed into the global coordinate system with three vector components for $a_{4}=1$ and/or into the overall material coordinate system with two vector components for $a_{7}=1$.

A more complete list of potentially helpful history variables is given in the following table. The variable NEIPS in *DATABASE_EXTENT_BINARY must be set to output these history variables.

History Variable \#	Description
3	Number of fibers
4	NXH
$5 \rightarrow \mathrm{NXH}+4$	Variables as described in preceding table
$\mathrm{NXH}+5$	POSTV
$\mathrm{NXH}+6, \mathrm{NXH}+7$	Shear angles ξ_{12} and ξ_{23}
$\mathrm{NXH}+8$	Matrix damage parameter d^{m}
$\mathrm{NXH}+9 \rightarrow \mathrm{NXH}+11$	Fiber tensile damage parameter $d_{i}^{f, t}$
$\mathrm{NXH}+12 \rightarrow \mathrm{NXH}+14$	Fiber compressive damage param. $d_{i}^{f, c}$
$\mathrm{NXH}+15 \rightarrow \mathrm{NXH}+20$	Matrix stress tensor in element coordinate system
$\mathrm{NXH}+21 \rightarrow \mathrm{NXH}+26$	Deformation gradient

3. Description of IHIS. Some material data can be initialized on an element-byelement basis through history variables defined with *INITIAL_STRESS_SHELL starting at position HISV5.

How the data is interpreted depends on the parameter IHIS. Following the same concept as for parameter POSTV, the value of IHIS is computed by the following expression:

$$
\mathrm{IHIS}=a_{1}+2 a_{2}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular type of material variable. So far, the only material variables implemented are fiber orientation in two different coordinate systems, global and material. Thus, at most one of the flags a_{1} and a_{2} should be set to 1 .

Flag	Description	Variables	\# History Var
a_{1}	Fiber direction (in global coordinates)	$\mathbf{m}_{1}^{\mathrm{g}}, \mathbf{m}_{2}^{\mathrm{g}}, \mathbf{m}_{3}^{\mathrm{g}}$	9
a_{2}	Fiber direction (in material coordinates)	$\mathbf{m}_{1}^{\mathrm{m}}, \mathbf{m}_{2}^{\mathrm{m}}, \mathbf{m}_{3}^{\mathrm{m}}$	6

*MAT_REINFORCED_THERMOPLASTIC_CRASH

This is Material Type 249. This material model describes a reinforced thermoplastic composite material with its damage and failure behavior. The reinforcement is modeled as an anisotropic hyper-elastic material with up to three distinguished fiber directions. It can be used to model unidirectional layers as well as woven and non-crimped fabrics. The matrix is modeled with a simple elastic plastic material formulation. For a composite, the overall stress is found by adding the fiber and matrix stresses.

Card Summary:

Card 1. This card is required.

MID	RO	EM	PRM	LCSIGY	BETA	PFL	VISC

Card 2. This card is required.

NFIB	AOPT				A1	A2	A3

Card 3. This card is required.

V1	V2	V3	D1	D2	D3	MANGL	THICK

Card 4. This card is included if VISC >0.

VG1	VB1	VG2	VB2	VG3	VB3	VG4	VB4

Card 5. This card is required.

IDF1	ALPH1	EF1	LCEF1	G23_1	G31_1	DAF1	DAM1

Card 6. This card is required.

G12	LCG12	ALOC12	GLOC12	METH12	DAM12		

Card 7. This card is required.

IDF2	ALPH2	EF2	LCEF2	G23_2	G31_2	DAF2	DAM2

Card 8. This card is required.

G23	LCG23	ALOC23	GLOC23	METH23	DAM23		

Card 9. This card is required.

IDF3	ALPH3	EF3	LCEF3	G23_3	G31_3	DAF3	DAM3

Card 10. This card is optional.

POSTV	VISCS	IHIS					

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	EM	PRM	LCSIGY	BETA	PFL	VISC
Type	A	F	F	F	I	F	F	F

VARIABLE

MID

RO Mass density, ρ
$\mathrm{N} \quad$ Number of phases
EM Young's modulus of matrix material
PRM Poisson's ratio for matrix material
LCSIGY Load curve or table ID for strain hardening of the matrix. If a curve, then it specifies yield stress as a function of effective plastic strain. If a table, then temperatures are the table values indexing curves giving yield stress as a function of effective plastic strain (see *DEFINE_TABLE).

BETA Parameter for mixed hardening, $0.0 \leq \beta \leq 1.0$. Set $\beta=0.0$ for pure kinematic hardening and $\beta=1.0$ for pure isotropic hardening.

PFL Percentage of layers that must fail to initiate failure of the element (default is 100)

VISC Viscous formulation for fibers:
EQ.0.0: Elastic behavior
GE.1.0: Viscoelastic behavior modeled with a Prony series. See Remark 3.

Card 2	1	2	3	4	5	6	7	8
Variable	NFIB	AOPT				A1	A2	A3
Type	I	F				F	F	F

VARIABLE
NFIB
AOPT Material axes option (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes determined by element nodes, as with *DEFINE_COORDI-NATE_NODES, and then rotated about the shell element normal by the angle MANGL.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by rotatingthe material axes about the element normal by an angle, MANGL, from a line in the plane of the element defined by the cross product of the vector v with the element normal

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

A1, A2, A3 Components of vector a for AOPT $=2$

Card 3	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGL	THICK
Type	F	F	F	F	F	F	F	1

VARIABLE

DESCRIPTION

V1, V2, V3
Components of vector \mathbf{v} for $\mathrm{AOPT}=3$

VARIABLE

D1, D2, D3
MANGL

THICK

DESCRIPTION

Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for AOPT $=0$ and 3. It may be overwritten on the element card; see *ELEMENT_SHELL_BETA.

Balance thickness changes of the material due to the matrix response when calculating the fiber stresses. Stresses can be scaled to account for the fact that fiber cross-sectional usually does not change.

EQ.O: No scaling
EQ.1: Scaling

Fiber Viscosity Card. Additional card for VISC > 0 only. See Remark 3.

Card 4	1	2	3	4	5	6	7	8
Variable	VG1	VB1	VG2	VB2	VG3	VB3	VG4	VB4
Type	F	F	F	F	F	F	F	F

VARIABLE

VGk

VBk

DESCRIPTION

Relaxation modulus G_{k} for the $k^{\text {th }}$ term of the Prony series for viscoelastic fibers

Decay constant β_{k} for the $k^{\text {th }}$ term of the Prony series for viscoelastic fibers

Card 5	1	2	3	4	5	6	7	8
Variable	IDF1	ALPH1	EF1	LCEF1	G23_1	G31_1	DAF1	DAM1
Type	I	F	F	I	F	F	I	I

VARIABLE

IDF1
ALPH1

DESCRIPTION

ID for $1^{\text {st }}$ fiber family for post-processing
Orientation angle α_{1} for $1^{\text {st }}$ fiber with respect to overall material direction

VARIABLE

EF1
LCEF1 Load curve for stress as a function of fiber strain of $1^{\text {st }}$ fiber. With this option active, EF1 is ignored.

G23_1
G31_1
DAF1

DAM1

DESCRIPTION

Young's modulus for $1^{\text {st }}$ fiber family

Transverse shear modulus orthogonal to direction of $1^{\text {st }}$ fiber
Transverse shear modulus in direction of $1^{\text {st }}$ fiber
Load curve or table ID for damage parameter d_{1}^{f} for $1^{\text {st }}$ fiber (see Remark 2). If a curve, DAF1 specifies damage as a function of fiber strain (for compression and elongation). If DAF1 refers to a table, then two different damage functions for tensile and compressive stresses are input. The values in the table are arbitrary and exist only to index the two curves. The first indexed curve is assumed to specify tensile damage as a function of fiber strains while second curve specifies compressive damage as a function of fiber strains. input different damage functions for tensile and compressive stresses. Any other curves input with the table definition are ignored.
The damager parameter d_{1}^{f} ranges from 0.0 for an undamaged fiber to 1.0 for a failed fiber family. If all families have failed, material failure at the integration point is initiated.

Load curve or table ID for damage parameter d_{1}^{m} for matrix material based on the current deformation status of the $1^{\text {st }}$ fiber (see Remark 2). If a curve, it specifies damage as a function of fiber strain (for compression and elongation). If a table, then the values are fiber strain rates which index damage as a function of fiber strain curves.
The damager parameter d_{1}^{m} ranges from 0.0 to 1.5 . A value of 0.0 indicates an undamaged matrix, whereas 1.0 refers to a completely damaged matrix. To initiate failure of the composite at the integration point, a matrix damage d_{1}^{m} of 1.5 must be reached. Naturally, the mechanical behavior of the matrix does not change for damage values between 1.0 and 1.5.

Card 6	1	2	3	4	5	6	7	8
Variable	G12	LCG12	ALOC12	GLOC12	METH12	DAM12		
Type	F	I	F	F	I	I		

VARIABLE

G12
LCG12

ALOC12
GLOC12
METH12

DESCRIPTION

Linear shear modulus for shearing between fiber families 1 and 2
Curve ID for shear stress as a function of shearing type as specified with METH12 between the $1^{\text {st }}$ and $2^{\text {nd }}$ fibers. See Remark 1.

Locking angle (in radians) for shear between fiber families 1 and 2
Linear shear modulus for shear angles larger than ALOC12
Option for shear response between fiber 1 and 2 (see Remark 1):
EQ.0: Elastic shear response. Curve LCG12 specifies shear stress as a function of the scalar product of the fiber directions.

EQ.1: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of the normalized scalar product of the fiber directions.
EQ.2: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers.

EQ.3: Elasto-plastic shear response. Curve LCG12 defines yield shear stress as a function of normalized shear angle between the fibers.

EQ.4: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers. This option is a special implementation for noncrimped fabrics, where one of the fiber families corresponds to a stitching.
EQ.5: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of normalized shear angle between the fibers. This option is a special implementation for non-crimped fabrics, where one of the fiber families corresponds to a stitching.

VARIABLE

DAM12

DESCRIPTION

EQ.10: Elastic shear response. Curve LCG12 specifies shear stress as a function of shear angle (radians) between the fibers. This option is tailored for woven fabrics and guarantees a pure shear stress response.
EQ.11: Elasto-plastic shear response. Curve LCG12 specifies yield shear stress as a function of normalized shear angle. This option is tailored for woven fabrics and guarantees a pure shear stress response

Load curve ID defining the damage parameter d_{12}^{m} for the matrix as function of shear angle (radians) between the $1^{\text {st }}$ and $2^{\text {nd }}$ fiber (see Remark 2). The damage parameter d_{12}^{m} ranges from 0.0 to 1.5 . A value of 0.0 indicates an undamaged matrix, whereas 1.0 refers to a completely damaged matrix. To initiate failure of the composite at the integration point, a matrix damage d_{12}^{m} of 1.5 must be reached. Naturally, the mechanical behavior of the matrix does not change for damage values between 1.0 and 1.5.

Card 7	1	2	3	4	5	6	7	8
Variable	IDF2	ALPH2	EF2	LCEF2	G23_2	G31_2	DAF2	DAM2
Type	I	F	F	I	F	F	I	I

VARIABLE

IDF2
ALPH2 Orientation angle α_{2} for $2^{\text {nd }}$ fiber with respect to overall material direction

EF2 Young's modulus for $2^{\text {nd }}$ fiber family
LCEF2 Load curve for stress as a function of fiber strain of $2^{\text {nd }}$ fiber. With this option active, EF2 is ignored.

G23_2 Transverse shear modulus orthogonal to direction of $2^{\text {nd }}$ fiber
G31_2 Transverse shear modulus in direction of $2^{\text {nd }}$ fiber

VARIABLE

DAF2

DAM2

DESCRIPTION

Load curve or table ID for damage parameter d_{2}^{f} for $2^{\text {nd }}$ fiber (see Remark 2). If a curve, DAF2 specifies damage as a function of fiber strain (for compression and elongation). If DAF2 refers to a table, then two different damage functions for tensile and compressive stresses are input. The values in the table are arbitrary and exist only to index the two curves. The first indexed curve is assumed to specify tensile damage as a function of fiber strains while second curve specifies compressive damage as a function of fiber strains. input different damage functions for tensile and compressive stresses. Any other curves input with the table definition are ignored.
The damager parameter d_{2}^{f} ranges from 0.0 for an undamaged fiber to 1.0 for a failed fiber family. If all families have failed, material failure at the integration point is initiated.

Load curve or table ID for damage parameter d_{2}^{m} for matrix material based on the current deformation status of the $2^{\text {nd }}$ fiber (see Remark 2). If a curve, it specifies damage as a function of fiber strain (for compression and elongation). If a table, then the values are fiber strain rates which index damage as a function of fiber strain curves.
The damager parameter d_{2}^{m} ranges from 0.0 to 1.5 . A value of 0.0 indicates an undamaged matrix, whereas 1.0 refers to a completely damaged matrix. To initiate failure of the composite at the integration point, a matrix damage d_{2}^{m} of 1.5 must be reached. Naturally, the mechanical behavior of the matrix does not change for damage values between 1.0 and 1.5.

Card 8	1	2	3	4	5	6	7	8
Variable	G23	LCG23	ALOC23	GLOC23	METH23	DAM23		
Type	F	I	F	F	I	F		

VARIABLE

G23
LCG23 Curve ID for shear stress as a function of shearing type as specifies with METH23 between the $2^{\text {nd }}$ and $3^{\text {rd }}$ fibers. See Remark 1.

ALOC23

GLOC23
METH23

DAM23

DESCRIPTION

Locking angle (in radians) for shear between fiber families 2 and 3
Linear shear modulus for shear angles larger than ALOC23
Option for shear response between fibers 2 and 3 (see METH12 for input options and Remark 1).

Load curve ID defining the damage parameter d_{23}^{m} for the matrix as function of shear angle (in radians) between the $1^{\text {st }}$ and $2^{\text {nd }}$ fiber (see Remark 2). The damager parameter d_{23}^{m} ranges from 0.0 to 1.5 . A value of 0.0 indicates an undamaged matrix, whereas 1.0 refers to a completely damaged matrix. To initiate failure of the composite at the integration point, a matrix damage d_{23}^{m} of 1.5 must be reached. Naturally, the mechanical behavior of the matrix does not change for damage values between 1.0 and 1.5.

Card 9	1	2	3	4	5	6	7	8
Variable	IDF3	ALPH3	EF3	LCEF3	G23_3	G31_3	DAF3	DAM3
Type	I	F	F	I	F	F	1	1

VARIABLE
IDF3
ALPH3

EF3
LCEF3

G23_3
G31_3

DESCRIPTION

ID for $3^{\text {rd }}$ fiber family for post-processing
Orientation angle α_{3} for $3^{\text {rd }}$ fiber with respect to overall material direction

Young's modulus for $3^{\text {rd }}$ fiber family
Load curve for stress versus fiber strain of $3^{\text {rd }}$ fiber. With this option active, EF3 is ignored.

Transverse shear modulus orthogonal to direction of $3^{\text {rd }}$ fiber
Transverse shear modulus in direction of $3^{\text {rd }}$ fiber

VARIABLE

DAF3

DAM3

DESCRIPTION

Load curve or table ID for damage parameter d_{3}^{f} for $3^{\text {rd }}$ fiber (see Remark 2). If a curve, DAF3 specifies damage as a function of fiber strain (for compression and elongation). If DAF3 refers to a table, then two different damage functions for tensile and compressive stresses are input. The values in the table are arbitrary and exist only to index the two curves. The first indexed curve is assumed to specify tensile damage as a function of fiber strains while second curve specifies compressive damage as a function of fiber strains. input different damage functions for tensile and compressive stresses. Any other curves input with the table definition are ignored.
The damager parameter d_{3}^{f} ranges from 0.0 for an undamaged fiber to 1.0 for a failed fiber family. If all families have failed, material failure at the integration point is initiated.

Load curve or table ID for damage parameter d_{3}^{m} for matrix material based on the current deformation status of the $3^{\text {rd }}$ fiber (see Remark 2). If a curve, it specifies damage as a function of fiber strain (for compression and elongation). If a table, then the values are fiber strain rates which index damage as a function of fiber strain curves.
The damager parameter d_{3}^{m} ranges from 0.0 to 1.5 . A value of 0.0 indicates an undamaged matrix, whereas 1.0 refers to a completely damaged matrix. To initiate failure of the composite at the integration point, a matrix damage d_{3}^{m} of 1.5 must be reached. Naturally, the mechanical behavior of the matrix does not change for damage values between 1.0 and 1.5.

The following card is optional.

Card 10	1	2	3	4	5	6	7	8
Variable	POSTV	VISCS	IHIS					
Type	F	F	F					

VARIABLE

POSTV

DESCRIPTION

Parameter for outputting additional history variables that might be useful for post-processing. See Remark 4.

VARIABLE

VISCS

IHIS

Portion of viscous relaxation moduli VGk that is accounted for in time step
size calculation
Flag for material properties initialization:
EQ.0: Material properties defined in Cards 1-9 are used
GE.1: Use *INITIAL_STRESS_SHELL to initialize some material properties on an element-by-element basis (see Remark 5 below).

Remarks:

1. Stress Calculation. This material features an additive split of the matrix and reinforcement contributions to the stress. Therefore, the combined stress response, σ, equals the sum $\sigma^{m}+\sigma^{f}$.

The matrix uses an elastic-plastic material formulation with a von-Mises yield criterion. This material supports a mixed hardening approach.

We formulated the contribution of the fiber reinforcement as a hyperelastic material. Based on the orientation angle, α_{i}, of the $i^{\text {th }}$ fiber family, LS-DYNA computes an initial fiber direction in the element coordinate system \mathbf{m}_{i}^{0}. By using the deformation gradient, \mathbf{F}, the current fiber configuration is given as $\mathbf{m}_{\mathbf{i}}=\mathbf{F} \mathbf{m}_{i}^{0}$, containing all necessary information on fiber strain and reorientation. Here, this vector is always orthogonal to the shell normal and can, thus, be represented by the two in-plane vector components.

Following standard textbook mechanics for anisotropic and hyperelastic materials, the elastic stresses within the fibers due to tension or compression are given as

$$
\sigma_{T}^{f}=\sum_{i=1}^{n} \sigma_{T, i}^{f}\left(\lambda_{i}\right)=\sum_{i=1}^{n} \frac{1}{J} f_{i}\left(\lambda_{i}\right)\left(\mathbf{m}_{\mathrm{i}} \otimes \mathbf{m}_{\mathrm{i}}\right)
$$

where the function f_{i} of the fiber strain λ_{i} corresponds to the load curve LCEFi. n is the number of fiber families.

The shear behavior of the reinforcement can be controlled by METH $i j$. For values less than 10, the behavior is again standard textbook mechanics:

$$
\sigma_{S}^{f}=\sum_{i=1}^{n-1} \sigma_{S, i, i+1}^{f}=\sum_{i=1}^{n-1} \frac{1}{J} g_{i, i+1}\left(\kappa_{i, i+1}\right)\left(\mathbf{m}_{\mathbf{i}} \otimes \mathbf{m}_{\mathbf{i}+1}\right) .
$$

Here $\kappa_{i, i+1}$ represents the employed shear measure (scalar product or shear angle in radians). In general, the dyadic product $\mathbf{m}_{\mathbf{i}} \otimes \mathbf{m}_{\mathbf{i}+1}$ does not define a shear stress tensor. This formulation might result in unphysical shear behavior in the case of woven fabrics. Therefore, we devised METH $i j=10$ and 11 to always give a pure shear stress tensor, σ_{S}^{f}.

For even values of METH $i j$, an elastic shear response is assumed. If defined, the load curve LCG $i j$ corresponds to function $g_{i, j}$. In this case the values of Gij, ALOC $i j$ and GLOC $i j$ are ignored.

For odd values of METH $i j$ on the other hand, an elasto-plastic shear behavior is assumed and the load curve LCGij defines the yield stress value as function of a normalized shear parameter. This implies that the load curve needs to be defined for abscissa values between 0.0 and 1.0. A first elastic regime, which is controlled by the linear shear stiffness Gij, is assumed until the yield stress given in the load curve for normalized shear value 0.0 is reached. A second linear elastic regime is defined for shear angles $\left(\xi_{i j}\right)$ / fiber angles $\left(\eta_{i j}\right)$ larger than the locking angle ALOC $i j$. The corresponding stiffness in that regime is GLOC $i j$. At the transition point to the second elastic regime, the shear stress corresponds to the load curve value for a normalized shear of 1.0.
2. Damage and Failure. This material features a phenomenological description of damage and failure. User-defined load curves specify several damage variables as functions of the fiber strain values λ_{i} or shear $\kappa_{i, i+1}$. Here, damage parameters are always accumulated and cannot decrease during the simulation.

If input parameter DAFi refers to a load curve, it specifies the damage parameter d_{i}^{f} as function of the fiber strain λ_{i}. If DAF i refers to a table, the material distinguishes between tensile and compressive damage. In that case, two parameters $d_{i}^{f, t}$ and $d_{i}^{f, c}$ are introduced as functions of the fiber strain λ_{i} (given by two load curves referred to by the table definition) and are both evaluated in every time step. The effective damager parameter d_{i}^{f} is then defined as

$$
d_{i}^{f}\left(\lambda_{i}\right)= \begin{cases}d_{i}^{f, c}\left(\lambda_{i}\right), & \lambda_{i}<0 \\ d_{i}^{f, t}\left(\lambda_{i}\right), & \lambda_{i} \geq 0\end{cases}
$$

The damage parameter d_{i}^{f} degrades the fiber stress contribution $\sigma_{T, i}^{f}$:

$$
\widehat{\sigma}_{T}^{f}=\sum_{i=1}^{n}\left(\mathbf{1}-d_{i}^{f}\left(\lambda_{i}\right)\right) \sigma_{T, i}^{f}\left(\lambda_{i}\right) .
$$

Failure of the composite material at the integration point is initiated as soon as all fibers have failed: $\min _{i} d_{i}^{f}=1.0$.

We assume matrix damage to result from the fiber straining and reorientating. Consequently, the input includes load curves DAM i and DAM $i j$ to specify damage parameters $d_{i}^{m}\left(\lambda_{i}\right)$ and $d_{i, i+1}^{m}\left(\kappa_{i, i+1}\right)$, respectively. The overall matrix damage parameter d^{m} is given by

$$
d^{m}=\max \left(\max _{i \leq n} d_{i}^{m}\left(\lambda_{i}\right), \max _{i<n} d_{i, i+1}^{m}\left(\kappa_{i, i+1}\right)\right) .
$$

Matrix failure ($d^{m}=1.0$) does not necessarily initiate failure of the composite material. In this implementation, matrix damage parameters d_{i}^{m} and $d_{i, i+1}^{m}$ that exceed a value of 1.0 are admissible. Failure of the composite is initiated as soon as the damage parameter reaches 1.5. To account for this delayed failure, the degradation of the matrix stresses is given by:

$$
\widehat{\sigma}^{m}=\left(1-\min \left(1.0, d^{m}\right)\right) \sigma^{m}
$$

3. Fiber Viscosity. Input parameter VISC activates fiber viscosity. This feature adds numerical damping to the post-damage behavior of the material. Damping might be necessary since brittle fiber failure tends to induce shockwaves through the material, resulting in oscillations or even unphysical damage propagation.

If activated, an additional viscous stress term is added to the fiber contribution:

$$
\sigma_{T, v}^{f}=\sum_{i=1}^{n} \frac{1}{J}\left(\int_{0}^{t} f_{v}(t-\tau) \frac{\partial \lambda_{i}(\tau)}{\partial \tau} d \tau\right)\left(\mathbf{m}_{\mathrm{i}} \otimes \mathbf{m}_{\mathrm{i}}\right) .
$$

The relaxation function, f_{v}, is represented by up to four terms of the Prony series expansions and thus reads

$$
f_{v}(t)=\sum_{k} G_{k} e^{-\beta_{k} t}
$$

with relaxation moduli G_{k} and decay constants β_{k}.
4. History Data. This material formulation outputs to d3plot additional data for post-processing to the set of history variables if requested. The parameter POSTV specifies the data to be written. Its value is calculated as

$$
\operatorname{POSTV}=a_{1}+2 a_{2}+4 a_{3}+8 a_{4}+16 a_{5}+32 a_{6}+64 a_{7}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular type of post-processing variable according to the following table.

Flag	Description	Variables	\# History Var
a_{1}	Fiber angle	η_{12}, η_{23}	2
a_{2}	Fiber ID	IDF1, IDF2, IDF3	3
a_{3}	Fiber strain	$\lambda_{1}, \lambda_{2}, \lambda_{3}$	3
a_{4}	Fiber direction (in global coordinates)	$\mathbf{m}_{1}^{\mathrm{g}}, \mathbf{m}_{2}^{\mathrm{g}}, \mathbf{m}_{3}^{\mathrm{g}}$	
a_{5}	Individual fiber stresses	$f_{1}\left(\lambda_{1}\right), f_{2}\left(\lambda_{2}\right), f_{3}\left(\lambda_{3}\right)$	9
a_{6}	Fiber stress tensor	$\sigma_{11,}^{f}, \sigma_{22}^{f}, \sigma_{33}^{f}, \sigma_{12}^{f}, \sigma_{23}^{f}, \sigma_{31}^{f}$	6
a_{7}	Fiber direction (in material coordinates $)$	$\mathbf{m}_{1}^{\mathrm{m}}, \mathbf{m}_{2}^{\mathrm{m}}, \mathbf{m}_{3}^{\mathrm{m}}$	6

The above table also shows the order of output as well as the number of extra history variables associated with the particular flag. In total NXH extra variables are required depending on the choice of parameter POSTV. For example, the maximum number of additional variables is $\mathrm{NXH}=32$ for POSTV $=127$.

As mentioned in Remark 1 fiber orientation is represented in the material subroutine as vector \mathbf{m}_{i} defined in the element coordinate system. Prior to writing to the list of histories the vector is transformed into the global coordinate system with three vector components for $a_{4}=1$ and/or into the overall material coordinate system with two vector components for $a_{7}=1$.

A more complete list of potentially helpful history variables is given in the following table. The variable NEIPS in *DATABASE_EXTENT_BINARY must be set to output these history variables.

History Variable \#	Description
3	Number of fibers
4	NXH
$5 \rightarrow \mathrm{NXH}+4$	Variables as described in preceding table
$\mathrm{NXH}+5$	POSTV
$\mathrm{NXH}+6, \mathrm{NXH}+7$	Shear angles ξ_{12} and ξ_{23}

History Variable \#	Description

	$\mathrm{NXH}+8$
$\mathrm{NXH}+9 \rightarrow \mathrm{NXH}+11$	Matrix damage parameter d^{m}
$\mathrm{NXH}+12 \rightarrow \mathrm{NXH}+14$	Fiber tensile damage parameter $d_{i}^{f, t}$
$\mathrm{NXH}+15 \rightarrow \mathrm{NXH}+20$	Matrix stress tensor in element coordinate system
$\mathrm{NXH}+21 \rightarrow \mathrm{NXH}+26$	Deformation gradient

5. Description of IHIS. Some material data can be initialized on an element-byelement basis through history variables defined with *INITIAL_STRESS_SHELL starting at position HISV5.

How the data is interpreted depends on the parameter IHIS. Following the same concept as for parameter POSTV, the value of IHIS is computed by the following expression:

$$
\text { IHIS }=a_{1}+2 a_{2}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular type of material variable. So far, the only material variables implemented are fiber orientation in two different coordinate systems, global and material. Thus, at most one of the flags a_{1} and a_{2} should be set to 1 .

Flag	Description	Variables	\# History Var
a_{1}	Fiber direction (in global coordinates)	$\mathbf{m}_{1}^{\mathrm{g}}, \mathbf{m}_{2}^{\mathrm{g}}, \mathbf{m}_{3}^{\mathrm{g}}$	9
a_{2}	Fiber direction (in material coordinates)	$\mathbf{m}_{1}^{\mathrm{m}}, \mathbf{m}_{2}^{\mathrm{m}}, \mathbf{m}_{3}^{\mathrm{m}}$	6

*MAT_REINFORCED_THERMOPLASTIC_UDFIBER

This is Material Type 249. It describes a material with unidirectional fiber reinforcements and considers up to three distinct fiber directions. Each fiber family is described by a spatially transversely isotropic neo-Hookean constitutive law. The implementation is based on an adapted version of the material described by Bonet and Burton (1998). The material is only available for thin shell elements and in explicit simulations.

Card Summary:

Card 1. This card is required.

MID	RO	EM	PRM	G	EZDEF		

Card 2. This card is required.

NFIB	AOPT	XP	YP	ZP	A1	A2	A3

Card 3. This card is required.

V1	V2	V3	D1	D2	D3	MANGL	

Card 4. This card is required.

IDF1	ALPH1	EF1	KAP1				

Card 5. This card is required.

IDF2	ALPH2	EF2	KAP2				

Card 6. This card is required.

IDF3	ALPH3	EF3	KAP3				

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	EM	PRM	G	EZDEF		
Type	A	F	F	F	F	F		

VARIABLE	DESCRIPTION
MID RO Material identification. A unique number or label be specified (see *PART). EM Density PR Isotropic Young's modulus, $E_{\text {iso }}$ G Poisson's ratio, v	Linear shear modulus, $G_{f i b}$

EZDEF Algorithmic parameter. If set to 1, last row of deformation gradient is not updated during the calculation.

Card 2	1	2	3	4	5	6	7	8
Variable	NFIB	AOPT	XP	YP	ZP	A1	A2	A3
Type	I	F	F	F	F	F	F	F

VARIABLE

NFIB
AOPT

DESCRIPTION

Number of fiber families to be considered (maximum of 3)
Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle MANGL.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then, \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle MANGL. MANGL may be set in the keyword input for the

VARIABLE

DESCRIPTION

element or in the input for this keyword.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

Coordinates of point p for $\mathrm{AOPT}=1$
A1, A2, A3 Components of vector a for $\mathrm{AOPT}=2$

Card 3	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGL	
Type	F	F	F	F	F	F	F	

VARIABLE
V1, V2, V3
D1, D2, D3
MANGL

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3$
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for AOPT $=0$ and. It may be overwritten on the element card; see *ELEMENT_SHELL_BETA.

Card 4	1	2	3	4	5	6	7	8
Variable	IDF1	ALPH1	EF1	KAP1				
Type	I	F	F	F				

Card 5	1	2	3	4	5	6	7	8
Variable	IDF2	ALPH2	EF2	KAP2				
Type	I	F	F	F				

Card 6	1	2	3	4	5	6	7	8
Variable	IDF3	ALPH3	EF3	KAP3				
Type	I	F	F	F				

VARIABLE
IDFi

EFi
KAPi

ALPH $i \quad$ Orientation angle α_{i} for $i^{\text {th }}$ fiber with respect to overall material direction

DESCRIPTION

ID for $i^{\text {th }}$ fiber family for post-processing

Young's modulus E_{i} for $i^{\text {th }}$ fiber family
Fiber volume ratio κ_{i} of $i^{\text {th }}$ fiber family

Stress Calculation:

In this model up to three distinct fiber families are considered. We assume that there is no interaction between the families. Thus, the resulting stress tensor is the sum of the single fiber responses. Each fiber response is the sum of an isotropic and a spatially transversely isotropic neo-Hookean stress contribution, $\sigma_{i}^{\text {iso }}$ and σ_{i}^{tr}, respectively. The implementation is based on the work of Bonet and Burton (1998), adapted by BMW for simulation of unidirectional fabrics (see references below).

The isotropic stress tensor, $\sigma_{i}^{\text {iso }}$, depends on an isotropic shear modulus, μ, and an isotropic bulk modulus, λ_{i} where:

$$
\mu=\frac{E_{\text {iso }}}{2(1+v)} \text { and } \lambda_{i}=\frac{E_{\mathrm{iso}}\left(v+n_{i} v^{2}\right)}{2(1+v)} .
$$

Here, the variable n_{i} denotes the ratio between stiffness orthogonally to the fibers and in fiber direction, that is, $n_{i}=E_{\mathrm{iso}} / E_{i}$. E_{iso}, ν, and E_{i} are input parameters. Using the left Cauchy-Green tensor, \mathbf{b}, the isotropic neo-Hookean model reads:

$$
\sigma_{i}^{\mathrm{iso}}=\frac{\mu}{J}(\mathbf{b}-\mathbf{I})+\lambda_{i}(J-1) \mathbf{I} .
$$

Based on the orientation angel α_{i} of the $i^{\text {th }}$ fiber family, an initial fiber direction \mathbf{m}_{i}^{0} is computed. The deformation gradient, \mathbf{F}, transforms the initial fiber configuration to the current fiber configuration as $\mathbf{m}_{i}=\mathbf{F m}_{i}^{0}$. This vector contains all necessary information on fiber elongation and reorientation.

The spatially transversely isotropic neo-Hookean formulation is given by:

$$
J \sigma_{i}^{\operatorname{tr}}=2 \beta_{i}\left(I_{4}-1\right) \mathbf{I}+2\left(\alpha+2 \beta_{i} \ln J+2 \gamma_{i}\left(I_{4}-1\right)\right) \mathbf{m}_{i} \otimes \mathbf{m}_{i}-\alpha\left(\mathbf{b m}_{i} \otimes \mathbf{m}_{i}+\mathbf{m}_{i} \otimes \mathbf{b} \mathbf{m}_{i}\right)
$$

with material parameters

$$
\begin{gathered}
\alpha=\mu-G_{\mathrm{fib}}, \quad \beta_{i}=\frac{E_{\mathrm{iso}} v^{2}\left(1-n_{i}\right)}{4 m_{i}(1+v)}, \quad m_{i}=1-v-2 n_{i} v^{2}, \\
\gamma_{i}=\frac{E_{i} \kappa_{i}(1-v)}{8 m}-\frac{\lambda_{i}+2 \mu}{8}+\frac{\alpha}{2}-\beta_{i} .
\end{gathered}
$$

The parameter EZDEF activates a modification of the model. Instead of the standard deformation gradient, \mathbf{F}, a modified tensor $\tilde{\mathbf{F}}$ is employed to calculate current fiber directions \mathbf{m}_{i} and left Cauchy-Green tensor \mathbf{b}. For tensor $\tilde{\mathbf{F}}$ only the first two rows of the deformation gradient are updated based on the deformation of the element. This simplification can in some cases increase the stability of the model, especially if the structure undergoes large deformations.

References:

[1] Bonet, J., and A. J. Burton. "A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations." Computer methods in applied mechanics and engineering 162.1 (1998): 151-164.
[2] Senner, T., et al. "A modular modeling approach for describing the in-plane forming behavior of unidirectional non-crimp-fabrics." Production Engineering 8.5 (2014): 635-643.
[3] Senner, T., et al. "Bending of unidirectional non-crimp-fabrics: experimental characterization, constitutive modeling and application in finite element simulation." Production Engineering 9.1 (2015): 1-10.

History Data:

History Variable \#	Description
3	ID of $1^{\text {st }}$ fiber
4	ID of 2 ${ }^{\text {nd }}$ fiber
5	ID of 3 ${ }^{\text {rd }}$ fiber
$6 \rightarrow 8$	Current direction of 1 ${ }^{\text {st }}$ fiber
$9 \rightarrow 11$	Current direction of 2 ${ }^{\text {nd }}$ fiber
$12 \rightarrow 14$	Current direction of $3^{\text {rd }}$ fiber

History Variable \#	Description

15	Number of fibers
16	Projected orthogonal fiber strain (1 ${ }^{\text {st }}$ fiber)
17	Projected parallel fiber strain (1 $1^{\text {st }}$ fiber)
18	Shear angle ($1^{\text {st }}$ fiber) in rad
19	Euler-Almansi strain (1 ${ }^{\text {st }}$ fiber)
20	Porosity ($1^{\text {st }}$ fiber)
21	Fiber volume ratio (${ }^{\text {st }}$ fiber)
22	Projected orthogonal fiber strain ($2^{\text {nd }}$ fiber)
23	Projected parallel fiber strain ($2^{\text {nd }}$ fiber)
24	Shear angle ($2^{\text {nd }}$ fiber) in rad
25	Euler-Almansi strain (${ }^{\text {nd }}$ fiber)
26	Porosity ($2^{\text {nd }}$ fiber)
27	Fiber volume ratio (${ }^{\text {nd }}$ fiber)
28	Projected orthogonal fiber strain (3 ${ }^{\text {rd }}$ fiber)
29	Projected parallel fiber strain (3 ${ }^{\text {rd }}$ fiber)
30	Shear angle (3 ${ }^{\text {rd }}$ fiber) in rad
31	Euler-Almansi strain (3 ${ }^{\text {rd }}$ fiber)
32	Porosity ($3^{\text {rd }}$ fiber)
33	Fiber volume ratio (3 ${ }^{\text {rd }}$ fiber)

*MAT_TAILORED_PROPERTIES

This is Material Type 251. It is similar to MAT_PIECEWISE_LINEAR_PLASTICITY or *MAT_024 (see full description there). Unlike *MAT_024, it has a 3D table option that uses a history variable (that could be hardness, pre-strain, or some other quantity) from a previous calculation to evaluate the plastic behavior as a function of 1) history variable, 2) strain rate, and 3) plastic strain. Starting with release R12, it is also possible to use a 4D table option with two history variables, that is, the plastic behavior would be a function of 1) history variable HISVN $+1,2$) history variable HISVN, 3) strain rate, and 4) plastic strain. Starting with release R15, the Young's modulus can be scaled with a factor given on history variable \#8. This material is available for shell and solid elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR			FAIL	TDEL
Type	A	F	F	F			F	F
Default	none	none	none	none			10^{20}	0

Card 2	1	2	3	4	5	6	7	8
Variable			LCSS		VP	HISVN	PHASE	
Type			F		F	I	F	
Default			0		0	0	0	

Card 3	1	2	3	4	5	6	7	8
Variable	EPS1	EPS2	EPS3	EPS4	EPS5	EPS6	EPS7	EPS8
Type	F							
Default	0	0	0	0	0	0	0	0

Card 4	1	2	3	4	5	6	7	8
Variable	ES1	ES2	ES3	ES4	ES5	ES6	ES7	ES8
Type	F	F	F	F	F	F	F	F
Default	0	0	0	0	0	0	0	0

VARIABLE

MID

RO Mass density
E Young's modulus. Spatial variation is possible using history variable \#8. See Remark 1.

PR Poisson's ratio
FAIL Failure flag:
LT.O.O: Call user-defined failure subroutine, matusr_24 in dyn21.F, to determine failure

EQ.0.0: Do not consider failure. This option is recommended if failure is not of interest since many calculations will be saved.

GT.0.0: Effective plastic strain to failure. When the plastic strain reaches this value, the element is deleted from the calculation.

TDEL Minimum time step size for automatic element deletion
LCSS Load curve ID or Table ID
Load Curve. When LCSS is a load curve ID, it is taken as defining stress as a function of effective plastic strain. If defined, EPS1 - EPS8 and ES1 - ES8 are ignored.

Tabular Data. The table ID defines for each strain rate value a load curve ID giving the stress as a function effective plastic strain for that rate; see Figure M24-1. When the strain rate falls below the minimum value, the stress as a function of effective plastic strain curve for the lowest value of strain rate is used. Likewise, when the strain rate exceeds the maximum value the stress as a function

VARIABLE

VP Formulation for rate effects:
EQ.0.0: Scale yield stress (default)
EQ.1.0: Viscoplastic formulation
HISVN Location of the history variable in the history array of *INITIAL_STRESS_SHELL/SOLID that is used to evaluate the 3D table LCSS. If a 4 D table is used, then HISVN is the location of the history variable for the *TABLE_3D value, and HISVN +1 is the location of the history variable for the *TABLE_4D values. See Remark 4.

PHASE Constant value to evaluate the 3D table LCSS. PHASE is only used if HISVN $=0$.

EPS1 - EPS8 Effective plastic strain values (optional). At least 2 points should be defined. The first point must be zero corresponding to the initial yield stress.

ES1-ES8 Corresponding yield stress values to EPS1 - EPS8

Remarks:

1. Scaling the Young's modulus. The Young's modulus can be scaled by a factor given on history variable HISV8 of *INITIAL_STRESS_SHELL/SOLID. A value of 1.0 means no scaling (default).
2. LCSS as multi-dimensional table. If using a 3D or 4D for LCSS, interpolation is used to find the corresponding stress value for the current plastic strain, strain rate, and history variable(s). In addition, extrapolation is used for the history variable evaluation, which means that some upper and lower "limit curves" have to be used, if extrapolation is not desired.
3. Location of material history variables in dynain. If using *INTERFACE_SPRINGBACK_LSDYNA to write material history to the dynain file, the history variables of *MAT_251 (for example, hardness and temperature) are written to positions HISV6 and HISV7 of *INITIAL_STRESS_SHELL/SOLID.
4. HISVN. We recommend setting HISVN $=6$ and putting the history variables on position HISV6 (and HISV7 if TABLE_4D is used) if using *MAT_251 in combination with *MAT_ADD_...

*MAT_TOUGHENED_ADHESIVE_POLYMER

This is Material Type 252, the Toughened Adhesive Polymer model (TAPO). It is based on non-associated $I_{1}-J_{2}$ plasticity constitutive equations and was specifically developed to represent the mechanical behaviour of crash optimized high-strength adhesives under combined shear and tensile loading. This model includes material softening due to damage, rate-dependency, and a constitutive description for the mechanical behaviour of bonded connections under compression.

A detailed description of this material can be found in Matzenmiller and Burbulla [2013]. This material model can be used with solid elements or with cohesive elements in combination with *MAT_ADD_COHESIVE.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	FLG	JCFL	DOPT	
Type	A	F	F	F	I	I	I	

Card 2	1	2	3	4	5	6	7	8
Variable	LCSS	TAU0	Q	B	H	C	GAM0	GAMM
Type	I	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	A10	A20	A1H	A2H	A2S	POW		SRFILT
Type	F	F	F	F	F	F		F

Card 4	1	2	3	4	5	6	7	8
Variable	IHIS		D1	D2	D3	D4	D1C	D2C
Type	F		F	F	F	F	F	F

VARIABLE
MID

RO
E
PR
FLG

JCFL Johnson \& Cook constitutive failure criterion flag (see Material Model):

EQ.O: use triaxiality factor only in tension,
EQ.1: use triaxiality factor in tension and compression.
DOPT Damage criterion flag \widehat{D} or \check{D} (see Material Model):
EQ.O: damage model uses damage plastic strain r,
EQ.1: damage model uses plastic arc length γ_{v}.
LCSS Curve ID or Table ID
Load Curve. The curve specifies yield stress τ_{Y} as a function of plastic strain r.
Table Data. If a 2D table is defined, for each strain rate value the table specifies a curve ID giving the yield stress as a function of plastic strain for that strain rate (see *DEFINE_TABLE). If a 3D table is defined, for each temperature value, a table ID is specified which, in turn, maps strain rates to curves giving the yield stress as a function of plastic strain (see DEFINE_TABLE_3D).
The yield stress as a function of plastic strain curve for the lowest value of strain rate or temperature is used when the strain rate or temperature falls below the minimum value. Likewise, maximum values cannot be exceeded. Hardening variables are ignored with this option (TAU0, Q, B, H, C, GAM0, and GAMM).

TAU0

Initial shear yield stress, τ_{0}

D1 Johnson \& Cook failure parameter d_{1}

VARIABLE

Q
B
H

C

GAM0
GAMM
A10

A20
A1H

A2H

A2S
POW
SRFILT

IHIS

D2
D3

D4

Isotropic nonlinear hardening modulus, q
Isotropic exponential decay parameter, b
Isotropic linear hardening modulus, H
Strain rate coefficient C.
Quasi-static threshold strain rate, γ_{0}
Maximum threshold strain rate, γ_{m}
Yield function parameter: initial value a_{10} of $a_{1}=\hat{a}_{1}(r)$
Yield function parameter: initial value a_{20} of $a_{2}=\hat{a}_{2}(r)$
Yield function parameter a_{1}^{H} for formative hardening (ignored if FLG = 2)

Yield function parameter a_{2}^{H} for formative hardening (ignored if FLG = 2)

Plastic potential parameter a_{2}^{*} for hydrostatic stress term
Exponent n of the phenomenological damage model
Strain rate filtering parameter in exponential moving average with admissible values ranging from 0 to 1 :

$$
\dot{\varepsilon}_{n}^{\mathrm{avg}}=\text { SRFILT } \times \dot{\varepsilon}_{n-1}^{\mathrm{avg}}+(1-\text { SRFILT }) \times \dot{\varepsilon}_{n}
$$

Flag for additional material properties initialization based on a prior process simulation:

EQ.0: No additional initialization
GE.1: Use *INITIAL_STRESS_SOLID to initialize additional material properties on an element-by-element basis (see Remark 1).

Johnson \& Cook failure parameter d_{2}
Johnson \& Cook failure parameter d_{3}
Johnson \& Cook rate dependent failure parameter d_{4}

Figure M252-1. Yield function f and plastic flow potential f^{*}

Figure M252-2. Yield function \hat{f} and plastic flow potential f^{*}

VARIABLE

DESCRIPTION

D1C
Johnson \& Cook damage threshold parameter $d_{1 c}$
D2C Johnson \& Cook damage threshold parameter $d_{2 c}$

Material Model:

Two different $I_{1}-J_{2}$ yield criteria for isotropic plasticity can be defined by parameter FLG:

1. $\mathrm{FLG}=0$ is used for the yield criterion f which is changed at the case of hydrostatic pressure $I_{1}=0$ into a nonlinear Drucker \mathcal{E} Prager model (DP)

$$
f:=\frac{J_{2}}{(1-D)^{2}}+\frac{1}{\sqrt{3}} a_{1} \tau_{0} \frac{I_{1}}{1-D}+\frac{a_{2}}{3}\left\langle\frac{I_{1}}{1-D}\right\rangle^{2}-\tau_{Y}^{2}=0
$$

with the Macauley bracket $\langle\bullet\rangle$, the first invariant of the stress tensor $I_{1}=\operatorname{tr} \sigma$, and the second invariant of the stress deviator $J_{2}=(1 / 2) \operatorname{tr}(\mathbf{s})^{2}$ (see Figure M252-1).
2. $\mathrm{FLG}=2$ is used for the yield criterion \hat{f} which is changed at the vertex into the deviatoric von Mises yield function (see Figure M252-2) and is used for

Figure M252-3. Accumulated plastic strain γ_{v} and damage plastic strain r as a function of strain γ
conservative calculation in case of missing uniaxial compression or combined compression and shear experiments:

$$
\hat{f}:=\frac{J_{2}}{(1-D)^{2}}+\frac{a_{2}}{3}\left\langle\frac{I_{1}}{1-D}+\frac{\sqrt{3} a_{1} \tau_{0}}{2 a_{2}}\right\rangle^{2}-\left(\tau_{Y}^{2}+\frac{a_{1}^{2} \tau_{0}^{2}}{4 a_{2}}\right)=0 .
$$

The yield functions f and \hat{f} are formulated in terms of the effective stress tensor

$$
\widetilde{\boldsymbol{\sigma}}=\sigma /(1-D)
$$

and the isotropic material damage D according to the continuum damage mechanics in Lemaitre [1992]. The stress tensor σ is defined in terms of the elastic strain ε^{e} and the isotropic damage D :

$$
\sigma=(1-D) \mathbb{C} \varepsilon^{\mathrm{e}}
$$

The continuity $(1-D)$ in the elastic constitutive equation above degrades the fourth order elastic stiffness tensor \mathbb{C},

$$
\mathbb{C}=2 G\left(\mathbb{I}-\frac{1}{3} \mathbf{1} \otimes \mathbf{1}\right)+K \mathbf{1} \otimes \mathbf{1}
$$

with shear modulus G, bulk modulus K, fourth order identity tensor \mathbb{I}, and second order identity tensor $\mathbf{1}$. The plastic strain rate $\dot{\varepsilon}^{\mathrm{p}}$ is given by the non-associated flow rule

$$
\dot{\varepsilon}^{\mathrm{p}}=\lambda \frac{\partial f^{*}}{\partial \sigma}=\frac{\lambda}{(1-D)^{2}}\left(\mathbf{s}+\frac{2}{3} a_{2}^{*}\left\langle I_{1}\right\rangle \mathbf{1}\right)
$$

with the potential f^{*} and an additional parameter $a_{2}^{*}<a_{2}$ to reduce plastic dilatancy.

$$
f^{*}:=\frac{J_{2}}{(1-D)^{2}}+\frac{a_{2}^{*}}{3}\left\langle\frac{I_{1}}{1-D}\right\rangle^{2}-\tau_{Y}^{2}
$$

The plastic arc length $\dot{\gamma}_{\mathrm{v}}$ characterizes the inelastic response of the material and is defined by the Euclidean norm:

$$
\dot{\gamma}_{\mathrm{v}}:=\sqrt{2 \operatorname{tr}\left(\dot{\varepsilon}^{p}\right)^{2}}=\frac{2 \lambda}{(1-D)^{2}} \sqrt{J_{2}+\frac{2}{3}\left(a_{2}^{*}\left\langle I_{1}\right\rangle\right)^{2}} .
$$

Figure M252-4. Rate-dependent tensile strength τ_{Y} as a function of effective strain rate $\dot{\gamma}$ (left) and effective damage plastic strain r (right)

In addition, the arc length of the damage plastic strain rate \dot{r} is introduced by means of the arc length $\dot{\gamma}_{\mathrm{v}}$ and the continuity $(1-D)$ as in Lemaitre [1992], where $\tilde{I}_{1}=I_{1} /(1-D)$ and $\tilde{J}_{2}=J_{2} /(1-D)^{2}$ are the effective stress invariants (see Figure M252-3).

$$
\dot{r}:=(1-\mathrm{D}) \dot{\gamma}_{\mathrm{v}}=2 \lambda \sqrt{\tilde{J}_{2}+\frac{2}{3}\left(a_{2}^{*}\left\langle\tilde{I}_{1}\right\rangle\right)^{2}}
$$

The rate-dependent yield strength for shear τ_{Y} can be defined by two alternative expressions. The first representation is an analytic expression for τ_{Y} :

$$
\tau_{\mathrm{Y}}=\left(\tau_{0}+R\right)\left[1+C\left(\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{0}}\right\rangle-\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{\mathrm{m}}}\right\rangle\right)\right], \text { with } \dot{\gamma}=\sqrt{2 \operatorname{tr}(\dot{\varepsilon})^{2}},
$$

where the first factor $\left(\tau_{0}+R\right)$ in τ_{Y} is given by the static yield strength with the initial yield τ_{0} and the non-linear hardening contribution

$$
R=q[1-\exp (-b r)]+H r .
$$

The second factor [...] in τ_{Y} describes the rate dependency of the yield strength by a modified Johnson \& Cook approach with the reference strain rates $\dot{\gamma}_{0}$ and $\dot{\gamma}_{\mathrm{m}}$ which limit the shear strength τ_{Y} (see Figure M252-4).

The second representation of the yield strength τ_{Y} is the table definition LCSS, where hardening can be defined as a function of plastic strain, strain rate, and temperature.

Toughened structural adhesives show distortional hardening under plastic flow, that is, the yield surface changes its shape. This formative hardening can be phenomenological described by simple evolution equations of parameters $a_{1}=\hat{a}_{1}(r) \wedge a_{2}=\hat{a}_{2}(r)$ in the yield criterions f with the initial values a_{10} and a_{20} :

$$
\begin{aligned}
& a_{1}=\hat{a}_{1}(r) \wedge \dot{a}_{1}=a_{1}^{\mathrm{H}} \dot{r} \\
& a_{2}=\hat{a}_{2}(r) \wedge a_{2} \geq 0 \wedge \dot{a}_{2}=a_{2}^{\mathrm{H}} \dot{r}
\end{aligned}
$$

Figure M252-5. Influence of DOPT on damage softening
The parameters a_{1}^{H} and a_{2}^{H} can take positive or negative values as long as the inequality $a_{2} \geq 0$ is satisfied. The criterion $a_{2} \geq 0$ ensures an elliptic yield surface. The yield criterion \hat{f} uses only the initial values $a_{1}=a_{10}$ and $a_{2}=a_{20}$ without the distortional hardening.

The empirical isotropic damage model D is based on the approach in Lemaitre [1985].
Two different evolution equations $\dot{\widehat{D}}(r, \dot{r})$ and $\dot{\bar{D}}\left(\gamma_{\mathrm{v}}, \dot{\gamma}_{\mathrm{v}}\right)$ are available (see Figure M252-5). The damage variable D is formulated in terms of the damage plastic strain rate \dot{r} ($\mathrm{DOPT}=0$)

$$
\dot{D}=\dot{\widehat{D}}(r, \dot{r})=n\left\langle\frac{r-\gamma_{\mathrm{c}}}{\gamma_{\mathrm{f}}-\gamma_{\mathrm{c}}}\right\rangle^{n-1} \frac{\dot{r}}{\gamma_{\mathrm{f}}-\gamma_{\mathrm{c}}}
$$

or of the plastic arc length $\dot{\gamma}_{\mathrm{v}}(\mathrm{DOPT}=1)$

$$
\dot{D}=\dot{\bar{D}}\left(\gamma_{\mathrm{v}}, \dot{\gamma}_{\mathrm{v}}\right)=n\left\langle\frac{\gamma_{\mathrm{v}}-\gamma_{\mathrm{c}}}{\gamma_{\mathrm{f}}-\gamma_{\mathrm{c}}}\right\rangle^{n-1} \frac{\dot{\gamma}_{\mathrm{v}}}{\gamma_{\mathrm{f}}-\gamma_{\mathrm{c}}},
$$

where r in contrast to γ_{v} increases non-proportionally slowly (see Figure M252-5). The strains at the thresholds γ_{c} and γ_{f} for damage initiation and rupture are functions of the triaxiality $T=\sigma_{\mathrm{m}} / \sigma_{\text {eq }}$ with the hydrostatic stress $\sigma_{\mathrm{m}}=I_{1} / 3$ and the von Mises equivalent stress $\sigma_{\text {eq }}=\sqrt{3 J_{2}}$ as in Johnson and Cook [1985].

$$
\begin{aligned}
& \gamma_{\mathrm{c}}=\left[d_{1 \mathrm{c}}+d_{2 \mathrm{c}} \exp \left(-d_{3}\langle T\rangle\right)\right]\left(1+d_{4}\left(\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{0}}\right\rangle-\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{\mathrm{m}}}\right\rangle\right)\right) \\
& \gamma_{f}=\left[d_{1}+d_{2} \exp \left(-d_{3}\langle T\rangle\right)\right]\left(1+d_{4}\left(\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{0}}\right\rangle-\left\langle\ln \frac{\dot{\gamma}}{\dot{\gamma}_{\mathrm{m}}}\right\rangle\right)\right)
\end{aligned}
$$

The option JCFL controls the influence of triaxiality $T=\sigma_{\mathrm{m}} / \sigma_{\text {eq }}$ in the pressure range for the thresholds γ_{c} and γ_{f}. JCFL $=0$ makes use of the Macauley bracket $\langle T\rangle$ for the triaxiality $T=\sigma_{\mathrm{m}} / \sigma_{\text {eq }}$ while JCFL $=1$ omits the Macauley bracket $\langle T\rangle$.

Remarks:

1. Description of IHIS. To account for results from a prior process simulation, it is possible to define additional material parameters on an element-by-element basis. The parameters influence stiffness, plasticity and damage behavior of the
material. LS-DYNA reads the data from the *INITIAL_STRESS_SOLID keyword beginning with history position HISV4. IHIS governs the number of read history values and their interpretation. It is defined as:

$$
\text { IHIS }=a_{0}+2 a_{1}+4 a_{2}+8 a_{3} .
$$

Here, each a_{i} is a binary flag set to either 1 or 0 , activating or deactivating the input of particular properties as summarized in the following table, which also indicates the order in which the additional data is read.

Flag	Description	Variables	$\#$
a_{0}	Scaling factors for elastic properties	α_{E}, α_{v}	2
a_{1}	Scaling factors for initial yield stress and harden-	χ_{c}, ϕ_{c}	2
	ing		
a_{2}	Scaling factors for damage strain thresholds	β, δ	2
a_{3}	Structural pre-damage	D_{2}	1

If defined by an appropriate value of IHIS $\left(a_{0}=1\right), \alpha_{E}$ and α_{v} are scaling factors for Young's modulus E and Poissons's ratio v, respectively. If $a_{1}=1$, then the plastic behavior is changed: the initial shear yield stress τ_{0} is multiplied by factor χ_{c}, and the hardening modulus R is scaled by ϕ_{c}. Choosing $a_{2}=1$ allows locally modifying the strain thresholds γ_{c} and γ_{f} by multiplying them by β and δ, respectively. Finally, setting $a_{3}=1$ causing accounting for a pre-damaged D_{2}. The two damage mechanisms, represented by D and D_{2}, are applied multiplicatively, such that the effective stress is given by

$$
\widetilde{\sigma}=\sigma /\left((1-D)\left(1-D_{2}\right)\right) .
$$

Note that parameter NHISV of *INITIAL_STRESS_SOLID has to be consistent with the choice of IHIS:

$$
\text { NHISV }=3+2 a_{0}+2 a_{1}+2 a_{2}+a_{3}
$$

2. History Variables. The following additional history variables are available for this keyword:

History Variable \#	Description
1	Damage variable, D
2	Plastic arc length, γ_{v}
3	Effective strain rate
4	Temperature
5	Yield stress

History Variable \#	Description
6	Damaged yield stress
7	Triaxiality
8	threshold, γ_{c}
9	threshold, γ_{f}

*MAT_GENERALIZED_PHASE_CHANGE

This is Material Type 254. It is designed to model phase transformations in materials and the implied changes in the material properties. It is applicable to hot stamping, heat treatment and welding processes for a wide range of materials. It accounts for up to 24 phases and provides a list of generic phase change mechanisms for each possible phase changes. The parameters for the phase transformation laws are to be given in tabulated form.

Given the current microstructure composition, the formulation implements a temperature and strain-rate dependent elastic-plastic material with non-linear hardening behavior. Above a certain temperature, the model shows an ideal elastic-plastic behavior with no evolution of plastic strains.

The material has been implemented for solid and shell elements and is suitable for explicit and implicit analysis.

Card Summary:

Card 1. This card is required.

MID	RO	N	E	PR	MIX	MIXR	

Card 2. This card is required.

TASTART	TAEND	CTE			EPSINI	DTEMP	

Card 2.1. This card is included if and only if TASTART >0 and TAEND $=0$.

XASTR	XAEND	XAIPA1	XAIPA2	XAIPA3	XAFPA	CTEANN	

Card 3. This card is required.

PTLAW	PTSTR	PTEND	PTX1	PTX2	PTX3	PTX4	PTX5

Card 4. This card is required.

PTTAB1	PTTAB2	PTTAB3	PTTAB4	PTTAB5	PTTAB6	PTTAB7	

Card 5. This card is required.

PTEPS	PTRIP	PTLAT	POSTV	NUSHIS	GRAIN	T1PHAS	T2PHAS

Card 5.1. This card is included if and only if NUSHIS >0.

FUSHI1	FUSHI2	FUSHI3	FUSHI4	FUSHI5	FUSHI6	FUSHI7	FUSHI8

Card 6. For each of the N phases, one parameter SIGYi must be specified. A maximum of 10 of this card may be included. The next keyword ("*") card terminates this input.

SIGY1	SIGY2	SIGY3	SIGY4	SIGY5	SIGY6	SIGY7	SIGY8

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	N	E	PR	MIX	MIXR	
Type	A	F	I	F	F	I	।	

VARIABLE
MID

RO Mass density, ρ
N Number of phases
E Young's modulus:
GT.O.O: Constant value is used.
LT.O.O: Temperature dependent Young's modulus given by load curve or table ID = - E . Tables are used to describe a temperature dependent modulus for each phase individually.

PR Poisson's ratio:
GT.0.0: Constant value is used.
LT.O.O: Temperature dependent Poisson's ratio given by load curve or table ID = -E. Tables are used to describe a temperature dependent Poisson's ratio for each phase individually.

MIX Load curve ID with initial phase concentrations
MIXR Load curve or table ID for mixture rule. Tables are used to define temperature dependency.

Card 2	1	2	3	4	5	6	7	8
Variable	TASTART	TAEND	CTE			EPSINI	DTEMP	
Type	F	F	I			F	F	

VARIABLE

TASTART

TAEND

CTE

EPSINI
DTEMP

DESCRIPTION

Temperature start for simple linear annealing (see Remark 5). If TASTART >0 and TAEND $=0$, an enhanced annealing algorithm is used (see Remark 6). In that case, TASTART is interpreted as an anneal option, and Card 2.1 is required. Possible values for the extended anneal option are:

EQ.1: Linear annealing
EQ.2: JMAK
Temperature end for simple linear annealing. See Remark 5. If TASTART >0 and TAEND $=0$, an enhanced annealing algorithm is used. See Remark 6.

Coefficient of thermal expansion:
GT.0.0: Constant value is used.
LT.O.O: Temperature dependent CTE given by load curve or table ID = -CTE. Tables give CTE as a function of temperature for each phase individually.

Initial plastic strains, uniformly distributed within the part
Maximum temperature variation within a time step. If exceeded during the analysis, a local sub-cycling is used for the calculation of the phase transformations.

Enhanced Annealing Card. Additional card for TASTART > 0 and TAEND $=0$ only. See Remark 6 for details.

Card 2.1	1	2	3	4	5	6	7	8
Variable	XASTR	XAEND	XAIPA1	XAIPA2	XAIPA3	XAFPA	CTEANN	
Type	F	F	l	I	I	F	F	

VARIABLE	DESCRIPTION	
XASTR	Annealing start temperature	
XAEND	Annealing end temperature	
XAIPA i	Load curve or table ID defining the $i^{\text {th }}$ parameter of the enhanced annealing option. Interpretation of the parameter depends on TASTART.	
XAFPA	Scalar parameter of the enhanced annealing option if applicable. Interpretation of the parameter depends on TASTART.	
CTEAN	Annealing option for thermal expansion:	
	LT.O: \|CTEAN	defines the upper temperature limit (cutoff temperature) for evaluation of thermal strains.
	EQ.0: No modification of thermal strains	
	EQ.1: XAEND defines the upper temperature limit (cutoff temperature) for evaluation of thermal strains.	

Card 3	1	2	3	4	5	6	7	8
Variable	PTLAW	PTSTR	PTEND	PTX1	PTX2	PTX3	PTX4	PTX5
Type	।	।	1	1	1	1	1	1

VARIABLE

PTLAW

DESCRIPTION

Table ID to define the phase transformation model as a function of source phase and target phase. The values in *DEFINE_TABLE are the phase numbers before transformation. The curves referenced by the table specify transformation model (ordinate) as a function of phase number after transformation.

LT.O: transformation model used in heating
EQ.O: no transformation
GT.O: transformation model is used in cooling
A variety of transformation models can be specified as ordinate values of the curves:

EQ.1: Koinstinen-Marburger
EQ.2: Johnson-Mehl-Avrami-Kolmogorov (JMAK)

VARIABLE

PTSTR

PTEND
PTX_{i}

DESCRIPTION

EQ.3: Akerstrom (only for cooling)
EQ.4: Oddy (only for heating)
EQ.5: Phase Recovery I (only for heating)
EQ.6: Phase Recovery II (only for heating)
EQ.7: Parabolic Dissolution I (only for heating)
EQ.8: Parabolic Dissolution II (only for heating)
EQ.9: extended Koinstinen-Marburger (only for cooling)
EQ.12: JMAK for both cooling and heating
See Remarks 1 and 2 for further details.
Table ID to define start temperatures for the transformations as a function of source phase and target phase. The values in *DEFINE_TABLE are the phase numbers before transformation. The curves referenced by the table specify start temperature (ordinate) as a function of phase number after transformation (abscissa).
Table ID to define end temperatures for the transformations as a function of source phase and target phase. The values in *DEFINE_TABLE are the phase numbers before transformation. The curves referenced by the table specify end temperature (ordinate) as a function of phase number after transformation (abscissa).
Table ID defining the $i^{\text {th }}$ scalar-valued phase transformation parameter as function of source phase and target phase (see Remark 2 and Table M254-1 to determine which parameters apply). The values in *DEFINE_TABLE are the phase numbers before transformation. The curves referenced by the table specify scalar parameter (ordinate) as a function of phase number after transformation (abscissa).

Card 4	1	2	3	4	5	6	7	8
Variable	PTTAB1	PTTAB2	PTTAB3	PTTAB4	PTTAB5	PTTAB6	PTTAB7	
Type	।	1	1	1	1	1	1	

VARIABLE

PTTABi

DESCRIPTION

Table ID for a 3D table defining the $i^{\text {th }}$ tabulated phase transformation parameter as function of source phase and target phase (see

VARIABLE

DESCRIPTION

Remark 2 and Table M254-1 to determine which parameters apply).

The values in *DEFINE_TABLE_3D are the phase numbers before transformation. The values in the 2D tables referenced by ${ }^{*} \mathrm{DE}-$ FINE_TABLE_3D are the phase numbers after transformation. The curves referenced by the 2D tables specify tabulated parameter (ordinate) as a function of either temperature or temperature rate (abscissa).

Card 5	1	2	3	4	5	6	7	8
Variable	PTEPS	PTRIP	PTLAT	POSTV	NUSHIS	GRAIN	T1PHAS	T2PHAS
Type	I	F	I	I	I	F	F	F

VARIABLE

PTEPS

PTRIP

PTLAT Table ID defining transformation induced heat generation (latent heat).

If ID of 2D table

The values in *DEFINE_TABLE are the phase numbers before transformation. The curves referenced by the table

VARIABLE

DESCRIPTION

specify heat values (ordinate) versus phase number after transformation (abscissa).

If ID of 3D table

The values in *DEFINE_TABLE_3D are the phase numbers before transformation. The values in the 2D tables referenced by *DEFINE_TABLE_3D are the phase number after transformation. The curves referenced by the 2D tables specify induced heat as function of temperature.

POSTV Define additional pre-defined history variables that might be useful for post-processing. See Remark 4.

NUHIS Number of additional user defined history variables. For details see Remarks 3 and 4.

GRAIN Initial grain size
T1PHAS Lower temperature limit for cooling rate evaluation. Cooling rate can be used as input for user defined variables.

T2PHAS

Upper temperature limit for cooling rate evaluation. Cooling rate can be used as input for user defined variables.

User History Card. Additional card for NUSHIS > 0 only.

Card 5.1	1	2	3	4	5	6	7	8
Variable	FUSHI1	FUSHI2	FUSHI3	FUSHI4	FUSHI5	FUSHI6	FUSHI7	FUSHI8
Type	I	I	1	1	1	1	1	1

VARIABLE

FUSHI i

DESCRIPTION

Function ID for user defined history variables. See Remarks 3 and 4.

Phase Yield Stress Cards. For each of the N phases, one parameter SIGYi must be specified. A maximum of 10 of this card may be included. The next keyword ("**) card terminates this input.

Card 6	1	2	3	4	5	6	7	8
Variable	SIGY1	SIGY2	SIGY3	SIGY4	SIGY5	SIGY6	SIGY7	SIGY8
Type	1	1	1	1	1	1	1	1

VARIABLE

SIGYi

DESCRIPTION

Load curve or table ID for hardening of phase i.
If load curve ID
Input yield stress as a function of effective plastic strain.
If table ID of 2D table
Input temperatures as table values and hardening curves (yield stress as a function of effective plastic strain) as targets for those temperatures.
If table ID of 3D table
Input temperatures as main table values and strain rates as values for the sub-tables. Hardening curves (yield stress as a function of effective plastic strain) are targets for those strain rates.

Remarks:

1. Phase Transformation Matrix. All data defining the microstructure evolution is expected to be given in a tabular form. The input is structured as a two-dimensional matrix containing one row for any starting phase and one row for any target phase. The basic structure is depicted in the following table:

For the input in Card 3, the entry at position $i j$ of this matrix is interpreted as scalar data used for the transformation from phase i to phase j. This could for example be the transformation law or the start time. In LS-DYNA, such a matrix is defined by the keyword *DEFINE_TABLE(_2D). The abscissa values are the starting phase IDs. Each load curve (*DEFINE_CURVE) that is referenced consequently defines one row of the matrix.

Some of the implemented transformation models require input data that is a function of temperature, temperature rate, equivalent plastic strain or other values. The input of this data has the same basic input structure as the scalar values, but the matrix entries are now load curve IDs. Therefore, the input is a three-dimensional table (*DEFINE_TABLE_3D) and each row of the matrix is represented by a two-dimensional table itself defined by *DEFINE_TABLE(_2D).
2. Phase Transformation Models. This material features temperature and phase composition dependent elastic plastic behavior. The phase composition is determined using a list of generic phase transformation mechanisms you can choose from for each of the possible phase transformations. So far, eight different transformation models have been implemented to describe the transition from source phase concentration, x_{a}, to target phase concentration, x_{b}. Table M254-1 at the end of this remark summarizes the input parameters necessary for the individual models.
a) Koistinen-Marburger (KM), law 1.

The KM formulation is tailored for non-diffusive transformations. In the most basic and commonly used version, the temperature dependent amount of the target phase is computed as

$$
x_{b}=\left(x_{a}+x_{b}\right)\left(1.0-e^{-\alpha_{\mathrm{KM}}\left(T_{\text {start }}-T\right)}\right) .
$$

PTX1 defines the so-called Koistinen-Marburger factor, α_{KM}.
b) Generalized Johnson-Mehl-Avrami-Kolmogorov (JMAK), law 2.

This is a widely used model for diffusive phase transformation. In literature, often the incremental form of the JMAK equation is given for an isothermal, incomplete transformation:

$$
x_{b}=x_{\mathrm{eq}}(T)\left(x_{a}+x_{b}\right)\left(1-e^{-\left(\frac{t}{\tau(T)}\right)^{n(T)}}\right)
$$

In the previous equation, exponent, n; equilibrium concentration, $x_{\text {eq }}$; and relaxation time, τ, are functions of the temperature.

In this material model, the differential form of the JMAK equation is employed which makes the model readily applicable for non-isothermal processes:

$$
\frac{d x_{b}}{d t}=n(T)\left(k_{a b} x_{a}-k_{a b}^{\prime} x_{b}\right)\left(\ln \left(\frac{k_{a b}\left(x_{a}+x_{b}\right)}{k_{a b} x_{a}-k_{a b}^{\prime} x_{b}}\right)\right)^{\frac{n(T)-1.0}{n(T)}},
$$

In this evolution equation, the following factors are defined:

$$
\begin{aligned}
k_{a b} & =\frac{x_{e q}(T)}{\tau(T) \times \alpha\left(\varepsilon^{p}\right)} f(\dot{T}) \\
k_{a b}^{\prime} & =\frac{1.0-x_{e q}(T)}{\tau(T) \times \alpha\left(\varepsilon^{p}\right)} f^{\prime}(\dot{T})
\end{aligned}
$$

As user input, load curve data for the exponent, $n(T)$, is defined in PTTAB1, the equilibrium concentration, $x_{\text {eq }}(T)$, in PTTAB2, and the relaxation time, $\tau(T)$, in PTTAB3. This model is a generalized JMAK approach that features additional parameters, such as the temperature rate correction factors, $f(\dot{T})$ and $f^{\prime}(\dot{T})$, given in PTTAB4 and PTTAB5, respectively. As an optional parameter an accelerator $\alpha\left(\varepsilon^{p}\right)$ for the transformation can be defined as function of equivalent plastic strain in PTTAB6. If not defined, a constant value of 1.0 is assumed.

Like the Koistinen-Marburger case, a temperature dependent equilibrium concentration, $x_{\text {eq }, a}$, of the source phase can optionally be defined. If
defined in PTTAB7, the transformation is only active if the source phase fraction exceeds the equilibrium, meaning $x_{a}>x_{\text {eq }, a}$.

Note that the JMAK evolution can not only be activated by a choice of -2 (heating) and 2 (cooling), but also by choosing the law to be 12. In that case, the sign of the temperature rate is not checked, and the model is always active if the temperature is in the temperature window defined by the start and end temperature of the transformation.
c) Kirkaldy, law 3.

Similar to the implementation of *MAT_244, the transformation for cooling phases can be computed by the evolution equation:

$$
\frac{d X_{b}}{d t}=2^{0.5(G-1)} f(C)\left(T_{\text {start }}-T\right)^{n_{T}} D(T) \frac{X_{b}^{n_{1}\left(1.0-X_{b}\right)}\left(1.0-X_{b}\right)^{n_{2} X_{b}}}{Y\left(X_{b}\right)},
$$

formulated in the normalized phase concentration

$$
X_{b}=\frac{x_{b}}{x_{\mathrm{eq}}(T)} .
$$

In contrast to *MAT_244, the parameters for the evolution equation are not determined from the chemical composition of the material but defined directly as user input. The scalar data in PTX1 to PTX4 are interpreted as $f(C), n_{T}, n_{1}$, and n_{2}. Tabulated data for $D(T), Y\left(X_{b}\right)$, and $x_{\text {eq }}(T)$ are given in PTTAB1 to PTTAB3.
d) Oddy, law 4.

For phase transformation in heating, the equation of Oddy can be used, which can be interpreted as a simplified JMAK relation and reads as

$$
\frac{d x_{b}}{d t}=n \frac{x_{a}}{c_{1}\left(T-T_{\text {start }}\right)^{-c_{2}}}\left(\ln \left(\frac{\left(x_{a}+x_{b}\right)}{x_{a}}\right)\right)^{\frac{n-1.0}{n}} .
$$

Its application requires the input of three scalar parameters, n, c_{1}, and c_{2}, that are read from the respective positions in the tables in PTX1 to PTX3.
e) Phase recovery I, law 5.

This phase transformation law is motivated by the recovery of the β-phase and α-phase from martensitic α-phase in titanium alloys and is a generalization of the algorithms described in the literature for this process.

The transformation takes place if and only if the amount of the target phase is below a user-defined, temperature dependent threshold, $x_{b}^{\text {tre }}$. This threshold can be defined in PTTAB3.

For $x_{b}<x_{b}^{\text {tre }}$, the transformation scheme comprises three steps. First, a temperature dependent equilibrium fraction for the starting phase is calculated based on an incomplete KM equation:

$$
x_{\mathrm{eq}, a}=\left(x_{a}+x_{b}-x_{\mathrm{inc}}\right)\left(1.0-e^{-\alpha_{\mathrm{KM}}\left(T_{\mathrm{KM}, \mathrm{~s}}-T\right)}\right) .
$$

The KM-parameter α_{KM} and the start temperature $T_{\mathrm{KM}, s}$ must be given in PTX1 and PTX2, respectively. The incompleteness parameter $x_{\text {inc }}$ is a function of temperature defined in PTTAB4.
Second, if the current fraction of the starting phase x_{a} exceeds the calculated equilibrium concentration $x_{\text {eq, } a,}$ a diffusional process follows. It is described by a JMAK approach. Its incremental form for an isothermal process is given by

$$
x_{a}=x_{\mathrm{eq}, a}+\left(x_{a}+x_{b}-x_{\mathrm{eq}, a}\right) e^{-\left(\frac{t}{\tau(T)}\right)^{n(T)}}
$$

Naturally, a differential form of this equation is used in the model in order to be applicable to non-isothermal situations. The final calculated change Δx_{a} in identified with the formation of a recovery phase $x_{a}^{r}=-\Delta x_{a}$. The parameters for the JMAK equation are given in $\operatorname{PTTAB1}(n)$ and PTTAB2 (τ).
Third, some of the recovery phase is partially transformed into the target phase:

$$
\Delta x_{b}=\gamma(T) x_{a}^{r} .
$$

The quotient $\gamma(T)$ can be defined in PTTAB5.
f) Phase recovery II, law 6.

This is the second part of the recovery and can only be defined if the previous transformation law (law 5) has also been defined with the same starting phase. This second step aims to transform the remaining fraction of the virtual, recovery phase x_{a}^{r} into the physical phases defined in the material.

In order to allow for the definition of more than two target phases for one recovery process, an optional parameter $\eta(T)$ can be defined as the only input of this transformation in PTTAB1. It is used to control the transformation by

$$
\Delta x_{b}=\eta(T) x_{a}^{r}
$$

Note that x_{a}^{r} here refers to the complete fraction of the recovery phase as calculated by the JMAK approach. If the parameter is not defined, then the remainder of the virtual phase fraction is completely transformed.
g) Parabolic growth I, law 7.

The transformation laws 7 and 8 model the subsequent dissolution of a group of phases into one common target phase. The remaining fraction of the group after dissolution within a time step is denoted by $x_{\text {diss }}$. The groups are identified by a group ID that is here defined in PTX1.

You can define a dissolution function, $f_{\text {diss }}$, and a critical time, $t_{\text {crit }}$. These values are expected to be functions of temperature and are defined in PTTAB3 and PTTAB4, respectively. Based on those and the temperature dependent equilibrium concentration $x_{\mathrm{eq}, b}$ (PTTAB2), a characteristic dissolution time, $t_{\text {diss }}$, can be calculated as

$$
t_{\text {diss }}=\left(\frac{x_{b}(T)}{x_{b}^{\text {eq }}(T)}\right)^{2} t_{\text {crit }}(T) .
$$

Depending on the relative size of the step increment, Δt, with respect to the critical and characteristic dissolution time, the remaining group fraction $x_{\text {diss }}$ is calculated as

$$
x_{\text {diss }}=\left\{\begin{array}{cl}
1-x_{b}^{\mathrm{eq}}(T) f(T) \sqrt{\Delta t+t_{\text {diss }}(T)}, & \text { for } \Delta t+t_{\text {diss }}<t_{\text {crit }} \\
1-x_{b}^{\mathrm{eq}}(T), & \text { otherwise }
\end{array}\right.
$$

Now, the fraction x_{a} (the transformation of which is defined by law 7) is always assumed to be the first member of the group to by dissolved. It is algorithmically assured that there cannot be an increase in fraction x_{a}.
h) Parabolic growth II, law 8.

This law cannot be defined separately, but simulates the dissolution of the further members of the group already defined for a transformation with law 7. Naturally, the group ID must also be referenced here, and it is again given in PTX1. Furthermore, in the case of three or more members within a group the order in which the fractions are to be dissolved must be defined. For that purpose, the position in the group is defined in PTX2.
i) Extenden Koistinen-Marburger, law 9.

This extension to the standard Koistinen-Marburger (law 1) is motivated by the application of the material formulation to titanium and is only available in cooling.

An equilibrium concentration $x_{\text {eq }, a}$ of the source phase can be defined as function of the current temperature in parameter PTTAB1. The transformation is only active if the source phase fraction exceeds the equilibrium, meaning $x_{a}>x_{\text {eq }, a}$.

Furthermore, an incomplete transformation is possible in case of relatively slow cooling rates. For this purpose, you can define two rate limits $\dot{T}_{\text {lim, } 1}$ and $\dot{T}_{\text {lim,2 }}$ in PTX2 and PTX3, respectively, and an incompleteness parameter $x_{\text {inc }}(T)$ as a function of temperature in PTTAB2. The corresponding equation for the transformation then is given by:

$$
x_{b}=\left\{\begin{array}{cl}
\left(x_{a}+x_{b}\right)\left(1.0-e^{-\alpha_{\mathrm{KM}}\left(T_{\text {start }}-T\right)}\right) & , \text { for } \dot{T}<\dot{T}_{\text {lim }, 1} \\
\left(x_{a}+x_{b}-x_{\mathrm{inc}}\right)\left(1.0-e^{-\alpha_{\mathrm{KM}}\left(T_{\text {start }}-T\right)}\right) & , \text { for } \dot{T}_{\mathrm{lim}, 1}<\dot{T}<\dot{T}_{\text {lim }, 2}
\end{array}\right.
$$

A summary of input parameters for the different material laws is given in the following table. If not stated otherwise, the parameters in the tabular data PT$\mathrm{TAB} i$ are expected to be functions of the current temperature, T.

PTLAW \#	1	2/12	3	4	5	6	7	8	9
PTX1	$\alpha_{\text {KM }}$		$f(C)$	n	$\alpha_{\text {КМ }}$		GID	GID	$\alpha_{\text {КМ }}$
PTX2			n_{T}	c_{1}	$T_{\text {KM }, \mathrm{s}}$			POS	$\dot{T}_{\text {lim,1 }}$
PTX3			n_{1}	c_{2}					$\dot{T}_{\lim , 2}$
PTX4			n_{2}						
PTTAB1		n	D		n	η	$x_{b}^{\text {tre }}$		$x_{\text {eq }, a}$
PTTAB2		$x_{\text {eq }}$	$Y\left(X_{b}\right)$		τ		$x_{\text {eq }, ~ b}$		$x_{\text {inc }}$
PTTAB3		τ	$x_{\text {eq }}$		$x_{b}^{\text {tre }}$		$f_{\text {diss }}$		
PTTAB4		$f(\dot{T})$			$x_{\text {inc }}$		$t_{\text {crit }}$		
PTTAB5		$f^{\prime}(\dot{T})$			γ				
PTTAB6		$\alpha\left(\varepsilon^{\mathrm{pl}}\right)$							
PTTAB7		$x_{\text {eq }, a}$							

Table M254-1. Summary of input parameters for the various laws
3. User-Defined History Data. You can define up to eight additional history variables that are added to the list of history variables starting at position 31 (see Remark 4). These values can for example be used to evaluate the hardness of the material based on different formulas given in the literature.

The additional variables are to be given by respective *DEFINE_FUNCTION keywords in the input as functions of the current time, the user defined histories themselves, the current phase concentrations, the current temperature, the peak temperature, the average temperature rate between T2PHASE and T1PHASE, the current yield stress, the stress tensor, and the current values for the equivalent plastic strain of the individual phases.

For example, if all 24 phases are used $(\mathrm{N}=24)$ and eight additional history variables (NUSHIS $=8$) are defined, a function declaration could look as follows:

```
*DEFINE FUNCTION
1,user defined history 1
uhist(time,usrhst1,usrhst2,...,usrhst8,phase1,
phase2,...,phase24,T,Tpeak,Trate, sigy,
sigma1,sigma2,...,sigma6,
epspl1,epspl2,...,epspl24)= ...
```

In contrast, for four considered phases $(\mathrm{N}=4)$ and two additional histories (NUSHIS $=2$) the keyword input could be

```
*DEFINE_FUNCTION
2,user defined history 1
uhist (time,usrhst1,usrhst2, phase1, phase2, phase3,phase4,
T,Tpeak,Trate,sigy,sigma1, sigma2,.., sigma6,epspl1,epspl2,
epspl3,epspl4)= ...
```

4. History Values. To be able to post-process values of history variables, fields NEIPS (shells) or NEIPH (solids) must be defined on *DATABASE_EXTENT_BINARY.

Aside from the user-defined history variables discussed in Remark 3, this material formulation can output additional pre-defined history values for post-processing. The input value of field POSTV defines the data to be written. Its value is calculated as

$$
\text { POSTV }=\mathrm{a}_{1}+2 a_{2}+4 a_{3}+8 a_{4}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular post-processing variable according to the following table. This table also shows the order of output as well as the number of extra history variables associated with the particular flag. The values of these user-defined histories are reset when the temperature is in the annealing range.

Flag	Description	Varia- bles	\# Hist
a_{1}	Accumulated thermal strain	ε_{T}	1
a_{2}	Accumulated strain tensor	ε	6
a_{3}	Plastic strain tensor	ε_{p}	6
a_{4}	Equivalent strain	$\varepsilon_{\mathrm{VM}}$	1

In total NXH extra variables are required depending on the choice of parameter POSTV. For example, the maximum number of additional variables is NXH = 14 for POSTV = 15 .

A complete list of history variables for the material is given in the following table. "Position" refers to the history variable number as listed by LS-PrePost when post-processing the d3plot database. The value of N indicates the number of phases accounted for in the model.

History Variable \#	Description
$1 \rightarrow \mathrm{~N}$	Phase concentrations
$\mathrm{N}+1$	Maximum temperature
$\mathrm{N}+2$	Cooling rate between T2PHAS and T1PHAS
$\mathrm{N}+3$	Yield stress
$\mathrm{N}+4$	Young's modulus
$\mathrm{N}+5$	Indicator of plastic behavior
$\mathrm{N}+6 \rightarrow \mathrm{~N}+5+$ NUSHIS	User defined history variables
N + $6+$ NUSHIS	Current temperature
$\begin{gathered} \mathrm{N}+7+\mathrm{NUHIS} \rightarrow \\ \mathrm{~N}+6+\mathrm{NUHIS}+\mathrm{NXH} \end{gathered}$	Post-process history data as described in the preceding table

History Variable \#	Description
$\mathrm{N}+7+\mathrm{NUHIS}+\mathrm{NXH} \rightarrow$	Effective plastic strain for each phase
$2 \times \mathrm{N}+6+\mathrm{NUHIS}+\mathrm{NXH}$	in the microstructure

5. Simple Annealing. When the temperature reaches the start annealing temperature TASTART, the material starts assuming its virgin properties. Beyond the start annealing temperature, it behaves as an ideal elastic-plastic material but with no evolution of plastic strains.

For non-zero values of both TASTART and TAEND a simple annealing strategy is used. The resetting of effective plastic properties in the annealing temperature interval is done by modifying the effective plastic strain for each phase as

$$
\varepsilon_{p}^{n}=\varepsilon_{p, \text { start }}^{n} \frac{T_{a}^{\text {end }}-T}{T_{a}^{\text {end }}-T_{a}^{\text {start }}},
$$

where $\varepsilon_{p, \text { start }}^{n}$ is the plastic strain for phase n at the beginning of the annealing process.
6. Enhanced Annealing. For a positive value of TASTART and TAEND $=0$, an enhanced annealing strategy is employed. It requires the input of an additional keyword card.

Above the annealing start temperature $T_{a}^{\text {start }}$, defined by XASTR, the material behaves as an ideal-plastic material, but instead of an evolution of the plastic strains, the equivalent plastic strain ε^{p} is reduced by a scale factor $\alpha(T, t)$ within the annealing temperature window

$$
\varepsilon_{p}^{n}=\varepsilon_{p, \text { start }}^{n}(\alpha(T, t)) .
$$

The base value $\varepsilon_{p, \text { start }}^{n}$ refers to the equivalent plastic strain found in the phase, n, when the temperature reaches the annealing start temperature for the first time. The algorithm used to determine the value of α depends on the annealing option TASTART.
a) Linear annealing. For TASTART $=1 \mathrm{a}$ linear relation between temperature and the annealing effect is assumed, similar to the simple annealing option discussed above. But in this case an incomplete reset of the equivalent plastic strain data is possible. The scale factor, α, is a function of temperature and is given by

$$
\alpha=\frac{T_{a}^{\text {end }}-T}{T_{a}^{\text {end }}-T_{a}^{\text {start }}}+\alpha_{\mathrm{eq}} \frac{T-T_{a}^{\text {start }}}{T_{a}^{\text {end }}-T_{a}^{\text {start }}}
$$

Here, the end temperature, $T_{a}^{\text {end }}$, is defined by XAEND and the newly introduced incompleteness factor, $\alpha_{\text {eq }}$, as scalar input data in XAFPA.
b) Johnson-Mehl-Avrami-Kolmogorov (JMAK). For TASTART $=2$, the evolution of the scale factor follows a JMAK-type approach. For isothermal situations and assuming a start time for the process of 0.0 , an incremental form can be explicitly stated a

$$
\alpha=\alpha_{\mathrm{eq}}(T)+\left(1-\alpha_{\mathrm{eq}}(T)\right) e^{-\left(\frac{t}{\tau(T)}\right)^{n(T)}}
$$

In the last equation, $n(T)$ denotes the exponent for the differential equation, $\tau(T)$ the relaxation time and $\alpha_{e q}(T)$ denotes the limit value for the scale factor for infinitely long processes. All of those are functions of temperature and, thus, require the input of load curve IDs in XAIPA1 $(n(T))$, XAIPA2 $\left(\alpha_{\text {eq }}(T)\right)$ and XAIPA3 $(\tau(T))$.

In the material implementation a differential form of the JMAK approach is invoked, which makes the formulation applicable to non-isothermal processes as well as independent of the start time of annealing.

*MAT_PIECEWISE_LINEAR_PLASTIC_THERMAL

This is Material Type 255, an isotropic elastoplastic material with thermal properties. It can be used for both explicit and implicit analyses. Young's modulus and Poisson's ratio can depend on the temperature by defining two load curves. Moreover, the yield stress in tension and compression are given as load curves for different temperatures by using two tables. The thermal coefficient of expansion can be given as a constant ALPHA or as a load curve LALPHA. A positive curve ID for LALPHA models the instantaneous thermal coefficient, whereas a negatives curve ID models the thermal coefficient relative to a reference temperature, TREF. The strain rate effects are modelled with the Cowper-Symonds rate model with the parameters C and P on Card 1. Failure can be based on effective plastic strain or using the *MAT_ADD_EROSION keyword.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	C	P	FAIL	TDEL
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	TABIDC	TABIDT	LALPHA		VP			
Type	I	I	I		F			

Card 3	1	2	3	4	5	6	7	8
Variable	ALPHA	TREF						
Type	F	F						

VARIABLE

MID

RO Mass density fied (see *PART).

DESCRIPTION

Material identification. A unique number or label must be speci-

VARIABLE

E

Poisson's ratio.
LT.0.0: |PR| is a load curve ID for Poisson's ratio as a function of temperature.
GT.0.0: Constant
C Strain rate parameter. See Remark 1.

FAIL Effective plastic strain when the material fails. User defined failure subroutine, matusr_24 in dyn21.F, is called to determine failure when FAIL < 0. Note that for solids the *MAT_ADD_EROSION can be used for additional failure criteria.

TDEL

TABIDC

TABIDT
LALPHA

P

EQ.0.0: effective total strain rate (default)

NE.O.O: effective plastic strain rate
ALPHA Coefficient of thermal expansion
TREF Reference temperature, which is required if and only if LALPHA is given with a negative load curve ID

Remarks:

1. Strain rate effects. The strain rate effect is modelled by using the Cowper and Symonds model which scales the yield stress according to the factor

$$
1+\left(\frac{\dot{\varepsilon}_{\text {eff }}}{C}\right)^{1 / P}
$$

where $\dot{\varepsilon}_{\text {eff }}=\sqrt{\operatorname{tr}\left(\dot{\varepsilon} \dot{\varepsilon}^{T}\right)}$ is the Euclidean norm of the total strain rate tensor if $\mathrm{VP}=0$ (default), otherwise $\dot{\varepsilon}_{\text {eff }}=\dot{\varepsilon}_{\text {eff }}^{p}$.
2. Yield stress tables. The dependence of the yield stresses on the effective plastic strains is given in two tables.
a) TABIDC gives the behaviour of the yield stresses in compression
b) TABIDT gives the behaviour of the yield stresses in tension.

The table indices consist of temperatures, and at each temperature a yield stress curve must be defined.

Both TABIDC and TABIDT can be 3D tables, in which temperatures indexes the main table and strain rates are defined as values for the sub tables with hardening curves as targets for those strain rates. If the same yield stress should be used in both tension and compression, only one table needs to be defined and the same TABID is put in position 1 and 2 on Card 2. If $\mathrm{VP}=0$, effective total strain rates are used in the 3D tables, otherwise plastic strain rates.
3. History variables. Two history variables are added to the d3plot file, the Young's modulus and the Poisson's ratio, respectively. They can be requested through the *DATABASE_EXTENT_BINARY keyword.
4. Nodal temperatures. Nodal temperatures must be defined by using a coupled analysis or some other way to define the temperatures, such as *LOAD_THERMAL_VARIABLE or *LOAD_THERMAL_LOAD_CURVE.

*MAT_AMORPHOUS_SOLIDS_FINITE_STRAIN

This is Material Type 256, an isotropic elastic-viscoplastic material model intended to describe the behaviour of amorphous solids such as polymeric glasses. The model accurately captures the hardening-softening-hardening sequence and the Bauschinger effect experimentally observed at tensile loading and unloading respectively. The formulation is based on hyperelasticity and uses the multiplicative split of the deformation gradient F which makes it naturally suitable for both large rotations and large strains. Stress computations are performed in an intermediate configuration and are therefore preceded by a pull-back and followed by a push-forward. The model was originally developed by Anand and Gurtin [2003] and implemented for solid elements by Bonnaud and Faleskog [2019].

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	K	G	MR	LL	NU0	M
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA	H0	SCV	B	ECV	G0	S0	
Type	F	F	F	F	F	F	F	

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be speci- fied (see *PART).
RO	Mass density
K	Bulk modulus
G	Shear modulus
MR	Kinematic hardening parameter, μ_{R} (see Remark 1)
LL	Kinematic hardening parameter, λ_{L} (see Remark 1)
NU0	Creep parameter, ν_{0} (see Remark 2)
M	Creep parameter, m (see Remark 2)

VARIABLE

ALPHA
H0
SCV

B

ECV
G0

S0

DESCRIPTION
Creep parameter, α (see Remark 2)
Isotropic hardening parameter, h_{0} (see Remark 3)
Isotropic hardening parameter, $s_{c v}$ (see Remark 3)
Isotropic hardening parameter, b (see Remark 3)
Isotropic hardening parameter, η_{cv} (see Remark 3)
Isotropic hardening parameter, g_{0} (see Remark 3)
Isotropic hardening parameter, s_{0} (see Remark 3)

Remarks:

1. Kinematic Hardening. Kinematic hardening gives rise to the second hardening occurrence in the hardening-softening-hardening sequence. The constants μ_{R} and λ_{L} enter the back stress, μB (where B is the left Cauchy-Green deformation tensor), through the function μ according to:

$$
\begin{equation*}
\mu=\mu_{R}\left(\frac{\lambda_{L}}{3 \lambda^{p}}\right) L^{-1}\left(\frac{\lambda^{p}}{\lambda_{L}}\right), \tag{256.1}
\end{equation*}
$$

where $\lambda^{p}=\frac{1}{\sqrt{3}} \sqrt{\operatorname{tr}\left(B^{p}\right)}$ and B^{p} is the plastic part of the left Cauchy-Green deformation tensor and L is the Langevin function defined by:

$$
L(X)=\operatorname{coth}(X)-X^{-1}
$$

2. Creep. This material model assumes plastic incompressibility. Nevertheless in order to account for the different behaviours in tension and compression a Drucker-Prager law is included in the creep law according to:

$$
\begin{equation*}
v^{p}=v_{0}\left(\frac{\bar{\tau}}{s+\alpha \pi}\right)^{1 / m}, \tag{256.2}
\end{equation*}
$$

where ν^{p} is the equivalent plastic shear strain rate, $\bar{\tau}$ is the equivalent shear stress, s is the internal variable defined below and $-\pi$ is the hydrostatic stress.
3. Isotropic Hardening. Isotropic hardening gives rise to the first hardening occurrence in the hardening-softening-hardening sequence. Two coupled internal variables are defined: the resistance to plastic flow, s, and the local free volume, η. Their evolution equations are:

$$
\begin{equation*}
\dot{s}=h_{0}\left[1-\frac{s}{\tilde{s}(\eta)}\right] v^{p} \tag{256.3}
\end{equation*}
$$

$$
\begin{gather*}
\dot{\eta}=g_{0}\left(\frac{s}{s_{c v}}-1\right) v^{p} \tag{256.4}\\
\tilde{s}(\eta)=s_{c v}\left[1+b\left(\eta_{c v}-\eta\right)\right] \tag{256.5}
\end{gather*}
$$

4. Typical Material Parameters. Typical material parameters values are given in [1] for Polycarbonate:

Variable	Value
K	2.24 GPa
G	0.857 GPA
MR	11.0 MPa
LL	1.45
NUO	$0.0017 \mathrm{~s}^{-1}$
M	0.011
ALPHA	0.08
H0	2.75 GPa
SCV	825
B	0.001
ECV	0.006
G0	20.0 MPa

References:

[1] Anand, L., Gurtin, M.E., 2003, "A theory of amorphous solids undergoing large deformations, with application to polymeric glasses," International Journal of Solids and Structures, 40, pp. 1465-1487.
[2] Bonnaud, E.L., Faleskog, J., 2019, "Explicit, fully implicit and forward gradient numerical integration of a hyperelasto-viscoplastic constitutive model for amorphous polymers undergoing finite deformation," Computational Mechanics, 64, pp.13891401.

*MAT_NON_QUADRATIC_FAILURE

This is Material Type 258. This is an elastic-(visco)plastic material with a non-quadratic yield surface where isotropic work hardening is included. A ductile failure model is included in the form of a damage indicator model. The extended Cockcroft-Latham criterion is used to represent the dependence of the failure strain on stress state; see Gruben et. al. [2012]. Mesh dependency of the failure strain is damped out using a regularization scheme based on the deformation mode of the shell element. A more detailed description of this model can be found in the paper by Costas et al. [2018]. The material is available for shell elements only.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	SIGY	A	KSI	
Type	A	F	F	F	F	F	F	
Default	none							

Card 2	1	2	3	4	5	6	7	8
Variable	THETA1	Q1	THETA2	Q2	THETA3	Q3		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	none		

Card 3	1	2	3	4	5	6	7	8
Variable	CS	PDOTS						
Type	F	F						
Default	none	none						

Card 4	1	2	3	4	5	6	7	8
Variable	DCRIT	WCB	WCL	WCS	CC	PHI	GAMMA	THICK
Type	F	F	F	F	F	F	F	F
Default	none							

VARIABLE

MID

RO Mass density
E

PR

SIGY

A

KSI

THETA i

Qi
CS

PDOTS

DCRIT
WCB
WCL

WCS

CC
PHI fied (see *PART).

Young's modulus
Poisson's ratio

Initial yield stress

Reference strain rate
Critical damage

DESCRIPTION

Material identification. A unique number or label must be speci-

Exponent of Hershey yield criterion
Coefficient governing critical strain increment for substepping Initial hardening modulus of R_{i}

Saturation value of R_{i}
Rate sensitivity of flow stress

Constant defining the damage evolution

VARIABLE

GAMMA
THICK Element thickness if using shell formulation 16. Since releases R12.1 and R13.0, setting THICK to zero causes the thickness to be taken from *SECTION_SHELL or *ELEMENT_SHELL_THICKNESS.

Remarks:

The yield function is defined on the form

$$
f=\varphi(\boldsymbol{\sigma})-\left(\sigma_{0}+R\right)
$$

where $\sigma_{e q} \equiv \varphi(\sigma)$ is the equivalent stress, σ_{0} is the initial yield stress, and R is the isotropic hardening variable, which is a function of the equivalent plastic strain p. The equivalent stress is defined as

$$
\varphi(\sigma)=\left[\frac{1}{2}\left\{\left|\sigma_{1}-\sigma_{2}\right|^{a}+\left|\sigma_{2}-\sigma_{3}\right|^{a}+\left|\sigma_{3}-\sigma_{1}\right|^{a}\right\}\right]^{\frac{1}{a}}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$ are the ordered principal stresses. The isotropic hardening variable is expressed as

$$
R(p)=\sum_{i=1}^{3} R_{i}(p)=\sum_{i=1}^{3} Q_{i}\left(1-\exp \left(-\frac{\theta_{i}}{Q_{i}} p\right)\right)
$$

where Q_{i} and θ_{i} are in turn the saturation value and initial hardening modulus of the hardening variable R_{i}. As $p \rightarrow \infty, R$ attains its saturation value $R_{\text {sat }}$, given by

$$
R_{\mathrm{sat}}=\sum_{i=1}^{3} Q_{i}
$$

Note that you can provide nonzero initial values o fplastic strain with *INITIAL_STRESS_SHELL which initializes the simulation with nonzero $R_{i}(p)$ at $t=0$.

Rate-dependent plasticity is described by a fully viscoplastic formulation. If rate dependence is invoked, the equivalent stress $\sigma_{\text {eq }}$ is constrained by the viscoplastic relation

$$
\sigma_{\mathrm{eq}}=\left(\sigma_{0}+R(p)\right)\left(1+\frac{\dot{p}}{\dot{p}_{\sigma}}\right)^{C_{\sigma}} \text { for } f>0
$$

in the plastic domain. The parameters C_{σ} and \dot{p}_{σ} govern the rate dependence of the material, where \dot{p}_{σ} is a reference strain rate.

The uncoupled version of the Extended Cockcroft-Latham (ECL) criterion is applied here to define damage evolution

$$
\dot{D}=\frac{\varphi(\sigma)}{W_{c}}\left\langle\phi \frac{\sigma_{1}}{\varphi(\sigma)}+(1-\phi) \frac{\sigma_{1}-\sigma_{3}}{\varphi(\sigma)}\right\rangle^{\gamma} \dot{p}
$$

where D is the damage variable and W_{c}, ϕ, and γ are parameters governing the damage evolution and its dependence of the stress triaxiality and the Lode parameter. By setting $\phi=\gamma=1$, we get the Cockcroft-Latham criterion:

$$
\dot{D}=\frac{\left\langle\sigma_{1}\right\rangle}{W_{c}} \dot{p}
$$

where W_{c} is the Cockcroft-Latham (CL) fracture parameter.
In simulations with shell elements, the CL fracture parameter W_{c} is defined by

$$
W_{c}=\Omega W_{c}^{b}+(1-\Omega) W_{c}^{m}
$$

where W_{c}^{b} is the CL parameter in pure bending, W_{c}^{m} is a mesh-dependent CL parameter in membrane loading, and Ω is a bending indicator given as

$$
\Omega=\frac{1}{2} \frac{\left|\dot{\varepsilon}_{3 p}^{+}-\dot{\varepsilon}_{3 p}^{-}\right|}{\max \left(\left|\dot{\varepsilon}_{3 p}^{+}\right|,\left|\dot{\varepsilon}_{3 p}^{-}\right|\right)}
$$

where $\dot{\varepsilon}_{3 p}^{+}$and $\dot{\varepsilon}_{3 p}^{-}$are the plastic thickness strain rates on the two sides of the shell element. Thus, the bending indicator is $\Omega=1$ for pure bending ($\dot{\varepsilon}_{3 p}^{-}=-\dot{\varepsilon}_{3 p}^{+}$) and $\Omega=0$ ($\dot{\varepsilon}_{3 p}^{-}=\dot{\varepsilon}_{3 p}^{+}$) for pure membrane loading. The mesh-dependent CL parameter for membrane loading is defined by

$$
W_{c}^{m}=W_{c}^{l}+\left(W_{c}^{s}-W_{c}^{l}\right) \exp \left(-c\left(\frac{l_{e}}{t_{e}}-1\right)\right)
$$

where W_{c}^{l}, W_{c}^{s}, and c are parameters, l_{e} is the characteristic size of the shell element, and t_{e} is the thickness of the shell element.

*MAT_STOUGHTON_NON_ASSOCIATED_FLOW_\{OPTION\}

This is Material Type 260A. This material model is implemented based on non-associated flow rule models (Stoughton 2002 and 2004). Strain rate sensitivity can be included using a load curve. This model applies to both shell and solid elements. It is available for explicit in both MPP and SMP.

Available options include:

```
<BLANK>
XUE
```

The option XUE is available for solid elements only.

Card Summary:

Card 1. This card is required.

MID	R0	E	PR	R00	R45	R90	SIG00

Card 2. This card is required.

SIG45	SIG90	SIG_B	LCIDS	LCIDV	SCALE		

Card 3. This card is included for the XUE keyword option.

EFO	PLIM	Q	GAMA	M	BETA		

Card 4. This card is required.

AOPT							

Card 5. This card is required.

$X P$	$Y P$	$Z P$	A1	A2	A3		

Card 6. This card is required.

V1	V2	V3	D1	D2	D3		

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	R00	R45	R90	SIG00
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	1.0	R00	R00	Rem 1

VARIABLE

MID

RO Mass density
E Young's Modulus
PR Poisson's ratio

R00, R45, R90

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Lankford parameters in rolling $\left(0^{\circ}\right)$, diagonal $\left(45^{\circ}\right)$ and transverse $\left(90^{\circ}\right)$ directions, respectively; determined from experiments. Note if R00, R45, and R90 are not defined or are set to 0.0 , then R00 $=$ $R 45=R 90=1.0$, which degenerates to the Von-Mises yield.

SIG00 Initial yield stress from uniaxial tension tests in rolling (0°) direction

Card 2	1	2	3	4	5	6	7	8
Variable	SIG45	SIG90	SIG_B	LCIDS	LCIDV	SCALE		
Type	F	F	F	I	I	F		
Default	Rem 1	Rem 1	Rem 1	none	none	1.0		

VARIABLE

SIG45 Initial yield stress from uniaxial tension tests in diagonal (45) direction

VARIABLE

SIG90

SIG_B
LCIDS

LCIDV

SCALE

DESCRIPTION
Initial yield stress from uniaxial tension tests in transverse $\left(90^{\circ}\right)$ directions

Initial yield stress from equi-biaxial stretching tests
ID of load curve giving stress as a function of strain hardening behavior from a uniaxial tension test along the rolling direction

ID of a load curve defining stress scale factors as a function strain rates, determined from experiments. An example of the curve can be found in Figure M260A-2. To know which values are used, the strain rates and strain rate scale factors are stored in the d3plot file as history variables \#5 and \#6, respectively.

Parameter for speeding up the simulation while equalizing the strain rate effect. It is useful in cases where the pulling speed or punch speed is slow. See Remark 2.

XUE Card. This card is included for the XUE keyword option.

Card 3	1	2	3	4	5	6	7	8
Variable	EF0	PLIM	Q	GAMA	M	BETA		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	0.0		

VARIABLE

EF0, PLIM, Q, GAMA, M, BETA

DESCRIPTION

Material parameters for the option XUE. The parameter k in the original paper is assumed to be 1.0. Note the default BETA value of 0.0 means no progressive weakening damage. For details, refer to Xue, L., Wierzbicki, T.'s 2009 paper "Numerical simulation of fracture mode transition in ductile plates" in the International Journal of Solids and Structures. See Remark 3.

Card 4	1	2	3	4	5	6	7	8
Variable	AOPT							
Type	I							
Default	none							

VARIABLE

AOPT

DESCRIPTION

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, AOPT $=3$ is only available for hexahedrons. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis. This option is for solid elements only.

DESCRIPTION

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

Card 5	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

VARIABLE

DESCRIPTION

XP, YP, ZP Coordinates of point p for AOPT $=1$ and 4
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for AOPT $=2$

Card 6	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		

VARIABLE

DESCRIPTION

V1, V2, V3 Components of vector \mathbf{v} for AOPT $=3$ and 4
D1, D2, D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2$

The Stoughton Non-Associated Flow Rule:

In a non-associated flow rule, the material yield function is not equal to the plastic flow potential. According to Thomas B. Stoughton's paper titled "A non-associated flow rule for sheet metal forming" in 2002 International Journal of Plasticity 18, 687-714, and "A pressuresensitive yield criterion under a non-associated flow rule for sheet metal forming" in 2004 International Journal of Plasticity 20, 705-731, the plastic potential is given by:

$$
\bar{\sigma}_{p}=\sqrt{\sigma_{11}^{2}+\lambda_{p} \sigma_{22}^{2}-2 \nu_{p} \sigma_{11} \sigma_{22}+2 \rho_{p} \sigma_{12}^{2}}
$$

where $\sigma_{i j}$ is the stress tensor component. Here,

$$
\begin{aligned}
& \lambda_{p}=\frac{1+\frac{1}{r_{90}}}{1+\frac{1}{r_{0}}}, \\
& \nu_{p}=\frac{r_{0}}{1+r_{0}}, \\
& \rho_{p}=\frac{\frac{1}{r_{0}}+\frac{1}{r_{90}}}{1+\frac{1}{r_{0}}}\left(\frac{1}{2}+r_{45}\right) .
\end{aligned}
$$

r_{0}, r_{45}, and r_{90} are Lankford parameters in the rolling $\left(0^{\circ}\right)$, the diagonal $\left(45^{\circ}\right)$ and the transverse $\left(90^{\circ}\right)$ directions, respectively.

The yield function is given by:

$$
\bar{\sigma}_{y}=\sqrt{\sigma_{11}^{2}+\lambda_{y} \sigma_{22}^{2}-2 v_{y} \sigma_{11} \sigma_{22}+2 \rho_{y} \sigma_{12}^{2}},
$$

where

$$
\begin{aligned}
\lambda_{y} & =\left(\frac{\sigma_{0}}{\sigma_{90}}\right)^{2} \\
\nu_{y} & =\frac{1}{2}\left[1+\lambda_{y}-\left(\frac{\sigma_{0}}{\sigma_{b}}\right)^{2}\right] \\
\rho_{y} & =\frac{1}{2}\left[\left(\frac{2 \sigma_{0}}{\sigma_{45}}\right)^{2}-\left(\frac{\sigma_{0}}{\sigma_{b}}\right)^{2}\right] .
\end{aligned}
$$

Here $\sigma_{0}, \sigma_{45}, \sigma_{90}$ are the initial yield stresses from uniaxial tension tests in the rolling, diagonal, and transverse directions, respectively. σ_{b} is the initial yield stress from an equi-biaxial stretching test.

Remarks:

1. Defaults for SIG00, SIG45, SIG90, and SIG_B. If not specified, SIG00, SIG45, SIG90, and SIG_B default to the first stress value in LCIDS. Note that if all four values are not specified, the non-associated flow rule degenerates to the associated flow rule.
2. SCALE. The variable SCALE is very useful in speeding up the simulation while equalizing the strain rate effect. For example, if the pulling speed is $15 \mathrm{~mm} / \mathrm{s}$ but running the simulation at this speed will take a long time, you can increase the pulling speed to $500 \mathrm{~mm} / \mathrm{s}$ while setting SCALE to 0.03 . The latter settings will give the same results with the benefit of greatly reduced computational time (see Figures M260A-3 and M260A-4). Note that the increased absolute value (within a reasonable range) of mass scaling, $-1.0 \times \mathrm{dt} 2 \mathrm{~ms}$, frequently used in forming simulation does not affect the strain rates, as shown in the Figure M260A-5. See examples in Verification.
3. XUE Parameters. The following table lists variable names used in this material model with the corresponding symbols in Xue et al [2009] for the option XUE:

EF0	PLIM	Q	GAMA	M
$\varepsilon_{f 0}$	$P_{\text {lim }}$	q	γ	m

4. History Variables. The history variables output to d3plot for this material depend on whether the XUE keyword option is used and whether this material is used with an EOS. When the XUE option is used, damage accumulation is output to d3plot. It is history variable \#1 without an EOS and history variable \#5 with an EOS. The value ranges from 0.0 to 1.0. When XUE is not used, history variable \#5 is strain rates and history variable \#6 is strain rate scale factors.

Verification:

Uniaxial tension tests were done on a single shell element as shown in Figure M260A-1. Strain rate effect LCIDV is input as shown in Figure M260A-2. In Figure M260A-3, pulling stress as a function of strain from various test conditions are compared with input stress-strain curve A. In summary, using the parameter SCALE, the element can be pulled much faster ($500 \mathrm{~mm} / \mathrm{s}$ vs. $15 \mathrm{~mm} / \mathrm{s}$) but achieve the same stress vs. strain results, the same strain rates (history variable \#5), and the same strain rate scale factor (history variable \#6 in Figure M260A-4). Simulation speed can be improved further with increased mass scaling ($-1.0 \times \mathrm{dt} 2 \mathrm{~ms}$) without affecting the results; see Figure M260A-5.

A partial keyword input is provided below, for the case with pulling speed of $500 \mathrm{~mm} / \mathrm{s}$, strain hardening curve ID of 100, LCIDV curve ID of 105, and strain rate scale factor of 0.03.

$$
\begin{array}{ll}
0.30000 \mathrm{E}-01 & 0.52022 \mathrm{E}+03 \\
0.40000 \mathrm{E}-01 & 0.55126 \mathrm{E}+03 \\
0.50000 \mathrm{E}-01 & 0.57615 \mathrm{E}+03
\end{array}
$$

*DEFINE_CURVE
105
$0.00000 \mathrm{E}+00$
$0.10000 \mathrm{E}+00$
$0.50000 \mathrm{E}+00$
$0.10000 \mathrm{E}+01$
$0.10000 \mathrm{E}+01$
$0.10608 \mathrm{E}+01$
$0.10828 \mathrm{E}+01$
$0.10923 \mathrm{E}+01$
:
:

Figure M260A-1. Uniaxial tension tests on a single shell element.

Figure M260A-2. Input LCIDV

Figure M260A-3. Recovered stress-strain curve (top) and strain rates (bottom) under various conditions shown.

Figure M260A-4. Recovered strain rate scale factors under various conditions shown.

Figure M260A-5. Effect of mass scaling ($-1.0^{*} \mathrm{dt} 2 \mathrm{~ms}$).

*MAT_MOHR_NON_ASSOCIATED_FLOW_\{OPTION\}

This is Material Type 260B. This material model is implemented based on the papers by Mohr, D., et al. (2010) and Roth, C.C. and Mohr, D. (2014) [1, 2]. The Johnson-Cook plasticity model which includes strain hardening, strain rate hardening, and temperature softening is modified with a mixed Swift-Voce strain hardening function coupled with a non-associated flow rule. For certain Advanced High Strength Steels (AHSS), the nonassociated flow rule accounts for the difference between directional dependency of the r values (planar anisotropic) and the planar isotropic material response. A ductile fracture model is included based on Hosford-Coulomb fracture initiation model. This model applies to shell elements only.

Available options include:

```
<BLANK>
XUE
```


Card Summary:

Card 1. This card is required.

MID	R0	E	PR	P12	P22	P33	G12

Card 2. This card is required.

G22	G33	LCIDS	LCIDV	LCIDT	LFLD	LFRAC	W0

Card 3. This card is required.

A	BO	GAMMA	C	N	SCALE	SIZEO	

Card 4. This card is required.

TREF	TMELT	M	ETA	CP	TINI	DEPSO	DEPSAD

Card 5. This card is included if the XUE keyword option is used.

EF0	PLIM	Q	GAMA	M			

Card 6. This card is required.

AOPT

Card 7. This card is required.

			A1	A2	A3		

Card 8. This card is required.

V1	V2	V3					

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	E	PR	P 12	P 22	P 33	G 12
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	-0.5	1.0	3.0	-0.5

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E Young's Modulus
PR
Poisson's ratio

P12, P22, P33

G12

Yield function parameters, defined by Lankford parameters in rolling $\left(0^{\circ}\right)$, diagonal $\left(45^{\circ}\right)$ and transverse (90°) directions, respectively; see Remark 1.

Plastic flow potential parameters, defined by Lankford parameters in rolling $\left(0^{\circ}\right)$, diagonal (45°) and transverse (90°) directions; see Remark 1.

Card 2	1	2	3	4	5	6	7	8
Variable	G22	G33	LCIDS	LCIDV	LCIDT	LFLD	LFRAC	W0
Type	F	F	1	1	1	1	1	F
Default	1.0	3.0	none	none	none	0	none	none

VARIABLE
G22, G33

LCIDS

LCIDV

LCIDT

LFLD Load curve ID defining a traditional Forming Limit Diagram for linear strain paths

LFRAC

W0
DESCRIPTION
Plastic flow potential parameters, defined by Lankford parameters in rolling $\left(0^{\circ}\right)$, diagonal $\left(45^{\circ}\right)$ and transverse $\left(90^{\circ}\right)$ directions; see Remark 1.

Load curve ID defining stress as a function of strain hardening from a uniaxial tension test; it must be along the rolling direction. Also see Remark 2.

Load curve ID defining stress scale factors as a function of strain rates (see Figure M260B-1 middle) as determined from experiments. Strain rates are stored in history variable \#5. Strain rate scale factors are stored in history variable \#6. To output these history variables to d3plot, set NEIPS to at least " 6 " in *DATABASE_EXTENT_BINARY. Also see Remark 2

Load curve ID defining stress scale factors as a function of temperature in Kelvin (see Figure M260B-1 bottom) as determined from experiments. Temperatures are stored in history variable \#4. Temperature scale factors are stored in history variable \#7. To output these history variables to d3plot, set NEIPS to at least "7" in *DATABASE_EXTENT_BINARY. Also see Remark 2.

Load curve ID defining a fracture limit curve. Leave this field empty if fields A, B0, GAMMA, C, and N are defined. However, if this field is defined, fields A, B0, GAMMA, C, and N will be ignored even if they are defined.

Neck (FLD failure) width which typically is the blank thickness

Card 3	1	2	3	4	5	6	7	8
Variable	A	B0	GAMMA	C	N	SCALE	SIZE0	
Type	F	F	F	F	F	F	F	
Default	none	none	none	none	none	1.0	none	

VARIABLE

A, B0, GAMMA, C, N

SIZE0

SCALE This field can be used to speed up the simulation while equalizing the strain rate effect, which is useful especially in cases where the pulling speed or punch speed is slow. For example, if the pulling speed is 15 mm / s but running the simulation at this speed will take a long time, the pulling speed can be increased to $500 \mathrm{~mm} / \mathrm{s}$ while
"SCALE" can be set to 0.03 , giving the same results as those from a long time, the pulling speed can be increased to $500 \mathrm{~mm} / \mathrm{s}$ while
"SCALE" can be set to 0.03 , giving the same results as those from $15 \mathrm{~mm} / \mathrm{s}$ with greatly reduced computational time; see examples and Figures in *MAT_260A for details. Furthermore, the increased absolute value (within a reasonable range) of mass scaling $1.0 \times \mathrm{dt} 2 \mathrm{~ms}$ frequently used in forming simulation does not affect the strain rates, as shown in the examples and Figures in *MAT_260A.

DESCRIPTION

Material parameters (a, b_{0}, γ, c, n) for the rate-dependent HosfordCoulomb fracture initiation model; see Remark 3. Ignored if LFRAC is defined. the strain rate effect, which usefu especially in cases wher the

Fracture gauge length used in an experimental measurement, typically between $0.2 \sim 0.5 \mathrm{~mm}$

Card 4	1	2	3	4	5	6	7	8
Variable	TREF	TMELT	M	ETA	CP	TINI	DEPSO	DEPSAD
Type	F	F	F	F	F	F	F	F
Default	none							

VARIABLE

TREF

TMELT

M Exponent coefficient, m, for modified Johnson-Cook Plasticity Model; see Remark 2.

ETA Taylor-Quinney coefficient, η_{k}; see Remark 2.

VARIABLE

CP

DEPS0 $\quad \dot{\varepsilon}_{i t} / \dot{\varepsilon}_{0}$; see Remark 2.
DEPSAD $\quad \dot{\varepsilon}_{a}$; see Remark 2.

TINI Initial temperature; see Remark 2.

DESCRIPTION

Heat capacity, C_{p}; see Remark 2.

XUE Card. This card is included if the XUE keyword option is used.

Card 5	1	2	3	4	5	6	7	8
Variable	EF0	PLIM	Q	GAMA	M			
Type	F	F	F	F	F			
Default	none	none	none	none	none			

VARIABLE
EF0, PLIM,
Q, GAMA, M

DESCRIPTION

Material parameters for the option XUE. The parameter k in the original paper is assumed to be 1.0. For details, refer to Xue, L. and Wierzbicki, T.'s 2009 paper "Numerical simulation of fracture mode transition in ductile plates" in the International Journal of Solids and Structures [4].

Card 6	1	2	3	4	5	6	7	8
Variable	AOPT							
Type	F							
Default	none							

Card 7	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		
Default				none	none	none		

Card 8	1	2	3	4	5	6	7	8
Variable	V1	V2	V3					
Type	F	F	F					
Default	none	none	none					

VARIABLE

AOPT

DESCRIPTION

Material axes option (see *MAT_OPTION TROPIC_ELASTIC for a more complete description):

EQ.O.O: locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then rotated about the shell element normal by the angle BETA.
EQ.2.0: globally orthotropic with material axes determined by the vector a for shells, as with *DEFINE_COORDINATE_VECTOR.
EQ.3.0: locally orthotropic material axes determined by a line in the plane of the element defined by the cross product of the vector \mathbf{v} with the element normal

LT.O.O: the absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for $\mathrm{AOPT}=2$
V1, V2, V3 Components of vector \mathbf{v} for AOPT $=3$

Remarks:

1. Non-associated Flow Rule. Referring to [1] and [2], Hill's 1948 quadratic yield function is written as:

$$
f(\sigma, k)=\bar{\sigma}-k=0,
$$

where σ is the Cauchy stress tensor and $\bar{\sigma}$ is the equivalent stress, defined by:

$$
\bar{\sigma}=\sqrt{(\mathbf{P} \sigma) \bullet \sigma} .
$$

\mathbf{P} is a symmetric positive-definite matrix defined through three independent parameters, P_{12}, P_{22}, and P_{33} :

$$
\mathbf{P}=\left[\begin{array}{ccc}
1 & \mathrm{P}_{12} & 0 \\
\mathrm{P}_{12} & \mathrm{P}_{22} & 0 \\
0 & 0 & \mathrm{P}_{33}
\end{array}\right]
$$

The flow rule, which defines the incremental plastic strain tensor, is written as follows:

$$
d \varepsilon_{p}=d \delta \frac{\partial g(\sigma)}{\partial \sigma}
$$

where $d \delta$ is a scalar plastic multiplier. The plastic potential function $g(\sigma)$ can be defined as a quadratic function in stress space:

$$
g(\sigma)=\sqrt{(\mathbf{G} \boldsymbol{\sigma}) \bullet \sigma}
$$

with,

$$
\mathbf{G}=\left[\begin{array}{ccc}
1 & G_{12} & 0 \\
G_{12} & G_{22} & 0 \\
0 & 0 & G_{33}
\end{array}\right] .
$$

When $\mathbf{P} \neq \mathbf{G}$, the flow rule is non-associated. The associated flow rule is recovered if $\mathbf{P}=\mathbf{G}$. For example, \mathbf{P} can represent an isotropic von-Mises yield surface by setting $P_{11}=P_{22}=1.0, P_{12}=-0.5$, and $P_{33}=3.0$. G can represent an orthotropic plastic flow potential by setting:

$$
\begin{aligned}
G_{12} & =-\frac{r_{0}}{1+r_{0}} \\
G_{22} & =\frac{r_{0}\left(1+r_{90}\right)}{r_{90}\left(1+r_{0}\right)} \\
G_{33} & =\frac{\left(1+2 r_{45}\right)\left(r_{0}+r_{90}\right)}{r_{90}\left(1+r_{0}\right)} .
\end{aligned}
$$

Here r_{0}, r_{45}, and r_{90} are the Lankford coefficients in the rolling, diagonal and transverse directions, respectively. Experiments have shown on the stress level, some AHSS (Advanced High Strength Steel), e.g., DP590, and TRIP780 show strong directional dependency for the r-values, while nearly the same stressstrain curves have been measured in all directions. The directional dependency of r-values suggests planar anisotropy while the material response for the stress
is planar isotropic, which is the main reason to employ the non-associated flow rule.
2. A Modified Johnson-Cook Plasticity Model with Mixed Swift-Voce Hardening. The Johnson-Cook plasticity model (1983) multiplicatively decomposes the deformation resistance into three functions representing the effects of strain hardening, strain rate, and temperature. The Johnson-Cook model is modified to include hardening saturation with a mixed Swift-Voce hardening law (Sung et al, 2010 [3]), which gives a better description of the hardening at large strain levels, thus improving the prediction of the necking and post-necking response of metal sheet:

$$
\begin{aligned}
& \sigma_{y}=\left(\alpha\left(A\left(\bar{\varepsilon}_{p l}+\varepsilon_{0}\right)^{n}\right)+(1-\alpha)\left(k_{0}+Q\left(1-e^{-\beta \bar{\varepsilon}_{p l}}\right)\right)\right)(1+ \\
&\left.C \ln \left(\frac{\dot{\bar{\varepsilon}}_{p l}}{\dot{\varepsilon_{0}}}\right)\right)\left(1-\left(\frac{T-T_{r}}{T_{m}-T_{r}}\right)^{m}\right)
\end{aligned}
$$

where $\bar{\varepsilon}_{p l}$ and $\dot{\bar{\varepsilon}}_{p l}$ are effective plastic strain and strain rate, respectively; T_{m} (TMELT), T_{r} (TREF) and T are the melting temperature, reference temperature (ambient temperature 293 K) and current temperature, respectively; and $m(\mathrm{M})$ is an exponent coefficient. For other symbols' definitions refer to the aforementioned paper.

To make this material model more general and flexible, three load curves are used to define the three components of the deformation resistance. A load curve (LCIDS) is used to describe the strain hardening:

$$
\alpha\left(A\left(\bar{\varepsilon}_{p l}+\varepsilon_{0}\right)^{n}\right)+(1-\alpha)\left(k_{0}+Q\left(1-e^{-\beta \bar{\varepsilon}_{p l}}\right)\right)
$$

Strain rate is described by a load curve LCIDV (stress scale factor vs. strain rates, Figure M260B-1 middle), which scales the stresses based on the strain rates during a simulation:

$$
1+C \ln \left(\frac{\dot{\bar{\varepsilon}}_{p l}}{\dot{\varepsilon}_{0}}\right)
$$

The temperature softening effect is defined by another load curve LCIDT (stress scale factor as a function of temperature, Figure M260B-1 bottom), which scales the stresses based on the temperatures during the simulation:

$$
1-\left(\frac{T-T_{r}}{T_{m}-T_{r}}\right)^{m}
$$

The temperature effect is a self-contained model, meaning it does not require thermal exchange with the environment. It calculates temperatures based on plastic strain and strain rate.

The temperature evolution is determined with:

$$
d T=\omega\left[\dot{\bar{\varepsilon}}_{p l}\right] \frac{\eta_{k}}{\rho C_{p}} \bar{\sigma} d \bar{\varepsilon}_{p l}
$$

where η_{k} (ETA) is the Taylor-Quinney coefficient; ρ (R0) is the mass density; C_{p} (CP) is the heat capacity; and

$$
\omega\left[\begin{array}{cc}
0 & \text { for } \left.\dot{\bar{\varepsilon}}_{p l}<\dot{\bar{\varepsilon}}_{p l}\right]=\left\{\begin{array}{cc}
0 \\
\frac{\left(\dot{\bar{\varepsilon}}_{p l}-\dot{\varepsilon}_{i t}\right)^{2}\left(3 \dot{\varepsilon}_{a}-2 \dot{\bar{\varepsilon}}_{p l}-\dot{\varepsilon}_{i t}\right)}{\left(\dot{\varepsilon}_{a}-\dot{\varepsilon}_{i t}\right)^{3}} & \text { for } \dot{\varepsilon}_{i t} \leq \dot{\bar{\varepsilon}}_{p l} \leq \dot{\varepsilon}_{a} \\
1 & \text { for } \dot{\varepsilon}_{a}<\dot{\bar{\varepsilon}}_{p l}
\end{array}\right. \text { 共 }
\end{array}\right.
$$

Here $\dot{\varepsilon}_{i t}>0$ and $\dot{\varepsilon}_{a}>\dot{\varepsilon}_{i t}$ define the limits of the respective domains of isothermal and adiabatic conditions ($\dot{\varepsilon}_{a}=$ DEPSAD). For simplicity, $\dot{\varepsilon}_{i t}=\dot{\varepsilon}_{0} \times$ DEPS0.

As shown in a single shell element undergoing uniaxial stretching (see Figure M260B-1), the general effect of LCIDV is to elevate the strain hardening behavior as the strain rate increases (curve "D" in Figure M260B-2 top), while the effect of LCIDT is strain softening as the temperature rises (curve "C" in Figure M260B-2 top). Initially, due to the combined effect of both LCIDV and LCIDT strain hardening may occur before the temperature rises enough to cause strain softening in the model (curve "E" in Figure M260B-2 top). The temperature and strain rates calculated for each element can be viewed with history variables \#4 and \#5 (curves "C" and "D" in Figure M260B-2 bottom), respectively, while the strain rate scale factors and temperature scale factors can be viewed with history variable \#6 and \#7, respectively.
3. Rate-dependent Hosford-Coulomb Fracture Initiation Model. An extension of the Hosford-Coulomb fracture initiation model is used to account for the effect of strain rate on ductile fracture. The damage accumulation is calculated through history variable \#3. When this history variable reaches 1.0, fracture occurs at an equivalent plastic strain, $\bar{\varepsilon}_{f}$, that is,

$$
\int_{0}^{\varepsilon_{f}} \frac{d \bar{\varepsilon}_{p l}}{\bar{\varepsilon}_{f}^{p r}[\eta, \bar{\theta}]}=1 .
$$

Here $\bar{\varepsilon}_{f}^{p r}, \eta$, and $\bar{\theta}$ are strain to fracture, stress triaxiality, and the Lode parameter, respectively.

The fracture parameters, A, B0, GAMMA, C, and N, are used in the following equations as (a, b_{0}, γ, c, n), respectively. Strain to fracture for a proportional load is given as:

$$
\left.\begin{array}{rl}
\bar{\varepsilon}_{f}^{p r}[\eta, \bar{\theta}]=b(1+c)^{\frac{1}{n}}\left(\left\{\frac{1}{2}\left(\left(f_{1}-f_{2}\right)^{a}+\left(f_{2}-f_{3}\right)^{a}+\left(f_{1}-f_{3}\right)^{a}\right)\right\}^{\frac{1}{a}}\right.
\end{array}\right] \begin{aligned}
& \left.+c\left(2 \eta+f_{1}+f_{3}\right)\right)^{-\frac{1}{n}}
\end{aligned}
$$

where a is the Hosford exponent, c is the friction coefficient controlling the effect of triaxiality, and n is the stress state sensitivity. The Lode angle parameter dependent trigonometric functions are given as:

$$
\begin{aligned}
& f_{1}[\bar{\theta}]=\frac{2}{3} \cos \left[\frac{\pi}{6}(1-\bar{\theta})\right] \\
& f_{2}[\bar{\theta}]=\frac{2}{3} \cos \left[\frac{\pi}{6}(3+\bar{\theta})\right] \\
& f_{3}[\bar{\theta}]=-\frac{2}{3} \cos \left[\frac{\pi}{6}(1+\bar{\theta})\right]
\end{aligned}
$$

The coefficient b (strain to fracture for uniaxial or equi-biaxial stretching) is:
where γ is the strain rate sensitivity.
4. Corresponding Parameters Summary. The following table lists variable names used in this material model and corresponding symbols employed in [1], [2], and [3]:

Variable	P12	P22	P33	G12	G22	G 33	A	B 0
Symbol	P_{12}	P_{22}	P_{33}	G_{12}	G_{22}	G_{33}	a	b_{0}
Variable	GAMMA	C	N	TREF	TMELT	M	ETA	CP
Symbol	γ	c	N	T_{r}	T_{m}	m	η_{k}	C_{p}
Variable	DEPS 0	DEPSAD	RO					
Symbol	$\dot{\varepsilon}_{i t} / \dot{\varepsilon}_{0}$	$\dot{\varepsilon}_{a}$	ρ					

The following table lists variable names used in this material model and corresponding symbols in Xue's 2009 paper [4], for the option XUE:

Variable	EF0	P22	P33	G12	G22			
Symbol	$\varepsilon_{f 0}$	$P_{\text {lim }}$	q	γ	m			

5. Additional History Variables. The table below lists the extra history variables associated with this material. See NEIPS on the manual page for *DATABASE_EXTENT_BINARY.

History Variable \#	Description
3	Damage accumulation. Elements will be deleted if this var- iable reaches 1.0 for more than half of the through-thickness integration points.
4	Temperatures
5	Strain rates
6	Strain rate scale factors
7	Temperature scale factor

Keyword Example Input:

A sample material input card can be found below, with parameters from Mohr, D., et al. (2010) and Roth, C.C. and Mohr, D. (2014).


```
0.10000E-01 0.42295E+03
0.20000E-01 0.47991E+03
0.30000E-01 0.52022E+03
0.40000E-01 0.55126E+03
```

```
*DEFINE_CURVE
105
```

 \(\begin{array}{ll}0.00000 \mathrm{E}+00 & 0.10000 \mathrm{E}+01 \\ 0.10000 \mathrm{E}+00 & 0.10608 \mathrm{E}+01 \\ 0.50000 \mathrm{E}+00 & 0.10828 \mathrm{E}+01\end{array}\)
 \(0.10000 \mathrm{E}+01 \quad 0.10923 \mathrm{E}+01\)
 *DEFINE_CURVE
102
$0.29300 \mathrm{E}+03 \quad 0.10000 \mathrm{E}+01$
$0.33300 \mathrm{E}+03 \quad 0.96168 \mathrm{E}+00$
$0.37300 \mathrm{E}+03 \quad 0.92744 \mathrm{E}+00$
$0.41300 \mathrm{E}+03 \quad 0.89459 \mathrm{E}+00$
$0.45300 \mathrm{E}+03 \quad 0.86261 \mathrm{E}+00$

$0.00000 \mathrm{E}+00$	$0.10000 \mathrm{E}+01$
$0.10000 \mathrm{E}+00$	$0.10608 \mathrm{E}+01$
$0.50000 \mathrm{E}+00$	$0.10828 \mathrm{E}+01$
$0.10000 \mathrm{E}+01$	$0.10923 \mathrm{E}+01$

$0.29300 \mathrm{E}+03$	$0.10000 \mathrm{E}+01$
$0.33300 \mathrm{E}+03$	$0.96168 \mathrm{E}+00$
$0.37300 \mathrm{E}+03$	$0.92744 \mathrm{E}+00$
$0.41300 \mathrm{E}+03$	$0.89459 \mathrm{E}+00$
$0.45300 \mathrm{E}+03$	$0.86261 \mathrm{E}+00$

 : :
 :
:
:

References:

[1] D. Mohr, M. Dunand, K. Kim, "Evaluation of associated and non-associated quadratic plasticity models for advanced high strength steel sheets under multi-axial loading," International Journal of Plasticity, Vol 26, Issue 7, https://doi.org/10.1016/j.ijplas.2009.11.006, July 2010.
[2] C.C. Roth and D. Mohr, "Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling," International Journal of Plasticity, Vol 56, https://doi.org/10.1016/j.ijplas.2014.01.003, May 2014.
[3] J.H. Sung, J.H. Kim, R.H. Wagoner, "A plastic constitutive equation incorporating strain, strain-rate, and temperature," International Journal of Plasticity, Vol 26, Issue 12, https://doi.org/10.1016/j.ijplas.2010.02.005, December 2010.
[4] L. Xue and T. Wierzbicki, "Numerical simulation of fracture mode transition in ductile plates," International Journal of Solids and Structures, Vol 46, Issue 6, https://doi.org/10.1016/j.ijsolstr.2008.11.009, March 2009.

Revision Information::

This material model is available in SMP starting in Revision 102375. Revision history is listed below:

- Element deletion feature based on damage accumulation: Revision 109792.
- The option XUE is available starting on Revision 111531.
- Set default values for P12, P22, P33, G12, G22 and G33: Revision 116262.

Figure M260B-1. Uniaxial stretching on a single shell element; Input curves LCIDV and LCIDT.

Pull speed: $15 \mathrm{~mm} / \mathrm{s}$, SCALE=1.0

Figure M260B-2. Results of a single element uniaxial stretching - stress-strain curves (top), strain rates and temperature history under various conditions.

*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO

This is Material Type 261 which is an orthotropic continuum damage model for laminated fiber-reinforced composites. See Pinho, Iannucci and Robinson [2006]. It is based on a physical model for each failure mode and considers non-linear in-plane shear behavior.

This model is implemented for shell, thick shell and solid elements.
NOTE: To apply laminated shell theory, set LAMSHT ≥ 3 in *CONTROL_SHELL.

Card Summary:

Card 1. This card is required.

MID	RO	EA	EB	EC	PRBA	PRCA	PRCB

Card 2. This card is required.

GAB	GBC	GCA	AOPT	DAF	DKF	DMF	EFS

Card 3. This card is required.

$X P$	YP	ZP	A1	A2	A3		

Card 4. This card is required.

V1	V2	V3	D1	D2	D3	MANGLE	

Card 5. This card is required.

ENKINK	ENA	ENB	ENT	ENL			

Card 6. This card is required.

$X C$	XT	YC	YT	SL			

Card 7. This card is required.

FIO	SIGY	LCSS	BETA	PFL	PUCK	SOFT	DT

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	EA	EB	EC	PRBA	PRCA	PRCB
Type	A	F	F	F	F	F	F	F

VARIABLE

MID Material identification. A unique number or label must be specified (see ${ }^{*}$ PART).

RO Mass density
EA $\quad E_{a}$, Young's modulus in a-direction (longitudinal)
EB $\quad E_{b}$, Young's modulus in b-direction (transverse)
EC $\quad E_{c}$, Young's modulus in c-direction
PRBA $\quad v_{b a}$, Poisson's ratio $b a$
PRCA $\quad v_{c a}$, Poisson's ratio $c a$
PRCB $\quad v_{c b}$, Poisson's ratio $c b$

Card 2	1	2	3	4	5	6	7	8
Variable	GAB	GBC	GCA	AOPT	DAF	DKF	DMF	EFS
Type	F	F	F	F	F	F	F	F

VARIABLE	DESCRIPTION
GAB	
GBC	$G_{a b}$, shear modulus $a b$
GCA	$G_{b c}$, shear modulus $b c$
AOPT	Material axes option (see MAT_OPTIONTROPIC_ELASTIC, par- ticularly the Material Directions section, for details):

VARIABLE

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by an angle (see MANGLE on Card 4).
EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, $\mathrm{AOPT}=3$ is only available for hexahedrons. \mathbf{a} is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle. This angle may be set in the keyword input for the element or in the input for this keyword (see MANGLE on Card 4).
EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis. This option is for solid elements only.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

DAF Flag to control failure of an integration point based on longitudinal (fiber) tensile failure (see Remarks 1 and 2):

LT.-0.01: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0, reaches 1.0. $|\mathrm{DAF}|$ limits the stress reduction due to damage from longitudinal tensile failure.
EQ.0.00: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0,

DKF Flag to control failure of an integration point based on longitudinal (fiber) compressive failure (see Remarks 1 and 2):

LT.-0.01: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0, reaches 1.0. $|\mathrm{DKF}|$ limits the stress reduction due to damage from longitudinal compressive failure.

EQ.0.00: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0, reaches 1.0. DKF does not limit the stress reduction due to damage from longitudinal tensile failure.
GT.0.01: No failure of integration point due to fiber compressive failure. This condition corresponds to history variable "dkink(i)" reaching 1.0. The value of DKF limits the stress reduction due to damage from longitudinal compressive failure.

DMF Flag to control failure of an integration point based on transverse (matrix) failure (see Remarks 1 and 2):

LT.-0.01: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0, reaches 1.0. $|\mathrm{DMF}|$ limits the stress reduction due to the damage from the matrix failure.

EQ.0.00: Integration point fails if any damage variable, that has a corresponding flag (DAF, DKF, or DMF) set ≤ 0.0, reaches 1.0. DMF does not limit the stress reduction due to damage from longitudinal tensile failure.
GT.0.01: No failure of integration point due to matrix failure. This condition corresponds to history variable "dmat(i)" reaching 1.0. The value of DMF limits the stress reduction due to damage from matrix failure.

VARIABLE

EFS

DESCRIPTION

Maximum effective strain for element layer failure. A value of unity would equal 100% strain.

GT.0.0: Fails when effective strain calculated assuming material is volume preserving exceeds EFS
LT.0.0: Fails when effective strain calculated from the full strain tensor exceeds |EFS|

Card 3	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

VARIABLE
$\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad$ Coordinates of point P for AOPT $=1$ and 4
A1, A2, A3

Card 4	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGLE	
Type	F	F	F	F	F	F	F	

VARIABLE

V1, V2, V3
D1, D2, D3
MANGLE

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3$
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for $\mathrm{AOPT}=0$ (shells and tshells only) and $\mathrm{AOPT}=3$. MANGLE may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, and *ELEMENT_SOLID_ORTHO.

Card 5	1	2	3	4	5	6	7	8
Variable	ENKINK	ENA	ENB	ENT	ENL			
Type	F	F	F	F	F			

VARIABLE

ENKINK

ENB Fracture toughness for intralaminar matrix tensile failure.
GT.O.O: The given value will be regularized with the characteristic element length.

LT.O.O: Load curve or table ID = (-ENB). The load curve defines the fracture toughness for intralaminar matrix tensile failure as a function of characteristic element length. The table defines for each strain rate value a load curve that defines the fracture toughness for intralaminar

VARIABLE

ENT

ENL Fracture toughness for intralaminar matrix longitudinal shear failure.

GT.0.0: The given value will be regularized with the characteristic element length.

LT.0.0: Load curve or table ID = (-ENL). The load curve defines the fracture toughness for intralaminar matrix longitudinal shear failure as a function of characteristic element length. The table defines for each strain rate value a load curve that defines the fracture toughness for intralaminar matrix longitudinal shear failure as a function of characteristic element length. Neither case includes further regularization.

Card 6	1	2	3	4	5	6	7	8
Variable	XC	XT	YC	YT	SL			
Type	F	F	F	F	F			

VARIABLE
XC

DESCRIPTION

Longitudinal compressive strength, a-axis (positive value).

VARIABLE

DESCRIPTION

GT.0.0: Constant value
LT.O.O: Load curve ID $=(-X C)$ which defines the longitudinal compressive strength as a function of longitudinal strain rate ($\dot{\epsilon}_{a a}$)

XT Longitudinal tensile strength, a-axis.

GT.0.0: Constant value

LT.0.0: Load curve ID $=(-X T)$ which defines the longitudinal tensile strength as a function of longitudinal strain rate ($\dot{\epsilon}_{a a}$)

YC Transverse compressive strength, b-axis (positive value).
GT.0.0: Constant value
LT.0.0: Load curve ID $=(-Y C)$ which defines the transverse compressive strength as a function of transverse strain rate $\left(\dot{\epsilon}_{b b}\right)$

YT Transverse tensile strength, b-axis.
GT.0.0: Constant value
LT.0.0: Load curve ID $=(-Y T)$ which defines the transverse tensile strength as a function of transverse strain rate $\left(\dot{\epsilon}_{b b}\right)$

SL Longitudinal shear strength.
GT.0.0: Constant value
LT.0.0: Load curve ID = (-SL) which defines the longitudinal shear strength as a function of in-plane shear strain rate ($\dot{\epsilon}_{a b}$)

Card 7	1	2	3	4	5	6	7	8
Variable	FIO	SIGY	LCSS	BETA	PFL	PUCK	SOFT	DT
Type	F	F	F	F	F	F	F	F

VARIABLE
FIO

DESCRIPTION

Fracture angle in pure transverse compression $\left(\right.$ default $\left.=53.0^{\circ}\right)$

VARIABLE

SIGY
LCSS Load curve ID or Table ID.
Load Curve. When LCSS is a load curve ID, it defines the nonlinear in-plane shear-stress as a function of in-plane shear-strain ($\gamma_{a b}$).
Tabular Data. The table maps in-plane strain rate values $\left(\dot{\gamma}_{a b}\right)$ to a load curve giving the in-plane shear-stress as a function of in-plane shear-strain. For strain rates below the minimum value, the curve for the lowest defined value of strain rate is used. Likewise, when the strain rate exceeds the maximum value, the curve for the highest defined value of strain rate is used.

Logarithmically Defined Table. An alternative way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude. There is some additional computational cost associated with invoking logarithmic interpolation.

BETA

PFL Percentage of shell or tshell layers which must fail until crashfront is initiated. For example, if $|\mathrm{PFL}|=80.0$, then 80% of layers must fail until strengths are reduced in neighboring elements. Default: all layers must fail. A single layer fails if 1 in-plane integration point fails ($\mathrm{PFL}>0$) or if 4 in-plane integration points fail ($\mathrm{PFL}<0$).

PUCK Flag for evaluation and post-processing of Puck's inter-fiber-failure criterion (IFF); see Puck, Kopp and Knops [2002].

EQ.0.0: No evaluation of Puck's IFF-criterion.
EQ.1.0: Puck's IFF-criterion will be evaluated.

VARIABLE

SOFT

DT

DESCRIPTION

Softening reduction factor for material strength in crashfront elements $($ default $=1.0)$

Strain rate averaging option:
EQ.0.0: Strain rate is evaluated using a running average.
LT.O.O: Strain rate is evaluated using an average of the last 11 time steps.

GT.0.0: Strain rate is averaged over the last DT time units.

Remarks:

1. Failure Surfaces. We assemble four sub-surfaces, representing different failure mechanisms, to obtain the failure surface to limit the elastic domain. See Figure M261-1 for a definition of angles. They are defined as follows:
a) longitudinal (fiber) tension,

$$
f_{a}=\frac{\sigma_{a}}{X_{T}}=1
$$

b) longitudinal (fiber) compression (3D-kinking model) - (transformation to fracture plane),

$$
f_{\text {kink }}=\left\{\begin{array}{cc}
\left(\frac{\tau_{T}}{S_{T}-\mu_{T} \sigma_{n}}\right)^{2}+\left(\frac{\tau_{L}}{S_{L}-\mu_{L} \sigma_{n}}\right)^{2}=1 & \text { if } \quad \sigma_{b^{m}} \leq 0 \\
\left(\frac{\sigma_{n}}{Y_{T}}\right)^{2}+\left(\frac{\tau_{T}}{S_{T}}\right)^{2}+\left(\frac{\tau_{L}}{S_{L}}\right)^{2}=1 & \text { if } \quad \sigma_{b^{m}}>0
\end{array}\right.
$$

with

$$
\begin{aligned}
S_{T} & =\frac{Y_{C}}{2 \tan \left(\phi_{0}\right)} \\
\mu_{T} & =-\frac{1}{\tan \left(2 \phi_{0}\right)} \\
\mu_{L} & =S_{L} \frac{\mu_{T}}{S_{T}} \\
\sigma_{n} & =\frac{\sigma_{b^{m}}+\sigma_{c^{\psi}}}{2}+\frac{\sigma_{b^{m}}-\sigma_{c^{\psi}}}{2} \cos (2 \phi)+\tau_{b^{m} c^{\psi}} \sin (2 \phi) \\
\tau_{T} & =-\frac{\sigma_{b^{m}}-\sigma_{c^{\psi}}}{2} \sin (2 \phi)+\tau_{b^{m} c^{\psi}} \cos (2 \phi) \\
\tau_{L} & =\tau_{a^{m} b^{m}} \cos (\phi)+\tau_{c^{\psi} a^{m}} \sin (\phi)
\end{aligned}
$$

c) transverse (matrix) failure: transverse tension,

Figure M261-1. Definition of angles and stresses in fracture plane

$$
f_{\mathrm{mat}}=\left(\frac{\sigma_{n}}{Y_{T}}\right)^{2}+\left(\frac{\tau_{T}}{S_{T}}\right)^{2}+\left(\frac{\tau_{L}}{S_{L}}\right)^{2}=1 \quad \text { if } \quad \sigma_{n} \geq 0
$$

with

$$
\begin{aligned}
& \sigma_{n}=\frac{\sigma_{b}+\sigma_{c}}{2}+\frac{\sigma_{b}-\sigma_{c}}{2} \cos (2 \phi)+\tau_{b c} \sin (2 \phi) \\
& \tau_{T}=-\frac{\sigma_{b}-\sigma_{c}}{2} \sin (2 \phi)+\tau_{b c} \cos (2 \phi) \\
& \tau_{L}=\tau_{a b} \cos \phi+\tau_{c a} \sin \phi
\end{aligned}
$$

d) transverse (matrix) failure: transverse compression/shear,

$$
f_{\mathrm{mat}}=\left(\frac{\tau_{T}}{S_{T}-\mu_{T} \sigma_{n}}\right)^{2}+\left(\frac{\tau_{L}}{S_{L}-\mu_{L} \sigma_{n}}\right)^{2}=1 \quad \text { if } \quad \sigma_{n}<0
$$

2. Damage Evolution. As long as the stress state is located within the failure surface, the model behaves in an orthotropic elastic manner. When reaching the failure criteria, the effective (undamaged) stresses will be reduced by a factor of $(1-d)$. Here, the damage variable d represents one of the damage variables defined for the different failure mechanisms or a limit to the stress reduction set with DAF, DKF, and DMF due to the damage variable. In other words, d corresponds to one of the following values, depending on the failure mechanism: $\min \left(d_{\mathrm{da}},|\mathrm{DAF}|\right)$ for logitudinal tension damage, $\min \left(d_{\mathrm{kink}},|\mathrm{DKF}|\right)$ for logitudinal compression damage, or $\min \left(d_{\text {mat }},|\mathrm{DMF}|\right)$ for matrix damage. Note that $\mathrm{DiF}=$ 0 , where i is A, K, or M , means no limit to the stress reduction due to the corresponding damage variable. Note that once the integration point fails that the stress goes to zero. A linear damage evolution law based on fracture toughnesses ($\Gamma \rightarrow$ ENKINK, ENA, ENB, ENT, ENL) and a characteristic internal

Figure M261-2. Damage evolution law

Figure M261-3. Definition of nonlinear in-plane shear behavior
element length, L, to account for objectivity drive the growth of the damage variables ($d_{\text {da }}, d_{\text {kink }}$, and $d_{\text {mat }}$). See Figure M261-2.
3. Nonlinear In-Plane Shear. To account for the characteristic nonlinear in-plane shear behavior of laminated fiber-reinforced composites, we couple a 1D elastoplastic formulation to a linear damage behavior upon reaching the maximum allowable stress state for shear failure. To introduce nonlinearity in the shear behavior, use *DEFINE_CURVE to define an explicit shear stress as a function of engineering shear strain curve (LCSS). See Figure M261-3 (in which $\epsilon_{a b}$ designates engineering shear strain rather than tensorial shear strain).
4. Element Deletion. When failure has occurred in all the composite layers (through-thickness integration points), the element is deleted. Elements that share nodes with the deleted element become "crashfront" elements and can have their strengths reduced by using the SOFT parameter. An earlier initiation of crashfront elements is possible by using the parameter PFL.
5. History Variables. The number of additional integration point variables written to the LS-DYNA database is input by the *DATABASE_EXTENT_BINARY
definition with the variable NEIPS (shells) and NEIPH (solids). These additional variables are tabulated below ($i=$ integration point).

When intending to initialize the stress state using *INTIAL_STRESS_OPTION, the stress values SIGXX, SIGYY, etc. in *INITIAL_STRESS_OPTION are not used, rather stresses are determined from the total strain history variables 31 to 36.

History Variable	Description	Value	History Variable \#
$\mathrm{fa}(i)$	fiber tensile mode	$\begin{aligned} \hline 0 & \rightarrow \text { 1: elastic } \\ & \text { 1: failure criterion reached } \end{aligned}$	1
fkink(i)	fiber compressive mode		2
fmat (i)	matrix mode		3
da(i)	damage fiber tension	$\begin{aligned} & \text { 0: elastic } \\ & \text { 1: fully damaged } \end{aligned}$	5
dkink(i)	damage fiber compression		6
$\mathrm{dmat}(i)$	damage transverse		7
dam(i)	crashfront	$\begin{aligned} & \text {-1: element intact } \\ & 10^{-8}: \text { element in crashfront } \\ & +1: \text { element failed } \end{aligned}$	9
fmt_p (i)	tensile matrix mode (Puck criteria)	$\begin{aligned} & 0 \rightarrow 1 \text { 1: elastic } \\ & \quad 1: \text { failure criterion reached } \end{aligned}$	10
fmc_p (i)	compressive matrix mode (Puck criteria)		11
theta_p $(i$)	angle of fracture plane (radians, Puck criteria)		12
d1tot $\left({ }^{\text {i }}\right.$)	Total strain in material 11-direction		31
d2tot $($)	Total strain in material 22-direction		32
d3tot $\left({ }^{\text {(}}\right.$)	Total strain in material 33-direction		33
d4tot $($ i $)$	Total strain in material 12-direction		34
d5tot $($ ($)$	Total strain in material 23-direction		35
d6tot (i)	Total strain in material 31-direction		36
theta	Angle θ in Figure M261-1		49
psi	Angle ψ in Figure M261-1		50
e1dot $($ ($)$	Averaged strain rate in longitudinal direction		54

History Variable	Description	Value	History Variable \#
e2dot (i)	Averaged strain rate in transverse direction		55
e4dot (i)	Averaged engineering shear strain rate in in- plane direction	56	

References:

More detailed information about this material model can be found in Pinho, Iannucci and Robinson [2006].

*MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO

This is Material Type 262 which is an orthotropic continuum damage model for laminated fiber-reinforced composites. See Maimí, Camanho, Mayugo and Dávila [2007]. It is based on a physical model for each failure mode and considers a simplified non-linear in-plane shear behavior. This model is implemented for shell, thick shell and solid elements.

NOTE: Laminated shell theory can be applied by setting LAMSHT ≥ 3 in *CONTROL_SHELL.

Card Summary:

Card 1. This card is required.

MID	RO	EA	EB	EC	PRBA	PRCA	PRCB

Card 2. This card is required.

GAB	GBC	GCA	AOPT	DAF	DKF	DMF	EFS

Card 3. This card is required.

$X P$	YP	ZP	A1	A2	A3	DSF	

Card 4. This card is required.

V1	V2	V3	D1	D2	D3	MANGLE	MSG

Card 5. This card is required.

GXC	GXT	GYC	GYT	GSL	GXCO	GXTO	

Card 6. This card is required.

$X C$	XT	YC	YT	SL	XCO	XTO	

Card 7. This card is required.

FIO	SIGY	ETAN	BETA	PFL	PUCK	SOFT	DT

Card 8. This card is optional.

EPSF23	EPSR23	TSMD23	EPSF31	EPSR31	TSMD31		

Card 9. This card is optional.

EF_11T	EF_11C	EF_22T	EF_22C	EF_12	EF_23	EF_31	LCSS

Card 10. This card is optional.

CF12	CF13	CF23	SOFTC				

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	EA	EB	EC	PRBA	PRCA	PRCB
Type	A	F	F	F	F	F	F	F

VARIABLE

MID

RO Mass density
EA GT.0.0: E_{a}, Young's modulus - longitudinal direction
LT.O.O: Load curve or table ID $=(-E A)$. It is available for shells only.
Load Curve. When -EA refers to a load curve ID, it is taken as defining the uniaxial elastic stress as a function of strain behavior in the longitudinal direction. Negative data points correspond to compression and positive values to tension.
Tabular Data. When -EA refers to a table ID, it defines a load curve for each strain rate value. The load curves give the uniaxial elastic stress as a function of strain behavior in the longitudinal direction.
Logarithmically Defined Tables. If the first uniaxial elastic stress as a function of strain curve in the table corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all stress-strain curves.

VARIABLE

EB
GT.0.0: E_{b}, Young's modulus - transverse direction
LT.0.0: Load Curve ID or Table ID = (-EB). (shells only).
Load Curve. When -EB refers to a load curve ID, it is taken as defining the uniaxial elastic stress as a function of strain behavior in the transverse direction. Negative data points correspond to compression, and positive values to tension.
Tabular Data. When -EB corresponds to a table ID, it specifies a load curve for each strain rate value. The load curves give the uniaxial elastic stress as a function of strain behavior in the transverse direction.
Logarithmically Defined Tables. If the first uniaxial elastic stress as a function of strain curve in the table corresponds to a negative strain rate, LS-DYNA assumes that the natural logarithm of the strain rate value is used for all stress-strain curves.

EC $\quad E_{c}$, Young's modulus in c-direction
PRBA $\quad v_{b a}$, Poisson's ratio $b a$
PRCA $\quad v_{c a}$, Poisson's ratio $c a$
PRCB $\quad v_{c b}$, Poisson's ratio $c b$

Card 2	1	2	3	4	5	6	7	8
Variable	GAB	GBC	GCA	AOPT	DAF	DKF	DMF	EFS
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

GAB
GT.0.0: $G_{a b}$, shear modulus in the $a b$-direction
LT.0.0: Load Curve ID or Table ID $=(-G A B)$
Load Curve. When -GAB refers to a load curve ID, it is taken as defining the elastic shear stress as a function of shear strain behavior in the $a b$-direction.

VARIABLE

GBC
GCA

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES, and then, for shells only, rotated about the shell element normal by an angle MANGLE

EQ.1.0: Locally orthotropic with material axes determined by a point in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by rotating the material axes about the element normal by an angle (MANGLE) from a line in the plane of the element defined by the cross product of the vector \mathbf{v} with the element normal

EQ.4.0: Locally orthotropic in cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, p, which define the centerline axis. This option is for solid elements only.

LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

VARIABLE

DAF

DKF

DMF Flag to control failure of an integration point based on transverse (matrix) failure:

EQ.0.0: Integration point fails if any damage variable reaches 1.0.

EQ.1.0: No failure of integration point due to matrix failure, $\operatorname{dmat}(i)=1.0$

Maximum effective strain for element layer failure. A value of unity would equal 100% strain.

GT.0.0: Fails when effective strain calculated assuming material is volume preserving exceeds EFS
LT.0.0: Fails when effective strain calculated from the full strain tensor exceeds |EFS|

Card 3	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3	DSF	
Type	F	F	F	F	F	F	F	

DESCRIPTION

XP YP ZP \quad Coordinates of point p for $\mathrm{AOPT}=1$ and 4

DESCRIPTION

A1 A2 A3 Components of vector a for AOPT $=2$
DSF Flag to control failure of an integration point based on in-plane shear failure:

EQ.0.0: Integration point fails if any damage variable reaches 1.0 .

EQ.1.0: No failure of integration point due to in-plane shear failure, $\operatorname{dsl}(i)=1.0$

Card 4	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGLE	MSG
Type	F	F	F	F	F	F	F	F

VARIABLE

V1 V2 V3 Components of vector \mathbf{v} for $\mathrm{AOPT}=3$
D1 D2 D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
MANGLE \quad Material angle in degrees for $\mathrm{AOPT}=0$ (shells only) and $\mathrm{AOPT}=3$. MANGLE may be overridden on the element card; see *ELEMENT_SHELL_BETA and *ELEMENT_SOLID_ORTHO.

MSG
Flag to control the output of warning messages:
EQ.0: Only one warning message will be written per part.
GT.0: All warnings are written.
LT.O: No warnings are written.

Card 5	1	2	3	4	5	6	7	8
Variable	GXC	GXT	GYC	GYT	GSL	GXCO	GXT0	
Type	F	F	F	F	F	F	F	

VARIABLE

GXC

GXT Fracture toughness for longitudinal (fiber) tensile failure mode:
GT.0.0: The given value is regularized with the characteristic element length.
LT.0.0: Load curve or table ID $=-\mathrm{GXT}$. If referring to a load curve, the load curve gives the fracture toughness for fiber tensile failure mode as a function of characteristic element length. If referring to a table, each strain rate value indexes a load curve that defines the fracture toughness for fiber tensile failure mode as a function of characteristic element length. In either case, no further regularization occurs.

GYC Fracture toughness for transverse compressive failure mode.
GT.0.0: The given value is regularized with the characteristic element length.
LT.O.O: Load curve or table ID = -GYC. If referring to a load curve, the load curve gives the fracture toughness for transverse compressive failure mode as a function of characteristic element length. If referring to a table, each strain rate value indexes a load curve that defines the fracture toughness for transverse compressive failure mode as a function of characteristic element length. In either case, no further regularization occurs.

GYT Fracture toughness for transverse tensile failure mode.
GT.0.0: The given value is regularized with the characteristic element length.

VARIABLE

GSL

GXCO Fracture toughness for longitudinal (fiber) compressive failure mode to define bilinear damage evolution.

GT.0.0: The given value is regularized with the characteristic element length.
LT.0.0: Load curve or table $\mathrm{ID}=-\mathrm{GXCO}$. If referring to a load curve, the load curve gives the fracture toughness for fiber compressive failure mode to define bilinear damage evolution as a function of characteristic element length. If referring to a table, each strain rate value indexes a load curve that defines the fracture toughness for fiber compressive failure mode to define bilinear damage evolution as a function of characteristic element length. In either case, no further regularization occurs.

GXTO

DESCRIPTION

LT.0.0: Load curve or table ID = -GYT. If referring to a load curve,t eh load curve defines the fracture toughness for transverse tensile failure mode as a function of characteristic element length. If referring to a table, each strain rate value indexes a load curve that defines the fracture toughness for transverse tensile failure mode as a function of characteristic element length. In either case, no further regularization occurs.

Fracture toughness for in-plane shear failure mode.
GT.0.0: The given value is regularized with the characteristic element length.
LT.O.O: Load curve or table ID = -GSL. If referring to a load curve, the load curve gives the fracture toughness for inplane shear failure mode as a function of characteristic element length. If referring to a table, each strain rate value indexes a load curve that defines the fracture toughness for in-plane shear failure mode as a function of characteristic element length. In either case, no further regularization occurs.

Fracture toughness for longitudinal (fiber) tensile failure mode to define bilinear damage evolution.

GT.0.0: The given value is regularized with the characteristic element length.
LT.0.0: Load curve or table ID = -GXTO. If referring to a load curve, the load curve defines the fracture toughness for
fiber tensile failure mode to define bilinear damage evolution as a function of characteristic element length. If a table, each strain rate value indexes a load curve that defines the fracture toughness for fiber tensile failure mode to define bilinear damage evolution as a function of characteristic element length. In either case, no further regularization occurs.

Card 6	1	2	3	4	5	6	7	8
Variable	XC	XT	YC	YT	SL	XCO	XTO	
Type	F	F	F	F	F	F	F	

VARIABLE

XC

XT Longitudinal tensile strength, a-axis:
GT.0.0: Constant value
LT.O.O: Load curve ID $=(-X T)$ which defines the longitudinal tensile strength as a function of longitudinal strain rate ($\dot{\varepsilon}_{a a}$)

YC Transverse compressive strength, b-axis (positive value):
GT.0.0: Constant value
LT.O.O: Load curve $\mathrm{ID}=(-\mathrm{YC})$ which defines the transverse compressive strength as a function of transverse strain rate $\left(\dot{\varepsilon}_{b b}\right)$

YT Transverse tensile strength, b-axis:
GT.0.0: Constant value
LT.O.O: Load curve ID $=(-\mathrm{YT})$ which defines the transverse

VARIABLE

DESCRIPTION

tensile strength as a function of transverse strain rate $\left(\dot{\varepsilon}_{b b}\right)$

SL Shear strength, $a b$ plane:
GT.0.0: Constant value
LT.O.O: Load curve ID = (-SL) which defines the longitudinal shear strength as a function of in-plane shear strain rate $\left(\dot{\varepsilon}_{a b}\right)$

XCO Longitudinal compressive strength at inflection point (positive value):

GT.0.0: Constant value
LT.0.0: Load curve ID $=(-\mathrm{XCO})$ which defines the longitudinal compressive strength at inflection point as a function of longitudinal strain rate $\left(\dot{\varepsilon}_{a a}\right)$.

XTO
Longitudinal tensile strength at inflection point:
GT.0.0: Constant value
LT.0.0: Load curve ID $=(-X T O)$ which defines the longitudinal tensile strength at inflection point as a function of longitudinal strain rate $\left(\dot{\varepsilon}_{a a}\right)$

Card 7	1	2	3	4	5	6	7	8
Variable	FIO	SIGY	ETAN	BETA	PFL	PUCK	SOFT	DT
Type	F	F	F	F	F	F	F	F

VARIABLE

FIO

SIGY In-plane shear yield stress:
GT.0.0: Constant value
LT.O.O: Load curve ID $=(-$ SIGY $)$ which defines the in-plane shear yield stress as a function of in-plane shear strain rate ($\dot{\varepsilon}_{a b}$)

VARIABLE

ETAN

BETA Hardening parameter for in-plane shear plasticity $(0.0 \leq \mathrm{BETA} \leq$ 1.0):

$$
\begin{array}{ll}
\text { EQ.0.0: } & \text { Pure kinematic hardening } \\
\text { EQ.1.0: } & \text { Pure isotropic hardening } \\
0.0<\text { BETA < 1.0: } & \text { Mixed hardening }
\end{array}
$$

Percentage of layers which must fail before crashfront is initiated. For example, if $|\mathrm{PFL}|=80.0$, then 80% of the layers must fail before strengths are reduced in neighboring elements. By default, all layers must fail. A single layer fails if 1 in-plane IP fails ($\mathrm{PFL}>0$) or if 4 in-plane IPs fail (PFL < 0).

PUCK Flag for evaluation and post-processing of Puck's inter-fiber-failure criterion (IFF, see Puck, Kopp and Knops [2002]).

EQ.0.0: No evaluation of Puck's IFF-criterion
EQ.1.0: Puck's IFF-criterion will be evaluated.

SOFT Softening reduction factor for material strength in crashfront elements (default =1.0). If SOFTC is defined as well, SOFTC is used to reduce the longitudinal compressive strength XC.

DT Strain rate averaging option:
EQ.0.0: Strain rate is evaluated using a running average.
LT.O.O: Strain rate is evaluated using average of last 11 time steps.
GT.0.0: Strain rate is averaged over the last DT time units.

Optional Transverse Shear Failure Card. This card is optional.

Card 8	1	2	3	4	5	6	7	8
Variable	EPSF23	EPSR23	TSMD23	EPSF31	EPSR31	TSMD31		
Type	F	F	F	F	F	F		

VARIABLE

EPSF23
EPSR23
TSMD23
EPSF31
EPSR31
TSMD31

DESCRIPTION

Damage initiation transverse shear strain (23-plane)
Final rupture transverse shear strain (23-plane)
Transverse shear maximum damage; default $=0.90$ (23-plane).
Damage initiation transverse shear strain (31-plane)
Final rupture transverse shear strain (31-plane)
Transverse shear maximum damage; default $=0.90$ (31-plane).

Optional Card. This card is optional. It only applies to shell elements.

Card 9	1	2	3	4	5	6	7	8
Variable	EF_11T	EF_11C	EF_22T	EF_22C	EF_12	EF_23	EF_31	LCSS
Type	F	F	F	F	F			F

VARIABLE

EF_11T
EF_11C

EF_22T
EF_22C Compressive failure strain in transverse b-direction
EF_12
EF_23 Out-of-plane shear failure strain in bc-plane
EF_31 Out-of-plane shear failure strain in ca-plane

VARIABLE

LCSS

DESCRIPTION

Load curve ID or table ID. If this is defined, SIGY and ETAN will be ignored.
Load Curve. When LCSS is a load curve ID, it defines the nonlinear in-plane shear stress as a function of in-plane shear strain $\left(\gamma_{a b}\right)$.
Tabular Data. The table maps in-plane strain rate values $\left(\dot{\gamma}_{a b}\right)$ to a load curve giving the in-plane shear stress as a function of in-plane shear strain. For strain rates below the minimum value, the curve for the lowest defined value of strain rate is used. Likewise, when the strain rate exceeds the maximum value, the curve for the highest defined value of strain rate is used.

Logarithmically Defined Table. An alternative way to invoke logarithmic interpolation between discrete strain rates is described as follows. If the first value in the table is negative, LS-DYNA assumes that all the table values represent the natural logarithm of a strain rate. Since the tables are internally discretized to equally space the table values, it makes good sense from an accuracy standpoint that the table values represent the natural log of strain rate when the lowest strain rate and highest strain rate differ by several orders of magnitude. There is some additional computational cost associated with invoking logarithmic interpolation.

Optional Card. This card is optional. It only applies to shell elements.

Card 10	1	2	3	4	5	6	7	8
Variable	CF12	CF13	CF23	S0FTC				
Type	F	F	F	F				
Default	1.0	1.0	1.0	1.0				

VARIABLE

CF12

DESCRIPTION

Coupling factor for in-plane shear ($a b$-plane) damage with the fiber damage in tension:

$$
d_{6}=1-\left[1-d_{6}^{*}\left(r_{2+}\right)\right]\left(1-d_{1+} \mathrm{CF} 12\right)
$$

Here, d_{6} is the in-plane shear damage, d_{6}^{*} is an intermediate damage variable needed for finding the in-plane shear damage that is a function of r_{2+}, r_{2+} is internal value of the constituative law representing an elastic domain threshold, and d_{1+} is the fiber damage in

VARIABLE

CF13

CF23

SOFTC

DESCRIPTION
tension. See Maimí, Camanho, Mayugo, and Dávila [2007] for more details.

Scaling factor on the fiber damage that is used when determining the reduced transverse shear (ca-plane) resulting from the fiber damage:

$$
c_{66}=\left(1-d_{1} \mathrm{CF} 13\right) G_{c a}
$$

Here, c_{66} is reduced transverse shear modulus in the ca-plane, $G_{c a}$ is the $c a$ shear modulus, and d_{1} is the fiber damage. See Maimí, Camanho, Mayugo, and Dávila [2007] for more details.

Scaling factor on the in-plane shear damage that is used when determining the reduced transverse shear (bc-plane) resulting from the in-plane shear damage:

$$
c_{55}=\left(1-d_{6} \mathrm{CF} 23\right) G_{b c}
$$

Here, c_{55} is the reduced transverse shear in the $b c$-plane, $G_{b c}$ is the $b c$ shear modulus, and d_{6} is the in-plane shear damage. See Maimí, Camanho, Mayugo, and Dávila [2007] for more details.

Softening reduction factor for XC material strength in crashfront elements. If this is not defined, XC reduces according to SOFT.

Remarks:

The failure surface to limit the elastic domain is assembled by four sub-surfaces, representing different failure mechanisms. They are defined as follows:

1. longitudinal (fiber) tension,

$$
\phi_{1+}=\frac{\sigma_{11}-v_{12} \sigma_{22}}{X_{T}}=1
$$

2. longitudinal (fiber) compression - (transformation to fracture plane),

$$
\phi_{1-}=\frac{\langle | \sigma_{12}^{m}\left|+\mu_{L} \sigma_{22}^{m}\right\rangle}{S_{L}}=1
$$

with

$$
\begin{aligned}
\mu_{L} & =-\frac{S_{L} \cos \left(2 \phi_{0}\right)}{Y_{C} \cos ^{2}\left(\phi_{0}\right)} \\
\sigma_{22}^{m} & =\sigma_{11} \sin ^{2}\left(\varphi^{c}\right)+\sigma_{22} \cos ^{2}\left(\varphi^{c}\right)-2\left|\sigma_{12}\right| \sin \left(\varphi^{c}\right) \cos \left(\varphi^{c}\right) \\
\sigma_{12}^{m} & =\left(\sigma_{22}-\sigma_{11}\right) \sin \left(\varphi^{c}\right) \cos \left(\varphi^{c}\right)+\left|\sigma_{12}\right|\left(\cos ^{2}\left(\varphi^{c}\right)-\sin ^{2}\left(\varphi^{c}\right)\right)
\end{aligned}
$$

and

Figure M262-1. Linear Damage for Transverse Shear Behavior

$$
\varphi^{c}=\arctan \left[\frac{1-\sqrt{1-4\left(\frac{S_{L}}{X_{C}}+\mu_{L}\right) \frac{S_{L}}{X_{C}}}}{2\left(\frac{S_{L}}{X_{C}}+\mu_{L}\right)}\right]
$$

3. transverse (matrix) failure: perpendicular to the laminate mid-plane,

$$
\phi_{2+}= \begin{cases}\sqrt{(1-g) \frac{\sigma_{22}}{Y_{T}}+g\left(\frac{\sigma_{22}}{Y_{T}}\right)^{2}+\left(\frac{\sigma_{12}}{S_{L}}\right)^{2}}=1 & \sigma_{22} \geq 0 \\ \frac{\langle | \sigma_{12}\left|+\mu_{L} \sigma_{22}\right\rangle}{S_{L}}=1 & \sigma_{22}<0\end{cases}
$$

4. transverse (matrix) failure: transverse compression/shear,

$$
\phi_{2-}=\sqrt{\left(\frac{\tau_{T}}{S_{T}}\right)^{2}+\left(\frac{\tau_{L}}{S_{L}}\right)^{2}}=1 \quad \text { if } \quad \sigma_{22}<0
$$

with

$$
\begin{aligned}
\mu_{T} & =-\frac{1}{\tan \left(2 \phi_{0}\right)} \\
S_{T} & =Y_{C} \cos \left(\phi_{0}\right)\left[\sin \left(\phi_{0}\right)+\frac{\cos \left(\phi_{0}\right)}{\tan \left(2 \phi_{0}\right)}\right] \\
\theta & =\arctan \left(\frac{-\left|\sigma_{12}\right|}{\sigma_{22} \sin \left(\phi_{0}\right)}\right) \\
\tau_{T} & =\left\langle-\sigma_{22} \cos \left(\phi_{0}\right)\left[\sin \left(\phi_{0}\right)-\mu_{T} \cos \left(\phi_{0}\right) \cos (\theta)\right]\right\rangle \\
\tau_{L} & =\left\langle\cos \left(\phi_{0}\right)\left[\left|\sigma_{12}\right|+\mu_{L} \sigma_{22} \cos \left(\phi_{0}\right) \sin (\theta)\right]\right\rangle
\end{aligned}
$$

Figure M262-2. Damage evolution law

Figure M262-3. In-plane shear behavior
So long as the stress state is located within the failure surface the model behaves orthotropic elastic. The constitutive law is derived on basis of a proper definition for the ply complementary free energy density G, whose second derivative with respect to the stress tensor leads to the compliance tensor \mathbf{H}

$$
\mathbf{H}=\frac{\partial^{2} G}{\partial \sigma^{2}}=\left[\begin{array}{ccc}
\frac{1}{\left(1-d_{1}\right) E_{1}} & -\frac{v_{21}}{E_{2}} & 0 \\
-\frac{v_{12}}{E_{1}} & \frac{1}{\left(1-d_{2}\right) E_{2}} & 0 \\
0 & 0 & \frac{1}{\left(1-d_{6}\right) G_{12}}
\end{array}\right], \quad \begin{aligned}
& d_{1}=d_{1+} \frac{\left\langle\sigma_{11}\right\rangle}{\left|\sigma_{11}\right|}+d_{1-} \frac{\left\langle-\sigma_{11}\right\rangle}{\left|\sigma_{11}\right|} \\
& d_{2}=d_{2+} \frac{\left\langle\sigma_{22}\right\rangle}{\left|\sigma_{22}\right|}+d_{2-} \frac{\left\langle-\sigma_{22}\right\rangle}{\left|\sigma_{22}\right|}
\end{aligned}
$$

Once the stress state reaches the failure criterion, a set of scalar damage variables ($d_{1-}, d_{1+}, d_{2-}, d_{2+}, d_{6}$) is introduced associated with the different failure mechanisms. A bilinear (longitudinal direction) and a linear (transverse direction) damage evolution law is used to define the development of the damage variables driven by the fracture toughness and a characteristic internal element length to account for objectivity. See Figure M262-2.

To account for the characteristic non-linear in-plane shear behavior of laminated fiberreinforced composites a 1D elasto-plastic formulation with linear hardening is coupled to a linear damage behavior once the maximum allowable stress state for shear failure is reached. See Figure M262-3.

More detailed information about this material model can be found in Maimí, Camanho, Mayugo and Dávila [2007].

When failure has occurred in all the composite layers (through-thickness integration points), the element is deleted. Elements which share nodes with the deleted element become "crashfront" elements and can have their strengths reduced by using the SOFT parameter. An earlier initiation of crashfront elements is possible by using the parameter PFL.

The number of additional integration point variables written to the LS-DYNA database is input by the *DATABASE_EXTENT_BINARY definition with the variable NEIPS (shells) and NEIPH (solids). These additional variables are tabulated below ($i=$ integration point).

When intending to initialize the stress state using *INTIAL_STRESS_OPTION, the stress values SIGXX, SIGYY, etc. in *INITIAL_STRESS_OPTION are not used, rather stresses are determined from the total strain history variables 31 to 36 .

History Variable \#	Description	Value
1	Fiber tensile mode, $\phi_{1+}(i)$	$0 \rightarrow$ 1: elastic
		1: failure criterion reached
2	Fiber compressive mode, $\phi_{1-}{ }^{(i)}$	$0 \rightarrow 1:$ elastic
		1: failure criterion reached
3	Tensile matrix mode, $\phi_{2+}(i)$	$0 \rightarrow 1$: elastic
		1: failure criterion reached
4	Compressive matrix mode, $\phi_{2-}(i)$	$0 \rightarrow 1$: elastic
		1: failure criterion reached
5	Fiber damage in tension, $d_{1+}(i)$	0 : elastic
		1: fully damaged
6	Fiber damage in compression,	0 : elastic
	$d_{1-}(i)$	1: fully damaged
7	Transverse damage, $d_{2}(i)$	0 : elastic
		1: fully damaged
8	In-plane shear damage, $d_{6}(i)$	0 : elastic
		1: fully damaged

History Variable \#	Description	Value
9	Crashfront	```-1: element intact 10-8: element in crashfront +1: element failed```
10	Tensile matrix mode (Puck criteria)	$0 \rightarrow 1$: elastic 1: failure criterion reached
11	Compressive matrix mode (Puck criteria)	$0 \rightarrow 1$: elastic 1: failure criterion reached
12	Angle of fracture plane in radians (Puck criteria)	
16	Longitudinal damage, $d_{1}(i)$	0: elastic 1: fully damaged
17	Transverse damage in tension, $d_{2+}(i)$	0 : elastic 1: fully damaged
18	Transverse damage in compression, $d_{2-}(i)$	0 : elastic 1: fully damaged
31	Total strain in material 11-direction	
32	Total strain in material 22-direction	
33	Total strain in material 33-direction	
34	Total strain in material 12-direction	
35	Total strain in material 23-direction	
36	Total strain in material 31-direction	
55	Averaged strain rate in longitudinal direction	
56	Averaged strain rate in transverse direction	
57	Averaged engineering shear strain rate in in-plane direction	

*MAT_LOU-YOON_ANISOTROPIC_PLASTICITY

This is Material Type 263. It is based on the anisotropic yield function proposed by Lou and Yoon (Lou and Yoon, 2017). This yield function extends the original Drucker function into an anisotropic form using a fourth order linear transformation tensor. The nonassociated flow rule (non-AFR) can be applied to accurately describe both the directional yield stresses and R-values. The anisotropic flexibility of this model can be further improved by summing up components of the anisotropic Drucker function. See the section Constitutive relations below for more details. This model is supported for shell and solid elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	HR	P 1	P 2	ITER
Type	A	F	F	F	F	F	F	F
Default	none	0.0						

Card 2	1	2	3	4	5	6	7	8
Variable	AFR	NFUNC	AOPT		LCID	E0	LCF	P3
Type	I	I	F		I	F	1	
Default	none	1	none		none	none	none	none

Card 3	1	2	3	4	5	6	7	8
Variable				A1	A2	A3		
Type				F	F	F		
Default				none	none	none		

Card 4	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	none		

Card 5	1	2	3	4	5	6	7	8
Variable	C 1	C 2	$\mathrm{C3}$	C 4	C 5	C 6	CC	
Type	F	F	F	F	F	F	F	
Default	none							

Card 6	1	2	3	4	5	6	7	8
Variable	PC1	PC2	PC3	PC4	PC5	PC6	PCC	
Type	F							
Default	none							

Optional card that only needs to be included if LCF <0.

Card 7	1	2	3	4	5	6	7	8
Variable	VF1	VF2	VF3	VF4	VF5			
Type	F	F	F	F	F			

VARIABLE

MID

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

VARIABLE
RO
E
PR
HR

P1

P2

ITER

DESCRIPTION
Mass density
Young's modulus
Poisson's ratio
Hardening rules (see section Hardening laws below):
EQ.1.0: Linear hardening (default)
EQ.2.0: Exponential hardening (Swift)
EQ.3.0: Load curve
EQ.4.0: Exponential hardening (Voce)
EQ.5.0: Exponential hardening (Gosh)
EQ.6.0: Exponential hardening (Hocken-Sherby)
Material parameter:
HR.EQ.1.0: Tangent modulus
HR.EQ.2.0: q, coefficient for exponential hardening law (Swift)
HR.EQ.4.0: a, coefficient for exponential hardening law (Voce)
HR.EQ.5.0: q, coefficient for exponential hardening law (Gosh)
HR.EQ.6.0: a, coefficient for exponential hardening law (HocketSherby)

Material parameter:
HR.EQ.1.0: Yield stress for the linear hardening law
HR.EQ.2.0: n, coefficient for (Swift) exponential hardening
HR.EQ.4.0: c, coefficient for exponential hardening law (Voce)
HR.EQ.5.0: n, coefficient for exponential hardening law (Gosh)
HR.EQ.6.0: c, coefficient for exponential hardening law (HocketSherby)

Iteration flag for speed:
EQ.0.0: Fully iterative
EQ.1.0: Fixed at three iterations. Generally, ITER $=0.0$ is recommended. However, ITER $=1.0$ is faster and may give acceptable results in most problems.

NFUNC Number of Drucker function components. Currently NFUNC is always set to 1 .

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for more complete description).

EQ.0.0: Locally orthotropic with material axes determined by element nodes. The shells only the material axes are rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined a and d defined below, as with *DEFINED_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, $\mathrm{AOPT}=3$ is only available for hexahedrons. The material directions are determined as follows: a is the cross product of \mathbf{v} with the normal vector, \mathbf{b} is the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element.
LT.0.0: The absolute value of AOPT is a coordinate system ID (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM, or *DEFINE_COORDINATE_VECTOR).

LCID Load curve ID giving the hardening law for $\mathrm{HR}=3$

VARIABLE

E0

LCF
Fracture curve:
EQ.0: No fracture curves (default)
GT.0: Load curve or table ID of customized fracture curve/surface. If referring to a load curve ID, the fracture curve is defined as effective plastic strain as a function of triaxiality. If referring to a table ID, for each load parameter, an effective plastic strain as a function of. triaxiality curve can be defined (only applicable to solids

EQ.-1: Drucker ductile fracture criterion. Optional Card 7 is needed in this case. VF1, VF2 and VF3 in Card 7 will be used as a, b and c in the Drucker ductile fracture criterion. See section Fracture criteria for more details.

EQ.-2: DF2016 fracture criterion. Optional card 7 is needed in this case. VF1, VF2, VF3, VF4 and VF5 in Card 7 will be used as C1, C2, C3 and C in DF2016 criterion. See section Fracture criteria for more details.

P3 Material parameter:
HR.EQ.5.0: p, coefficient for exponential hardening (Gosh)
HR.EQ.6.0: n, exponent for exponential hardening law (HocketSherby)
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector \mathbf{a} for $\mathrm{AOPT}=2.0$
V1, V2, V3 Components of vector \mathbf{v} for $\mathrm{AOPT}=3.0$
D1, D2, D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2.0$
$\mathrm{Ci} \quad$ Anisotropic parameters c_{1}^{\prime} through c_{6}^{\prime} that defines the fourth order linear transformation tensor L^{\prime}

VARIABLE

CC

PCi

PCC

VFi

DESCRIPTION
Material constant c in Drucker yield function. c is recommended to be 1.226 for BCC metals and 2 for FCC metals.

Anisotropic parameters \hat{c}_{1} through \hat{c}_{6} that defines the fourth order linear transformation tensor \hat{L} for the plastic potential in the nonAFR case (see field AFR which is input on Card 2).

Material constant \hat{c} in Drucker function for the plastic potential. \hat{c} is recommended to be 1.226 for BCC metals and 2 for FCC metals unless calibrated otherwise.

Components of the fracture criterion included for LCF < 0. See LCF (input on Card 2) for a description.

Hardening laws:

The implemented hardening laws are the following:

1. The Swift hardening law
2. The Voce hardening law
3. The Gosh hardening law
4. The Hocket-Sherby hardening law
5. A loading curve, where the yield stress is given as a function of the effective plastic strain

The Swift hardening law can be written as:

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=q\left(\varepsilon_{0}+\varepsilon_{\mathrm{ep}}\right)^{n}
$$

where q and n are material parameters.
The Voce equation says that the yield stress can be written in the following form:

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=a-b e^{-c \varepsilon_{\mathrm{ep}}},
$$

where a, b and c are material parameters. The Gosh equation is similar to the Swift equation. They only differ by a constant

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=q\left(\varepsilon_{0}+\varepsilon_{\mathrm{ep}}\right)^{n}-p,
$$

where q, ε_{0}, n and p are material constants. The Hocket-Sherby equation resemblance the Voce equation, but with an additional parameter added

$$
\sigma_{y}\left(\varepsilon_{\mathrm{ep}}\right)=a-b e^{-c \varepsilon_{\mathrm{ep}}^{n}} .
$$

where a, b, c and n are material parameters.

Constitutive relations:

Drucker proposed a yield function that includes the effect of the third stress invariant in the classic Von Mises yield function. Lou and Yoon (2017) extended this yield function to an anisotropic form as shown below:

$$
\bar{\sigma}_{y}\left(\sigma_{i j}\right)=\left(J_{2}^{\prime 3}-c J_{3}^{\prime 2}\right)^{1 / 6} .
$$

Here J_{2}^{\prime} and J_{3}^{\prime} are the second and third invariants of the linear transformed deviatoric stress tensor \mathbf{s}^{\prime} :

$$
\mathbf{s}^{\prime}=\mathbf{L}^{\prime} \sigma .
$$

The fourth order linear transformation tensor \mathbf{L}^{\prime} is given by:

$$
\mathbf{L}^{\prime}=\left[\begin{array}{cccccc}
\left(c_{2}^{\prime}+c_{3}^{\prime}\right) / 3 & -c_{3}^{\prime} / 3 & -c_{2}^{\prime} / 3 & 0 & 0 & 0 \\
-c_{3}^{\prime} / 3 & \left(c_{1}^{\prime}+c_{3}^{\prime}\right) / 3 & -c_{1}^{\prime} / 3 & 0 & 0 & 0 \\
-c_{2}^{\prime} / 3 & -c_{1}^{\prime} / 3 & \left(c_{2}^{\prime}+c_{1}^{\prime}\right) / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & c_{4}^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{5}^{\prime} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{6}^{\prime}
\end{array}\right]
$$

$c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}$ and c_{6}^{\prime} can be calibrated from uniaxial tensile yield stress along different directions and the balanced biaxial yield stress. c_{4}^{\prime} and c_{5}^{\prime}, which are related to the throughthickness material properties, are very difficult to obtain experimentally and therefore assumed to be identical with c_{6}^{\prime}.

With the non-associated flow rule (non-AFR), the plastic flow is not necessarily aligned with the yield surface normal and the R-values are modeled by a different plastic potential:

$$
\bar{\sigma}_{p}\left(\sigma_{i j}\right)=\left(\hat{J}_{2}^{3}-c \hat{J}_{3}^{2}\right)^{1 / 6}
$$

Here \hat{J}_{2} and \hat{J}_{3} are the second and third invariants of the linear transformed deviatoric stress tensor:

$$
\hat{\mathbf{s}}=\hat{\mathbf{L}} \sigma .
$$

And \hat{L} is defined as:

$$
\hat{\mathbf{L}}=\left[\begin{array}{cccccc}
\left(\hat{c}_{2}+\hat{c}_{3}\right) / 3 & -\hat{c}_{3} / 3 & -\hat{c}_{2} / 3 & 0 & 0 & 0 \\
-\hat{c}_{3} / 3 & \left(\hat{c}_{1}+\hat{c}_{3}\right) / 3 & -\hat{c}_{1} / 3 & 0 & 0 & 0 \\
-\hat{c}_{2} / 3 & -\hat{c}_{1} / 3 & \left(\hat{c}_{2}+\hat{c}_{1}\right) / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & \hat{c}_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & \hat{c}_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & \hat{c}_{6}
\end{array}\right]
$$

The anisotropic parameters $\hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}$ and \hat{c}_{6} can be calibrated with experimentally measured R-values along different directions.

Another approach to improve the flexibility of the yield function is to sum up n components of the anisotropic Drucker functions as follows:

$$
\bar{\sigma}_{y}\left(\sigma_{i j}\right)=\frac{1}{n} \sum_{m=1}^{n}\left\{\left[\left(J_{2}^{\prime(m)}\right)^{3}-c\left(J_{3}^{\prime(m)}\right)^{2}\right]^{1 / 6}\right\}
$$

where n is an integer with $n \geq 1$. The same idea can be applied to the plastic potential in the non-AFR approach, as shown in equation:

$$
\bar{\sigma}_{p}\left(\sigma_{i j}\right)=\frac{1}{n} \sum_{m=1}^{n}\left\{\left[\left(\hat{J}_{2}^{(m)}\right)^{3}-c\left(\hat{J}_{3}^{(m)}\right)^{2}\right]^{1 / 6}\right\}
$$

Fracture criteria:

The Drucker ductile fracture criterion is given by:

$$
\bar{\sigma}_{f}\left(\sigma_{i j}\right)=\mathrm{a}\left(b I_{1}+\left(J_{2}^{3}-c J_{3}^{2}\right)^{1 / 6}\right)=1
$$

The DF2016 fracture criterion is given by:

$$
\left(\frac{\sigma_{1}-\sigma_{3}}{\bar{\sigma}_{V M}}\right)^{C_{1}}\left(\left\langle\frac{f(\eta, L, C)}{f(1 / 3,-1, C)}\right\rangle\right)^{C_{2}} \bar{\varepsilon}_{f}^{p}=C_{3}
$$

Here

$$
\langle x\rangle= \begin{cases}x & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and

$$
f(\eta, L, C)=\eta+C_{4} \frac{(3-L)}{3 \sqrt{L^{2}+3}}+C
$$

*MAT_TABULATED_JOHNSON_COOK_ORTHO_PLASTICITY

This is Material Type 264. This is an orthotropic, elastic-plastic material law with a J3dependent yield surface. This material considers tensile/compressive asymmetry in the material response, which is essential for HCP metals. It is available for solid elements and thick shell elements type 3,5 , and 7 .

Card Summary:

Card 1. This card is required.

MID	RO	E	PR	CP	TR	BETA	NUMINT

Card 2. This card is required.

LCTOOR	LCTOOT	LCF	LCG	LCH	LCI		

Card 3. This card is required.

LCCOOR	LCCOOT	LCS45R	LCS45T	IFLAG	SFIEPM	NITER	AOPT

Card 4. This card is required.

LCT90R	LCT45R	LCTTHR	LCC90R	LCC45R	LCCTHR		

Card 5. This card is required.

LCT90T	LCT45T	LCTTHT	LCC90T	LCC45T	LCCTHT		

Card 6. This card is required.

$X P$	$Y P$	ZP	A1	A2	A3	MACF	

Card 7. This card is required.

V1	V2	V3	D1	D2	D3	MANGLE	

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	CP	TR	BETA	NUMINT
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	none	0.0	1.0	1.0

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be specified (see *PART).
RO	Mass density
E	Young's modulus: GT.0.0: Constant value LT.0.0: Temperature-dependent Young's modulus given by load curve ID = -E
PR	Poisson's ratio
CP	Specific heat
TR	Room temperature
BETA	Fraction of plastic work converted into heat
NUMINT	Number of failed integration points before element deletion. EQ.-200: Turns off erosion for solids. Not recommended unless used with * $\mathrm{CONSTRAINED} \mathrm{_TIED} \mathrm{_NODES} \mathrm{_FAIL-}$ URE.

Card 2	1	2	3	4	5	6	7	8
Variable	LCTOOR	LCTOOT	LCF	LCG	LCH	LCl		
Type	1	1	1	1	1	1		
Default	0	0	0	0	0	0		

VARIABLE

LCT00R

LCT00T

LCF

LCG

LCH Load curve ID defining plastic failure strain as a function of temperature

Load curve ID, table ID, or 3D table ID. The load curve gives plastic failure strain as a function of element size. The table defines a load curve ID for each triaxiality, giving the plastic failure strain as a function of element size for that triaxiality. If referring to a threedimensional table ID, plastic failure strain can be a function of the Lode parameter (TABLE_3D), triaxiality (TABLE), and element size (CURVE).

Card 3	1	2	3	4	5	6	7	8
Variable	LCCOOR	LCCOOT	LCS45R	LCS45T	IFLAG	SFIEPM	NITER	AOPT
Type	1	1	1	1	1	1	1	F
Default	0	0	0	0	0	1	100	none

VARIABLE

LCC00R

LCC00T

LCS45R

LCS45T

IFLAG

SFIEPM
NITER

DESCRIPTION

Table ID. The curves in this table define compressive yield stress as a function of plastic strain. The table specifies a load curve ID for each plastic strain rate value, giving the (isothermal) compressive yield stress as a function of plastic strain for that rate in the 00degree direction.

Table ID defining for each temperature value a load curve ID giving the (quasi-static) compressive yield stress as a function of strain for that temperature. The curves in this table define compressive yield stress as a function of plastic strain in the 00-degree direction.

Table ID. The table defines a load curve ID for each plastic strain rate value, giving the (isothermal) shear yield stress as a function of plastic strain for that rate in the 45-degree direction.

Table ID. The table defines a load curve ID for each temperature value, giving the (quasi-static) shear yield stress versus strain for that temperature. The load curves define shear yield stress as a function of plastic strain or effective plastic strain (see IFLAG) in the 45-degree direction.

Flag to specify abscissa for LCT00R, LCC00R, LCS45R, LCT90R, LCT45R, LCTTHR, LCC90R, LCC45R, LCCTHR:

EQ.0: Compressive and shear yields are given as functions of plastic strain as defined in the remarks (default).

EQ.1: Compressive and shear yields are given as functions of effective plastic strain.

Scale factor on the initial estimate of the plastic multiplier
Maximum number of iterations for the plasticity algorithm ticularly the Material Directions section, for details):
EQ.O.O: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.
EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.
EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, AOPT $=3$ is only available for hexahedrons. a is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle. Either the element's input or this keyword's input (see MANGLE) sets the angle. Note that the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying the angle, depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

Card 4	1	2	3	4	5	6	7	8
Variable	LCT90R	LCT45R	LCTTHR	LCC90R	LCC45R	LCCTHR		
Type	1	1	1	1	1	1		
Default	0	0	0	0	0	0		

VARIABLE

LCT90R

LCT45R

LCTTHR

LCC90R

LCC45R

LCCTHR

DESCRIPTION

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) tensile yield stress as a function of plastic strain for that rate in the 90-degree direction

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) tensile yield stress as a function of plastic strain for that rate in the 45-degree direction

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) tensile yield stress as a function of plastic strain for that rate in the thickness degree direction

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) compressive yield stress as a function of plastic strain for that rate in the 90-degree direction

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) compressive yield stress as a function of plastic strain for that rate in the 45-degree direction

Table ID defining for each plastic strain rate value a load curve ID giving the (isothermal) compressive yield stress as a function of plastic strain for that rate in the thickness degree direction

Card 5	1	2	3	4	5	6	7	8
Variable	LCT90T	LCT45T	LCTTHT	LCC90T	LCC45T	LCCTHT		
Type	1	1	1	1	1	1		
Default	0	0	0	0	0	0		

VARIABLE
LCT90T

LCT45T

LCTTHT

LCC90T

LCC45T

LCCTHT

DESCRIPTION

Table ID defining for each temperature value a load curve ID giving the (quasistatic) tensile yield stress as a function of plastic strain for that rate in the 90-degree direction

Table ID defining for each temperature value a load curve ID giving the (quasistatic) tensile yield stress as a function of plastic strain for that rate in the 45-degree direction

Table ID defining for each temperature value a load curve ID giving the (quasistatic) tensile yield stress as a function of plastic strain for that rate in the thickness degree direction

Table ID defining for each temperature value a load curve ID giving the (quasistatic) compressive yield stress as a function of plastic strain for that rate in the 90-degree direction

Table ID defining for each temperature value a load curve ID giving the (quasistatic) compressive yield stress as a function of plastic strain for that rate in the 45-degree direction

Table ID defining for each temperature value a load curve ID giving the (quasistatic) compressive yield stress as a function of plastic strain for that rate in the thickness degree direction

Card 6	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3	MACF	
Type	F	F	F	F	F	F	F	

VARIABLE

XP, YP, ZP
A1, A2, A3
MACF

DESCRIPTION

Coordinates of point P for AOPT $=1$ and 4
Components of vector a for $\mathrm{AOPT}=2$
Material axes change flag for solid elements:
EQ.-4: Switch material axes b and c before BETA or MANGLE rotation

EQ.-3: Switch material axes a and c before BETA or MANGLE rotation

EQ.-2: Switch material axes a and b before BETA or MANGLE rotation

EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA or MANGLE rotation

EQ.3: Switch material axes a and c after BETA or MANGLE rotation

EQ.4: Switch material axes b and c after BETA or MANGLE rotation

Figure M2-2 indicates when LS-DYNA applies MACF during the procedure to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then BETA is used for the rotation for all AOPT options. Otherwise, for AOPT = 3, MANGLE input on Card 7 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no rotation will be performed.

Card 7	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	MANGLE	
Type	F	F	F	F	F	F	F	

VARIABLE
V1, V2, V3
D1, D2, D3
MANGLE Material angle in degrees for AOPT = 3. It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO.

Remarks:

If IFLAG $=0$, the compressive and shear curves are defined as follows:

$$
\sigma_{\text {comp }}\left(\varepsilon_{p, \text { comp }}, \dot{\varepsilon}_{p, \mathrm{comp}}\right), \quad \varepsilon_{p, \mathrm{comp}}=\varepsilon_{\text {comp }}-\frac{\sigma_{\text {comp }}}{E}, \quad \dot{\varepsilon}_{p, \mathrm{comp}}=\frac{\partial \varepsilon_{p, \text { comp }}}{\partial t}
$$

where comp is one of the tension $\left(0^{\circ}, 45^{\circ}, 90^{\circ}\right)$, compression $\left(0^{\circ}, 45^{\circ}, 90^{\circ}\right)$, tension and compression thickness, or shear components.

If $\operatorname{IFLAG}=1$, the compressive and shear curves are defined as follows:

$$
\sigma_{\text {comp }}(\dot{\lambda}, \lambda) \quad \dot{W}_{p}=\sigma_{\mathrm{eff}} \dot{\lambda}
$$

History variables may be post-processed through additional variables. NEIPH on *DATABASE_EXTENT_BINARY sets the number of additional variables for solids written to the d3plot and d3thdt databases. The following table lists the relevant additional variables of this material model:

LS-PrePost History Variable \#	Description
5	Strain Rate
6	Plastic failure strain
7	Triaxiality
8	Lode parameter
9	Plastic work
10	Damage
11	Element size
12	Temperature
13	Compressive plastic strain
14	Shear plastic strain

*MAT_CONSTRAINED_OPTION

This is Material Type 265. This special model defines material data for ${ }^{*} \mathrm{CON}$ STRAINED_SPR2 or *CONSTRAINED_INTERPOLATION_SPOTWELD (aka SPR3) instead of in the input for the constraint. This material model is not available for standard elements. See the Sample Input below.

Available options include:
SPR2
SPR3
The input depends on the option used. SPR2 requires two cards, and SPR3 needs up to four cards.

Card Summary:

Card 1. Include this card if the keyword option SPR2 is used.

MID	RO	FN	FT	DN	DT	XIN	XIT

Card 2. Include this card if the keyword option SPR2 is used.

ALPHA1	ALPHA2	ALPHA3	EXPN	EXPT			

Card 3. Include this card if the keyword option SPR3 is used.

MID	RO	MODEL					

Card 4. Include this card if the keyword option SPR3 is used.

STIFF	RN	RS	ALPHA1	BETA1	LCF	LCUPF	LCUPR

Card 5a.1. Include this card if the keyword option SPR3 is used and MODEL $=1,11$, 21,31 , or 41.

STIFF2	STIFF3	STIFF4	LCDEXP	GAMMA	SROPT		

Card 5a.2. This card is optional. It is read if the keyword option SPR3 is used and MOD$E L=1,11,21,31$, or 41 .

FFN	FFB	FFS	EXFC	STIFP	MFSFC	DEFC	NPFC

Card 5b.1. Include this card if the keyword option SPR3 is used and MODEL $=2,12$, or 22.

UPFN	UPFS	ALPHA2	BETA2	UPRN	UPRS	ALPHA3	BETA3

Card 5b.2. Include this card if the keyword option SPR3 is used and MODEL $=2,12$, or 22.

MRN	MRS						

Data Card Definitions:

SPR2 Cards. Include this card if the SPR2 keyword option is used.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	FN	FT	DN	DT	XIN	XIT
Type	A	F	F	F	F	F	F	F

VARIABLE

MID

RO
FN
FT

DN
DT
XIN

XIT

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density
Rivet strength in tension (pull-out)
Rivet strength in pure shear
Failure displacement in normal direction
Failure displacement in tangential direction
Fraction of failure displacement at maximum normal force
Fraction of failure displacement at maximum tangential force

SPR2 Cards. Include this card if the SPR2 keyword option is used.

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA1	ALPHA2	ALPHA3	EXPN	EXPT			
Type	F	F	F	F	F			

VARIABLE

ALPHA1
ALPHA2

ALPHA3 Dimensionless parameter scaling the effective displacement. The sign of ALPHA3 can be used to choose the normal update procedure:

GT.0: Incremental update (default)
LT.0: Total update (recommended)

EXPN Exponent value for load function in the normal direction
EXPT Exponent value for load function in the tangential direction

SPR3 Cards. Include this card if the SPR3 keyword option is used.

Card 3	1	2	3	4	5	6	7	8
Variable	MID	R0	MODEL					
Type	A	F	F					

VARIABLE

MID

RO Mass density
MODEL Material behavior and damage model (see Remarks of *CONSTRAINED_INTERPOLATION_SPOTWELD).

EQ.1: SPR3 (default)

EQ.2: SPR4
EQ.11: Same as 1 with selected material parameters as functions
EQ.12: Same as 2 with selected material parameters as functions
EQ.21: Same as 11 with slight modification
EQ.22: Same as 12 with slight modification
EQ.31: Same as 11 but with 12 more material parameters as functions

EQ.41: Same as 31 with slight modification

SPR3 cards. Include this card if the SPR3 keyword option is used.

Card 4	1	2	3	4	5	6	7	8
Variable	STIFF	RN	RS	ALPHA1	BETA1	LCF	LCUPF	LCUPR
Type	F	F	F	F	F	F	F	F

VARIABLE

STIFF
RN Tensile strength factor, R_{n}.

GT.0.0: Constant value unless MODEL >10. Function ID if MODEL > 10 (see Remarks section for ${ }^{*} \mathrm{CON}-$ STRAINED_INTERPOLATION_SPOTWELD).

LT.0.0: Load curve with ID |RN| giving R_{n} as a function of peel ratio (see Remarks section for *CONSTRAINED_INTERPOLATION_SPOTWELD)

RS Shear strength factor, R_{s}. Function ID if MODEL >10.
ALPHA1
Scaling factor α_{1}. Function ID if MODEL >10.
BETA1 Exponent for plastic potential β_{1}. Function ID if MODEL >10.
LCF Load curve or table ID. Load curve ID describing force as a function of plastic displacement, that is, $F^{0}\left(\bar{u}^{\mathrm{pl}}\right)$. Table ID describing force as a function of mode mixity (table values) and plastic displacement (curves), that is, $F^{0}\left(\bar{u}^{\mathrm{pl}}, \kappa\right)$.

VARIABLE

LCUPF

LCUPR

DESCRIPTION

Load curve ID describing plastic initiation displacement as a function of mode mixity, that is, $\bar{u}_{0}^{\mathrm{pl}}(\kappa)$. Only for MODEL $=1,11$, or 21 . For MODEL $=1$, LCUPF can also be a table ID giving plastic initiation displacement as a function of peel ratio (table values) and mode mixity (curves). See Remarks section for *CONSTRAINED_INTERPOLATION_SPOTWELD.

Load curve ID describing plastic rupture displacement as a function of mode mixity, that is, $\bar{u}_{f}^{\mathrm{pl}}(\kappa)$. Only for MODEL $=1,11$, or 21. For MODEL $=1$, LCUPF can also be a table ID giving plastic initiation displacement as a function of peel ratio (table values) and mode mixity (curves). See Remarks section for *CONSTRAINED_INTERPOLATION_SPOTWELD.

SPR3 Cards. Include this card if the keyword option SPR3 is used and MODEL $=1,11$, 21,31, or 41.

Card 5a.1	1	2	3	4	5	6	7	8
Variable	STIFF2	STIFF3	STIFF4	LCDEXP	GAMMA	SROPT		
Type	F	F	F	F	F	F		

VARIABLE

STIFF2

STIFF3 Elastic bending stiffness. It is a function ID if MODEL > 30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

STIFF4 Elastic torsional stiffness. It is a function ID if MODEL > 30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

LCDEXP
GAMMA Scaling factor, γ_{1}. It is a function ID if MODEL >30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

SROPT Shear rotation option that defines local kinematics system:
EQ.O: Pure shear does not create a normal component (default).

VARIABLE

DESCRIPTION

EQ.1: Pure shear creates a normal component.

SPR3 Cards. This card is optional. It is read if keyword option SPR3 is used and MOD$\mathrm{EL}=1,11,21,31$, or 41 .

Card 5a.2	1	2	3	4	5	6	7	8
Variable	FFN	FFB	FFS	EXFC	STIFP	MFSFC	DEFC	NPFC
Type	F	F	F	F	F	F	F	F

VARIABLE

FFN

FFB

FFS

EXFC

STIFP

MFSFC Scaling factor for torsion term in resultant shear force. MFSC is a function ID if MODEL > 30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

DEFC Fading energy for damage. DEFC is a function ID if MODEL > 30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

VARIABLE

NPFC

DESCRIPTION

Plastic displacement offset for damage initiation. NPFC is a function ID if MODEL > 30. See *CONSTRAINED_INTERPOLATION_SPOTWELD for details.

SPR3 Cards. Include this card if the keyword option SPR3 is used and MODEL $=2,12$, or 22.

Card 5b.1	1	2	3	4	5	6	7	8
Variable	UPFN	UPFS	ALPHA2	BETA2	UPRN	UPRS	ALPHA3	BETA3
Type	F	F	F	F	F	F	F	F

VARIABLE
UPFN
UPFS
ALPHA2
BETA2
UPRN
UPRS

BETA3

ALPHA3 Plastic rupture displacement scaling factor, α_{3}

DESCRIPTION

Plastic initiation displacement in normal direction, $\bar{u}_{0, \text { ref }}^{\mathrm{pln}}$
Plastic initiation displacement in shear direction, $\bar{u}_{0, \text { ref }}^{\mathrm{pl}, \mathrm{s}}$
Plastic initiation displacement scaling factor, α_{2}
Exponent for plastic initiation displacement, β_{2}
Plastic rupture displacement in normal direction, $\bar{u}_{f, \text { ref }}^{\mathrm{pl}, n}$
Plastic rupture displacement in shear direction, $u_{f, \text { ref }}^{\mathrm{pl}, \mathrm{s}}$

Exponent for plastic rupture displacement, β_{3}

SPR3 Cards. Include this card if the keyword option SPR3 is used and MODEL $=2,12$, or 22.

Card 5b.2	1	2	3	4	5	6	7	8
Variable	MRN	MRS						
Type	F	F						

VARIABLE

MRN
MRS Proportionality factor for dependency, $m_{R_{s}}$

Sample Input:

With this material model it is possible to replace the following input example

*CONSTRAINED_SPR2								
\$	UPID	LPID	NSID	THICK	D	FN	FT	DN
	5	8	123	5.0	8.0	2.53	4.8	4.0
\$	DT	XIN	XIT	ALPHA1	ALPHA2	ALPHA3	DENS	INTP
	7.5	0.6	0.5	0.2	0.7	1.9	$7.8 \mathrm{e}-6$	1
\$	EXPN	EXPT	PIDVB					
	8.0	8.0	999					
\$	XPID1	XPID2	XPID3	XPID4				
	20							

with this "split" one

*CONSTRAINED_SPR2								
\$	UPID	LPID	NSID	THICK	D	FN	FT	DN
	5	8	123	5.0	8.0	-555		
\$	DT	XIN	XIT	ALPHA1	ALPHA2	ALPHA3	DENS	INTP
\$	EXPN	EXPT	PIDVB					
			999					
\$	XPID1	XPID2	XPID3	XPID4				
20								
*MAT_CONSTRAINED_SPR2								
\$	MID	RO	FN	FT	DN	DT	XIN	XIT
	555	$7.8 \mathrm{e}-6$	2.53	4.8	4.0	7.5	0.6	0.5
\$	ALPHA1	ALPHA2	ALPHA3	EXPN	EXPT			
	0.2	0.7	1.9	8.0	8.0			

and still get the same result. Note that only the non-material data (UPID, LPID, NSID, THICK, D, INTP, PIDVB, XPID i) remains with the *CONSTRAINED keyword. Variables in grey are optional.

*MAT_TISSUE_DISPERSED

This is Material Type 266. This material is an invariant formulation for dispersed orthotropy in soft tissues, e.g., heart valves, arterial walls or other tissues where one or two collagen fibers are used. The passive contribution is composed of an isotropic and two anisotropic parts. The isotropic part is a simple neo-Hookean model. The first anisotropic part is passive, with two collagen fibers to choose from: (1) a simple exponential model and (2) a more advanced crimped fiber model from Freed et al. [2005]. The second anisotropic part is active described in Guccione et al. [1993] and is used for active contraction.

NOTE: This material model is obsolete. Please use MAT_ANISOTROPIC_HYPERELASTIC which contains most of the features of MAT_TISSUE_DISPERSED. For missing or additional features, please consult LST directly.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	F	SIGMA	MU	KAPPA	ACT	INIT
Type	A	F	F	F	F	F	I	1

Card 2	1	2	3	4	5	6	7	8
Variable	FID	ORTH	C1	C2	C3	THETA	NHMOD	
Type	I	I	F	F	F	F	F	

Card 3	1	2	3	4	5	6	7	8
Variable	ACT1	ACT2	ACT3	ACT4	ACT5	ACT6	ACT7	ACT8
Type	F	F	F	F	F	F	F	F

Card 4	1	2	3	4	5	6	7	8
Variable	ACT9	ACT10						
Type	F	F						

Card 5	1	2	3	4	5	6	7	8
Variable	AOPT	BETA	XP	YP	ZP	A1	A2	A3
Type	I	F	F	F	F	F	F	F

Card 6	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		

VARIABLE
MID

RO
F

SIGMA

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density.
Fiber dispersion parameter governs the extent to which the fiber dispersion extends to the third dimension. $\mathrm{F}=0$ and $\mathrm{F}=1$ apply to 2 D splay with the normal to the membrane being in the β and the γ-directions, respectively (see Figure M266-1). F $=0.5$ applies to 3D splay with transverse isotropy. Splay will be orthotropic wheneverF $\neq 0.5$. This parameter is ignored if INIT $=1$.

The parameter SIGMA governs the extent of dispersion, such that as SIGMA goes to zero, the material symmetry reduces to pure transverse isotropy. Conversely, as SIGMA becomes large, the material symmetry becomes isotropic in the plane. This parameter is ignored if INIT = 1 .

VARIABLE

MU

KAPPA Bulk modulus for the hydrostatic pressure.
ACT

INIT

FID The passive fiber model number. There are two passive models available: FID = 1 or FID = 2. They are described in Remark 2.

ORTH ORTH specifies the number (1 or 2) of fibers used. When ORTH = 2 two fiber families are used and arranges symmetrically THETA degrees from the mean fiber direction and lying in the tissue plane.

C1-C3 Passive fiber model parameters.
THETA The angle between the mean fiber direction and the fiber families. The parameter is active only if ORTH = 2 and is particularly important in vascular tissues (e.g. arteries)

NHMOD Neo-Hooke model flag
EQ.0.0: Original implementation (modified Neo-Hooke)
EQ.1.0: Standard Neo-Hooke model (as in umat45 of dyn21.f)
ACT1 -
ACT10

AOPT Material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete description):

VARIABLE

BETA Material angle in degrees for AOPT = 3, may be overridden on the element card *ELEMANT_SOLID_ORTHO.

XP - ZP XP, YP and ZP define the coordinates of point P for $A O P T=1$ and $\mathrm{AOPT}=4$.
$\mathrm{A} 1-\mathrm{A} 3 \quad \mathrm{~A} 1, \mathrm{~A} 2$ and A 3 define the components of vector A for $\mathrm{AOPT}=2$.
D1-D3
D1, D2 and D3 define components of vector D for $\mathrm{AOPT}=2$.
V1 - V3 V1, V2 and V3 define components of vector V for $\mathrm{AOPT}=3$ and $\mathrm{AOPT}=4$.

Material Formulation:

Details of the passive model can be found in Freed et al. (2005) and Einstein et al. (2005). The stress in the reference configuration consists of a deviatoric matrix term, a hydrostatic pressure term, and either one $(\mathrm{ORTHO}=1)$ or two $(\mathrm{ORTH}=2)$ fiber terms:

Figure M266-1. The plot on the left relates the global coordinates $(1,2,3)$ to the local coordinates (α, β, γ), selected so the mean fiber direction in the reference configuration is align with the α-axis. The plots on the right show how the unit vector for a specific fiber within the fiber distribution of a 3D tissue is oriented with respect to the mean fiber direction via angles θ and ϕ.

$$
\mathbf{S}=\kappa J(J-1) \mathbf{C}^{-1}+\mu J^{-2 / 3} \mathbf{D E V}\left[\frac{1}{4}\left(\mathbf{I}-\overline{\mathbf{C}}^{-2}\right)\right]+J^{-2 / 3} \sum_{i=1}^{n}\left[\sigma_{i}\left(\lambda_{i}\right)+\varepsilon_{i}\left(\lambda_{i}\right)\right] \mathbf{D E V}\left[\mathbf{K}_{i}\right]
$$

where \mathbf{S} is the second Piola-Kirchhoff stress tensor, J is the Jacobian of the deformation gradient, κ is the bulk modulus, σ_{i} is the passive fiber stress model used, and ε_{i} is the corresponding active fiber model used. The operator DEV is the deviatoric projection:

$$
\operatorname{DEV}[\bullet]=(\bullet)-\frac{1}{3} \operatorname{tr}[(\bullet) \mathbf{C}] \mathbf{C}^{-1}
$$

where \mathbf{C} is the right Cauchy-Green deformation tensor. The dispersed fourth invariant $\lambda=\sqrt{\operatorname{tr}[K \overline{\mathbf{C}}]}$, where $\overline{\mathbf{C}}$ is the isochoric part of the Cauchy-Green deformation. Note that λ is not a stretch in the classical way, since \mathbf{K} embeds the concept of dispersion. \mathbf{K} is called the dispersion tensor or anisotropy tensor and is given in global coordinates. The passive and active fiber models are defined in the fiber coordinate system. In effect the dispersion tensor rotates and weights these one dimensional models, such that they are both threedimensional and in the Cartesian framework.

In the case where, the splay parameters SIGMA and F are specified, \mathbf{K} is given by:

$$
\mathbf{K}_{i}=\frac{1}{2} \mathbf{Q}_{i}\left[\begin{array}{lll}
1+e^{-2 \text { SIGMA }^{2}} & 0 & 0 \\
0 & \mathrm{~F}\left(1-e^{-2 \text { SIGMA }^{2}}\right) & 0 \\
0 & 0 & (1-\mathrm{F})\left(1-e^{-2 \text { SIGMA }^{2}}\right)
\end{array}\right] \mathbf{Q}_{i}^{T}
$$

where \mathbf{Q} is the transformation tensor that rotates from the local to the global Cartesian system. In the case when INIT $=1$, the dispersion tensor is given by

$$
\mathbf{K}_{i}=\mathbf{Q}_{i}\left(\begin{array}{lll}
\chi_{i}^{1} & 0 & 0 \\
0 & \chi_{i}^{2} & 0 \\
0 & 0 & \chi_{i}^{3}
\end{array}\right) \mathbf{Q}_{i}^{T}
$$

where the χ :s are given on the *INITIAL_FIELD_SOLID card. For the values to be physically meaningful $\chi_{i}^{1}+\chi_{i}^{2}+\chi_{i}^{3}=1$. It is the responsibility of the user to assure that this condition is met, no internal checking for this is done. These values typically come from diffusion tensor data taken from the myocardium.

Remarks:

1. Passive fiber models. Currently there are two models available.
a) If FID $=1$ a crimped fiber model is used. It is solely developed for collagen fibers. Given H_{0} and R_{0} compute:

$$
L_{0}=\sqrt{(2 \pi)^{2}+\left(H_{0}\right)^{2}}, \Lambda=\frac{L_{0}}{H_{0}}
$$

and

$$
E_{s}=\frac{E_{f} H_{0}}{H_{0}+\left(1+\frac{37}{6 \pi^{2}}+2 \frac{L_{0}^{2}}{\pi^{2}}\right)\left(L_{0}-H_{0}\right)} .
$$

Now if the fiber stretches $\lambda<\Lambda$ the fiber stress is given by:

$$
\sigma=\xi E_{s}(\lambda-1)
$$

where

$$
\xi=\frac{6 \pi^{2}\left(\Lambda^{2}+\left(4 \pi^{2}-1\right) \lambda^{2}\right) \lambda}{\Lambda\left(3 H_{0}^{2}\left(\Lambda^{2}-\lambda^{2}\right)\left(3 \Lambda^{2}+\left(8 \pi^{2}-3\right) \lambda^{2}\right)+8 \pi^{2}\left(10 \Lambda^{2}+\left(3 \pi^{2}-10\right) \lambda^{2}\right)\right)}
$$

and if $\lambda>\Lambda$ the fiber stress equals:

$$
\sigma=E_{s}(\lambda-1)+E_{f}(\lambda-\Lambda) .
$$

In Figure M266-1 the fiber stress is rendered with $H 0=27.5, R 0=2$ and the transition point becomes $\Lambda=1.1$.
b) The second fiber model available ($\mathrm{FID}=2$) is a simpler but more useful model for the general fiber reinforced rubber. The fiber stress is simply given by:

$$
\sigma=C_{1}\left[e^{\frac{C_{2}}{2}\left(\lambda^{2}-1\right)}-1\right] .
$$

The difference between the two fiber models is given in Figure M266-2.

Figure M266-2. both the Crimped and the Exponential fiber models visualized. Here $\Lambda=1.1$ is the transition point in the crimped model.

The active model for myofibers ($\mathrm{ACT}=1$) is defined in Guccione et al. (1993) and is given by:

$$
\sigma=T_{\max } \frac{C a_{0}^{2}}{C a_{0}^{2}+E C a_{50}^{2}} C(t)
$$

where

$$
E C a_{50}^{2}=\frac{\left(C a_{0}\right)_{\max }}{\sqrt{e^{B\left(l_{r} \sqrt{2(\lambda-1)+1}-l_{0}\right)-1}}}
$$

and B is a constant, $\left(C a_{0}\right)_{\max }$ is the maximum peak intracellular calcium concentration, l_{0} is the sarcomere length at which no active tension develops and l_{r} is the stress free sarcomere length. The function $C(t)$ is defined in one of two ways. First it can be given as:

$$
C(t)=\frac{1}{2}(1-\cos \omega(t))
$$

where

$$
\omega= \begin{cases}\pi \frac{t}{t_{0}} & 0 \leq t<t_{0} \\ \pi \frac{t-t_{0}+t_{r}}{t_{r}} & t_{0} \leq t<t_{0}+t_{r} \\ 0 & t_{0}+t_{r} \leq t\end{cases}
$$

and $t_{r}=m l_{R} \lambda+b$. Secondly, it can also be given as a load curve. If a load curve should be used its index must be given in ACT10. Note that all variables that
correspond to ω are neglected if a load curve is used. The active parameters on Card 3 and 4 are interpreted as:

ACT1	ACT2	ACT3	ACT4	ACT5	ACT6	ACT7	ACT8	ACT9	ACT10
$T_{\max }$	$C a_{0}$	$\left(C a_{0}\right)_{\max }$	B	l_{0}	t_{0}	m	b	l_{R}	LCID

References:

1. Freed AD., Einstein DR. and Vesely I., Invariant formulation for dispersed transverse isotropy in aortic heart valves - An efficient means for modeling fiber splay, Biomechan model Mechanobiol, 4, 100-117, 2005.
2. Guccione JM., Waldman LK., McCulloch AD., Mechanics of Active Contraction in Cardiac Muscle: Part II - Cylindrical Models of the Systolic Left Ventricle, J. Bio Mech, 115, 82-90, 1993.

*MAT_EIGHT_CHAIN_RUBBER

This is Material Type 267. This is an advanced rubber-like model that is tailored for glassy polymers and similar materials. It is based on Arruda's eight chain model but enhanced with non-elastic properties. This material is available for solid and SPH elements.

Card Summary:

Card 1. This card is required.

MID	RO	K	MU	N	MULL	VISPL	VISEL

Card 2. This card is required.

YLD0	FP	GP	HP	LP	MP	NP	PMU

Card 3. This card is required.

M1	M2	M3	M4	M5	TIME	VCON	

Card 4. This card is required.

Q1	B1	Q2	B2	Q3	B3	Q4	B4

Card 5. This card is required.

K1	S1	K2	S2	K3	S3		

Card 6. This card is required.

AOPT	MACF	XP	YP	ZP	A1	A2	A3

Card 7. This card is required.

V1	V2	V3	D1	D2	D3	BETA	

Card 8a. This card is included if VISEL $=1$. Include up to 6 of this card. This next keyword ("*") card terminates this input.

TAUi	BETAi						

Card 8b. This card is included if VISEL $=2$. Include up to 6 of this card. The next keyword ("*") card terminates this input.

TAU i	GAMMA						

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	K	MU	N	MULL	VISPL	VISEL
Type	A	F	F	F	I	I	I	I
Default	none	none	0.0	0.0	0	none	0	0

VARIABLE
MID

RO Mass density
K Bulk modulus. To get almost incompressible behavior set K one or two orders of magnitude higher than MU. Note that the poisons ratio should be kept at a realistic value.

$$
v=\frac{3 K-2 M U}{2(3 K+M U)}
$$

MU Shear modulus. MU is the product of the number of molecular chains per unit volume (n), Boltzmann's constant (k) and the absolute temperature (T). Thus MU $=n k T$.

N Number of rigid links between crosslinks of the soft domain region. See Remark 1.

MULL Parameter describing which softening algorithm that shall be used (see Remarks 1 and 2).

EQ.1: Strain based Mullins effect from Qi and Boyce
EQ.2: Energy based Mullins, a modified version of Roxburgh and Ogden model. M1, M2, and M3 must be set.

VISPL Parameter describing which viscoplastic formulation that should be used; see the theory section for details (see Remark 4).

EQ.O: No viscoplasticity
EQ.1: 2 parameter standard model; K1 and S1 must be set.

VARIABLE

VISEL

DESCRIPTION

EQ.2: 6 parameter G'Sells model; K1, K2, K3, S1, S2 and S3 must be set.

EQ.3: 4 parameter strain hardening model; K1, K2, S1, and S2 must be set.

Option for viscoelastic behavior; see the theory section for details.
EQ.0: No viscoelasticity
EQ.1: Free energy formulation based on Holzapfel and Ogden
EQ.2: Formulation based on stiffness ratios from Simo et al.

Card 2	1	2	3	4	5	6	7	8
Variable	YLD0	FP	GP	HP	LP	MP	NP	PMU
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE
YLD0

FP-NP Parameters for Hill's general yield surface. For Von Mises yield criteria set $\mathrm{FP}=\mathrm{GP}=\mathrm{HP}=0.5$ and $\mathrm{LP}=\mathrm{MP}=\mathrm{NP}=1.5$. See Remark 4.

PMU Kinematic hardening parameter. It usually equals MU. See Remark 5.

Card 3	1	2	3	4	5	6	7	8
Variable	M 1	M 2	M 3	M 4	M 5	TIME	VCON	
Type	F	F	F	F	F	F	F	
Default	none	none	none	none	none	0.0	9.0	

VARIABLE

M1

M2

M3 Mullins constant (see Remarks 1 and):

M4
Mullins parameter (see Remarks 1 and 2):
MULL.EQ.1: Initial value of $v_{s} . v_{s}$ must be between 0 and 1 and must be less than $v_{s s}$ (see M5).

MULL.EQ.2: Not used

M5

DESCRIPTION

Mullins constant (see Remarks 1 and 2):
MULL.EQ.1: Constant A. For the case of a dilute solution the Mullins parameter A should be equal to 3.5. See Qi and Boyce [2004].

MULL.EQ.2: Constant M1 in the Mullins equations. M1 > 0.0 must be set.

Mullins constant (see Remarks 1 and 2):
MULL.EQ.1: Constant B. For a system with well dispersed particles B should somewhere around 18. See Qi and Boyce [2004].

MULL.EQ.2: Constant M2 in the Mullins equations. M2 > 0.0 must be set.

MULL.EQ.1: Constant Z. Qi recommends 0.7.
MULL.EQ.2: Constant M3 in the Mullins equations. M3 > 0.0 must be set.

Mullins parameter (see Remarks 1 and 2):

MULL.EQ.1: $v_{s s}$, saturation value of $v_{s} . v_{s s}$ must be between 0 and 1 and must be greater than v_{s} (see M4).

MULL.EQ.2: Not used

VARIABLE

TIME

DESCRIPTION

A time filter is used to smooth out the time derivative of the strain invariant over a TIME interval. Default is no smoothening but a value $100 \times$ TIMESTEP is recommended.

A material constant for the volumetric part of the strain energy. The default is 9.0 but any value can be used to tailor the volumetric response.

Card 4	1	2	3	4	5	6	7	8
Variable	Q1	B1	Q2	B2	Q3	B3	Q4	B4
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE

DESCRIPTION

Q1-B4 Voce hardening parameters. See Remark 4.

Card 5	1	2	3	4	5	6	7	8
Variable	K1	S1	K2	S2	K3	S3		
Type	F	F	F	F	F	F		
Default	0.0	0.0	0.0	0.0	0.0	0.0		

VARIABLE

DESCRIPTION

K1-S3 Viscoplastic parameters (see Remark 4).
VISPL.EQ.1: K1 and S1 are used.
VISPL.EQ.2: K1, S1, K2, S2, K3 and S3 are used.
VISPL.EQ.3: K1, S1 and K 2 are used.

Card 6	1	2	3	4	5	6	7	8
Variable	AOPT	MACF	XP	YP	ZP	A1	A2	A3
Type	F	F	F	F	F	F	F	F
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE

AOPT

DESCRIPTION

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, $\mathrm{AOPT}=3$ is only available for hexahedrons. a is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

VARIABLE

MACF

XP, YP, ZP
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector \mathbf{a} for $\mathrm{AOPT}=2$

Card 7	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	
Type	F	F	F	F	F	F	F	
Default	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

VARIABLE

DESCRIPTION

D1, D2, D3
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
V1, V2, V3
Components of vector \mathbf{v} for $\mathrm{AOPT}=3$ and 4

VARIABLE
BETA

DESCRIPTION

Material angle in degrees for $\mathrm{AOPT}=3$. It may be overridden on the element card; see *ELEMENT_SOLID_ORTHO.

Card 8a	1	2	3	4	5	6	7	8
Variable	TAUI	BETA i						
Type	F	F						
Default	0.0	0.0						

VARIABLE

DESCRIPTION

TAU $i \quad$ Relaxation time. See Remark 3.
BETA i
Dissipating energy factors (see Holzapfel). See Remark 3.

Card 8b	1	2	3	4	5	6	7	8
Variable	TAUi	GAMMA						
Type	F	F						
Default	0.0	0.0						

VARIABLE

TAUi

DESCRIPTION

Relaxation time. A maximum of 6 values can be used. See Remark 3.

GAMMA $i \quad$ Gamma factors (see Simo). See Remark 3.

Remarks:

1. Basic Theory. This model is based on the work done by Arruda and Boyce [1993], in particular Arruda's thesis [1992]. The eight chain rubber model is based on hyper-elasticity. It is formulated with elastic strain invariants. Strain
softening is accounted for by the parameter from v_{s} following the work done by Qi and Boyce [2004].

The strain energy is defined in terms of the elastic deformation gradient \mathbf{F}_{e} through the right Cauchy-Green tensor $\mathbf{C}_{e}=\mathbf{F}_{e}^{T} \mathbf{F}_{e}$ and its determinant $J_{e}=\operatorname{det} \mathbf{F}_{e}$ as $\Psi=\Psi_{1}+\Psi_{2} . \Psi_{1}$ and Ψ_{2} are the deviatoric and volumetric contributions, respectively:

$$
\begin{gathered}
\Psi_{1}=v_{s} \mu\left[\sqrt{N} \Lambda_{c} \beta+N \ln \left(\frac{\beta}{\sinh \beta}\right)\right] \\
\Psi_{2}=\frac{\kappa}{v_{\text {con }}^{2}}\left(v_{\text {con }} \ln J_{e}+\frac{1}{J_{e}^{v_{\text {con }}}}-1\right)
\end{gathered}
$$

Here

$$
\beta=\mathcal{L}^{-1}\left(\frac{\Lambda_{c}}{\sqrt{N}}\right)
$$

with \mathcal{L}^{-1} denoting the inverse of the Langevin function, $\mathcal{L}(x)=\operatorname{coth} x-1 / x$, and the amplified chain stretch is given by

$$
\Lambda_{c}=\sqrt{X\left(v_{s}\right)\left(\bar{\lambda}^{2}-1\right)+1}
$$

where $\bar{\lambda}^{2}=\operatorname{Tr}\left(\overline{\mathbf{C}}_{e}\right) / 3$ and $\overline{\mathbf{C}}_{e}=J_{e}^{-2 / 3} \mathbf{C}_{e}$.
Among the constant parameters, μ is the initial modulus of the soft domain, κ is the bulk modulus, $v_{\text {con }}$ is a pressure influential exponent and N is the number of rigid links between crosslinks of the soft domain region. X is a general polynomial describing the interaction between the soft and hard phases (Qi and Boyce [2004] and Tobin and Mullins [1957]). It is given by

$$
X\left(v_{s}\right)=1+A\left(1-v_{s}\right)+B\left(1-v_{s}\right)^{2}
$$

where A and B are constants. Without the Mullins effect, $v_{s}=1$. Otherwise, its evolution depends on the Mullins effect. See Remark 2.

The Cauchy stress is then computed as

$$
\sigma=\frac{2}{J_{e}} \mathbf{F}_{e} \frac{\partial \Psi}{\partial \mathbf{C}_{e}} \mathbf{F}_{e}^{T}=v_{s} \mu \frac{X\left(v_{s}\right)}{3 J_{e}^{5 / 3}} \frac{\sqrt{N}}{\Lambda_{c}} \beta\left(\mathbf{B}_{e}-\frac{\operatorname{tr}\left(\mathbf{B}_{e}\right)}{3} \mathbf{I}\right)+\frac{\kappa}{v_{\mathrm{con}} J_{e}}\left(1-\frac{1}{J_{e}^{\nu_{c o n}}}\right) \mathbf{I},
$$

where $\mathbf{B}_{e}=\mathbf{F}_{e} \mathbf{F}_{e}^{T}$ is the left elastic Cauchy-Green tensor.
2. Mullins Effect. Two models for the Mullins effect are implemented.
a) $M U L L=1$. The strain softening is developed by the evolution law taken from Boyce 2004:

$$
\dot{v}_{s}=Z\left(v_{s s}-v_{s}\right) \frac{\sqrt{N}-1}{\left(\sqrt{N}-\Lambda_{c}^{\max }\right)^{2}} \dot{\Lambda}_{c}^{\max }
$$

where Z is a parameter that characterizes the evolution in v_{s} with increasing $\dot{\Lambda}_{c}^{\max }$. The parameter $v_{s s}$ is the saturation value of v_{s}. Note that $\dot{\Lambda}_{c}^{\max }$ is the maximum of Λ_{c} from the past:

$$
\dot{\Lambda}_{c}^{\max }= \begin{cases}0 & \Lambda_{c}<\Lambda_{c}^{\max } \\ \dot{\Lambda}_{c} & \Lambda_{c}>\Lambda_{c}^{\max }\end{cases}
$$

The structure now evolves with the deformation. The dissipation inequality requires that the evolution of the structure is irreversible $\dot{v}_{s} \geq 0$. See Qi and Boyce [2004].
b) $M U L L=2$. The energy driven model is based on Ogden and Roxburgh. When activated the strain energy is automatically transformed to a standard eight chain model, meaning the variables Z, v_{s} and X are automatically set to 0,1 , and 1 , respectively. The stress is multiplicative split of the true stress and the softening factor η.

$$
\bar{\sigma}=\eta \sigma, \quad \eta=1-\frac{1}{\mathrm{M} 1} \operatorname{erf}\left(\frac{\Psi_{1}^{\max }-\Psi_{1}}{\mathrm{M} 3-\mathrm{M} 2 \Psi_{1}^{\max }}\right)
$$

3. Viscoelasticity. Two models for viscoelasticity are implemented.
a) $\operatorname{VISEL}=1$. The viscoelasticity is based on work done by Holzapfel (2004)

$$
\dot{\mathbf{Q}}_{\alpha}+\frac{\mathbf{Q}_{\alpha}}{\tau_{\alpha}}=2 \beta_{\alpha} \frac{d}{d t} \frac{\partial \Psi_{1}}{\partial \mathbf{C}_{e}}=\beta_{\alpha} \dot{\mathbf{S}}_{1}
$$

where α is the number of viscoelastic terms $(1, \ldots, 6)$.
b) VISEL $=2$. With this option the evolution is based on work done by Simo and Hughes (2000).

$$
\dot{\mathbf{Q}}_{\alpha}+\frac{\mathbf{Q}_{\alpha}}{\tau_{\alpha}}=2 \frac{\gamma_{a}}{\tau_{a}} \frac{d}{d t} \frac{\partial \Psi_{1}}{\partial \mathbf{C}_{e}}=\frac{\gamma_{a}}{\tau_{a}} \mathbf{S}_{1}
$$

The number of Prony terms is restricted to a maximum of 6. Also τ_{α} and γ_{α} must be greater than 0 . The Cauchy stress is obtained by a push forward operation on the total second Piola-Kirchhoff stress.

$$
\sigma=\frac{1}{J} \mathbf{F}_{e} \mathbf{S F}_{e}{ }^{T} .
$$

4. Viscoplasticity. Plasticity is based on the general Hills' yield surface

$$
\begin{aligned}
\sigma_{e f f}^{2}=F\left(\sigma_{22}-\sigma_{33}\right)^{2}+G\left(\sigma_{33}-\sigma_{11}\right)^{2}+H\left(\sigma_{11}\right. & \left.-\sigma_{22}\right)^{2} \\
& +2 L \sigma_{12}^{2}+2 M \sigma_{23}^{2}+2 N \sigma_{13}^{2}
\end{aligned}
$$

The hardening is either based on a load curve ID (-YLD0) or an extended Voce hardening

$$
\sigma_{\mathrm{yld}}=\sigma_{\mathrm{yld} 0}+Q_{1}\left(1-e^{B_{1} \bar{\varepsilon}}\right)+Q_{2}\left(1-e^{B_{2} \bar{\varepsilon}}\right)+Q_{3}\left(1-e^{B_{3} \bar{\varepsilon}}\right)+Q_{4}\left(1-e^{B_{4} \bar{\varepsilon}}\right) .
$$

The evolution of the elastic deformation gradient \mathbf{F}_{e} is written as

$$
\dot{\mathbf{F}}_{e}=\left(\mathbf{L}-\mathbf{L}_{p}\right) \mathbf{F}_{e}
$$

where L is the spatial velocity gradient and \mathbf{L}_{p} is the spatial (Eulerian) plastic velocity gradient which is given by the associative flow rule

$$
\mathbf{L}_{p}=\dot{\bar{\varepsilon}} \frac{\partial f}{\partial \sigma}
$$

with f being the rate independent yield surface

$$
f=\sigma_{\mathrm{eff}}-\sigma_{\mathrm{yld}} .
$$

For rate independent plasticity (VISPL $=0$) the evolution of plastic strain $\bar{\varepsilon}$ follows from the consistency conditions $f \leq 0, \dot{\bar{\varepsilon}} \geq 0$ and $f \dot{\bar{\varepsilon}}=0$. For viscoplasticity these conditions are abandoned, but we instead invoke a constitutive equation for the effective plastic strain rate. This is the Perzyna (1966) overstress model, and three different formulations are available.
a) $\operatorname{VISPL}=1$. The evolution equation is

$$
\dot{\bar{\varepsilon}}=\left(\frac{\max (f, 0)}{K_{1}}\right)^{S_{1}}
$$

where K_{1} and S_{1} are viscoplastic material parameters.
b) $V I S P L=2$. The evolution equation is

$$
\dot{\bar{\varepsilon}}=\left[\frac{\max (f, 0)}{K_{1}\left(1-e^{-S_{1}\left(\bar{\varepsilon}+K_{2}\right)}\right) e^{S_{2} \bar{\varepsilon}^{K_{3}}}}\right]^{S_{3}},
$$

where $K_{1}, K_{2}, K_{3}, S_{1}, S_{2}$, and S_{3} are viscoplastic parameters.
c) $V I S P L=3$. The evolution equation is

$$
\dot{\bar{\varepsilon}}=\left(\frac{\max (f, 0)}{K_{1}}\right)^{S_{1}}\left(\bar{\varepsilon}+K_{2}\right)^{S_{2}}
$$

where K_{1}, K_{2}, S_{1}, and S_{2} are viscoplastic parameters.
5. Kinematic Hardening. The back stress is calculated similar to the Cauchy stress above but without the softening factors:

$$
\beta=\frac{\mu_{p}}{3 J} \frac{\sqrt{N}}{\Lambda_{c}} L^{-1}\left(\frac{\Lambda_{c}}{\sqrt{N}}\right)\left(\mathbf{I}-\frac{1}{3} I_{p} \mathbf{C}_{p}^{-1}\right) .
$$

μ_{p} is a hardening material parameter (PMU). The total Piola-Kirchhoff stress is now given by $\mathbf{S}^{*}=\mathbf{S}-\beta$ and the total stress is given by a standard push forward operation with the elastic deformation gradient.

References:

Qi HJ., Boyce MC., Constitutive model for stretch-induced softening of stress-stretch behavior of elastomeric materials, Journal of the Mechanics and Physics of Solids, 52, 21872205, 2004.

Arrude EM., Characterization of the strain hardening response of amorphous polymers, PhD Thesis, MIT, 1992.

Mullins L., Tobin NR., Theoretical model for the elastic behavior of filler reinforced vulcanized rubber, Rubber Chem. Technol., 30, 555-571, 1957.

Ogden RW. Roxburgh DG., A pseudo-elastic model for the Mullins effect in Filled rubber., Proc. R. Soc. Lond. A., 455, 2861-2877, 1999.

Simo JC., Hughes TJR., Computational Inelasticity, Springer, New York, 2000.
Holzapfel GA., Nonlinear Solid Mechanics, Wiley, New-York, 2000.

*MAT_BERGSTROM_BOYCE_RUBBER

This is Material Type 269. This is a rubber model based on the Arruda and Boyce (1993) chain model accompanied with a viscoelastic contribution according to Bergström and Boyce (1998). The viscoelastic treatment is based on the physical response of a single entangled chain in an embedded polymer gel matrix, and the implementation is based on Dal and Kaliske (2009). This model is only available for solid elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	K	G	GV	N	NV	
Type	A	F	F	F	F	F	F	
Default	none							

Card 2	1	2	3	4	5	6	7	8
Variable	C	M	GAM0	TAUH				
Type	F	F	F	F				
Default	none	none	none	none				

VARIABLE

MID

RO
K
G
GV
N
NV

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density
Elastic bulk modulus, K
Elastic shear modulus, G
Viscoelastic shear modulus, G_{v}
Elastic segment number, N
Viscoelastic segment number, N_{v}

C
Inelastic strain exponent, c. It should be less than zero.
M Inelastic stress exponent, m
GAM0 Reference strain rate, $\dot{\gamma}_{0}$
TAUH Reference Kirchhoff stress, $\hat{\tau}$

Remarks:

The deviatoric Kirchhoff stress for this model is the sum of an elastic and viscoelastic part according to

$$
\bar{\tau}=\tau_{e}+\tau_{v}
$$

The elastic part is governed by the Arruda-Boyce strain energy potential resulting in the following expression (after a Pade approximation of the Langevin function)

$$
\tau_{e}=\frac{G}{3} \frac{3-\lambda_{r}^{2}}{1-\lambda_{r}^{2}}\left(\overline{\mathbf{b}}-\frac{\operatorname{tr}(\overline{\mathbf{b}})}{3} \mathbf{I}\right)
$$

Here G is the elastic shear modulus, $\overline{\mathbf{b}}$ is the unimodular left Cauchy-Green tensor given by:

$$
\begin{aligned}
\overline{\mathbf{b}} & =J^{-2 / 3} \mathbf{F F}^{T} \\
J & =\operatorname{det} \mathbf{F}
\end{aligned}
$$

and λ_{r} is the relative network stretch given by:

$$
\lambda_{r}^{2}=\frac{\operatorname{tr}(\overline{\mathbf{b}})}{3 N}
$$

The viscoelastic stress is based on a multiplicative split of the unimodular deformation gradient into unimodular elastic and inelastic parts, respectively,

$$
J^{-1 / 3} \mathbf{F}=\mathbf{F}_{e} \mathbf{F}_{i}
$$

We define

$$
\mathbf{b}_{e}=\mathbf{F}_{e} \mathbf{F}_{e}^{T}
$$

to be the elastic left Cauchy-Green tensor. The viscoelastic stress is given as

$$
\tau_{v}=\frac{G_{v}}{3} \frac{3-\lambda_{v}^{2}}{1-\lambda_{v}^{2}}\left(\mathbf{b}_{e}-\frac{\operatorname{tr}\left(\mathbf{b}_{e}\right)}{3} \mathbf{I}\right)
$$

where

$$
\lambda_{v}^{2}=\frac{\operatorname{tr}\left(\mathbf{b}_{e}\right)}{3 N_{v}}
$$

is the relative network stretch for the viscoelastic part. The evolution of the elastic left Cauchy-Green tensor can be written

$$
\dot{\mathbf{b}}_{e}=\overline{\mathbf{L}} \mathbf{b}_{e}+\mathbf{b}_{e} \overline{\mathbf{L}}^{T}-2 \mathbf{D}_{i} \mathbf{b}_{e}
$$

where the inelastic rate-of-deformation tensor is given as

$$
\mathbf{D}_{i}=\dot{\gamma}_{0}\left(\lambda_{i}-0.999\right)^{c}\left(\frac{\left\|\tau_{v}\right\|}{\hat{\tau} \sqrt{2}}\right)^{m} \frac{\tau_{v}}{\left\|\tau_{v}\right\|}
$$

and

$$
\overline{\mathbf{L}}=\mathbf{L}-\frac{\operatorname{tr}(\mathbf{L})}{3} \mathbf{I}
$$

is the deviatoric velocity gradient. The stretch of a single chain relaxing in a polymer is linked to the inelastic right Cauchy-Green tensor as

$$
\lambda_{i}^{2}=\frac{\operatorname{tr}\left(\mathbf{F}_{i}^{T} \mathbf{F}_{i}\right)}{3} \geq 1
$$

This stretch is available as the plastic strain variable in the post-processing of this material. The volumetric part is elastic and governed by the bulk modulus, the pressure for this model is given as

$$
p=K\left(J^{-1}-1\right)
$$

*MAT_CWM

This is Material Type 270. It is a thermo-elastic-plastic model with kinematic hardening that allows for material creation and annealing triggered by temperature. The acronym CWM stands for Computational Welding Mechanics, Lindström $(2013,2015)$. The model is intended to be used for simulating multistage weld processes. This model is available for solid and shell elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	LCEM	LCPR	LCSY	LCHR	LCAT	BETA
Type	A	F	1	1	1	1	1	F
Default	none							

Card 2	1	2	3	4	5	6	7	8
Variable	TASTART	TAEND	TLSTART	TLEND	EGHOST	PGHOST	AGHOST	
Type	F	F	F	F	F	F	F	
Default	none							

Optional Phase Change Card.

Card 3	1	2	3	4	5	6	7	8
Variable	T2PHASE	T1PHASE	ANOPT	POSTV				
Type	F	F	F	1				
Default	optional	optional	0.0	0				

VARIABLE

MID Material identification. A unique number or label must be specified (see *PART).

VARIABLE	DESCRIPTION	
RO	Material density	
LCEM	Load curve ID giving Young's modulus as a function of temperature	
LCPR	Load curve ID giving Poisson's ratio as a function of temperature	
LCSY	Load curve or table for yield stress. GT.0: Load curve ID giving yield stress as a function of temperature.	
	LT.O: \|LCSY	is a table ID giving yield curves for different temperatures. Each yield curve is a function of plastic strain.
LCHR	Load curve ID giving the hardening modulus as a function of temperature. LCHR is not used for LCSY <0. The hardening modulus is then calculated from the yield curve's slope.	
LCAT	Load curve (or table) ID giving the thermal expansion coefficient as a function of temperature (and maximum temperature up to the current time). In the case of a table, load curves are listed according to their maximum temperature. See Remark 1.	
BETA	Fraction of isotropic hardening between 0 and 1:	
	EQ.0.0: Kinematic hardening	
	EQ.1.0: Isotropic hardening	
TASTART	Annealing temperature start, $T_{a}^{\text {start }}$. See Remark 3.	
TAEND	Annealing temperature end, $T_{a}^{\text {end }}$. See Remark 3.	
TLSTART	Birth temperature start, $T_{l}^{\text {start }}$. See Remark 1.	
TLEND	Birth temperature end, $T_{l}^{\text {end }}$. See Remark 1.	
EGHOST	Young's modulus for ghost (quiet) material. See Remark 1.	
PGHOST	Poisson's ratio for ghost (quiet) material. See Remark 1.	
AGHOST	Thermal expansion coefficient for ghost (quiet) material. See Remark 1.	
T2PHASE	Temperature at which phase change commences. See Remark 4.	

VARIABLE

T1PHASE
ANOPT

POSTV Define additional history variables that might be useful for postprocessing. See Remark 5.

Remarks:

1. Material birth. This material is initially in a quiet state, sometimes referred to as a ghost material. In this state, the material has thermo-elastic properties defined by the quiet Young's modulus, quiet Poisson's ratio, and quiet thermal expansion coefficient. These properties should represent void, meaning the Young's modulus should be small enough not to influence the surroundings but large enough to avoid numerical problems. A quiet material stress should never reach the yield point. When the temperature reaches the birth temperature, a history variable representing the indicator of the welding material is incremented. This variable follows

$$
\gamma(t)=\min \left(1, \max \left[0, \frac{T_{\max }-T_{l}^{\text {start }}}{T_{l}^{\text {end }}-T_{l}^{\text {start }}}\right]\right)
$$

where $T_{\max }=\max _{s \leq t} T(s)$. This parameter is available as history variable 9 in the output database. The effective thermo-elastic material properties are interpolated as

$$
\begin{aligned}
& E=E(T) \gamma+E_{\text {quiet }}(1-\gamma) \\
& \nu=v(T) \gamma+v_{\text {quiet }}(1-\gamma) \\
& \alpha=\alpha\left(T, T_{\max }\right) \gamma+\alpha_{\text {quiet }}(1-\gamma)
\end{aligned}
$$

where E, ν, and α are the Young's modulus, Poisson's ratio and thermal expansion coefficient, respectively. Here, the thermal expansion coefficient is either a temperature-dependent curve or a collection of temperature-dependent curves ordered in a table according to maximum temperature, $T_{\max }$.
2. Stress update. The stress update follows a classical isotropic associative thermo-elastic-plastic approach with kinematic hardening that is summarized
in the following. The explicit temperature dependence is sometimes dropped for the sake of clarity.

The stress evolution is given as

$$
\dot{\sigma}=\mathbf{C}\left(\dot{\varepsilon}-\dot{\varepsilon}_{p}-\dot{\varepsilon}_{T}\right)
$$

where \mathbf{C} is the effective elastic constitutive tensor and

$$
\begin{aligned}
\dot{\varepsilon}_{T} & =\alpha \dot{T} \mathbf{I} \\
\dot{\varepsilon}_{p} & =\dot{\varepsilon}_{p} \frac{3}{2} \frac{\mathbf{s}-\kappa}{\bar{\sigma}}
\end{aligned}
$$

are the thermal and plastic strain rates, respectively. The latter expression includes the deviatoric stress

$$
\mathbf{s}=\boldsymbol{\sigma}-\frac{1}{3} \operatorname{Tr}(\boldsymbol{\sigma}) \mathbf{I},
$$

the back stress κ and the effective stress

$$
\bar{\sigma}=\sqrt{\frac{3}{2}(\mathbf{s}-\kappa):(\mathbf{s}-\kappa)}
$$

that are involved in the plastic equations. To this end, the effective yield stress is given as

$$
\sigma_{Y}=\sigma_{Y}(T)+\beta H(T) \varepsilon_{p}
$$

and plastic strains evolve when the effective stress exceeds this value. The back stress evolves as

$$
\dot{\kappa}=(1-\beta) H(T) \dot{\varepsilon}_{p} \frac{\mathbf{s}-\kappa}{\bar{\sigma}}
$$

where $\dot{\varepsilon}_{p}$ is the rate of effective plastic strain rate that follows from consistency equations.
3. Annealing. When the temperature reaches the start annealing temperature, the material begins assuming its virgin properties. Beyond the start annealing temperature, it behaves as an ideal elastic-plastic material but with no evolution of plastic strains. The resetting of effective plastic properties in the annealing temperature interval is done by modifying the effective plastic strain and back stress before the stress update as

$$
\begin{aligned}
& \varepsilon_{p}^{n+1}=\varepsilon_{p}^{n} \max \left[0, \min \left(1, \frac{T-T_{a}^{\text {end }}}{T_{a}^{\text {start }}-T_{a}^{\text {end }}}\right)\right] \\
& \kappa^{n+1}=\kappa^{n} \max \left[0, \min \left(1, \frac{T-T_{a}^{\text {end }}}{T_{a}^{\text {start }}-T_{a}^{\text {end }}}\right)\right]
\end{aligned}
$$

Depending on the choice for parameter ANOPT, annealing may also affect the thermal expansion of the structure. A cut-off temperature can be defined for the evaluation of the thermal expansion. Above this temperature limit, further
expansion is suppressed. The cut-off temperature does not necessarily coincide with the annealing temperature.
4. Average temperature rate. Optional Card 3 is used to set history variable 11, which is the average temperature rate by which the temperature has gone from T2PHASE to T1PHASE. To fringe this variable, the range should be set to positive values. During the simulation it is temporarily used to store the time when the material has reached temperature T2PHASE which is stored as a negative value. A strictly positive value means that the material has reached temperature T2PHASE and gone down to T1PHASE and the history variable is (T2PHASE - T1PHASE)/(T1 - T2), where T2 is the time when temperature T2PHASE is reached and T1 is the time when temperature T1PHASE is reached. Note that T2PHASE $>$ T1PHASE and T1 > T2. A value of zero means that the element has not yet reached temperature T2PHASE. A strictly negative value means that the element has reached temperature T2PHASE but not yet T1PHASE.
5. History variables. This material formulation outputs additional data for postprocessing to the set of history variables if requested. The parameter POSTV defines the data to be written. Its value is calculated as

$$
\operatorname{POSTV}=a_{1}+2 a_{2}+4 a_{3}+8 a_{4}
$$

Each flag a_{i} is a binary number (can be either 1 or 0) and corresponds to one particular post-processing variable according to the following table:

Flag	Description	Variables	\# of History Variables
a_{1}	Accumulated thermal strain	ε_{T}	1
a_{2}	Accumulated strain tensor	ε	6
a_{3}	Plastic strain tensor	ε_{p}	6
a_{4}	Equivalent strain	$\varepsilon_{\mathrm{VM}}$	1

The above table also shows the order of output as well as the number of extra history variables associated with the particular flag. The values of these userdefined histories are reset when the temperature is in the annealing range.

In total NXH extra variables are required depending on the choice of parameter POSTV. For example, the maximum number of additional variables is NXH = 14 for POSTV = 15 .

A complete list of history variables for the material is given in the following table. "Position" refers to the history variable number as listed by LS-PrePost when post-processing the d3plot database. The variable NEIPS in *DATABASE_EXTENT_BINARY must to set to output these history variables.

Position	Description
$1-6$	Back stress
7	Temperature at last time step
8	Yield indicator: 1 if yielding, else 0
9	Welding material indicator: 0 for ghost material, else 1
10	Maximum temperature reached
11	Average temperature rate going from T2PHASE to T1PHASE
$12 \rightarrow 11+\mathrm{NXH}$	User-defined history data as described in the preceding table

*MAT_POWDER

This is Material Type 271. This model is used to analyze the compaction and sintering of cemented carbides and the model is based on the works of Brandt (1998). This material is only available for solid elements.

Card Summary:

Card 1. This card is required.

MID	R0	P11	P22	P33	P12	P23	P13

Card 2. This card is required.

E0	LCK	PR	LCX	LCY	LCC	L	R

Card 3. This card is required.

$C A$	CD	CV	P	LCH	LCFI	SINT	TZRO

Card 3.1. This card is included if and only if SINT $=1$.

LCFK	LCFS2	DV1	DV2	DS1	DS2	OMEGA	RGAS

Card 3.2. This card is included if and only if SINT $=1$.

LCPR	LCFS3	LCTAU	ALPHA	LCFS1	GAMMA	L0	LCFKS

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	P 11	P 22	P 33	P 12	P 23	P 13
Type	A	F	F	F	F	F	F	F
Default	none							

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see ${ }^{*}$ PART).

VARIABLE

RO
PIJ

DESCRIPTION

Mass density
Initial compactness tensor $P_{i j}$

Card 2	1	2	3	4	5	6	7	8
Variable	E0	LCK	PR	LCX	LCY	LCC	L	R
Type	F	I	F	I	I	I	F	F
Default	none							

$R \quad$ Yield surface parameter R governing the shape of the yield surface

VARIABLE

E0
LCK
PR
LCX

LCY

LCC
L

DESCRIPTION

Initial anisotropy variable e (value between 1 and 2)
Load curve ID for bulk modulus K as function of relative density d Poisson's ratio, v

Load curve ID for hydrostatic compressive yield X as function of relative density d

Load curve for uniaxial compressive yield Y as function of relative density d

Load curve ID for shear yield C_{0} as function of relative density d
Yield surface parameter L relating hydrostatic compressive yield to point on hydrostatic axis with maximum strength

Card 3	1	2	3	4	5	6	7	8
Variable	CA	CD	CV	P	LCH	LCFI	SINT	TZR0
Type	F	F	F	F	I	I	F	F
Default	none	none	none	none	none	none	0.0	none

VARIABLE	DESCRIPTION
CA	Hardening parameter c_{a}
CD	Hardening parameter c_{d}
CV	Hardening parameter c_{v}
P	Hardening exponent p
LCH	Load curve ID giving back stress parameter, H, as function of hardening parameter e
LCFI	Load curve ID giving plastic strain evolution angle, ϕ, as function of relative volumetric stress
SINT	Activate sintering:
	EQ.0.0: sintering off
	EQ.1.0: sintering on
TZRO	Absolute zero temperature, T_{0}

Sintering Card 1. Additional card for $\operatorname{SINT}=1$.

Card 3.1	1	2	3	4	5	6	7	8
Variable	LCFK	LCFS2	DV1	DV2	DS1	DS2	OMEGA	RGAS
Type	I	I	F	F	F	F	F	F
Default	none							

VARIABLE	DESCRIPTION
LCFK	Load curve ID for viscous compliance, f_{K}, as function of relative density, d
LCFS2	Load curve ID for viscous compliance, $f_{S 2}$, as function of temperature, T
DV1	Volume diffusion coefficient $d_{V 1}$
DV2	Volume diffusion coefficient $d_{V 2}$
DS1	Surface diffusion coefficient $d_{S 1}$
DS2	Surface diffusion coefficient $d_{S 2}$
OMEGA	Blending parameter ω
RGAS	Universal gas constant, $R_{\text {gas }}$

Sintering Card 2. Additional card for $\operatorname{SINT}=1$.

Card 3.2	1	2	3	4	5	6	7	8
Variable	LCPR	LCFS3	LCTAU	ALPHA	LCFS1	GAMMA	L0	LCFKS
Type	I	I	1	F	1	F	F	1
Default	none							

VARIABLE

LCPR

LCFS3

LCTAU Load curve for relaxation time, τ, as function of temperature, T
ALPHA
LCFS1

DESCRIPTION

Load curve ID for viscous Poisson's ratio, v^{v}, as a function of relative density, d

Load curve ID for evolution of mobility factor, $f_{S 3}$, as function of temperature, T

Thermal expansion coefficient, α
Load curve ID for sintering stress scaling, $f_{S 1}$, as function of relative density, d

VARIABLE
DESCRIPTION
GAMMA
L0 Grain size, l_{0}, which affects sintering stress
LCFKS
Load curve ID scaling bulk modulus, $f_{K S}$, as function of temperature T

Remarks:

This model is intended to be used in two stages. During the first step the compaction of a powder specimen is simulated after which the results are dumped to file, and in a subsequent step the model is restarted for simulating sintering of the compacted specimen. In the following, an overview of the two different models is given, for a detailed description we refer to Brandt (1998). The progressive stiffening in the material during compaction makes it more or less necessary to run double precision and with constraint contacts to avoid instabilities, unfortunately this currently limits the use of this material to the smp version of LS-DYNA.

The powder compaction model makes use of a multiplicative split of the deformation gradient into a plastic and elastic part according to

$$
\mathbf{F}=\mathbf{F}_{e} \mathbf{F}_{p}
$$

where the plastic deformation gradient maps the initial reference configuration to an intermediate relaxed configuration

$$
\delta \tilde{\mathbf{x}}=\mathbf{F}_{p} \delta \mathbf{X}
$$

and subsequently the elastic part maps this onto the current loaded configuration

$$
\delta \mathbf{x}=\mathbf{F}_{e} \delta \tilde{\mathbf{x}}
$$

The compactness tensor, \mathbf{P}, then maps the intermediate configuration onto a virtual fully compacted configuration

$$
\delta \overline{\mathbf{x}}=\mathbf{P} \delta \tilde{\mathbf{x}}
$$

and we define the relative density as

$$
d=\operatorname{det} \mathbf{P}=\frac{\rho}{\bar{\rho}}
$$

where ρ and $\bar{\rho}$ denote the current and fully compacted density, respectively. The elastic properties depend highly on the relative density through the bulk modulus $K(d)$, but the Poisson's ratio is assumed constant.

Figure M271-1. Yield Surface

The yield surface is represented by two functions in the Rendulic plane according to

$$
\sigma_{Y}(d)= \begin{cases}\overline{2}_{0}(d)-C_{1}(d) J_{1}-C_{2}(d) J_{1}^{2} & J_{1} \geq L X(d) \\ \frac{\sqrt{[(L-1) X(d)]^{2}-\left[J_{1}-L X(d)\right]^{2}}}{R} & J_{1}<L X(d)\end{cases}
$$

and is in this way capped in both compression and tension. Here

$$
J_{1}=3 \sigma^{m}=\operatorname{Tr}(\sigma)
$$

The polynomial coefficients in the expression above are chosen to give continuity at $J_{1}=$ $L X(d)$ and to give the uniaxial compressive strength $Y(d)$. Yielding is assumed to occur when the equivalent stress (note the definition) equals the yield stress

$$
\sigma_{\mathrm{eq}}=\frac{\sigma_{V M}}{\sqrt{3}}=\sqrt{\frac{1}{2} \mathbf{s}: \mathbf{s}} \leq \sigma_{Y}(d)
$$

where

$$
\mathbf{s}=\underbrace{\sigma-\sigma^{m}}_{\sigma^{d}} \mathbf{I}-\kappa
$$

in which the last term is the back stress to be described below. The yield surface does not depend on the third stress invariant. The plastic flow is non-associated and its direction is given by

$$
\mathbf{n}_{\varepsilon}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \mathbf{n},
$$

where

$$
\mathbf{n}=\frac{\sigma_{Y}(d)}{\sigma_{\max }}\binom{\frac{\partial \sigma_{Y}}{\partial J_{1}}}{1}
$$

is the normal to the yield surface as depicted in the Rendulic plane above (note the sign of J_{1}). The angle ϕ is a function of and defined only for positive values of the relative volumetric stress $J_{1} / X(d)>0$; for negative values ϕ is determined internally to achieve
smoothness in the plastic flow direction and to avoid numerical problems at the tensile cap point. The above equations are for illustrative purposes, from now on the plastic flow direction is generalized to a second order tensor. The plastic flow rule is then

$$
\dot{\varepsilon}_{p}=\dot{\lambda} \mathbf{n}_{\varepsilon}, \quad \dot{\varepsilon}_{p}^{m}=\frac{1}{3} \operatorname{Tr}\left(\dot{\boldsymbol{\varepsilon}}_{p}\right), \quad \dot{\boldsymbol{\varepsilon}}_{p}^{d}=\dot{\varepsilon}_{p}-\dot{\varepsilon}_{p}^{m} \mathbf{I} .
$$

The evolution of the compactness tensor is directly related to the evolution of plastic strain as

$$
\dot{\mathbf{P}}=-\frac{1}{2}\left(\dot{\varepsilon}_{p} \mathbf{P}+\mathbf{P} \dot{\boldsymbol{\varepsilon}}_{p}\right),
$$

and thus, the relative density is given by

$$
\dot{d}=-3 \dot{\varepsilon}_{p}^{m} d
$$

The back stress is assumed coaxial with the deviatoric part of the compactness tensor and given by

$$
\kappa=J_{1} H(e)\left(\mathbf{P}-\frac{\operatorname{Tr}(\mathbf{P})}{3} \mathbf{I}\right),
$$

where e is a measure of intensity of anisotropy. This takes a value between 1 and 2 and evolves with plastic strain and plastic work according to

$$
\dot{\boldsymbol{e}}=c_{a} \sqrt{\frac{1}{2} \dot{\varepsilon}_{p}^{d}: \dot{\varepsilon}_{p}^{d}}-c_{v} J_{1} \dot{\varepsilon}_{p}^{m} W\left(d, J_{1}\right)+c_{d} \dot{\varepsilon}_{p}^{d}: \sigma W\left(d, J_{1}\right)
$$

where

$$
W\left(d, J_{1}\right)=-\left[\frac{J_{1}}{X(d)}\right]^{p} \int_{d_{0}}^{d} \frac{X(\xi)}{3 \xi} d \xi
$$

and d_{0} is the density in the initial uncompressed configuration. The stress update is completed by the rate equation of stress

$$
\dot{\sigma}=\mathbf{C}(d):\left(\dot{\varepsilon}-\dot{\varepsilon}_{p}\right)
$$

where $\mathbf{C}(d)$ is the elastic constitutive matrix.
The sintering model is a thermo and viscoelastic model where the evolution of the mean and deviatoric stress can be written as

$$
\begin{aligned}
\dot{\sigma}^{m} & =3 K^{s}\left(\dot{\varepsilon}^{m}-\dot{\varepsilon}_{T}-\dot{\varepsilon}_{p}^{m}\right) \\
\dot{\sigma}^{d} & =2 G^{s}\left(\dot{\varepsilon}^{d}-\dot{\varepsilon}_{p}^{d}\right)
\end{aligned}
$$

The thermal strain rate is given by the thermal expansion coefficient as

$$
\dot{\varepsilon}_{T}=\alpha \dot{T},
$$

and the bulk and shear modulus are the same as for the compaction model with the exception that they are scaled by a temperature curve

$$
\begin{aligned}
& K^{s}=f_{K S}(T) K(d) \\
& G^{s}=\frac{3(1-2 v)}{2(1+v)} K^{s}
\end{aligned}
$$

The inelastic strain rates are different from the compaction model and is here given by

$$
\dot{\varepsilon}_{p}=\frac{\sigma^{d}}{2 G^{v}}+\frac{\sigma^{m}-\sigma^{s}}{3 K^{v}} \mathbf{I}
$$

which results in a viscoelastic behavior depending on the viscous compliance and sintering stress. The viscous bulk compliance can be written

$$
\frac{1}{K^{v}}=3 f_{K}(d)\left\{d_{V 1} \exp \left[-\frac{d_{V 2}}{R_{g a s}\left(T-T_{0}\right)}\right]+\omega d_{S 1} \exp \left[-\frac{d_{S 2}}{R_{g a s}\left(T-T_{0}\right)}\right]\right\}\left[1+f_{S 2}(T) \xi\right]
$$

from which the viscous shear compliance is modified with aid of the viscous Poisson's ratio

$$
\frac{1}{G^{v}}=\frac{2\left[1+v^{v}(d)\right]}{3\left[1-2 v^{v}(d)\right]} \frac{1}{K^{v}} .
$$

The mobility factor ξ evolves with temperature according to

$$
\dot{\xi}=\frac{f_{S 3}(T) \dot{T}-\xi}{\tau(T)}
$$

and the sintering stress is given as

$$
\sigma^{s}=f_{S 1}(d) \frac{\gamma}{l_{0}}
$$

All this is accompanied with, again, the evolution of relative density given as

$$
\dot{d}=-3 \dot{\varepsilon}_{p}^{m} d
$$

*MAT_RHT

This is Material Type 272. This model is used to analyze concrete structures subjected to impulsive loadings; see Riedel et.al. (1999) and Riedel (2004).

Card Summary:

Card 1. This card is required.

MID	RO	SHEAR	ONEMPA	EPSF	B0	B1	T1

Card 2. This card is required.

A	N	FC	FS^{*}	FT^{*}	Q0	B	T 2

Card 3. This card is required.

EOC	EOT	EC	ET	BETAC	BETAT	PTF	

Card 4. This card is required.

GC* *	GT*	XI	D1	D2	EPM	AF	NF

Card 5. This card is required.

GAMMA	A1	A2	A3	PEL	PCO	NP	ALPHAO

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	SHEAR	ONEMPA	EPSF	B0	B1	T1
Type	A	F	F	F	F	F	F	F

VARIABLE
MID

RO
SHEAR

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density
Elastic shear modulus

VARIABLE

ONEMPA

EPSF
B0
B1
T1

DESCRIPTION

Unit conversion factor defining 1 MPa in the pressure units used. It can also be used for automatic generation of material parameters for a given compressive strength (see remarks).

EQ.O: defaults to 1.0
EQ.-1: parameters generated in m, s and $\mathrm{kg}(\mathrm{Pa})$
EQ.-2: parameters generated in mm, s and tonne (MPa)
EQ.-3: parameters generated in mm, ms and $\mathrm{kg}(\mathrm{GPa})$
EQ.-4: parameters generated in in, s and dozens of slugs (psi)
EQ.-5: parameters generated in mm, ms and $\mathrm{g}(\mathrm{MPa})$
EQ.-6: parameters generated in $\mathrm{cm}, \mu \mathrm{s}$ and g (Mbar)
EQ.-7: parameters generated in mm, ms and $\mathrm{mg}(\mathrm{kPa})$
Eroding plastic strain (default is 2.0)
Parameter for polynomial EOS
Parameter for polynomial EOS
Parameter for polynomial EOS

Card 2	1	2	3	4	5	6	7	8
Variable	A	N	FC	FS *	FT^{*}	00	B	T 2
Type	F	F	F	F	F	F	F	F

VARIABLE
A
N Failure surface parameter N
FC Compressive strength
FS* Relative shear strength
FT* Relative tensile strength
Q0 Lode angle dependence factor

VARIABLE

B
T2

DESCRIPTION

Lode angle dependence factor
Parameter for polynomial EOS

Card 3	1	2	3	4	5	6	7	8
Variable	EOC	EOT	EC	ET	BETAC	BETAT	PTF	
Type	F	F	F	F	F	F	F	

VARIABLE

DESCRIPTION

E0C
Reference compressive strain rate
Reference tensile strain rate
Break compressive strain rate

ET
BETAC

BETAT Tensile strain rate dependence exponent (optional)
PTF
Pressure influence on plastic flow in tension (default is 0.001)

Card 4	1	2	3	4	5	6	7	8
Variable	GC* *	GT *	XI	D 1	D 2	EPM	AF	NF
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

GC*
GT*
Tensile yield surface parameter
Shear modulus reduction factor
D1
Compressive yield surface parameter

Damage parameter

VARIAB		DESCRIPTION						
D2		Damage parameter						
EPM		Minimum damaged residual strain						
AF		Residual surface parameter						
NF		Residual surface parameter						
Card 5	1	2	3	4	5	6	7	8
Variable	GAMMA	A1	A2	A3	PEL	PCO	NP	ALPHAO
Type	F	F	F	F	F	F	F	F
VARIABLE		DESCRIPTION						
GAMMA		Gruneisen gamma						
A1		Hugoniot polynomial coefficient						
A2		Hugoniot polynomial coefficient						
A3		Hugoniot polynomial coefficient						
PEL		Crush pressure						
PCO		Compaction pressure						
NP		Porosity exponent						
ALPHA		Initial porosity						

Remarks:

In the RHT model, the shear and pressure part is coupled in which the pressure is described by the Mie-Gruneisen form with a polynomial Hugoniot curve and a $p-\alpha$ compaction relation. For the compaction model, we define a history variable representing the porosity α that is initialized to $\alpha_{0}>1$. This variable represents the current fraction of density between the matrix material and the porous concrete and will decrease with increasing pressure, that is, the reference density is expressed as $\alpha \rho$. The evolution of this variable is given as

$$
\alpha(t)=\max \left(1, \min \left\{\alpha_{0}, \min _{s \leq t}\left[1+\left(\alpha_{0}-1\right)\left(\frac{p_{\text {comp }}-p(s)}{p_{\text {comp }}-p_{\mathrm{el}}}\right)^{N}\right]\right\}\right)
$$

where $p(t)$ indicates the pressure at time t. This expression also involves the initial pore crush pressure p_{el}, compaction pressure $p_{\text {comp }}$ and porosity exponent N. For later use, we define the cap pressure, or current pore crush pressure, as

$$
p_{c}=p_{\text {comp }}-\left(p_{\text {comp }}-p_{\mathrm{el}}\right)\left(\frac{\alpha-1}{\alpha_{0}-1}\right)^{1 / N} .
$$

The remainder of the pressure (EOS) model is given in terms of the porous density ρ and specific internal energy e (with respect to the porous density). Depending on user inputs, it is either governed by $\left(B_{0}>0\right)$

$$
p(\rho, e)=\frac{1}{\alpha} \begin{cases}\left(B_{0}+B_{1} \eta\right) \alpha \rho e+A_{1} \eta+A_{2} \eta^{2}+A_{3} \eta^{3} & \eta>0 \\ B_{0} \alpha \rho e+T_{1} \eta+T_{2} \eta^{2} & \eta<0\end{cases}
$$

or $\left(B_{0}=0\right)$

$$
\begin{aligned}
& p(\rho, e)=\Gamma \rho e+\frac{1}{\alpha} p_{H}(\eta)\left[1-\frac{1}{2} \Gamma \eta\right] \\
& p_{H}(\eta)=A_{1} \eta+A_{2} \eta^{2}+A_{3} \eta^{3}
\end{aligned}
$$

together with

$$
\eta(\rho)=\frac{\alpha \rho}{\alpha_{0} \rho_{0}}-1 .
$$

For the shear strength description we use

$$
p^{*}=\frac{p}{f_{c}}
$$

as the pressure normalized with the compressive strength parameter. We also use s to denote the deviatoric stress tensor and $\dot{\varepsilon}_{p}$ the plastic strain rate. The effective plastic strain is thus denoted ε_{p} and can be viewed as such in the post processor of choice.

For a given stress state and rate of loading, the elastic-plastic yield surface for the RHT model is given by

$$
\sigma_{y}\left(p^{*}, \mathbf{s}, \dot{\varepsilon}_{p}, \varepsilon_{p}^{*}\right)=f_{c} \sigma_{y}^{*}\left(p^{*}, F_{r}\left(\dot{\varepsilon}_{p}, p^{*}\right), \varepsilon_{p}^{*}\right) R_{3}\left(\theta, p^{*}\right)
$$

and is the composition of two functions and the compressive strength parameter f_{c}. The first describes the pressure dependence for principal stress conditions $\sigma_{1}<\sigma_{2}=\sigma_{3}$ and is expressed in terms of a failure surface and normalized plastic strain as

$$
\sigma_{y}^{*}\left(p^{*}, F_{r}, \varepsilon_{p}^{*}\right)=\sigma_{f}^{*}\left(\frac{p^{*}}{\gamma}, F_{r}\right) \gamma
$$

with

$$
\gamma=\varepsilon_{p}^{*}+\left(1-\varepsilon_{p}^{*}\right) F_{e} F_{c}
$$

The failure surface is given as

$$
\sigma_{f}^{*}\left(p^{*}, F_{r}\right)=\left\{\begin{array}{lr}
A\left[p^{*}-\frac{F_{r}}{3}+\left(\frac{A}{F_{r}}\right)^{-1 / n}\right]^{n} & 3 p^{*} \geq F_{r} \\
\frac{F_{r} f_{s}^{*}}{Q_{1}}+3 p^{*}\left(1-\frac{f_{s}^{*}}{Q_{1}}\right) & F_{r}>3 p^{*} \geq 0 \\
\frac{F_{r} f_{s}^{*}}{Q_{1}}-3 p^{*}\left(\frac{1}{Q_{2}}-\frac{f_{s}^{*}}{Q_{1} f_{t}^{*}}\right) & 0>3 p^{*}>3 p_{t}^{*} \\
0 & 3 p_{t}^{*}>3 p^{*}
\end{array}\right.
$$

in which p_{t}^{*} is the failure cut-off pressure

$$
p_{t}^{*}=\frac{F_{r} Q_{2} f_{s}^{*} f_{t}^{*}}{3\left(Q_{1} f_{t}^{*}-Q_{2} f_{s}^{*}\right)}
$$

F_{r} is a dynamic increment factor, and

$$
\begin{aligned}
Q_{1} & =R_{3}\left(\frac{\pi}{6}, 0\right) \\
Q_{2} & =Q\left(p^{*}\right)
\end{aligned}
$$

In these expressions, f_{t}^{*} and f_{s}^{*} are the tensile and shear strength of the concrete relative to the compressive strength f_{c} and the Q values are introduced to account for the tensile and shear meridian dependence. Further details are given in the following.

To describe reduced strength on shear and tensile meridian the factor

$$
R_{3}\left(\theta, p^{*}\right)=\frac{2\left(1-Q^{2}\right) \cos \theta+(2 Q-1) \sqrt{4\left(1-Q^{2}\right) \cos ^{2} \theta+5 Q^{2}-4 Q}}{4\left(1-Q^{2}\right) \cos ^{2} \theta+(1-2 Q)^{2}}
$$

is introduced, where θ is the Lode angle given by the deviatoric stress tensor \mathbf{s} as

$$
\begin{aligned}
\cos 3 \theta & =\frac{27 \operatorname{det}(\mathbf{s})}{2 \bar{\sigma}(\mathbf{s})^{3}} \\
\bar{\sigma}(\mathbf{s}) & =\sqrt{\frac{3}{2} \mathbf{s}: \mathbf{s}}
\end{aligned}
$$

The maximum reduction in strength is given as a function of relative pressure

$$
Q=Q\left(p^{*}\right)=Q_{0}+B p^{*} .
$$

Finally, the strain rate dependence is given by

$$
F_{r}\left(\dot{\varepsilon}_{p}, p^{*}\right)=\left\{\begin{array}{cc}
F_{r}^{c} & 3 p^{*} \geq F_{r}^{c} \\
F_{r}^{c}-\frac{3 p^{*}-F_{r}^{c}}{F_{r}^{c}+F_{r}^{t} f_{t}^{*}}\left(F_{r}^{t}-F_{r}^{c}\right) & F_{r}^{c}>3 p^{*} \geq-F_{r}^{t} f_{t}^{*} \\
F_{r}^{t} & -F_{r}^{t} f_{t}^{*}>3 p^{*}
\end{array}\right.
$$

in which

$$
F_{r}^{\frac{c}{t}}\left(\dot{\varepsilon}_{p}\right)=\left\{\begin{array}{cl}
\left(\frac{\dot{\varepsilon}_{p}}{\dot{\varepsilon}_{0} / t}\right)^{\beta_{c} / t} & \dot{\varepsilon}_{p}^{c / t} \geq \dot{\varepsilon}_{p} \\
{\underset{c}{c}}_{t}^{3} \sqrt{\dot{\varepsilon}_{p}} & \dot{\varepsilon}_{p}>\dot{\varepsilon}_{p}^{c / t}
\end{array}\right.
$$

The parameters involved in these expressions are given as (f_{c} is in MPa below)

$$
\begin{aligned}
\beta_{c} & =\frac{4}{20+3 f_{c}} \\
\beta_{t} & =\frac{2}{20+f_{c}}
\end{aligned}
$$

and $\gamma_{c / t}$ is determined from continuity requirements, but it is also possible to choose the rate parameters via inputs.

The elastic strength parameter used above is given by

$$
F_{e}\left(p^{*}\right)=\left\{\begin{array}{cc}
g_{c}^{*} & 3 p^{*} \geq F_{r}^{c} g_{c}^{*} \\
g_{c}^{*}-\frac{3 p^{*}-F_{r g_{c}^{c}}^{c_{c}^{*}}}{F_{r}^{c} g_{c}^{*}+F_{t}^{t} g_{t}^{*} f_{t}^{*}}\left(g_{t}^{*}-g_{c}^{*}\right) & F_{r}^{c} g_{c}^{*}>3 p^{*} \geq-F_{r}^{t} g_{t}^{*} f_{t}^{*} \\
g_{t}^{*} & -F_{r}^{t} g_{t}^{*} f_{t}^{*}>3 p^{*}
\end{array}\right.
$$

while the cap of the yield surface is represented by

$$
F_{c}\left(p^{*}\right)=\left\{\begin{array}{cc}
0 & p^{*} \geq p_{c}^{*} \\
\sqrt{\sqrt{1-\left(\frac{p^{*}-p_{u}^{*}}{p_{c}^{*}-p_{u}^{*}}\right)^{2}}} & p_{c}^{*}>p^{*} \geq p_{u}^{*} \\
1 & p_{u}^{*}>p^{*}
\end{array}\right.
$$

where

$$
\begin{aligned}
p_{c}^{*} & =\frac{p_{c}}{f_{c}} \\
p_{u}^{*} & =\frac{F_{r}^{c} g_{c}^{*}}{3}+\frac{G^{*} \varepsilon_{p}}{f_{c}}
\end{aligned}
$$

The hardening behavior is described linearly with respect to the plastic strain, where

$$
\begin{aligned}
& \varepsilon_{p}^{*}=\min \left(\frac{\varepsilon_{p}}{\varepsilon_{p}^{h}}, 1\right) \\
& \varepsilon_{p}^{y}=\frac{\sigma_{y}\left(p^{*}, \mathbf{s}, \dot{\varepsilon}_{p}, \varepsilon_{p}^{*}\right)\left(1-F_{e} F_{c}\right)}{\gamma 3 G^{*}}
\end{aligned}
$$

here

$$
G^{*}=\xi G
$$

where G is the shear modulus of the virgin material and ξ is a reduction factor representing the hardening in the model.

When hardening states reach the ultimate strength of the concrete on the failure surface, damage is accumulated during further inelastic loading controlled by plastic strain. To this end, the plastic strain at failure is given as

$$
\varepsilon_{p}^{f}=\left\{\begin{array}{cc}
D_{1}\left[p^{*}-(1-D) p_{t}^{*}\right]^{D_{2}} & p^{*} \geq(1-D) p_{t}^{*}+\left(\frac{\varepsilon_{p}^{m}}{D_{1}}\right)^{1 / D_{2}} \\
\varepsilon_{p}^{m} & (1-D) p_{t}^{*}+\left(\frac{\varepsilon_{p}^{m}}{D_{1}}\right)^{1 / D_{2}}>p^{*}
\end{array}\right.
$$

The damage parameter is accumulated with plastic strain according to

$$
D=\int_{\varepsilon_{p}^{h}}^{\varepsilon_{p}} \frac{d \varepsilon_{p}}{\varepsilon_{p}^{f}}
$$

and the resulting damage surface is given as

$$
\sigma_{d}\left(p^{*}, \mathbf{s}, \dot{\varepsilon}_{p}\right)=\left\{\begin{array}{lc}
\sigma_{y}\left(p^{*}, \mathbf{s}, \dot{\varepsilon}_{p}, 1\right)(1-D)+D f_{c} \sigma_{r}^{*}\left(p^{*}\right) & 0 \leq p^{*} \\
\sigma_{y}\left(p^{*}, \mathbf{s}, \dot{\varepsilon}_{p}, 1\right)\left(1-D-\frac{p^{*}}{p_{t}^{*}}\right) & (1-D) p_{t}^{*} \leq p^{*}<0
\end{array}\right.
$$

where

$$
\sigma_{r}^{*}\left(p^{*}\right)=A_{f}\left\{p^{*}\right\}^{n_{f}} .
$$

Plastic flow occurs in the direction of deviatoric stress, meaning

$$
\dot{\varepsilon}_{p} \sim \mathbf{s},
$$

but for tension there is an option to set the parameter PFC to a number corresponding to the influence of plastic volumetric strain. If $\lambda \leq 1$ is used to denote this parameter, then for the special case of $\lambda=1$

$$
\dot{\varepsilon}_{p} \sim \mathbf{s}-p \mathbf{I}
$$

This was introduced to reduce noise in tension that was observed on some test problems. A failure strain can be used to erode elements with severe deformation which by default is set to 200%.

For simplicity, automatic generation of material parameters is available using ONEM$\mathrm{PA}<0$; no other parameters are needed. If $\mathrm{FC}=0$ then the 35 MPa strength concrete in Riedel (2004) is generated in the units specified by the value of ONEMPA. For FC > 0 FC then specifies the actual strength of the concrete in the units specified by the value of ONEMPA. The other parameters are generated by interpolating between the 35 MPa and 140 MPa strength concretes as presented in Riedel (2004). Any automatically generated parameter may be overridden by the user; one of these parameters may be the initial porosity ALPHA0 of the concrete.

For post-processing, the following history variables may be of interest:

History Variable	Description
2	Internal energy per volume (ρe)
3	Porosity value (α)
4	Damage value (D)

or as an alternative use a material history list

*DEFINE_MATERIAL_HISTORIES Properties		
Label	Attributes	Description
Damage	- - - -	Damage value D

*MAT_CONCRETE_DAMAGE_PLASTIC_MODEL

*MAT_CDPM

This is Material Type 273. CDPM is a damage plastic concrete model based on Grassl et al. $(2011,2013)$ and Grassl and Jirásek (2006). This model aims to simulate the failure of concrete structures subjected to dynamic loadings. It describes the characterization of the failure process subjected to multi-axial and rate-dependent loading. The model is based on effective stress plasticity and includes a damage model based on plastic and elastic strain measures. This material model is available only for solids.

This material model includes many parameters for the advanced user, but most have default values based on experimental tests. They might not be useful for all concrete and load paths, but the values provide a good starting point. If the default values are not good enough, see the remarks at the end for a discussion of these parameters.

More details on this material can be found at:
http:/ / petergrassl.com/Research/DamagePlasticity/CDPMLSDYNA/index.html

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	ECC	QH0	FT	FC
Type	A	F	F	F	F	F	F	F
Default	none	none	none	0.2	AUTO	0.3	none	none

Card 2	1	2	3	4	5	6	7	8
Variable	HP	AH	BH	CH	DH	AS	DF	FCO
Type	F	F	F	F	F	F	F	F
Default	0.5	0.08	0.003	2.0	$1.0 \mathrm{E}-6$	15.0	0.85	AUTO

Card 3	1	2	3	4	5	6	7	8
Variable	TYPE	BS	WF	WF1	FT1	STRFLG	FAILFLG	EFC
Type	F	F	F	F	F	F	F	F
Default	0.0	1.0	none	$0.15 \times$ WF	$0.3 \times F T$	0.0	0.0	$1.0 \mathrm{E}-4$

VARIABLE

MID

RO
E

PR
ECC

QH0

FT Uniaxial tensile strength (stress), f_{t}. See Remarks 2 and 3.
FC Uniaxial compression strength (stress), f_{c}. See Remarks 2 and 3.
HP Hardening parameter, H_{p}. The default, $\mathrm{HP}=0.5$, is the value used in Grassl et al. (2011) for a strain-rate-dependent material response (STRFLG $=1$). For applications without a strain rate effect (STR$\mathrm{FLG}=0$), a value of $\mathrm{HP}=0.01$ is recommended, which has been used in Grassl et al. (2013). See Remark 2.

AH Hardening ductility parameter 1, A_{h}. See Remark 2.

VARIABLE

BH
$\mathrm{CH} \quad$ Hardening ductility parameter 3, C_{h}. See Remark 2.
DH
AS
DF
FC0 Rate-dependent parameter, $f_{c 0}$. It is only needed if STRFLG $=1$. The recommended value is 10 MPa , which has to be entered consistently with the system of units used. See Remark 4.

TYPE

BS
WF Tensile threshold value for linear damage formulation, w_{f}. It controls the tensile softening branch of the exponential tensile damage formulation. See Remark 3.

WF1 Tensile threshold value for the second part of the bilinear damage formulation, $w_{f 1}$. The default is $0.15 \times \mathrm{WF}$. See Remark 3 .

FT1

STRFLG Strain rate flag:
EQ.1.0: Strain rate dependent (see Remark 4)
EQ.O.O: Not strain rate dependent
FAILFLG Failure flag.
EQ.O.O: Not active, meaning no erosion
GT.O.O: Active. Ane element erodes if ω_{t} and ω_{c} equal 1 in FAILFLG percent of the integration points. For

VARIABLE

EFC

DESCRIPTION
example, if FAILFLG $=0.60,60 \%$ of all integration points must fail before erosion.

Parameter controlling the compressive damage softening branch of the exponential compressive damage formulation, $\varepsilon_{f c}$. See Remark 3.

Remarks:

1. Stress depending on the damage model. The stress for the anisotropic damage plasticity model ($\mathrm{E}>0$ in the input) is defined as

$$
\sigma=\left(1-\omega_{t}\right) \sigma_{t}+\left(1-\omega_{c}\right) \sigma_{c}
$$

where σ_{t} and σ_{c} are the positive and negative part of the effective stress, $\sigma_{\text {eff }}$, determined in the principal stress space. The scalar functions ω_{t} and ω_{c} are damage parameters.

The stress for the isotropic damage plasticity model ($\mathrm{E}<0$ in the input) is defined as

$$
\sigma=\left(1-\omega_{t}\right) \sigma_{\mathrm{eff}}
$$

The effective stress, $\sigma_{\text {eff }}$, is defined according to the damage mechanics convention as

$$
\sigma_{\mathrm{eff}}=\mathrm{D}_{e}:\left(\varepsilon-\varepsilon_{p}\right)
$$

2. Plasticity. The yield surface is described by the Haigh-Westergaard coordinates: the volumetric effective stress, σ_{v}, the norm of the deviatoric effective stress, ρ, and the Lode angle, θ. The following equation gives the yield surface:

$$
\begin{aligned}
f_{p}\left(\sigma_{v}, \rho, \theta, \kappa\right)= & {\left[\left[1-q_{1}(\kappa)\right]\left(\frac{\rho}{\sqrt{6} f_{c}}+\frac{\sigma_{v}}{f_{c}}\right)^{2}+\sqrt{\frac{3}{2}} \frac{\rho}{f_{c}}\right]^{2} } \\
& +m_{0} q_{1}(\kappa)^{2} q_{2}(\kappa)\left[\frac{\rho}{\sqrt{6} f_{c}} r(\cos \theta)+\frac{\sigma_{v}}{f_{c}}\right]-q_{1}^{2}(\kappa) q_{2}^{2}(\kappa) .
\end{aligned}
$$

The variables q_{1} and q_{2} depend on the hardening variable κ. The parameter f_{c} is the uniaxial compressive strength.

The following function controls the shape of the deviatoric part:

$$
r(\cos \theta)=\frac{4\left(1-e^{2}\right) \cos ^{2} \theta+(2 e-1)^{2}}{2\left(1-e^{2}\right) \cos \theta+(2 e-1) \sqrt{4\left(1-e^{2}\right) \cos ^{2} \theta+5 e^{2}-4 e}}
$$

where e is the eccentricity parameter (ECC). The parameter m_{0} is the friction parameter. It is defined as:

$$
m_{0}=\frac{3\left(f_{c}^{2}-f_{t}^{2}\right)}{f_{c} f_{t}} \frac{e}{e+1}
$$

where f_{t} is the tensile strength.
The flow rule is non-associative, meaning that the plastic flow's direction is not normal to the yield surface. This aspect is essential for modeling concrete because an associative flow rule gives an overestimated maximum stress. The plastic potential is given by:

$$
g\left(\sigma_{v}, \rho, \kappa\right)=\left\{\left[1-q_{1}(\kappa)\right]\left(\frac{\rho}{\sqrt{6} f_{c}}+\frac{\sigma_{v}}{f_{c}}\right)^{2}+\sqrt{\frac{3}{2}} \frac{\rho}{f_{c}}\right\}^{2}+q_{1}(\kappa)\left(\frac{m_{0} \rho}{\sqrt{6} f_{c}}+\frac{m_{g}\left(\sigma_{v}, \kappa\right)}{f_{c}}\right)
$$

where

$$
m_{g}\left(\sigma_{v}, \kappa\right)=A_{g}(\kappa) B_{g}(\kappa) f_{c} e^{\frac{\sigma_{v}-q_{2} f_{t} / 3}{B_{g} f_{c}}}
$$

and

$$
A_{g}=\frac{3 f_{t} q_{2}(\kappa)}{f_{c}}+\frac{m_{0}}{2}, \quad B_{g}=\frac{q_{2}(\kappa)}{3} \frac{1+f_{t} / f_{c}}{\ln \frac{A_{g}}{3 q_{2}+\frac{m_{0}}{2}}+\ln \left(\frac{D_{f}+1}{2 D_{f}-1}\right)}
$$

The hardening laws q_{1} and q_{2} control the shape of the yield surface and the plastic potential. They are defined as:

$$
\begin{aligned}
& q_{1}(\kappa)= \begin{cases}q_{h 0}+\left(1-q_{h 0}\right)\left(\kappa^{3}-3 \kappa^{2}+3 \kappa\right)-H_{p}\left(\kappa^{3}-3 \kappa^{2}+2 \kappa\right) & \text { if } \kappa<1 \\
1 & \text { if } \kappa \geq 1\end{cases} \\
& q_{2}(\kappa)= \begin{cases}1 & \text { if } \kappa<1 \\
1+H_{p}(\kappa-1) & \text { if } \kappa \geq 1\end{cases}
\end{aligned}
$$

The evolution for the hardening variable is given by

$$
\dot{\kappa}=\frac{4 \dot{\lambda} \cos ^{2} \theta}{x_{h}\left(\sigma_{v}\right)}\left\|\frac{d g}{d \sigma}\right\|
$$

It sets the rate of the hardening variable to the norm of the plastic strain rate scaled by a ductility measure, which is defined as:

$$
x_{h}\left(\sigma_{v}\right)= \begin{cases}A_{h}-\left(A_{h}-B_{h}\right) e^{-\frac{R_{h}\left(\sigma_{v}\right)}{C_{h}}} & \text { if } R_{h}\left(\sigma_{v}\right) \geq 0 \\ E_{h} e^{\frac{R_{h}\left(\sigma_{v}\right)}{F_{h}}}+D_{h} & \text { if } R_{h}\left(\sigma_{v}\right)<0\end{cases}
$$

Here,

$$
E_{h}=B_{h}-D_{h}, \quad F_{h}=\frac{\left(B_{h}-D_{h}\right) C_{h}}{A_{h}-B_{h}}, \quad R_{h}\left(\sigma_{v}\right)=-\frac{\sigma_{v}}{f_{c}}-\frac{1}{3}
$$

3. Damage. Damage initializes when the equivalent strain, $\tilde{\varepsilon}$, reaches the threshold value $\varepsilon_{0}=f_{t} / E$, where the equivalent strain is defined as

$$
\tilde{\varepsilon}=\frac{\varepsilon_{0} m_{0}}{2}\left[\frac{\rho}{\sqrt{6} f_{c}} r(\cos \theta)+\frac{\sigma_{V}}{f_{c}}\right]+\sqrt{\frac{\varepsilon_{0}^{2} m_{0}^{2}}{4}\left(\frac{\rho}{\sqrt{6} f_{c}} r(\cos \theta)+\frac{\sigma_{V}}{f_{c}}\right)^{2}+\frac{3 \varepsilon_{0}^{2} \rho^{2}}{2 f_{c}^{2}}}
$$

A stress-inelastic displacement law describes tensile damage. For linear, bilinear, and exponential damage types, the stress value f_{t} and the displacement value w_{f} must be defined. Additional parameters $f_{t 1}$ and $w_{f 1}$ must be defined for the bilinear type. Figure M273-1 illustrates how the input parameters control the stress softening for the different damage models.

Figure M273-1. Stress softening due to damage in tension. The figures from left to right show this behavior for linear, bilinear, and exponential damage, respectively.

The variable h in Figure M273-1 is a mesh-dependent measure used to convert strains to displacements. The variable ε_{t} is called the inelastic tensile strain and is defined as the sum of the irreversible plastic strain ε_{p} and the reversible strain $w_{t}\left(\varepsilon-\varepsilon_{p}\right)$ (in compression $w_{c}\left(\varepsilon-\varepsilon_{p}\right)$).

A damage ductility measure, x_{s}, models the influence of multi-axial stress states on the softening:

$$
x_{s}=1+\left(A_{s}-1\right) R_{s}^{B_{s}}
$$

Here, A_{s} and B_{s} are input parameters, and

$$
R_{s}= \begin{cases}-\frac{\sqrt{6} \sigma_{v}}{\rho} & \text { if } \sigma_{v} \leq 0 \\ 0 & \text { if } \sigma_{v}>0\end{cases}
$$

The inelastic strain is then modified according to:

$$
\varepsilon_{i}=\frac{\varepsilon_{i}}{x_{s}}
$$

An exponential stress-inelastic strain law controls compressive damage. Stress value f_{c} and inelastic strain $\varepsilon_{f c}$ need to be specified. Figure M273-2 illustrates how the input parameters affect stress softening. A small value of $\varepsilon_{f c}$, such as 1.0E-4 (the default), causes a brittle form of damage.

Figure M273-2. Stress softening due to damage in compression
4. Strain rate. Concrete is strongly rate dependent. If the loading rate increases, the tensile and compressive strengths increase and are more prominent in tension than in compression. $\alpha_{r} \geq 1$ models this dependency. The rate dependency is included by scaling both the equivalent strain rate and the inelastic strain. The rate parameter is defined by

$$
\alpha_{r}=\left(1-X_{\text {compression }}\right) \alpha_{r t}+X_{\text {compression }} \alpha_{r c}
$$

where $X_{\text {compression }}$ is a continuous compression measure ($=1$ means only compression, $=0$ means only tension). For tension:

$$
\alpha_{r t}=\left\{\begin{array}{lll}
1 & \text { if } & \dot{\varepsilon}_{\max }<30 \times 10^{-6} \mathrm{~s}^{-1} \\
\left(\frac{\dot{\varepsilon}_{\max }}{\dot{\varepsilon}_{t 0}}\right)^{\delta_{t}} & \text { if } 30 \times 10^{-6}<\dot{\varepsilon}_{\max }<1 \mathrm{~s}^{-1} \\
\beta_{t}\left(\frac{\dot{\varepsilon}_{\max }}{\dot{\varepsilon}_{t 0}}\right)^{\frac{1}{3}} & \text { if } & \dot{\varepsilon}_{\max }>1 \mathrm{~s}^{-1}
\end{array}\right.
$$

where $\delta_{t}=\frac{1}{1+8 f_{c} / f_{c 0}}, \beta_{t}=e^{6 \delta_{t}-2}$, and $\dot{\varepsilon}_{t 0}=1 \times 10^{-6} \mathrm{~s}^{-1}$. For compression, the corresponding rate factor is given by:

$$
\alpha_{r c}=\left\{\begin{array}{lll}
1 & \text { if } & \left|\dot{\varepsilon}_{\text {min }}\right|<30 \times 10^{-6} \mathrm{~s}^{-1} \\
{\left[S \frac{\left|\dot{\varepsilon}_{\text {min }}\right|}{\dot{\varepsilon}_{c 0}}\right]^{1.026 \delta_{c}}} & \text { if } 30 \times 10^{-6} & <\left|\dot{\varepsilon}_{\text {min }}\right|<1 \mathrm{~s}^{-1} \\
\beta_{c}\left[\frac{\left|\dot{\varepsilon}_{\text {min }}\right|}{\dot{\varepsilon}_{c 0}}\right]^{\frac{1}{3}} & \text { if } & \left|\dot{\varepsilon}_{\text {min }}\right|>30 \mathrm{~s}^{-1}
\end{array}\right.
$$

where $\delta_{c}=\frac{1}{5+9 f_{c} / f_{c 0}}, \beta_{c}=e^{6.156 \delta_{c}-2}$, and $\dot{\varepsilon}_{c 0}=30 \times 10^{-6} \mathrm{~s}^{-1} \cdot f_{c 0}$ is an input parameter. A recommended value is 10 MPa .
5. History variables. Extra history variables of interest are listed in the following table. Set NEIPH in *DATABASE_EXTENT_BINARY to request these variables.

History Variable \#	Description
1	Hardening variable, κ. See Remark 2.
15	Damage in tension, ω_{t}. See Remark 1.
16	Damage in compression, ω_{c}. See Remark 1.

*MAT_PAPER

This is Material Type 274. This is an orthotropic elastoplastic model for paper materials, based on Xia (2002) and Nygards (2009). It is available for solid and shell elements. Solid elements use a hyperelastic-plastic formulation, while shell elements use a hypoelasticplastic formulation. The material is available for explicit and implicit simulations; see Remark 5.

Card Summary:

Card 1. This card is required.

MID	R0	E1	E2	E3	PR21	PR32	PR31

Card 2. This card is required.

G12	G23	G13	E3C	CC	TWOK		ROT

Card 3. This card is required.

S01	A01	B01	C01	S02	A02	B02	C02

Card 4. This card is required.

S03	A03	B03	C03	S04	A04	B04	C04

Card 5. This card is required.

S05	A05	B05	C05	PRP1	PRP2	PRP4	PRP5

Card 6. This card is required.

ASIG	BSIG	CSIG	TAU0	ATAU	BTAU		

Card 7. This card is required.

AOPT	MACF	XP	YP	ZP	A1	A2	A3

Card 8. This card is required.

V1	V2	V3	D1	D2	D3	BETA	

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E1	E2	E3	PR21	PR32	PR31
Type	A	F	F	F	F	F	F	F
Default	none							

VARIABLE
MID

RO Material density
Ei Young's modulus in direction i, E_{i}
PRij Elastic Poisson's ratio $v_{i j}$

Card 2	1	2	3	4	5	6	7	8
Variable	G12	G23	G13	E3C	CC	TWOK		ROT
Type	F	F	F	F	F	F		F
Default	none	none	none	none	none	none		0.0

VARIABLE

Gij
Elastic shear modulus in direction, $G_{i j}$
E3C

CC
Elastic compression exponent
TWOK Exponent in in-plane yield surface

VARIABLE

DESCRIPTION

ROT
Option for two-dimensional solids (shell element forms 13, 14, or 15):

EQ.0.0: No rotation of material axes (default). Direction of material axes are solely defined by AOPT. It is only possible to rotate in shell-plane.
EQ.1.0: Rotate coordinate system around material 1-axis such that 2 -axis coincides with shell normal. This rotation is done in addition to AOPT.

EQ.2.0: Rotate coordinate system around material 2-axis such that 1 -axis coincides with shell normal. This rotation is done in addition to AOPT.

In plane Yield Surface Card 1.

Card 3	1	2	3	4	5	6	7	8
Variable	S01	A01	B01	C01	S02	A02	B02	C02
Type	F	F	F	F	F	F	F	F
Default	none							

In plane Yield Surface Card 2.

Card 4	1	2	3	4	5	6	7	8
Variable	S03	A03	B03	C03	S04	A04	B04	C04
Type	F	F	F	F	F	F	F	F
Default	none							

In plane Yield Surface Card 3.

Card 5	1	2	3	4	5	6	7	8
Variable	S05	A05	B05	C05	PRP1	PRP2	PRP4	PRP5
Type	F	F	F	F	F	F	F	F
Default	none	none	none	none	$1 / 2$	$2 / 15$	$1 / 2$	$2 / 15$

VARIABLE

DESCRIPTION

S0i $\quad i^{\text {th }}$ in-plane plasticity yield parameter
LT.O.O: $|S 0 i|$ is a load curve ID; see Remark 1.

A0i
B0i
C0i
PRP1
PRP2
PRP4
PRP5
$i^{\text {th }}$ in-plane plasticity hardening parameter
$i^{\text {th }}$ in-plane plasticity hardening parameter
$i^{\text {th }}$ in-plane plasticity hardening parameter
Tensile plastic Poisson's ratio in direction 1
Tensile plastic Poisson's ratio in direction 2
Compressive plastic Poisson's ratio in direction 1
Compressive plastic Poisson's ratio in direction 2

Out of Plane and Transverse Shear Yield Surface Card.

Card 6	1	2	3	4	5	6	7	8
Variable	ASIG	BSIG	CSIG	TAUO	ATAU	BTAU		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	none		

VARIABLE

ASIG Out-of-plane plasticity yield parameter

VARIABLE		DESCRIPTION
BSIG		Out-of-plane plasticity hardening parameter
CSIG		Out-of-plane plasticity hardening parameter
TAU0		Transverse shear plasticity yield parameter
ATAU	Transverse shear plasticity hardening parameter	
BTAU	Transverse shear plasticity hardening parameter	

Orthotropic Parameter Card 1.

Card 7	1	2	3	4	5	6	7	8
Variable	AOPT	MACF	XP	YP	ZP	A 1	A 2	A 3
Type	F	F	F	F	F	F	F	F
Default	none							

VARIABLE
AOPT

DESCRIPTION

Material axes option (see MAT_OPTIONTROPIC_ELASTIC, particularly the Material Directions section, for details):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.
EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of

VARIABLE

MACF Material axes change flag for solid elements:
EQ. 4 : Switch material axes b and c before BETA rotation
EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation
EQ.4: Switch material axes b and c after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, if AOPT $=3$, the BETA input on Card 8 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

XP, YP, ZP \quad Coordinates of point p for AOPT $=1$ and 4
A1, A2, A3 Components of vector a for AOPT $=2$

Orthotropic Parameter Card 2.

Card 8	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	
Type	F	F	F	F	F	F	F	
Default	none							

VARIABLE

DESCRIPTION

V1, V2, V3
D1, D2, D3
BETA Material angle in degrees for AOPT = 3. It may be overridden on the element card; see *ELEMENT_SHELL_BETA or *ELEMENT_SOLID_ORTHO.

Remarks:

1. Hardening function. Each hardening function, q_{i} (note that $q_{6}=q_{3}$), is given by a load curve if $S_{i}^{0}<0$, otherwise

$$
q_{i}\left(\varepsilon_{p}^{f}\right)=S_{i}^{0}+A_{i}^{0} \tanh \left(B_{i}^{0} \varepsilon_{p}^{f}\right)+C_{i}^{0} \varepsilon_{p}^{f} .
$$

2. Material model for solid elements. The stress-strain relationship for solid elements is based on a multiplicative split of the deformation gradient into an elastic and a plastic part

$$
\mathbf{F}=\mathbf{F}_{e} \mathbf{F}_{p} .
$$

The elastic Green strain is formed as

$$
\mathbf{E}_{e}=\frac{1}{2}\left(\mathbf{F}_{e}^{\mathrm{T}} \mathbf{F}_{e}-\mathbf{I}\right),
$$

and the $2^{\text {nd }}$ Piola-Kirchhoff stress as

$$
\mathbf{S}=\mathrm{CE}_{e},
$$

where the constitutive matrix is taken as orthotropic and can be represented in Voigt notation by its inverse as

$$
\mathbf{C}^{-1}=\left[\begin{array}{rrrrrr}
\frac{1}{E_{1}} & -\frac{v_{21}}{E_{2}} & -\frac{v_{31}}{E_{3}} & & & \\
-\frac{v_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{v_{32}}{E_{3}} & & & \\
-\frac{v_{13}}{E_{1}} & -\frac{v_{23}}{E_{2}} & \frac{1}{E_{3}} & & & \\
& & & \frac{1}{G_{12}} & & \\
& & & & \frac{1}{G_{23}} & \\
& & & & & \frac{1}{G_{13}}
\end{array}\right]
$$

In out-of-plane compression the stress is modified according to

$$
S_{33}=C_{31} E_{11}^{e}+C_{32} E_{22}^{e}+\left\{\begin{aligned}
E_{3} E_{33}^{e}, & E_{33}^{e} \geq 0 \\
E_{3}^{c}\left[1-\exp \left(-C_{\mathrm{c}} E_{33}^{e}\right)\right], & E_{33}^{e}<0
\end{aligned}\right.
$$

Three yield surfaces are present: in-plane, out-of-plane, and transverse shear. The in-plane yield surface is given as (see Remark 1)

$$
f=\sum_{i=1}^{6}\left[\frac{\max \left(0, S: N_{i}\right)}{q_{i}\left(\varepsilon_{p}^{f}\right)}\right]^{2 k}-1 \leq 0
$$

with the six yield plane normals (in strain Voigt notation)

$$
\begin{aligned}
& N_{1}=\left[\frac{1}{\sqrt{1+v_{1 p}^{2}}}-\frac{v_{1 p}}{\sqrt{1+v_{1 p}^{2}}} 00 \begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}}, \\
& N_{2}=\left[-\frac{v_{2 p}}{\sqrt{1+v_{2 p}^{2}}} \frac{1}{\sqrt{1+v_{2 p}^{2}}} 0 \begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}}, \\
& N_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & \sqrt{2} & 0 & 0
\end{array}\right]^{\mathrm{T}} \text {, } \\
& N_{4}=-\left[\frac{1}{\sqrt{1+v_{4 p}^{2}}}-\frac{v_{4 p}}{\sqrt{1+v_{4 p}^{2}}} 0 \begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}}, \\
& N_{5}=-\left[-\frac{v_{5 p}}{\sqrt{1+v_{5 p}^{2}}} \frac{1}{\sqrt{1+v_{5 p}^{2}}} 0 \begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \text {, } \\
& N_{6}=-N_{3} .
\end{aligned}
$$

The yield planes describe the following states

Plane	Stress State
1	Tension in material direction 1
2	Tension in material direction 2
3	Positive shear in the 1, 2-direction
4	Compression in material direction 1
5	Compression in material direction 2
6	Negative shear in the 1, 2-direction

The out-of-plane surface is given as

$$
g=\frac{-S_{33}}{A_{\sigma}+B_{\sigma} \exp \left(-C_{\sigma} \varepsilon_{p}^{g}\right)}-1 \leq 0
$$

and the transverse shear surface is

$$
h=\frac{\sqrt{S_{13}^{2}+S_{23}^{2}}}{\tau_{0}+\left[A_{\tau}-\min \left(0, S_{33}\right) B_{\tau}\right] \varepsilon_{p}^{h}}-1 \leq 0
$$

The flow rule is given by the evolution of the plastic deformation gradient

$$
\dot{\mathbf{F}}_{p}=\mathbf{L}_{p} \mathbf{F}_{p}
$$

where the plastic velocity gradient is given as

$$
\mathbf{L}_{p}=\left[\begin{array}{ccc}
\dot{\varepsilon}_{p}^{f} \frac{\partial f}{\partial S_{11}} & \dot{\varepsilon}_{p}^{f} \frac{\partial f}{\partial S_{12}} & \dot{\varepsilon}_{p}^{h} \frac{\partial h}{\partial S_{13}} \\
\dot{\varepsilon}_{p}^{f} \frac{\partial f}{\partial S_{12}} & \dot{\varepsilon}_{p}^{f} \frac{\partial f}{\partial S_{22}} & \dot{\varepsilon}_{p}^{h} \frac{\partial h}{\partial S_{23}} \\
\dot{\varepsilon}_{p}^{h} \frac{\partial h}{\partial S_{13}} & \dot{\varepsilon}_{p}^{h} \frac{\partial h}{\partial S_{23}} & \dot{\varepsilon}_{p}^{g} \frac{\partial g}{\partial S_{33}}
\end{array}\right],
$$

and where it is implicitly assumed that the involved derivatives in the expression of the velocity gradient is appropriately normalized.
3. Material model for shell elements. The stress-strain relationship for shell elements is based on an additive split of the rate of deformation into an elastic and a plastic part

$$
\mathbf{D}=\mathbf{D}_{e}+\mathbf{D}_{p}
$$

and the rate of Cauchy stress is given by

$$
\dot{\boldsymbol{\sigma}}=\mathrm{CD}_{e} .
$$

In out-of-plane compression the stress rate is modified according to

$$
\dot{\sigma}_{33}=C_{31} D_{11}^{e}+C_{32} D_{22}^{e}+D_{33}^{e}\left\{\begin{aligned}
E_{3,}, & \varepsilon_{33}^{e} \geq 0 \\
E_{3}^{c} C_{\mathrm{c}} \exp \left(-C_{\mathrm{c}} \varepsilon_{33}^{e}\right), & \varepsilon_{33}^{e}<0
\end{aligned}\right.
$$

For shell elements, $D_{33}^{p}=0$, and only two yield surfaces are present: the in-plane yield surface (see Remark 1),

$$
f=\sum_{i=1}^{6}\left[\frac{\max \left(0, \sigma: N_{i}\right)}{q_{i}\left(\varepsilon_{\mathrm{p}}^{f}\right)}\right]^{2 k}-1 \leq 0
$$

and the transverse-shear yield surface,

$$
h=\frac{\sqrt{\sigma_{13}^{2}+\sigma_{23}^{2}}}{\tau_{0}+\left[A_{\tau}-\min \left(0, \sigma_{33}\right) B_{\tau}\right] \varepsilon_{\mathrm{p}}^{h}}-1 \leq 0 .
$$

For this case, the plastic flow rule is given by

$$
\dot{\varepsilon}_{p}=\mathbf{D}_{p}=\mathbf{L}_{p},
$$

where the plastic velocity gradient is given as

$$
\mathbf{L}_{p}=\left[\begin{array}{ccc}
\dot{\varepsilon}_{\mathrm{p}}^{f} \frac{\partial f}{\partial \sigma_{11}} & \dot{\varepsilon}_{\mathrm{p}}^{f} \frac{\partial f}{\partial \sigma_{12}} & \dot{\varepsilon}_{\mathrm{p}}^{h} \frac{\partial h}{\partial \sigma_{13}} \\
\dot{\varepsilon}_{\mathrm{p}}^{f} \frac{\partial f}{\partial \sigma_{12}} & \dot{\varepsilon}_{\mathrm{p}}^{f} \frac{\partial f}{\partial \sigma_{22}} & \dot{\varepsilon}_{\mathrm{p}}^{h} \frac{\partial h}{\partial \sigma_{23}} \\
\dot{\varepsilon}_{\mathrm{p}}^{h} \frac{\partial h}{\partial \sigma_{13}} & \dot{\varepsilon}_{\mathrm{p}}^{h} \frac{\partial h}{\partial \sigma_{23}} & 0
\end{array}\right] .
$$

4. History variables. The Effective Plastic Strain is

$$
\varepsilon_{p}=\sqrt{\left(\varepsilon_{p}^{f}\right)^{2}+\left(\varepsilon_{p}^{g}\right)^{2}+\left(\varepsilon_{p}^{h}\right)^{2}}
$$

The other history variables are listed below.

History Variable \#	Solid Elements	Shell Elements
1	ε_{p}^{f}	Q_{11} in element to material rotation tensor
2	ε_{p}^{g}	Q_{12} in element to material rotation tensor
3	ε_{p}^{h}	ε_{p}^{f}
4		ε_{p}^{h}

5. Tangent stiffness. The shell hypoelastic-plastic formulation produces a symmetric tangent stiffness. For the solid hyperelastic-plastic formulation, the tangent stiffness is nonsymmetric. However, unless LCPACK on *CONTROL_IMPLICIT_SOLVER is set to 3, a simplified symmetric tangent will be used for solid elements. This simplified tangent is based on the assumption of small elastic strains. For some problems, using the nonsymmetric tangent significantly improves the convergence rate.

*MAT_SMOOTH_VISCOELASTIC_VISCOPLASTIC

This is Material Type 275, a smooth viscoelastic viscoplastic model based on the works of Hollenstein et.al. [2013, 2014] and Jabareen [2015]. The stress response is rheologically represented by HJR (Hollenstein-Jabareen-Rubin) elements in parallel (see Figure M275-1), where each element exhibits combinations of viscoelastic and viscoplastic characteristics. The model is based on large displacement hyper-elastoplasticity and the numerical implementation is strongly objective; this together with the smooth characteristics makes it especially suitable for implicit analysis.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	K					
Type	A	F	F					

HJR Element Cards. At least 1 and optionally up to 6 cards should be input. The next keyword ("*") card terminates this input.

Card 2	1	2	3	4	5	6	7	8
Variable	A0	B0	A1	B1	M	KAPAS	KAPA0	SHEAR
Type	F	F	F	F	F	F	F	F

VARIABLE

MID

RO Mass density
K Elastic bulk modulus
A0 Rate dependent understress viscoplastic parameter
B0 Rate independent understress plasticity parameter
A1 Rate dependent overstress viscoplastic parameter
B1 Rate independent overstress plasticity parameter
M Exponential hardening parameter

Figure M275-1. Rheological representation of an HJR element, including the associated parameters

VARIABLE	DESCRIPTION
KAPAS	Saturated yield strain
KAPA0	Initial yield strain
SHEAR	Elastic shear modulus

VARIABLE
KAPAS

KAPA0 Initial yield strain
SHEAR Elastic shear modulus

Remarks:

The Cauchy stress for this smooth viscoelastic viscoplastic material is given by

$$
\boldsymbol{\sigma}=K(J-1) \mathbf{I}+\sum_{i=1}^{6} \mathbf{s}_{i},
$$

where K is the elastic bulk modulus provided on the first card and $J=\operatorname{det}(\mathbf{F})$ is the relative volume with \boldsymbol{F} being the total deformation gradient. The deviatoric stresses, s_{i}, are coming from the HJR (Hollenstein-Jabareen-Rubin) elements in parallel. Up to 6 such elements can be defined for the deviatoric response and a rheological representation of one is shown in Figure M275-1. Each element is associated with 8 material parameters that are provided on the optional cards and characterize its inelastic response. All this allows for a wide range of stress strain relationships. The critical part involves estimating parameters for a given test suite. Some elaboration on the physical interpretation of the individual parameters in the context of uniaxial stress is given following a general description of the model.

We analyze one HJR element by letting $\overline{\mathbf{B}}$ denote the associated isochoric elastic left Cau-chy-Green tensor. Define

$$
\widetilde{\mathbf{B}}=\overline{\mathbf{B}}-\frac{1}{3} \alpha \mathbf{I} \text {, where } \alpha=\operatorname{tr}(\overline{\mathbf{B}}) .
$$

The evolution of $\overline{\mathbf{B}}$ is given by

$$
\dot{\overline{\mathbf{B}}}=\mathbf{L} \overline{\mathbf{B}}+\overline{\mathbf{B}} \mathbf{L}^{\mathrm{T}}-\frac{2}{3} \operatorname{tr}(\mathbf{D}) \overline{\mathbf{B}}-\dot{\Gamma} \mathbf{A} \text {, where } \mathbf{A}=\overline{\mathbf{B}}-\left[\frac{3}{\operatorname{tr}\left(\overline{\mathbf{B}}^{-1}\right)}\right] \mathbf{I} \text {, }
$$

Figure M275-2. Influence of parameter a_{0} on stress relaxation
where \mathbf{D} is the rate-of-deformation and $\dot{\Gamma}$ governs the inelastic deformation. The functional form of $\dot{\Gamma}$ is summarized in the following set of equations

$$
\begin{aligned}
\dot{\Gamma} & =\dot{\Gamma}_{0}+\langle g\rangle \dot{\Gamma}_{1} \\
\dot{\Gamma}_{i} & =a_{i}+b_{i} \dot{\varepsilon}, \quad i=0,1 \\
g & =1-\frac{\kappa}{\tilde{\gamma}}
\end{aligned}
$$

where

$$
\begin{aligned}
\langle g\rangle & =\max (0, g) \\
\dot{\varepsilon} & =\sqrt{\frac{2}{3} \tilde{\mathbf{D}}: \tilde{\mathbf{D}}} \\
\widetilde{D} & =D-\frac{1}{3} \operatorname{tr}(\mathbf{D}) \mathbf{I} \\
\tilde{\gamma} & =\sqrt{\frac{3}{8} \widetilde{\mathbf{B}}: \widetilde{\mathbf{B}}} \\
\dot{\kappa} & =m \dot{\Gamma}_{1}\langle g\rangle\left(\kappa_{s}-\kappa\right)
\end{aligned}
$$

A hyperelastic law with a strain energy potential for the distortional deformation given by

$$
\psi(\alpha)=\frac{G}{2}(\alpha-3)
$$

yields a contribution to the deviatoric Cauchy stress of

$$
\mathbf{s}=G J^{-1} \widetilde{\mathbf{B}} .
$$

Figure M275-3. Influence of b_{0} in cyclic loading

In uniaxial stress at constant total distortional rate of deformation $\pm \dot{\varepsilon}$ (tension or compression), these equations can be reduced to scalar correspondents

$$
\begin{align*}
\frac{\overline{\bar{b}}}{\bar{b}} & =2\left(\pm \dot{\varepsilon}-\dot{\Gamma} \frac{\bar{b} \sqrt{\bar{b}}-1}{2 \bar{b} \sqrt{\bar{b}}+1}\right) \\
\tau & =G\left(\bar{b}-\frac{1}{\sqrt{\bar{b}}}\right) \tag{M275.1}
\end{align*}
$$

where \bar{b} is the component of $\overline{\mathbf{B}}$ in the direction of deformation and τ is the uniaxial Kirchhoff stress. The evolution of Γ follows the equations above with

$$
\tilde{\gamma}=\frac{1}{2}|\bar{b}-1 / \sqrt{\bar{b}}| .
$$

Even though analytical solutions may be out of reach, this would be the basis for estimating as well as interpreting the material parameters. Obviously the shear modulus G (SHEAR) provides the elastic deviatoric stiffness, for a purely elastic material just define one such parameter and leave out all the other parameters on the same card. If several cards are used, the effective elastic shear stiffness is the sum of the contributions from each of the corresponding HJR elements. An interesting observation is that the stress in a HJR element saturates to a value given by the solution of \bar{b} to

$$
\begin{align*}
& \bar{b} \sqrt{\bar{b}}\left(\pm 2-\left\{b_{0}+b_{1}+\frac{a_{0}+a_{1}}{\dot{\varepsilon}}\right\}\right) \pm 2 \sqrt{\bar{b}} \kappa_{s}\left(b_{1}+\frac{a_{1}}{\dot{\varepsilon}}\right) \tag{M275.2}\\
&+\left(\pm 1+\left\{b_{0}+b_{1}+\frac{a_{0}+a_{1}}{\dot{\varepsilon}}\right\}\right)=0
\end{align*}
$$

Figure M275-4. Effect of b_{1} in cyclic loading
in tension (+) and compression (-), followed by application of (M275.1) above, assuming that

$$
b_{0}+b_{1}+\frac{a_{0}+a_{1}}{\dot{\varepsilon}}>2
$$

in tension and

$$
b_{0}+b_{1}+\frac{a_{0}+a_{1}}{\dot{\varepsilon}}>1
$$

in compression. This expression will be used in special cases below when examining each inelastic material parameter individually; the material parameters above are input on the HJR element cards as A0, B0, A1, B1 and KAPAS.

A Maxwell material is obtained by providing an element with a nonzero a_{0} (A0) and with other parameters set to zero. This parameter should be interpreted as the viscoelastic relaxation coefficient determining the rate at which the stress relaxes to zero (see parameter BETA in *MAT_VISCOELASTIC). In Figure M275-2 a stress relaxation is shown for a strain controlled problem using two HJR elements and normalized material parameters using a bulk modulus of $K=1$. For the first element $G=0.5$ and for the other $G=1$ while a_{0} varies; all other parameters are zero. The engineering strain is ramped to 50% from $t=0$ to $t=1$ and then kept constant. The response is very similar to other viscoelastic models in LS-DYNA. Not surprisingly, a HJR element with $a_{0}>0$ (and $a_{1}=b_{1}=0$) will always relax to zero stress, which follows from (M275.1) and (M275.2); thus the relaxed stress in this case comes from the purely elastic element. A general viscoelastic material can be obtained by putting several such HJR elements in parallel, in analogy to *MAT_GENERAL_VISCOELASTIC.

Figure M275-5. Softening response in cyclic loading for various values of m

For a nonzero b_{0} (B0) with other parameters set to zero, a rate independent plastic response is obtained exhibiting zero yield stress, that is, inelastic strains develop immediately upon loading. From (M275.2) the value of b_{0} determines the saturated stress value for the associated HJR element by (M275.1) and

$$
\bar{b}=\left(\frac{b_{0} \pm 1}{b_{0} \mp 2}\right)^{2 / 3}
$$

in tension (+) and compression (-), respectively. A smooth response is obtained that is characterized by hysteresis as shown in Figure M275-3. The same material parameters as in the previous example are used with the exception of varying b_{0} instead of a_{0}. The deformation is controlled by a cyclic Cauchy stress between -0.25 and 0.25 ; for larger b_{0} a hysteresis is observed. It should however be mentioned that the hysteresis vanishes as $b_{0} \rightarrow \infty$ as the stress for the second element saturates quickly to a small value, so it is not trivial to quantitatively estimate the amount of hysteresis for a given parameter setting and deformation.

Rate independent plasticity with a nonzero yield stress can be obtained by a nonzero b_{1} (B1) in combination with parameters κ_{0} (KAPA0), κ_{s} (KAPAS) and m (M). The yield stress in the sense of von Mises is given by

$$
\sigma_{Y}=2 G J^{-1} \kappa
$$

from which κ is interpreted as the current yield strain. Here b_{1} determines the amount of overstress through (M275.1) and (M275.2), requiring the solution of a non-trivial

Figure M275-6. Strain rate dependence for $a_{1}=1000$ and $b_{1}=10$
polynomial equation. This is exemplified in Figure M275-4 using one HJR element with $K=1, G=1.5, \kappa_{0}=\kappa_{s}=0.01$ and $m=0$. The engineering strain is ramped up to 5% and down to 0 and b_{1} is varied with all other parameters zero; the response tends to an elasticperfectly plastic as b_{1} increases. The saturated stress value for $b_{1} \rightarrow \infty$ can be calculated as

$$
\begin{equation*}
\bar{b}=\left[\left(\frac{1}{2}+\sqrt{\frac{1}{4} \mp \frac{8 \kappa_{s}^{3}}{27}}\right)^{1 / 3}+\left(\frac{1}{2}-\sqrt{\frac{1}{4} \mp \frac{8 \kappa_{s}^{3}}{27}}\right)^{1 / 3}\right]^{2} \tag{M275.3}
\end{equation*}
$$

employing (M275.1).
Isotropic strain hardening ($\kappa_{s}>\kappa_{0}$) or softening ($\kappa_{s}<\kappa_{0}$) is obtained with $m>0 ; \kappa$ tends exponentially towards κ_{s} at a rate determined by m. Using $b_{1}=1000$ (meaning very little overstress), $\kappa_{0}=0.02$, and $\kappa_{s}=0.01$ while varying m, the softening response in Figure M275-5 is obtained. The rate at which the element hardens is difficult to quantitatively estimate, but presumably it depends not only on m but also on b_{1}. It is important to note however that for small to moderate b_{1} the model appears to harden with $m=0$, which is due to larger overstress. The hardening determined by m can be determined from a loading, unloading and reloading cycle to detect how the the yield strain κ changes; see Hollenstein et.al. [2013].

Finally, a_{1} (A1) is the viscoplastic parameter determining how stress responds to change in strain rate. Its interpretation is very similar to that of a_{0}; stress increases with increasing loading rate and relaxes to the saturated stress value given by (M275.1) and (M275.2). In Figure M275-6 a rate dependency is illustrated for $K=1, G=1.5, \kappa_{0}=\kappa_{s}=0.01$ and
$m=0$, where we have set $a_{1}=1000$ and $b_{1}=10$. The engineering strain rate varies from 0.2 to 20 and for small strain rates (M275.3) can be used for estimating the saturated stress, but in general (M275.2) must be used.

Putting several HJR elements in parallel can thus provide a fairly general combination of viscoelastic/viscoplastic response with isotropic hardening/softening, but this of course requires a rich test suite and a good way of estimating the material parameters. Presumably it is often sufficient to neglect some effects and work with only a subset of the material parameters.

For post-processing, the effective plastic strain in this model is defined as

$$
\varepsilon_{p}=\sqrt{\frac{2}{3} \varepsilon_{p}: \varepsilon_{p}},
$$

where

$$
\varepsilon_{p}=\varepsilon_{t}-\varepsilon_{e}
$$

is a crude estimation of the difference between total and elastic strain. We set

$$
\begin{aligned}
& \varepsilon_{t}=\frac{1}{2 J}\left[\mathbf{B}-\frac{1}{3} \operatorname{tr}(\mathbf{B}) \mathbf{I}\right] \\
& \varepsilon_{e}=\frac{1}{2 G}\left[\sigma-\frac{1}{3} \operatorname{tr}(\sigma) \mathbf{I}\right]
\end{aligned}
$$

where

$$
\mathbf{B}=J^{-2 / 3} \mathbf{F F}^{\mathrm{T}}
$$

and G here is the sum of all shear moduli defined on the HJR element cards. Note that this does not correspond to the traditional measure of effective plastic strain which should be accounted for when validating results.

*MAT_CHRONOLOGICAL_VISCOELASTIC

This is Material Type 276. This material model provides a general viscoelastic Maxwell model having up to 6 terms in the Prony series expansion and is useful for modeling dense continuum rubbers and solid explosives. It is similar to Material Type 76 but allows the incorporation of aging effects on the material properties. Either the coefficients of the Prony series expansion or a relaxation curve may be specified to define the viscoelastic deviatoric and bulk behavior.

The material model can also be used for laminated shells with either an elastic or viscoelastic layer. To activate the laminated shell, set the formulation flag on *CONTROL_SHELL. With the laminated option, a user-defined integration rule is needed.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	BULK	PCF	EF	TREF	A	B
Type	A	F	F	F	F	F	F	F

Relaxation Curve. If fitting is done from a relaxation curve, specify fitting parameters on this card. Otherwise, if constants are set on Viscoelastic Constant Cards, LEAVE THIS CARD BLANK.

Card 2	1	2	3	4	5	6	7	8
Variable	LCID	NT	BSTART	TRAMP	LCIDK	NTK	BSTARTK	TRAMPK
Type	F	I	F	F	F	I	F	F

Viscoelastic Constant Cards. Up to 12 cards may be input. The next keyword ("*") card terminates this input. These cards are not needed if relaxation data is defined. The number of terms for the shear behavior may differ from that for the bulk behavior: simply insert zero if a term is not included. If an elastic layer is defined, only Gi and Ki need to be defined (note in an elastic layer only one card is needed).

Card 3	1	2	3	4	5	6	7	8
Variable	G i	BETA i	Ki	BETAK i				
Type	F	F	F	F				

TRAMP Optional ramp time for loading

BSTARTK

DESCRIPTION

 fied (see *PART).Mass density
Elastic bulk modulus unity, tensile pressures are set to zero.

Elastic flag:
EQ.O: Layer is viscoelastic.
EQ.1: Layer is elastic. zero) ample relaxation curve. moduli. Currently, the maximum number is 6 . iterative trial and error scheme. laxation curve. the maximum number is 6 .

Material identification. A unique number or label must be speci-

Tensile pressure elimination flag for solid elements only. If set to

Reference temperature for shift function (must be greater than

Chronological coefficient $\alpha\left(t_{a}\right)$. See Remarks below.
Chronological coefficient $\beta\left(t_{a}\right)$. See Remarks below.
Load curve ID for deviatoric behavior if constants, G_{i} and β_{i}, are determined using a least squares fit. See Figure M76-1 for an ex-

Number of terms in shear fit. The default is 6 . Fewer than NT terms will be used if the fit produces one or more negative shear

In the fit, β_{1} is set to zero, β_{2} is set to BSTART, β_{3} is 10 times β_{2}, β_{4} is 10 times β_{3}, and so on. If zero, BSTART is determined by an

Load curve ID for bulk behavior if constants, K_{i}, and $\beta_{K_{i}}$ are determined via a least squares fit. See Figure M76-1 for an example re-

Number of terms desired in bulk fit. The default is 6. Currently,

In the fit, $\beta_{K_{1}}$ is set to zero, $\beta_{K_{2}}$ is set to BSTARTK, $\beta_{K_{3}}$ is 10 times $\beta_{K_{2}}, \beta_{K_{4}}$ is 10 times $\beta_{K_{3}}$, and so on. If zero, BSTARTK is determined

VARIABLE

DESCRIPTION

by an iterative trial and error scheme.
TRAMPK Optional ramp time for bulk loading
$\mathrm{G} i \quad$ Optional shear relaxation modulus for the $i^{\text {th }}$ term
BETA $i \quad$ Optional shear decay constant for the $i^{\text {th }}$ term
$\mathrm{K} i \quad$ Optional bulk relaxation modulus for the $i^{\text {th }}$ term
BETAK $i \quad$ Optional bulk decay constant for the $i^{\text {th }}$ term

Remarks:

The Cauchy stress, $\sigma_{i j}$, is related to the strain rate by

$$
\sigma_{i j}(t)=-p \delta_{i j}+\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}(\tau)}{\partial \tau} d \tau
$$

For this model, it is postulated that the mathematical form is preserved in the constitutive equation for aging; however two new material functions, $g_{0}^{\prime}\left(t_{a}\right)$ and $g_{1}^{\prime}\left(t_{a}, t\right)$ are introduced to replace g_{0} and $g_{1}(t)$, which is expressed in terms of a Prony series as in material model 76, *MAT_GENERAL_VISCOELASTIC. The aging time is denoted by t_{a}.

$$
\sigma_{i j}\left(t_{a}, t\right)=-p \delta_{i j}+\int_{0}^{t} g_{i j k l}^{\prime}\left(t_{a}, t-\tau\right) \frac{\partial \varepsilon_{k l}(\tau)}{\partial \tau} d \tau
$$

where

$$
g_{i j k l}^{\prime}\left(t_{a}, t\right)=\alpha\left(t_{a}\right) g_{i j k l}\left[\beta\left(t_{a}\right) t\right] .
$$

Here $\alpha\left(t_{a}\right)$ and $\beta\left(t_{a}\right)$ are two new material properties that are functions of the aging time t_{a}. The material properties functions $\alpha\left(t_{a}\right)$ and $\beta\left(t_{a}\right)$ will be determined using experimental results. For determination of $\alpha\left(t_{a}\right)$ and $\beta\left(t_{a}\right)$, the above equations can be written in the following form

$$
\begin{aligned}
\log \left(\sigma_{i j}-p \delta_{i j}\right)_{t_{a}, t} & =\log \alpha\left(t_{a}\right)+\log \left(\sigma_{i j}-p \delta_{i j}\right)_{t_{a}=0, t \rightarrow \xi} \\
\log \xi & =\log \beta\left(t_{a}\right)+\log t
\end{aligned}
$$

Therefore, if one plots the stress as a function of time on log-log scales, with the vertical axis being the stress and the horizontal axis being the time, then the stress-relaxation curve for any aged time history can be obtained directly from the stress-relaxation curve at $t_{a}=0$ by imposing a vertical shift and a horizontal shift on the stress-relaxation curves. The vertical shift and the horizontal shift are $\log \alpha\left(t_{a}\right)$ and $\log \beta\left(t_{a}\right)$ respectively.

*MAT_ADHESIVE_CURING_VISCOELASTIC

This is Material Type 277. It is useful for modeling adhesive materials during chemical curing. This material model provides a general viscoelastic Maxwell model having up to 16 terms in the Prony series expansion. It is similar to Material Type 76, but the viscoelastic properties not only depend on the temperature but also on an internal variable representing the state of cure for the adhesive. The kinematics of the curing process depend on temperature as well as on temperature rate and follow the Kamal model.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	K1	K2	C1	C2	M	N
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	CHEXP1	CHEXP2	CHEXP3	LCCHEXP	LCTHEXP	R	TREFEXP	DOCREXP
Type	F	F	F	I	I	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	WLFTREF	WLFA	WLFB	LCG0	LCKO	IDOC	INCR	QCURE
Type	F	F	F	I	I	F	I	F

Viscoelastic Constant Cards. Up to 16 cards may be input. A keyword ("*") card terminates this input if fewer than 16 cards are used. The number of terms for the shear behavior may differ from that for the bulk behavior: simply insert zero if a term is not included.

Card 4	1	2	3	4	5	6	7	8
Variable	$\mathrm{G} i$	BETAG i	Ki	BETAK i				
Type	F	F	F	F				

Material identification. A unique number or label must be specified (see *PART).

RO Mass density

K1
K2
C1

C2
M
N
CHEXP1

CHEXP2
CHEXP3
LCCHEXP

LCTHEXP

R
TREFEXP

DOCREXP

WLFTREF Reference temperature for either the Arrhenius or Williams-Lan-del-Ferry shift function (must be greater than zero for the shift function). Set to zero (along with WLFA and WLFB) to not apply scaling. See Remark 2.

VARIABLE	DESCRIPTION		
WLFA	$\begin{array}{l}\text { Coefficient for the Arrhenius and the Williams-Landel-Ferry shift } \\ \text { functions. Set to zero (along with WLFTREF and WLFB) to not ap- } \\ \text { ply scaling. See Remark 2. }\end{array}$		
Coefficient for the Williams-Landel-Ferry shift function. Set to zero			
for the Arrhenius shift function or to not apply scaling (to not apply			
scaling also set WLFTREF and WLFA to zero). See Remark 2.		$\}$	Load curve ID defining the instantaneous shear modulus, G_{0}, as a
:---			
function of state of cure			

Remarks:

1. Material Formulation. Within this material formulation an internal variable α has been included to represent the degree of cure for the adhesive. The evolution equation for this variable is given by the Kamal model and reads

$$
\frac{\mathrm{d} \alpha}{\mathrm{dt}}=\left(k_{1} \exp \left(\frac{-c_{1}}{R T}\right)+k_{2} \exp \left(\frac{-c_{2}}{R T}\right) \alpha^{m}\right)(1-\alpha)^{n} .
$$

The chemical reaction of the curing process results in a shrinkage of the material. The coefficient of the chemical shrinkage $\gamma(\alpha)$ can either be given by a load curve or by using the quadratic expression

$$
\gamma(\alpha)=\gamma_{2} \alpha^{2}+\gamma_{1} \alpha+\gamma_{0} .
$$

For positive values of the parameter LCCHEXP, a differential form is used to compute the chemical strains:

$$
d \varepsilon^{\mathrm{ch}}=\gamma(\alpha) d \alpha
$$

Otherwise a secant form defines the strains:

$$
\varepsilon^{\mathrm{ch}}=\gamma(\alpha)\left(\alpha-\alpha_{0}\right)-\gamma\left(\alpha_{I}\right)\left(\alpha_{I}-\alpha_{0}\right)
$$

Consequently, the definition of $\gamma(\alpha)$ as quadratic expression goes along the secant formulation.

Analogously, the thermal strains are either defined in a secant or differential form, depending on the load curve parameter LCTHEXP. For positive values of that parameter, the differential form is applied, otherwise the secant form is used. For the latter the reference temperature T_{0} is identified with the input parameter TREFEXP. In both cases the coefficient of thermal expansion can be given as table depending on degree of cure and temperature.

Finally, the Cauchy stress, $\sigma_{i j}$, is related to the strain rate by

$$
\sigma_{i j}(t)=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}(\tau)}{\partial \tau} d \tau
$$

The relaxation functions $g_{i j k l}(t-\tau)$ are represented in this material formulation by up to 16 terms (not including the instantaneous modulus G_{0}) of the Prony series:

$$
\mathrm{g}(t, \alpha)=G_{0}(\alpha)-\sum_{i} G_{i}(\alpha)+\sum_{i} G_{i}(\alpha) e^{-\beta_{i} t}
$$

For the sake of simplicity, a constant ratio $G_{i}(\alpha) / G_{0}(\alpha)$ for all degrees of cure is assumed. Consequently, it suffices to define one term $G_{0}(\alpha)$ as a function of the degree of cure and further coefficients for the fully cured state of the adhesive:

$$
\mathrm{g}(t, \alpha)=G_{0}(\alpha)\left(1-\sum_{i} \frac{G_{i, \alpha=1.0}}{G_{0, \alpha=1.0}}\left(1-e^{-\beta_{i} t}\right)\right)
$$

2. Temperature Effect on the Stress Relaxation. A possible temperature effect on the stress relaxation (see Remark 1) is accounted for by the Williams-LandelFerry (WLF) shift function or the Arrhenius shift function. For details on this function, please see material formulation 76, *MAT_GENERAL_VISCOELASTIC. If all three values (WLFTREF, WLFA, and WLFB) are nonzero, the WLF function is used; the Arrhenius function is used if WLFB is zero; and no scaling is applied if all three values are zero.

*MAT_CF_MICROMECHANICS

This is Material Type 278 developed for draping and curing analysis of pre-impregnated (prepreg) carbon fiber sheets. This material model is a mixture of *MAT_234 [Tabiei et. al.] and *MAT_277. It was developed with the collaboration of Professor Tabiei from UC. *MAT_234 provides the reorientation and locking phenomenon of fibers while *MAT_277 provides the viscoelastic behavior of epoxy resin. Both the epoxy resin and the fiber orientation and deformation contribute to the overall stress.

Card Summary:

Card 1. This card is required.

MID	R0	E1	E2	G12	G23	EU	C

Card 2. This card is required.

EKA	EUA	VMB	EKB	THL	TA	THI1	THI2

Card 3. This card is required.

W	SPAN	THICK	H	AREA	E3	PR13	PR23

Card 4. This card is required.

AOPT	A1	A2	A3	XP	YP	ZP	

Card 5. This card is required.

V1	V2	V3	D1	D2	D3		

Card 6. This card is required.

VYARN							

Card 7. This card is required.

K1	K2	C1	C2	M	N		

Card 8. This card is required.

CHEXP1	CHEXP2	CHEXP3	LCCHEXP	LCTHEXP	R	TREF	DOCREF

Card 9. This card is required.

WLFTREF	WLFA	WLFB	LCGO	LCKO	IDOC	INCR	QCURE

Card 10. Up to 14 cards may be input. The next keyword ("*") card terminates this input.

$\mathrm{G} i$	BETAG i	Ki	BETAK				

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E1	E2	G12	G23	EU	C
Type	A	F	F	F	F	F	F	F

VARIABLE

MID Material identification. A unique number or label must be specified (see *PART).

RO Mass density
E1 Young's modulus in the yarn's axial direction, E_{1}
E2 Young's modulus in the yarn's transverse direction, E_{2}
G12 Shear modulus of the yarns, G_{12}
G23 Transverse shear modulus
EU Ultimate strain at failure
C Coefficient of friction between the fibers

Card 2	1	2	3	4	5	6	7	8
Variable	EKA	EUA	VMB	EKB	THL	TA	THI1	THI2
Type	F	F	F	F	F	F	F	F

VARIABLE

EKA

DESCRIPTION

Elastic constant of element "a"

VARIABLE		DESCRIPTION
	EUA	
VMB		Dltimate strain of element " a "
EKB		Elastic constant of element " b "
THL		Yarn locking angle
TA		Transition angle of locking
THI1		Initial braid angle 1
THI2	Initial braid angle 2	

Card 3	1	2	3	4	5	6	7	8
Variable	W	SPAN	THICK	H	AREA	E3	PR13	PR23
Type	F	F	F	F	F	F	F	F

VARIABLE

W
SPAN

THICK
H
AREA

E3 Young's modulus, E_{3}, in the "thickness" direction as defined by the $3^{\text {rd }}$ axis of the material coordinate system (solids only)

PR13 Transverse Poisson's ratio ν_{13} (solids only)
PR23 Transverse Poisson's ratio ν_{23} (solids only)

Card 4	1	2	3	4	5	6	7	8
Variable	AOPT	A1	A2	A3	XP	YP	ZP	
Type	F	F	F	F	F	F	F	

VARIABLE
AOPT

DESCRIPTION

Material axes option (see MAT_OPTION TROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes 1, 2, and 4, as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR.

EQ.3.0: Locally orthotropic material axes for each integration point determined by rotating the material axes about the element normal by an angle, Bi (see *PART_COMPOSITE), from a line in the plane of the element defined by the cross product of the vector \mathbf{v} with the element normal.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, \mathbf{p}, which define the centerline axis. This option is for solid elements only.
LT.O.O: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector \mathbf{a} for $\mathrm{AOPT}=2.0$
$\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad$ Coordinates of point \mathbf{p} for $\mathrm{AOPT}=1.0$ and 4.0

Card 5	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3		
Type	F	F	F	F	F	F		

VARIABLE

DESCRIPTION

V1, V2, V3
Components of vector \mathbf{v} for $\mathrm{AOPT}=3.0$ and 4.0
D1, D2, D3
Components of vector \mathbf{d} for $\mathrm{AOPT}=2.0$

Card 6	1	2	3	4	5	6	7	8
Variable	VYARN							
Type	F							

VARIABLE
DESCRIPTION
VYARN Volume fraction of yarn

Card 7	1	2	3	4	5	6	7	8
Variable	K1	K2	C1	C2	M	N		
Type	F	F	F	F	F	F		

VARIABLE

K1
K2 Parameter k_{2} for Kamal model
C1

C2 \quad Parameter c_{2} for Kamal model
M
Exponent m for Kamal model
Exponent n for Kamal model

Card 8	1	2	3	4	5	6	7	8
Variable	CHEXP1	CHEXP2	CHEXP3	LCCHEXP	LCTHEXP	R	TREF	DOCREF
Type	F	F	F	I	I	F	F	F

VARIABLE
CHEXP1
CHEXP2 CHEXP3

LCCHEXP

LCTHEXP
$R \quad$ Gas constant R for Kamal model
TREF
DOCREF

DESCRIPTION

Quadratic parameter γ_{2} for chemical shrinkage
Quadratic parameter γ_{1} for chemical shrinkage
Quadratic parameter γ_{0} for chemical shrinkage CHEXP2, and CHEXP3 are ignored. perature T.

Load curve ID to define the coefficient for chemical shrinkage $\gamma(\alpha)$ as a function of the state of cure α. If set, parameters CHEXP1,

Load curve ID or table ID defining the instantaneous coefficient of thermal expansion $\beta(\alpha, T)$ as a function of cure α and temperature T. If referring to a load curve, parameter $\beta(T)$ is a function of tem-

Reference temperature T_{0} for secant form of thermal expansion
Reference degree of cure α_{0} for sequential form of chemical expansion

Card 9	1	2	3	4	5	6	7	8
Variable	WLFTREF	WLFA	WLFB	LCGO	LCKO	IDOC	INCR	QCURE
Type	F	F	F	I	I	F	I	F

VARIABLE
WLFTREF
WLFA Parameter A for WLF shift function

VARIABLE

WLFB

LCG0

IDOC Initial degree of cure
INCR

QCURE

LCK0 Load curve ID defining the instantaneous bulk modulus K_{0} as a function of state of cure

DESCRIPTION

Parameter B for WLF shift function
Load curve ID defining the instantaneous shear modulus G_{0} as a function of state of cure

Flag for stress formulation:
EQ.0: Total formulation (default)
EQ.1: Incremental formulation (recommended)
Heat generation factor, relating the heat generated in one time step with the increment of the degree of cure in that step

Viscoelastic Constant Cards. Up to 14 cards may be input. A keyword ("*") card terminates this input if fewer than 14 cards are used. The number of terms for the shear behavior may differ from that for the bulk behavior: simply insert zero if a term is not included.

Card 10	1	2	3	4	5	6	7	8
Variable	Gi	BETAG i	Ki	BETAKi				
Type	F	F	F	F				

VARIABLE

Gi
BETAGi

Ki
BETAK i

DESCRIPTION

Shear relaxation modulus for the $i^{\text {th }}$ term for fully cured material Shear decay constant for the $i^{\text {th }}$ term for fully cured material Bulk relaxation modulus for the $i^{\text {th }}$ term for fully cured material Bulk decay constant for the $i^{\text {th }}$ term for fully cured material

*MAT_COHESIVE_PAPER

This is Material Type 279. This is a cohesive model for paper materials and can be used only with cohesive element formulations; see the variable ELFORM in *SECTION_SOLID and *SECTION_SHELL.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	ROFLG	INTFAIL	EN0	ET0	EN1	ET1
Type	A	F	F	F	F	F	F	F
Default	none							

Card 2	1	2	3	4	5	6	7	8
Variable	TON	DN	T 1 N	TOT	DT	T 1 T	E 3 C	CC
Type	F	F	F	F	F	F	F	F
Default	none							

Card 3	1	2	3	4	5	6	7	8
Variable	ASIG	BSIG	CSIG	FAILN	FAILT			
Type	F	F	F	F	F			
Default	none	none	none	none	none			

VARIABLE

RO Mass density

MID Material identification. A unique number or label must be specified (see *PART).

DESCRIPTION

ROFLG

INTFAIL

EN0

EN1

ET0 The initial stiffness (units of stress / length) tangential to the plane of the cohesive element.

ET1 The final stiffness (units of stress / length) tangential to the plane of the cohesive element.

DESCRIPTION

Flag for whether density is specified per unit area or volume:
EQ.0: Specifies density per unit volume (default)
EQ.1: Specifies the density is per unit area for controlling the mass of cohesive elements with an initial volume of zero.

The number of integration points required for the cohesive element to be deleted. The value of INTFAIL may range from 1 to 4 with 1 the recommended value.

LT.O.O: Employs a Newton-Cotes integration scheme. The element will be deleted when |INTFAIL| integration points have failed.

EQ.0.0: Employs a Newton-Cotes integration scheme. The element will not be deleted even if it satisfies the failure criterion.

GT.0.0: Employs a Gauss integration scheme. The element will be deleted when INTFAIL integration points have failed.

The initial tensile stiffness (units of stress / length) normal to the plane of the cohesive element.

The final tensile stiffness (units of stress / length) normal to the plane of the cohesive element.

Peak tensile traction in normal direction.
Scale factor (unit of length).
Final tensile traction in normal direction.
Peak tensile traction in tangential direction. If negative, the absolute value indicates a curve with respect to the normal traction.

Scale factor (unit of length). If negative, the absolute value indicates a curve with respect to the normal stress.

Figure M279-1. Traction-separation law

VARIABLE

T1T

E3C

CC
ASIG
BSIG
CSIG Plasticity hardening parameter in normal compression.
FAILN Maximum effective separation distance in normal direction. Beyond this distance failure occurs.

FAILT Maximum effective separation distance in tangential direction. Beyond this distance failure occurs.

Remarks:

In this elastoplastic cohesive material, the normal and tangential directions are treated separately, but can be connected by expressing the in-plane traction parameters as functions of the normal traction. In the normal direction the material uses different models in tension and compression.

Normal tension:

Assume the total separation is an additive split of the elastic and plastic separation

$$
\delta=\delta_{e}+\delta_{p}
$$

In normal tension $\left(\delta_{e}>0\right)$ the elastic traction is given by

$$
T=E \delta_{e}=E\left(\delta-\delta_{p}\right) \geq 0,
$$

where the tensile normal stiffness

$$
E=\left(E_{N}^{0}-E_{N}^{1}\right) \exp \left(\frac{-\bar{\delta}_{p}}{\delta_{N}}\right)+E_{N}^{1}
$$

depends on the effective plastic separation in the normal direction

$$
\bar{\delta}_{p}=\int\left|\mathrm{d} \delta_{p}\right|
$$

Yield traction for tensile loads in normal direction is given by

$$
T_{\text {yield }}=\left(T_{N}^{0}-T_{N}^{1}\right) \exp \left(\frac{-\bar{\delta}_{p}}{\delta_{N}}\right)+T_{N}^{1} \geq 0
$$

and yielding occurs when $T>T_{\text {yield }} \geq 0$. The above elastoplastic model gives the trac-tion-separation law depicted in Figure M279-1.

Normal compression:

In normal compression the elastic traction is

$$
T=E_{3}^{c}\left[1-\exp \left(-C_{c} \delta_{e}\right)\right] \leq 0
$$

and the yield traction is

$$
T_{\text {yield }}=-\left[A_{\sigma}+B_{\sigma} \exp \left(-C_{\sigma} \bar{\delta}_{p}\right)\right] \leq 0
$$

with yielding if $T<T_{\text {yield }} \leq 0$.

Tangential traction:

Assume the total separation is an additive split of the elastic and plastic separation in each in-plane direction

$$
\delta_{i}=\delta_{e}^{i}+\delta_{p,}^{i} \quad i=1,2
$$

The elastic traction is given by

$$
T_{i}=E \delta_{e}^{i}=E\left(\delta_{i}-\delta_{p}^{i}\right)
$$

where the tensile normal stiffness

$$
E=\left(E_{T}^{0}-E_{T}^{1}\right) \exp \left(\frac{-\bar{\delta}_{p}}{\delta_{T}}\right)+E_{T}^{1}
$$

depends on the effective plastic separation

$$
\bar{\delta}_{p}=\int \mathrm{d} \delta_{p}, \quad \mathrm{~d} \delta_{p}=\sqrt{\left(\mathrm{d} \delta_{p}^{1}\right)^{2}+\left(\mathrm{d} \delta_{p}^{2}\right)^{2}}
$$

Yield traction is given by

$$
T_{\text {yield }}=\left(T_{T}^{0}-T_{T}^{1}\right) \exp \left(\frac{-\bar{\delta}_{p}}{\delta_{T}}\right)+T_{T}^{1}
$$

and yielding occurs when

$$
T_{1}^{2}+T_{2}^{2}-T_{\text {yield }}^{2} \geq 0
$$

The plastic flow increment follows the flow rule

$$
\mathrm{d} \delta_{p}^{i}=\frac{T_{i}}{\sqrt{T_{1}^{2}+T_{2}^{2}}} \mathrm{~d} \delta_{p}
$$

The above elastoplastic model gives the traction-separation law depicted in Figure M279-1.

History variables

This material uses five history variables. Effective separation in the tangential direction is saved as Effective Plastic Strain. History variable 1 and 2 indicates the plastic separation in each tangential direction. Effective plastic separation and plastic separation in the normal direction are saved as history variable 3 and 4, respectively.

*MAT_GLASS_\{OPTION\}

Available options include:
<BLANK>
STOCHASTIC
This is Material Type 280. It is a smeared fixed crack model with a selection of different brittle, stress-state dependent failure criteria such as Rankine, Mohr-Coulomb, or Drucker-Prager. The model incorporates up to 2 (orthogonal) cracks per integration point, simultaneous failure over element thickness, and crack closure effects. It is available for shell elements and thick shell types 1,2 and 6 . It is only available for explicit analysis.

The STOCHASTIC keyword option allows spatially varying tensile strength behavior. See *DEFINE_STOCHASTIC_VARIATION for additional information.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	E	PR			IMOD	ILAW
Type	A	F	F	F			F	F

Card 2	1	2	3	4	5	6	7	8
Variable	FMOD	FT	FC	AT	BT	AC	BC	FTSCL
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	SFSTI	SFSTR	CRIN	ECRCL	NCYCR	NIPF		
Type	F	F	F	F	F	F		

Optional card.

Card 4	1	2	3	4	5	6	7	8
Variable	EPSCR	ENGCRT	RADCRT	RATENL	RFILTF	FRACEN	CTRACK	
Type	F	F	F	F	F	F	F	

VARIABLE		MID
		Material identification fied (see *PART).
RO		Mass density, ρ
PR		Young's modulus, E
		Poisson's ratio, v

IMOD Flag to choose degradation procedure when critical stress is reached:

EQ.0.0: Softening in NCYCR load steps. Define SFSTI, SFSTR, and NCYCR (default).

EQ.1.0: Damage model for softening. Define ILAW, AT, BT, AC, and BC.

ILAW Flag to choose damage evolution law if IMOD = 1.0 (see Remark 5):
EQ.0.0: Same damage evolution for tensile and compressive failure (default)

EQ.1.0: Different damage evolution for tensile failure and compressive failure.

FMOD Flag to choose between failure criteria (see Remark 1):
EQ.0.0: Rankine maximum stress (default)
EQ.1.0: Mohr-Coulomb
EQ.2.0: Drucker-Prager
EQ.10.0: Rankine with modified compressive failure
EQ.11.0: Mohr-Coulomb with modified compressive failure
EQ.12.0: Drucker-Prager with modified compressive failure

VARIABLE

FT

SFSTI

Tensile strength, f_{t}.
GT.0.0: Constant value
LT.0.0: Load curve ID $=|\mathrm{FT}|$, which gives tensile strength as a function of effective strain rate (RFILTF is recommended). If used with FTSCL $>0,|\mathrm{FT}|$ specifies a curve for tensile strength vs. strain rate, and FTSCL scales the strength values from that curve as long as the material is intact. If cracked, neighbors get non-scaled values from that curve. RATENL is set to zero in that case. Logarithmic interpolation between strain rates is assumed if the first abscissa value in the curve is negative, in which case LS-DYNA assumes that all the abscissa values represent the natural logarithm of a strain rate.

FC Compressive strength, f_{c}.

DESCRIPTION

Tensile damage evolution parameter α_{t}. Can be interpreted as the residual load carrying capacity ratio for tensile failure ranging from 0 to 1 .

Tensile damage evolution parameter, β_{t}. It controls the softening velocity for tensile failure.
Compressive damage evolution parameter, α_{c}. Can be interpreted as the residual load carrying capacity ratio for compressive failure ranging from 0 to 1.

Compressive damage evolution parameter β_{c}. It controls the softening velocity for compressive failure.

Scale factor for the tensile strength (default $=1.0$):

$$
\mathrm{FT}_{\mathrm{mod}}=\mathrm{FTSCL} \times \mathrm{FT}
$$

If RATENL $=0.0$ (see Card 4), then the tensile strength drops to its original value, FT, as soon as the first crack happens in the associated part. In this case, FTSCL > 1.0 can be helpful to model high force peaks in impact events.

If RATENL $\neq 0.0$, then, when a crack forms in a neighboring element, the tensile strength for an element is evaluated depending on the smoothed effective strain rate (see Remark 7).

Scale factor for stiffness after failure. For example, SFSTI $=0.001$ means that stiffness is reduced to 0.1% of the elastic stiffness at failure.

VARIABLE

SFSTR

ICRIN

ECRCL

NCYCR Number of cycles in which the stress is reduced to SFSTR \times failure stress

NIPF Number of failed through thickness integration points needed to fail all through thickness integration points for IMOD $=0$

EPSCR Critical value to trigger element deletion. This can be useful to get rid of highly distorted elements.

GT.0.0: EPSCR is effective critical strain.
LT.O.O: |EPSCR| is critical crack opening displacement.
Critical energy for nonlocal failure criterion; see Remark 6.
Critical radius for nonlocal failure criterion; see Remark 6.
Quasi-static strain rate threshold variable which activates a nonlocal, strain rate dependent tensile strength adaption; see Remark 7.

RFILTF Smoothing factor on the effective strain rate for the evaluation of the current tensile strength if RATENL > 0.0; see Remark 7.

$$
\dot{\varepsilon}_{n}^{\text {avg }}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
$$

DESCRIPTION

Scale factor for stress in case of failure. For example, SFSTR $=0.01$ means that stress is reduced to 1% of the failure stress at failure.

Flag for crack strain initialization:
EQ.0.0: Initial crack strain is strain at failure (default).
EQ.1.0: Initial crack strain is zero.

Crack strain necessary to reactivate certain stress components after crack closure stress Con

FRACEN
ENGCRT
RADCRT
RATENL

Fracture energy (units of stress \times length). An alternative orthotropic damage model with linear softening is invoked with this option. Values smaller than $0.5 \times f_{t} \times \frac{f_{t}}{E} \times l_{e}$ (element size) lead to immediate failure. This is the area under the elastic stress-displacement line until f_{t} is reached. Only larger values result in actual residual energy after crack initiation. Variables SFSTI, SFSTR, and NCYCR are ignored with this option. You can specify a spatially-

- Compressive failure

Figure M280-1. Rankine failure criterion. With $\mathrm{FMOD}=10$, the form of the failure criterion does not change but what is considered compressive failure is modified.

VARIABLE

DESCRIPTION

varying scale factor for FRACEN by setting history variable \#14 with *INITIAL_STRESS_SHELL.

CTRACK
Flag for optional crack tracking algorithm (see Remark 10):
EQ.0.0: Inactive
EQ.1.0: Active

Remarks:

1. Plane Stress Failure Criteria. The underlying material behavior before failure is isotropic, small strain linear elasticity with Young's modulus, E, and Poisson's ratio, v. Asymmetric (tension-compression dependent) failure happens as soon as one of the following plane stress failure criteria is violated.
a) Rankine Maximum Stress. For FMOD = 0, a maximum stress criterion (Rankine) is used where principal stresses, σ_{1} and σ_{2}, are bound by tensile strength, f_{t}, and compressive strength, f_{c}, as follows:

$$
-f_{c}<\left\{\sigma_{1}, \sigma_{2}\right\}<f_{t}
$$

b) Mohr-Coulomb. With FMOD = 1, the Mohr-Coulomb criterion with expressions in four different categories is used:

$$
\begin{array}{lr}
\sigma_{1}>0 \text { and } \sigma_{2}>0: & \max \left(\frac{\sigma_{1}}{f_{t}}, \frac{\sigma_{2}}{f_{t}}\right)<1 \\
\sigma_{1}<0 \text { and } \sigma_{2}<0: & \max \left(-\frac{\sigma_{1}}{f_{c}},-\frac{\sigma_{2}}{f_{c}}\right)<1 \\
\sigma_{1}>0 \text { and } \sigma_{2}<0: & \frac{\sigma_{1}}{f_{t}}-\frac{\sigma_{2}}{f_{c}}<1 \\
\sigma_{1}<0 \text { and } \sigma_{2}>0: & -\frac{\sigma_{1}}{f_{c}}+\frac{\sigma_{2}}{f_{t}}<1
\end{array}
$$

c) Drucker-Prager. For $\mathrm{FMOD}=2$, the plane stress Drucker-Prager criterion is given by:

$$
\frac{1}{2 f_{c}}\left[\left(\frac{f_{c}}{f_{t}}-1\right)\left(\sigma_{1}+\sigma_{2}\right)+\left(\frac{f_{c}}{f_{t}}+1\right) \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}}\right]<1
$$

The modified versions, $\mathrm{FMOD}=10,11,12$, change what is considered tensile and compressive failure. The form of the failure stays the same for each type. In each case, a line with slope $-f_{c} / f_{t}$ distinguishes the difference between the two types of failure. See Figure M280-1 for an example of how the tensile and compressive failure are modified for the Rankine failure criterion.
2. Crack Formation. As soon as failure happens in the tensile regime, a crack occurs perpendicular to the maximum principal stress direction. That means a crack coordinate system is set up and stored, defined by a relative angle with respect to the element coordinate system. Appropriate stress and stiffness tensor components (e.g. normal to the crack) are reduced according to SFSTR and SFSTI if $\mathrm{IMOD}=0$. The stress reduction takes place in a period of NCYCR time step cycles. For IMOD $=1.0$ the stress and stiffness tensor are reduced by a damage model (see Remark 5). A second crack orthogonal to the first crack is possible which can open and close independently from the first one, further reducing the element stiffness.
3. Crack Closure. To deal with crack closure, the current strain in principal stress direction is stored as initial crack strain (ICRIN $=0$, default) or the initial crack strain is set to zero (ICRIN = 1). After failure, the crack strain is tracked, so that later crack closure will be detected. If that is the case, appropriate stress and stiffness tensor components (e.g. compressive) are reactivated so that e.g. under pressure a load could be carried and cause a nonzero stress perpendicular to the crack.
4. Number of Failed Integration Points. If the critical number of failed integration points (NIPF) in one element is reached, all integration points over the element thickness fail as well. The default value of NIPF $=1$ resembles the fact, that a crack in a glass plate immediately runs through the thickness.
5. Damage Model. Starting with the release of LS-DYNA version R10, a damage model for stress and stiffness softening can be activated with IMOD $=1$. The corresponding evolution law for ILAW $=0$ is given by:

$$
D=\left\{\begin{array}{cl}
0 & \text { for } \kappa \leq \kappa^{0} \\
1-\frac{\kappa^{0}}{\kappa}\left(1-\alpha_{t, c}+\alpha_{t, c} e^{-\beta_{t, c}\left(\kappa-\kappa^{0}\right)}\right) & \text { otherwise }
\end{array}\right.
$$

meaning tensile and compressive failure are treated in the same fashion.
However, with ILAW = 1 the damage evolution for tensile failure is given by:

$$
D=\left\{\begin{array}{cl}
0 & \text { for } \kappa \leq \kappa^{0} \\
1-\frac{\kappa^{0}}{\kappa}\left(1-\alpha_{t}+\alpha_{t} e^{-\beta_{t}\left(\kappa-\kappa^{0}\right)}\right) & \text { otherwise }
\end{array}\right.
$$

while damage for compressive failure evolves as (more delayed stress reduction):

$$
D=\left\{\begin{array}{cl}
0 & \text { for } \kappa \leq \kappa^{0} \\
1-\frac{\kappa^{0}}{\kappa}\left(1-\alpha_{c}\right)-\alpha_{c} e^{-\beta_{c}\left(\kappa-\kappa^{0}\right)} & \text { otherwise }
\end{array}\right.
$$

6. Nonlocal Failure. A nonlocal failure criterion which is mainly intended for windshield impact can be defined using ENGCRT and RADCRT. The same procedure is used as in *MAT_ADD_EROSION; see Remark 1i there.
7. Strain Rate Dependent, Nonlocal Tensile Strength. If RATENL >0.0, all elements in the appropriate part are initialized with a tensile strength of FTSCL \times FT. If one integration point in an element fails, then the tensile strength in the neighboring elements is set to FT where

$$
\widetilde{\mathrm{FT}}= \begin{cases}\text { FT } & \text { if } \dot{\varepsilon}^{\text {avg }} \leq \text { RATENL } \\ \text { FT }+(\mathrm{FTSCL} \times \mathrm{FT}-\mathrm{FT}) \frac{\ln \left(\frac{\dot{\varepsilon}^{\text {avg }}}{\text { RATENL }}\right)}{\ln \left(\frac{\dot{\varepsilon}^{\max }}{\text { RATENL }}\right)} & \text { if RATENL }<\dot{\varepsilon}^{\text {avg }}<\dot{\varepsilon}^{\max } \\ \text { FTSCL } \times \text { FT } & \text { if } \dot{\varepsilon}^{\text {avg }}>\dot{\varepsilon}^{\max }\end{cases}
$$

Here $\dot{\varepsilon}^{\text {max }}=10^{9} \times$ RATENL. See Figure M280-2 for a plot of this tensile strength as a function of average strain rate. The average strain rate in this case is calculated as:

$$
\dot{\varepsilon}_{n}^{\text {avg }}=\text { RFILTF } \times \dot{\varepsilon}_{n-1}^{\text {avg }}+(1-\text { RFILTF }) \times \dot{\varepsilon}_{n}
$$

Figure M280-2. Modified tensile strength of elements neighboring an element that has at least one failed integration point as a function of strain rate when RATENL $>0.0 . \dot{\varepsilon}^{\max }=10^{9} \times$ RATENL.
where n is the time step.
8. Element based (or stochastically varied) tensile strength. You can define a spatially varying tensile strength with history variable \#13 which is a scale factor on the strength. The history variable \#13 value can be filled with *INITIAL_STRESS_SHELL or can come from *DEFINE_STOCHASTIC_VARIATION.
9. Vector plot of crack direction. Extra history variables \#15, \#16, and \#17 store the global coordinates of the first crack direction. These coordinates can be used to represent the crack as a vector, such as in LS-PrePost with Post \rightarrow Vector \rightarrow Hist. var. cosine.
10. Crack tracking algorithm. Cracks often follow the shell element meshing directions, e.g., it is often observed that cracks are "trapped" in element rows and cannot travel freely through the structure. This phenomenon is also called directional mesh-bias dependency. To alleviate this issue, a nonlocal crack tracking algorithm can be invoked with CTRACK $=1$. Among other things, it weakens neighboring elements in the first crack direction more strongly. Currently this option must be used in conjunction with the nonlocal model discussed in Remark 7 (RATENL > 0.0) or the other nonlocal option invoked with $\mathrm{FT}<0.0$. To make this option work with MPP, the whole glass part must be put on one processor, such as by using *CONTROL_MPP_DECOMPOSITION_ARRANGE_PARTS with TYPE $=10$.
11. History Variables. This material has the following additional history variables that can be output to the d3plot file.

History Variable \#	Description
1	Crack flag:
	EQ.0: No crack

History Variable \#	Description
	EQ.1: One crack
	EQ.2: Two cracks
	EQ.-1: Failed under compression
2	Direction of $1^{\text {st }}$ principle stress as angle in radians with respect to the element direction. The shell normal defines the positive angle direction. The $1^{\text {st }}$ crack direction is perpendicular to the direction of $1^{\text {st }}$ principle stress.
3	Angle in radians that defines the orthogonal to the $2^{\text {nd }}$ crack direction (with respect to the element direction).
4	Failure criterion value, see Remark 1
7	Current tensile strength value
8	Effective strain rate (if FT <0 or RATENL >0 is used)
9	Crack opening displacement (1 $1^{\text {st }}$ crack)
10	Time to failure
11	Damage in $1^{\text {st }}$ crack direction (only with FRACEN >0)
12	Damage in $2^{\text {nd }}$ crack direction (only with FRACEN >0)
13	Scale factor for tensile strength
14	Scale factor for fracture energy
15	Global x-coordinate of $1^{\text {st }}$ crack direction
16	Global y-coordinate of $1^{\text {st }}$ crack direction
17	Global z-coordinate of $1^{\text {st }}$ crack direction

*MAT_SHAPE_MEMORY_ALLOY

This is Material Type 291, a micromechanics-inspired constitutive model for shapememory alloys that accounts for initiation and saturation of phase. This model is based on Kelly, Stebner, Bhattacharya (2016) and is available for solid elements only.

Card Summary:

Card 1. This card is required.

MID	RHO	EM	EA	PRM	PRA	AOPT	STYPE

Card 2. This card is required.

CPM	CPA	LH	TC	TMF	TMS	TAS	TAF

Card 3. This card is required.

A11	A21	Bl	Cl	KI	Ml	KL	ML

Card 4. This card is required.

A1S	A2S	BS	CS	KS	MS		

Card 5. This card is required.

DOL	DOM						

Card 6. This card is required.

$X P$	YP	ZP	A1	A2	A3	MACF	

Card 7. This card is required.

V1	V2	V3	D1	D2	D3	BETA	REF

Card 8.1. This card is included if STYPE $=1$.

N11	N22	N33	N44	N55	N66	N12	N23

Card 8.2. This card is included if STYPE $=1$.

N34	N45	N56	N13	N24	N35	N46	N14

Card 8.3. This card is included if STYPE $=1$.

N25	N36	N15	N26	N16			

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RH0	EM	EA	PRM	PRA	AOPT	STYPE
Type	A	F	F	F	F	F	I	I

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be speci- fied (see *PART).
EM	Mass density
EA	Martensite Young's modulus
PRM	Austenite Young's modulus
PRA	Austenite Poisson's ratio AOPT
Material axes option (see MAT_OPTIONTROPIC_ELASTIC, par- ticularly the Material Directions section, for details):	

EQ.O.O: Locally orthotropic with material axes determined by element nodes 1,2 , and 4 , as with *DEFINE_COORDINATE_NODES.

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and the global location of the element center; this is the a-direction.

EQ.2.0: Globally orthotropic with material axes determined by vectors defined below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, AOPT $=3$ is only available for hexahedrons. a is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector

VARIABLE

with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about c by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on the value of MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis.

LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_OPTION).

STYPE Initiation/saturation surface type (see Remark 1):
EQ.0: Uses strain invariants (default)
EQ.1: Uses principal strains

Card 2	1	2	3	4	5	6	7	8
Variable	CPM	CPA	LH	TC	TMF	TMS	TAS	TAF
Type	F	F	F	F	F	F	F	F

VARIABLE

CPM

TMF
TMS

CPA Austenite volumetric heat capacity (density times specific heat capacity)

LH Volumetric latent heat of transformation (density times specific latent heat)

TC Thermodynamic temperature

DESCRIPTION

Martensite volumetric heat capacity (density times specific heat capacity)

Thermodynamic temperature
Martensite finish temperature, optional; see Remark 2.
Martensite start temperature, optional; see Remark 2.

VARIABLE

TAS
TAF

DESCRIPTION

Austenite start temperature, optional; see Remark 2.
Austenite finish temperature, optional; see Remark 2.

Card 3	1	2	3	4	5	6	7	8
Variable	A1I	A2I	BI	Cl	KI	MI	KL	ML
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

A1I
A2I
BI
CI
KI Coefficient in initiation energy
MI Exponent in initiation energy
KL Coefficient in volume fraction energy
ML Exponent in volume fraction energy

Card 4	1	2	3	4	5	6	7	8
Variable	A1S	A2S	BS	CS	KS	MS		
Type	F	F	F	F	F	F		

VARIABLE
A1S
A2S
BS

DESCRIPTION

Tension/compression asymmetry for saturation surface
Tension/compression asymmetry for saturation surface
Radius for saturation surface

VARIABLE

CS
KS
MS

DESCRIPTION

Eccentricity of saturation surface with respect to material direction Coefficient in saturation energy

Exponent in saturation energy

Card 5	1	2	3	4	5	6	7	8
Variable	DOL	DOM						
Type	F	F						

VARIABLE

DESCRIPTION

D0L Initial driving force for volume fraction transformation
D0M Initial driving force for martensite strain transformation

Card 6	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3	MACF	
Type	F	F	F	F	F	F	F	

VARIABLE

DESCRIPTION

XP, YP, ZP
A1, A2, A3
MACF

Coordinates of point P for AOPT $=1$ and 4
Components of vector a for $\mathrm{AOPT}=2$
Material axes change flag for solid elements:
EQ.-4: Switch material axes b and c before BETA rotation
EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation

VARIABLE

DESCRIPTION

EQ.4: Switch material axes b and c after BETA rotation
Figure M2-2 indicates when LS-DYNA applies MACF during the process to obtain the final material axes. If BETA on *ELEMENT_SOLID_\{OPTION\} is defined, then that BETA is used for the rotation for all AOPT options. Otherwise, for AOPT $=3$, the BETA input on Card 7 rotates the axes. For all other values of AOPT, the material axes will be switched as specified by MACF, but no BETA rotation will be performed.

Card 7	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	REF
Type	F	F	F	F	F	F	F	F

VARIABLE

V1, V2, V3
D1, D2, D3
BETA

REF

DESCRIPTION

Components of vector \mathbf{v} for $\mathrm{AOPT}=3$ and 4
Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
Material angle in degrees for $\mathrm{AOPT}=3$. This angle may be overridden on the element card; see *ELEMENT_SOLID_ORTHO.

Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On

Anistropy Parameters Cards. This card and the following two cards are included if and only if STYPE $=1$.

Card 8.1	1	2	3	4	5	6	7	8
Variable	N11	N22	N33	N44	N55	N66	N12	N23
Type	F	F	F	F	F	F	F	F

Card 8.2	1	2	3	4	5	6	7	8
Variable	N34	N45	N56	N13	N24	N35	N46	N14
Type	F	F	F	F	F	F	F	F

Card 8.3	1	2	3	4	5	6	7	8
Variable	N25	N36	N15	N26	N16			
Type	F	F	F	F	F	F	F	F

VARIABLE

Nij

DESCRIPTION

Additional anisotropy parameters for initiation/saturation surface, relative to material axis given by AOPT. Used for STYPE $=1$.

Remarks:

1. Material Model. The total strain ε is composed of elastic $\operatorname{strain} \varepsilon_{e}$ and martensite strain ε_{m} according to the additive split

$$
\varepsilon=\varepsilon_{e}+\lambda \varepsilon_{m}
$$

where $0 \leq \lambda \leq 1$ is the volume fraction of martensite. Initially, the material is only composed of austenite, that is, $\lambda=0$. The material is assumed to be isotropic elastic

$$
\sigma=C(\lambda): \varepsilon_{e}
$$

and the martensite strain is assumed to be trace-free

$$
\operatorname{tr}\left(\varepsilon_{m}\right)=0 .
$$

Given the total strain ε and temperature T, this model finds λ and ε_{m} that minimize the mechanical energy

$$
U=W+D
$$

where W is the Helmoltz' free energy and D is the dissipated energy. The Helmoltz' free energy is here given by
$W\left(\varepsilon, \lambda, \varepsilon_{m}, T\right)=\frac{1}{2} \sigma: \varepsilon+\lambda \omega(T)-c(\lambda) T \ln \left(\frac{T}{T C}\right)+\lambda G_{I}\left(\varepsilon_{m}\right)+G_{S}\left(\lambda \varepsilon_{m}\right)+G_{\lambda}(\lambda)$, where

$$
\begin{aligned}
\omega(T) & =\mathrm{LH} \frac{T-\mathrm{TC}}{\mathrm{TC}} \\
c(\lambda) & =\lambda \cdot \mathrm{CPM}+(1-\lambda) \cdot \mathrm{CPA} .
\end{aligned}
$$

The functions G_{I} and G_{S} denote initiation energy and saturation energy, respectively, and are defined as

$$
G_{i}(x)=\mathrm{K} i \times \max \left(g_{i}(x), 0\right)^{\mathrm{M} i+1}, \quad i=I, S, \quad \mathrm{~K} i, \mathrm{M} i>0,
$$

where the functions of g_{I} and g_{S} depends on the parameter STYPE. For negative values of g_{i}, there will be no contribution to the free energy and $g_{i} \leq 0$ thus defines the set of admissible values for λ and ε_{m}.

The function G_{λ} denotes volume fraction energy and is defined as

$$
G_{\lambda}(\lambda)=\frac{\mathrm{KL} \times \lambda^{\mathrm{ML}+1}}{\mathrm{ML}+1}, \quad \mathrm{KL}, \mathrm{ML} \geq 0
$$

Thus, the amount of stored energy in the system can increase with increasing volume fraction.

For STYPE $=0$, we have

$$
g_{i}(x)=-1+\frac{1}{\mathrm{~B} i}\left[\left(\frac{1}{2} x: x\right)^{\frac{3}{2}}-\mathrm{A} 1 i \times \operatorname{det}(x)-\mathrm{C} i \times\left|n^{T} x n\right|^{3}\right], \quad i=I, S,
$$

where $\mathrm{B} i>0$. The direction vector, n, is given by the main material direction defined with AOPT.

For STYPE = 1, we have

$$
g_{i}(x)=-1+\frac{1}{\mathrm{~B}_{i}^{\mathrm{A} 2 i+1}} \sum_{n=1,2,3}\left[\left|\mu_{n}(\mathrm{~N}: x)\right|-\mathrm{A} 1 i \times \mu_{n}(\mathrm{~N}: x)\right]^{\mathrm{A} 2 i+1}, \quad i=I, S
$$

for $-1<\mathrm{A} 1 i<1, \mathrm{~A} 2 i>0, \mathrm{~B} i>0$, and the principal values μ_{n}. The anisotropy tensor, N , is relative to the main material direction, n, defined with AOPT.

The driving forces for λ and ε_{m} are defined as

$$
\begin{aligned}
d_{\lambda}= & -\frac{\partial W}{\partial \lambda}= \\
& -\frac{1}{2} C^{\prime}(\lambda) \varepsilon_{e}: \varepsilon_{e}+\sigma: \varepsilon_{m}-\omega(T)+c^{\prime}(\lambda) T_{t+\Delta t} \ln \left(\frac{T}{\mathrm{TC}}\right)-G_{i}\left(\varepsilon_{m}\right) \\
& -\varepsilon_{m}: G_{s}^{\prime}\left(\lambda \varepsilon_{m}\right)-G_{\lambda}^{\prime}\left(\lambda_{t+\Delta t}\right) \\
d_{\varepsilon_{m}}= & -\frac{\partial W}{\partial \varepsilon_{m}}=
\end{aligned}
$$

and typically govern the evolution of λ, ε_{m} through evolution equations

$$
\begin{aligned}
\dot{\lambda} & =f_{\lambda}\left(d_{\lambda}\right), \\
\dot{\varepsilon}_{m} & =f_{\varepsilon_{m}}\left(d_{\varepsilon_{m}}\right) .
\end{aligned}
$$

In this model, λ and ε_{m} can, however, evolve freely, and the evolution is instead postulated to satisfy the kinetic relations:

$$
\begin{aligned}
\dot{\lambda} & =0, \text { if }\left|d_{\lambda}\right|<\mathrm{D} 0 \mathrm{~L}, \\
d_{\lambda} \dot{\lambda} & \geq 0, \\
\left|d_{\lambda}\right| & \leq \mathrm{D} 0 \mathrm{~L},
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
\dot{\varepsilon}_{m} & =0, & \text { if }\left\|d_{\varepsilon_{m}}\right\|<\lambda \frac{\mathrm{D} 0 \mathrm{M}}{\sqrt{1.5}} \\
d_{\varepsilon_{m}}: \dot{\varepsilon}_{m} & \geq 0, & \\
\left\|d_{\varepsilon_{m}}\right\| & \leq \lambda \frac{\mathrm{D} 0 \mathrm{M}}{\sqrt{1.5}}, & & \text { if } g_{i}\left(\varepsilon_{m}\right) \leq 0 .
\end{array}
$$

The norm is here defined as

$$
\|d\|=\sqrt{d: d}
$$

and the scaling factor $\sqrt{1.5}$ implies that D0M corresponds to the von Mises stress at which the martensite strains start to develop.

The above kinetic relations correspond to the rate of dissipation

$$
\dot{D}=d_{\lambda} \dot{\lambda}+d_{\varepsilon_{m}}: \dot{\varepsilon}_{m} \geq 0
$$

and are incorporated in the model by minimizing the mechanical energy over one time-step

$$
\begin{aligned}
\Delta U & =\int_{t}^{t+\Delta t} \dot{U} d s=\int_{t}^{t+\Delta t}(\dot{W}+\dot{D}) d s=\Delta W+\int_{t}^{t+\Delta t} \dot{D} d s \\
& \leq \Delta W+\int_{t}^{t+\Delta t}\left(\mathrm{D} 0 \mathrm{~L}|\dot{\lambda}|+\lambda \frac{\mathrm{D} 0 \mathrm{M}}{\sqrt{1.5}}\left\|\dot{\varepsilon}_{m}\right\|\right) d s \\
& \approx \Delta W+\mathrm{D} 0 \mathrm{~L}\left|\lambda_{t+\Delta t}-\lambda_{t}\right|+\lambda_{t} \frac{\mathrm{D} 0 \mathrm{M}}{\sqrt{1.5}}\left\|\varepsilon_{m}^{t+\Delta t}-\varepsilon_{m}^{t}\right\|,
\end{aligned}
$$

with respect to $\lambda_{t+\Delta t}$ and $\varepsilon_{m}^{t+\Delta t}$. The evolution of λ and ε_{m} is thus constrained by the time step.

Minimizing the mechanical energy over one time-step with respect to $\lambda_{t+\Delta t}$ and $\varepsilon_{m}^{t+\Delta t}$ gives the optimality constraints

$$
\begin{aligned}
& \frac{\partial U_{t+\Delta t}}{\partial \lambda_{t+\Delta t}}=-d_{\lambda}^{t+\Delta t}+\mathrm{D} 0 \mathrm{~L} \times \operatorname{sign}\left(\lambda_{t+\Delta t}-\lambda_{t}\right)=0 \\
& \frac{\partial U_{t+\Delta t}}{\partial \varepsilon_{m}^{t+\Delta t}}=-d_{\varepsilon_{m}}^{t+\Delta t}+\lambda_{t} \frac{\mathrm{D} 0 \mathrm{M}}{\sqrt{1.5}} \frac{\left(\varepsilon_{m}^{t+\Delta t}-\varepsilon_{m}^{t}\right)}{\left\|\varepsilon_{m}^{t+\Delta t}-\varepsilon_{m}^{t}\right\|}=0
\end{aligned}
$$

and incorporating the trace-free condition on ε_{m} gives

$$
\begin{aligned}
\frac{\partial U_{t+\Delta t}}{\partial \lambda_{t+\Delta t}} & =0 \\
\frac{\partial U_{t+\Delta t}}{\partial\left(\varepsilon_{m}^{t+\Delta t}\right)_{i}}-\frac{\partial U_{t+\Delta t}}{\partial\left(\varepsilon_{m}^{t+\Delta t}\right)_{3}} & =0, \quad i=1,2,
\end{aligned}
$$

$$
\frac{\partial U_{t+\Delta t}}{\partial\left(\varepsilon_{m}^{t+\Delta t}\right)_{i}}=0, \quad i=4,5,6
$$

2. Transition Temperatures. The initial (zero stress) austenite and martensite start and finish temperatures, TMF \leq TMS \leq TAS \leq TAF, can be given instead of the parameters TC, KL, and D0L. The temperatures are defined as

$$
\begin{aligned}
& \mathrm{TMS}=\mathrm{TC}\left(1-\frac{\mathrm{D} 0 \mathrm{~L}}{\mathrm{LH}}\right) \\
& \mathrm{TMF}=\mathrm{TC}\left(1-\frac{\mathrm{D} 0 \mathrm{~L}+\mathrm{KL}}{\mathrm{LH}}\right) \\
& \mathrm{TAS}=\mathrm{TC}\left(1+\frac{\mathrm{D} 0 \mathrm{~L}-\mathrm{KL}}{\mathrm{LH}}\right) \\
& \mathrm{TAF}=\mathrm{TC}\left(1+\frac{\mathrm{D} 0 \mathrm{~L}}{\mathrm{LH}}\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
\mathrm{TC} & =\frac{1}{2}(\mathrm{TMS}+\mathrm{TAF}) \\
\frac{\mathrm{KL}}{\mathrm{LH}} & =1-\frac{\mathrm{TMF}+\mathrm{TAS}}{\mathrm{TMS}+\mathrm{TAF}} \\
\frac{\mathrm{D} 0 \mathrm{~L}}{\mathrm{LH}} & =\frac{\mathrm{TAF}-\mathrm{TMS}}{\mathrm{TAF}+\mathrm{TMS}}
\end{aligned}
$$

Thus, if $0<\mathrm{TMF} \leq \mathrm{TMS} \leq \mathrm{TAS} \leq \mathrm{TAF}$ are given as keyword input, then TC, KL, and D0L are calculated as above, and their keyword values are ignored.
3. Heat Generation. The internal energy is

$$
\epsilon=W+\eta T
$$

and the entropy is defined as

$$
\eta=-\frac{\partial W}{\partial T}=-\lambda \frac{\mathrm{LH}}{\mathrm{TC}}+c(\lambda)\left(1+\ln \left(\frac{T}{\mathrm{TC}}\right)\right) .
$$

From the differential of W, we have

$$
\begin{aligned}
\dot{W} & =\frac{\partial W}{\partial \varepsilon} \dot{\varepsilon}+\frac{\partial W}{\partial \lambda} \dot{\lambda}+\frac{\partial W}{\partial \varepsilon_{m}} \dot{\varepsilon}_{m}+\frac{\partial W}{\partial T} \dot{T}=\sigma: \dot{\varepsilon}-d_{\lambda} \dot{\lambda}-d_{\varepsilon_{m}}: \dot{\varepsilon}_{m}-\eta \dot{T} \\
& =\sigma: \dot{\varepsilon}-\dot{D}-\eta \dot{T}
\end{aligned}
$$

and thus

$$
\dot{\epsilon}=\dot{W}+\dot{\eta} T+\eta \dot{T}=\sigma: \dot{\varepsilon}-\dot{D}-\eta \dot{T}+(\dot{\eta} T+\eta \dot{T})=\sigma: \dot{\varepsilon}-\dot{D}-\dot{\eta} T .
$$

Combining this with the energy balance

$$
\dot{\epsilon}=\sigma: \dot{\varepsilon}+\nabla \cdot(k \nabla T),
$$

we get

$$
c(\lambda) \dot{T}=\nabla \cdot(k \nabla T)+Q,
$$

with the volumetric heat generation rate

$$
Q=T \frac{\mathrm{LH}}{\mathrm{TC}} \dot{\lambda}-T c^{\prime}(\lambda) \dot{\lambda}\left(1+\ln \left(\frac{T}{\mathrm{TC}}\right)\right)+\dot{D}
$$

4. History Variables. The following history variables are available:

History Variable \#	Description
$1-6$	Strain in local coordinate system (ε)
$7-12$	Martensite strain in local system $\left(\varepsilon_{m}\right)$
13	Martensite volume fraction (λ)
14	Volumetric heat generation (Q)
$15-20$	Stress in local system (σ)

In a thermal analysis, ${ }^{*}$ MAT_291 can be coupled with *MAT_THERMAL_ISOTROPIC_TD_LC with load curves HCLC/TCLC depending on history variable 13, and load curve TGRLC depending on history variable 14. Note that *MAT_291 uses volumetric quantities for CPA, CPM, and LH while the thermal materials use specific quantities, meaning the volumetric quantity divided by density.

*MAT_ELASTIC_PERI

This is Material Type 292. This material is valid for modeling brittle elastic materials with peridynamics solids. Material failure is captured through a bond-based peridynamics model. See Ren et al 2017 for details about this model.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	E	GT	GS			
Type	I/A	I	F	F	F			
Default	none	none	none	10^{20}	10^{20}			

VARIABLE

MID

RO

E

GT

GS

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Material density

Young's modulus

Fracture energy release rate

Fracture energy release rate for compression

References:

B Ren, CT Wu, E Askari (2017) A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis, International Journal of Impact Engineering 99, 14-25.

*MAT_ELASTIC_PERI_LAMINATE

This is Material Type 292A. This material is for modeling unidirectional fiber reinforced polymer laminates with peridynamics. Each lamina is modeled as a transversely isotropic material while the matrix is assumed to be isotropic. See Ren et al 2018 for details about this model.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E1	E2	PR12	G12		
Type	I/A	F	F	F	F	F		
Default	none	none	none	none	none	none		

Card 2	1	2	3	4	5	6	7	8
Variable	FOPT	FC1	FC2	FCC1	FCC2	FCD	FCDC	
Type	I	F	F	F	F	F	F	
Default	none							

Card 3	1	2	3	4	5	6	7	8
Variable	V1	V2	V3					
Type	F	F	F					
Default	none	none	none					

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

RO Material density

E1

E2

PR12
G12
FOPT

FC1
FC2
FCC1

FCC2
FCD
FCDC
V1, V2, V3

DESCRIPTION

Young's modulus-longitudinal direction for one lamina (1-direction)

Young's modulus-transverse direction for one lamina (2-direction)
Poisson's ratio in the lamina plane
Shear modulus in the 12-direction
Failure criterion type for FC1, FC2, FCC1, FCC2, FCD, and FCDC:
EQ.1: Energy release rate
EQ.2: Failure stretch ratio for tension (recommended)

Tension failure criterion for longitudinal direction, 1-direction
Tension failure criterion for transverse direction, 2-direction
Compression failure criterion for longitudinal direction, 1-direction

Compression failure criterion for transverse direction, 2-direction
Tension delamination failure criterion
Compression delamination failure criterion
Components of the reference fiber direction in the global coordinate system

References:

B Ren, CT Wu, P Seleson, D Zeng, D Lyu (2018) A peridynamic failure analysis of fiberreinforced composite laminates using finite element discontinuous Galerkin approximations, International Journal of Fracture 214 (1), 49-68.

*MAT_COMPRF

This is Material Type 293. This material models the behavior of pre-impregnated (prepreg) composite fibers during the high-temperature preforming process. In addition to providing stress and strain, it also provides warp and weft yarn directions and stretch ratios after the forming process. The major applications of the model are for materials used in lightweight automobile parts.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	ET	EC	PR	G121	G122	G123
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	G124	G125	G126	GAMMAL	VF	EF3	VF23	EM
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	VM	EPSILON	THETA	BULK	G			
Type	F	F	F	F	F			

VARIABLE

MID

RO Continuum equivalent mass density.
ET Tensile modulus along the fiber yarns, corresponding to the slope of the curve in Figure M293-2 in the Stable Modulus region from a uniaxial tension test. See Remark 6.

EC Compression modulus along the fiber yarns, reversely calculated using bending tests when all the other material properties are determined. See Remark 6.

VARIABLE	DESCRIPTION
PR	Poisson's ratio. See Remark 6.
G12i	Coefficients for the bias-extension angle change-engineering stress curve in Figure M293-3. G121 to G126 corresponds to the 6th-order to 1 st-order factors of the loading curve. See Remark 6.
GAMMAL	Shear locking angle, in degrees. See Remark 6.
VF	Fiber volume fraction in the prepreg composite.
EF3	Transverse compression modulus of the dry fiber.
VF23	Transverse Poisson's ratio of the dry fiber
EM	Young's modulus of the cured resin.
VM	Poisson's ratio of the cured resin
EPSILON	Stretch ratio at the end of the undulation stage during the uniaxial tension test. Example shown in Figure M293-2. See Remark 6.
THETA	Initial angle offset between the fiber direction and the element direction. To reduce simulation error, when building the model, the elements should be aligned to the same direction as much as possible.
BULK	Bulk modulus of the prepreg material
G	Shear modulus of the prepreg material

Remarks:

1. Fiber and resin properties. The dry fiber properties, EF3 and VF23, and the cure resin properties, EM and VM, are used to calculate the through-thickness elastic modulus of the prepreg using the rule of mixture. These properties will not affect the in-plane deformation of the prepreg during the preforming simulation.
2. Shear locking. In most of the preforming cases, the angle between the fiber yarns will not reach the shear-locking state. This model is not designed for, and, therefore, not recommended for simulating shear locking.
3. History variables. History variable 1 represents the angle between warp/weft yarns. History variables 2 and 3 are the stretch ratio of fibers in the 1 and 2 directions, respectively.
4. BULK and G. BULK and G are used by the contact algorithm. Changing these parameters will not affect the final simulation result significantly (but it may affect the time step).
5. Model description. Woven composite prepregs are characterized using a nonorthogonal coordinate system having two principal directions: one aligned with the longitudinal warp yarns and the other with the transverse weft yarns. Prior to deformation the warp and weft yarns are orthogonal. The directions and the fiber stretch ratios are determined from the deformation gradient. In Figure M293-1, the angles α and β refer to the relative of the rotation of the warp yarn coordinate to the local corotational x coordinate and the angle between the warp and weft yarns, respectively $[2,3,4]$.

The stress from material deformation is divided into two parts: (1) stress caused by the fiber stretch, σ^{f}, as shown in Figure M293-1 (a); (2) stress caused by the fiber rotation, $\boldsymbol{\sigma}^{m}$, as shown in Figure M293-1 (b). The total stress tensor, $\boldsymbol{\sigma}$, in the local corotational $x-y$ coordinate system is the sum where the components are given below [3]:

$$
\begin{align*}
\sigma_{x x}^{f} & =\sigma_{1}^{f} \cos ^{2} \alpha+\sigma_{2}^{f} \cos ^{2}(\alpha+\beta) \tag{1}\\
\sigma_{x y}^{f}=\sigma_{y x}^{f} & =\frac{1}{2} \sigma_{1}^{f} \sin 2 \alpha+\frac{1}{2} \sigma_{2}^{f} \sin 2(\alpha+\beta) \tag{2}\\
\sigma_{y y}^{f} & =\sigma_{1}^{f} \sin ^{2} \alpha+\sigma_{2}^{f} \sin ^{2}(\alpha+\beta) \tag{3}\\
\sigma_{x x}^{m} & =\frac{\sigma_{1}^{m}+\sigma_{2}^{m}}{2}+\frac{\sigma_{1}^{m}-\sigma_{2}^{m}}{2} \cos (2 \alpha+\beta) \tag{4}\\
\sigma_{x y}^{m}=\sigma_{y x}^{m} & =\frac{\sigma_{1}^{m}-\sigma_{2}^{m}}{2} \sin (2 \alpha+\beta) \tag{5}\\
\sigma_{y y}^{m} & =\frac{\sigma_{1}^{m}+\sigma_{2}^{m}}{2}-\frac{\sigma_{1}^{m}-\sigma_{2}^{m}}{2} \cos (2 \alpha+\beta) \tag{6}\\
\sigma_{x x} & =\sigma_{x x}^{f}+\sigma_{x x}^{m} \tag{7}\\
\sigma_{x y}=\sigma_{y x} & =\sigma_{x y}^{f}+\sigma_{x y}^{m} \tag{8}\\
\sigma_{y y} & =\sigma_{y y}^{f}+\sigma_{y y}^{m} \tag{9}
\end{align*}
$$

6. Material property characterization. The non-orthogonal stress components caused by yarn stretch and rotation at various deformation states will be characterized via a set of experiments, which are uniaxial tension, bias-extension and cantilever beam bending tests. All the tests need to be performed at the preforming temperature. See references [1] and [3] for more details.

Figure M293-1. Stress components caused by (a) stretch in fiber directions and (b) rotation of the fibers [3].

Figure M293-2. An example of the engineering stress as a function of stretch ratio from the uniaxial tension test [3].

The uniaxial tension test is used to obtain the fiber direction undulation strains and the stable tensile moduli, together with the in-plane Poisson's ratio (PR). A typical test result is shown in Figure M293-2. From the stretch ratio-engineering stress curve, the tensile modulus, ET, and the stretch ratio at the end of undulation, EPSILON, can be captured.

The bias-extension test is used to characterize the shear behavior of the composite needed for fields G12i. The test procedure comes from the benchmark test literature [1]. An example of the bias-extension test angle change-engineering stress curve is shown in Figure M293-3.

Figure M293-3. An example of the angle change-engineering stress curve from the bias-extension test. The curve fit for this example is $y=-0.29 x^{6}+1.09 x^{5}-$ $1.68 x^{4}+1.37 x^{3}-0.56 x^{2}+0.12 x$. For this example curve the inputs into LS-DYNA are G121 $=-0.29, \mathrm{G} 122=1.09, \mathrm{G} 123=-1.68, \mathrm{G} 124=1.37, \mathrm{G} 125=-0.56$, and $\mathrm{G} 126=-0.12$ [3].

Figure M293-4. Bending test setup [3]

The angle change is calculated by using the equation [1]:

$$
\gamma=\frac{\pi}{2}-2 \cos ^{-1} \frac{D+d}{\sqrt{2} D}
$$

where d is the cross-head displacement and D is the difference between the original height and the original width of the sample. This equation holds only before the shear locking angle, specified in field GAMMAL, which is measured directly at the end of the test, so the curve should end when the fiber yarn angle reaches the shear locking state.

The bending test should be performed to characterize the compression modulus along the yarn directions, as specified in the EC field. The test setup is shown in Figure M293-4. The composite specimen is held in a clamp and deforms under its own gravity. During the test, the composite is heated to the preforming temperature and the tip displacement is recorded. Due to the nonlinearity of the tensile modulus, the compression modulus is reversely calculated using a simulation: it is adjusted until the simulation leads to similar tip displacement to the
real experiment case. The starting point for the compression modulus iteration can be set as about 100X of the shear modulus when the warp and weft yarns are perpendicular to each other.
7. Element type. The material model is available for shell elements with OSU $=1$ and $\operatorname{INN}=2$ in the CONTROL_ACCURACY card. It is recommended to use a double-precision version of LS-DYNA.

References:

[1] J. Cao, R. Akkerman, P. Boisse, J. Chen, H.S. Cheng, E.F. de Graaf, J.L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liu, S.V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X.Q. Peng, J. Sherwood, Tz. Stoilova, X.M. Tao, I.

Verpoest, A. Willems, J. Wiggers, T.X. Yu, B. Zhu, Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Composites Part A: Applied Science and Manufacturing, Volume 39, Issue 6, 2008, Pages 1037-1053, ISSN 1359-835X.
[2] Pu Xue, Xiongqi Peng, Jian Cao, A non-orthogonal constitutive model for characterizing woven composites, Composites Part A: Applied Science and Manufacturing, Volume 34, Issue 2, 2003, Pages 183-193, ISSN 1359-835X.
[3] Weizhao Zhang, Huaqing Ren, Biao Liang, Danielle Zeng, Xuming Su, Jeffrey Dahl, Mansour Mirdamadi, Qiangsheng Zhao, Jian Cao, A non-orthogonal material model of woven composites in the preforming process, CIRP Annals - Manufacturing Technology, Volume 66, Issue 1, 2017, Pages 257-260, ISSN 0007-8506.
[4] X.Q. Peng, J. Cao, A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics, Composites Part A: Applied Science and Manufacturing, Volume 36, Issue 6, 2005, Pages 859-874, ISSN 1359-835X.

*MAT_ANISOTROPIC_HYPERELASTIC

This is Material Type 295 which includes a collection of (nearly-in)compressible, (an)isotropic, hyperelastic material models primarily aimed at describing the mechanical behavior of biological soft tissues. Some of the material models may also be used to analyze a wider class of materials including fiber-reinforced elastomers and stretchable fabrics.

The constitutive laws are implemented in a modular fashion. Each module may be invoked at most once, however, the order of modules is interchangeable. Each module may comprise of different models. Consequently, one may easily change models in a module and include additional modules to account for more complex material behavior within the same keyword. Extending an existing module with a new model or even including a new module is straightforward and does not require a new material keyword.

Card Summary:

Card 1. This card is required.

MID	RHO	AOPT					

Card 2. ISOtropic module. This card and all related cards below are required.

TITLE	ITYPE	BETA	NU				

Card 2.1a. Include this card if ITYPE $= \pm 1$.

MU1	MU2	MU3	MU4	MU5	MU6	MU7	MU8

Card 2.2a. Include this card if ITYPE $= \pm 1$.

ALPHA1	ALPHA2	ALPHA3	ALPHA4	ALPHA5	ALPHA6	ALPHA7	ALPHA8

Card 2.1b. Include this card if ITYPE $=-2$.

C1	C2	C3					

Card 2.1c. Include this card if ITYPE $= \pm 3$.

K1	K2						

Card 3. ANISOtropic module. This card and all related cards below are optional.

TITLE	ATYPE	INTYPE	NF				

Card 3.1. Include this card if ATYPE $= \pm 1$. Include a pair of this card and one of the following two cards for each fiber family $i=1, \ldots, \mathrm{NF}$, that is, $2 \times \mathrm{NF}$ cards in total.

THETA	A	B					

Card 3.2a. Include this card if FTYPE $=1$.

FTYPE	FCID	K1	K2				

Card 3.2b. Include this card if $\mathrm{FTYPE}=2$.

FTYPE	FCID	E	RONORM	HONORM			

Card 3.3. Include this card if INTYPE $=1$.

K1	K2						

Card 4. ACTIVE module. This and all related cards below are optional and may only be used in combination with the ANISOtropic module.

TITLE	ACTYPE	ACDIR	ACID	ACTHR	SF	SS	SN

Card 4.1a. Include this card if ACTYPE = 1 .

TO	CA2ION	CA2IONM	N	TAUMAX	ST	B	LO

Card 4.2a. Include this card if $\mathrm{ACTYPE}=1$.

L	DTMAX	MR	TR				

Card 4.1b. Include this card if $\mathrm{ACTYPE}=2$.

TO	CA21ON	CA21ONM	N	TAUMAX	ST	B	LO

Card 4.2b. Include this card if $\mathrm{ACTYPE}=2$.

L	ETA						

Card 4.1c. Include this card if $\mathrm{ACTYPE}=3$.

T0	CA2ION	CA2ION50	N	TAUMAX	ST	L	ETA

Card 4.1d. Include this card if ACTYPE $=4$.

TO	CA2ION50	CA2IONM	N	TAUMAX	ST	CA2ION0	TCA

Card 4.2d. Include this card if $\mathrm{ACTYPE}=4$.

L	ETA						

Card 4.1e. Include this card if ACTYPE $=5$.

FSEID	FLID	FVID	ALPHAID				

Card 5. This card is optional and must be used in combination with the ANISOtropic module only.

$X P$	YP	ZP	A1	A2	A3	MACF	

Card 6. This card is optional and must be used in combination with the ANISOtropic module only.

V1	V2	V3	D1	D2	D3	BETA	REF

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RHO	AOPT					
Type	A	F	F					

VARIABLE

MID

RHO Mass density
AOPT Material axes option (see *MAT_002 for a more complete description):

EQ.0.0: Locally orthotropic with material axes determined by element nodes. The a-direction is from node 1 to node 2 of the element. The \mathbf{b}-direction is orthogonal to the $\mathbf{a}-$ direction and is in the plane formed by nodes 1,2 , and 4. For shells only, the material axes are then rotated about the normal vector to the surface of the shell by the angle BETA.

EQ.1.0: Locally orthotropic with material axes determined by a
point, P, in space and the global location of the element center; this is the a-direction. This option is for solid elements only.

EQ.2.0: Globally orthotropic with material axes determined by vectors a and d input below, as with *DEFINE_COORDINATE_VECTOR

EQ.3.0: Locally orthotropic material axes determined by a vector \mathbf{v} and the normal vector to the plane of the element. The plane of a solid element is the midsurface between the inner surface and outer surface defined by the first four nodes and the last four nodes of the connectivity of the element, respectively. Thus, for solid elements, $\mathrm{AOPT}=3$ is only available for hexahedrons. a is determined by taking the cross product of \mathbf{v} with the normal vector, \mathbf{b} is determined by taking the cross product of the normal vector with \mathbf{a}, and \mathbf{c} is the normal vector. Then \mathbf{a} and \mathbf{b} are rotated about \mathbf{c} by an angle BETA. BETA may be set in the keyword input for the element or in the input for this keyword. Note that for solids, the material axes may be switched depending on the choice of MACF. The switch may occur before or after applying BETA depending on MACF.

EQ.4.0: Locally orthotropic in a cylindrical coordinate system with the material axes determined by a vector \mathbf{v}, and an originating point, P, which define the centerline axis. This option is for solid elements only.
LT.0.0: $|\mathrm{AOPT}|$ is a coordinate system ID (see *DEFINE_COORDINATE_OPTION).

Isotropic Module Card.

Card 2	1	2	3	4	5	6	7	8
Variable	TITLE	ITYPE	BETA	NU				
Type	A10	I	F	F				
Default	none	none	0.0	none				

VARIABLE

TITLE
ITYPE

DESCRIPTION

Module title which must be set to ISO
Type of isotropic model (see Remarks 1 and 2):
EQ. ± 1 : Compressible/nearly-incompressible Ogden [12] (see Remark 4)

EQ.-2: Yeoh [13]
EQ. ± 3 : Compressible/nearly-incompressible Holzapfel-Ogden [1], [7]

BETA Volumetric response function coefficient
NU Poisson's ratio (see Remark 3)

Ogden Model Card 1. This card is only defined if ITYPE $= \pm 1$.

Card 2.1a	1	2	3	4	5	6	7	8
Variable	MU1	MU2	MU3	MU4	MU5	MU6	MU7	MU8
Type	F	F	F	F	F	F	F	F

Ogden Model Card 2. This card is only defined if ITYPE $= \pm 1$.

Card 2.2a	1	2	3	4	5	6	7	8
Variable	ALPHA1	ALPHA2	ALPHA3	ALPHA4	ALPHA5	ALPHA6	ALPHA7	ALPHA8
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

MU i
Ogden moduli, with $i=1, \ldots, 8$
ALPHA $i \quad$ Ogden constants, with $i=1, \ldots, 8$

Yeoh Model Card. This card is only defined if ITYPE $=-2$.

Card 2.1b	1	2	3	4	5	6	7	8
Variable	C1	C2	C3					
Type	F	F	F					

VARIABLE

$\mathrm{C} i \quad$ Yeoh moduli, with $i=1,2,3$

Holzapfel-Ogden Model Card. This card is only defined if ITYPE $= \pm 3$.

Card 2.1c	1	2	3	4	5	6	7	8
Variable	K1	K2						
Type	F	F						

VARIABLE

DESCRIPTION
K1
Holzapfel-Ogden modulus
K2 Holzapfel-Ogden constant

Anisotropic Module Card.

Card 3	1	2	3	4	5	6	7	8
Variable	TITLE	ATYPE	INTYPE	NF				
Type	A10	1	1	1				
Default	none	none	none	none				

VARIABLE
TITLE Module title which must be set to ANISO

VARIABLE

ATYPE

INTYPE
Type of interaction/coupling (see Remarks 6 and 7):
EQ.0: None
EQ.1: Holzapfel-Ogden [1], [5]
NF Number of fiber families (see Remarks 5 and 6)

General Structure Tensor-Based Model Card A. This card is only defined if ATYPE $= \pm 1$. Include a pair of this card and one of the 2 cards following this card for each fiber family $i=1, \ldots, \mathrm{NF}$, that is, $2 \times \mathrm{NF}$ cards in total.

Card 3.1	1	2	3	4	5	6	7	8
Variable	THETA	A	B					
Type	F	F	F					

VARIABLE
THETA

A

B Second structure tensor parameter

Holzapfel-Gasser-Ogden Model Card. This card is only defined if FTYPE $=1$.

Card 3.2a	1	2	3	4	5	6	7	8
Variable	FTYPE	FCID	K1	K2				
Type	I	I	F	F				

Freed-Doehring Model Card. This card is only defined if FTYPE $=2$.

Card 3.2b	1	2	3	4	5	6	7	8
Variable	FTYPE	FCID	E	RONORM	HONORM			
Type	I	I	F	F	F			

VARIABLE

FTYPE

FCID

K1 Holzapfel-Gasser-Ogden modulus
K2

E

R0NORM Initial crimp/coil amplitude normalized with respect to the initial fiber radius (R_{0} / r_{0})

H0NORM Initial crimp/coil wavelength normalized with respect to the initial fiber radius $\left(H_{0} / r_{0}\right)$

Holzapfel-Ogden Coupling Model Card(s). These cards are only defined if INTYPE $=1$.

Card 3.3	1	2	3	4	5	6	7	8
Variable	K1	K2						
Type	F	F						

VARIABLE

DESCRIPTION

K1
K2
Coupling modulus between the fiber and sheet directions
Coupling constant between the fiber and sheet directions

Active Module Card.

Card 4	1	2	3	4	5	6	7	8
Variable	TITLE	ACTYPE	ACDIR	ACID	ACTHR	SF	SS	SN
Type	A10	I	I	I	F	F	F	F
Default	none	none	0	0	0.0	none	none	none

VARIABLE

TITLE

ACTYPE

ACID

ACTHR
SF
SS

Direction of active tension:
EQ.0: Active tension develops along the mean fiber orientation of all fiber families.

GT.0: Active tension develops along the mean orientation of the ACDIR ${ }^{\text {th }}$ fiber family.

Activation curve ID (takes priority over T0 for $\mathrm{ACTYPE}=1,2,3$, or 4 when defined, see Remark 8)
(De/re)activation threshold (see Remark 8)
Active stress scaling factor in the fiber direction (see Remark 9)
Active stress scaling factor in the transverse sheet direction (see Remark 9)

VARIABLE

SN

DESCRIPTION

Active stress scaling factor in the transverse normal direction (see Remark 9)

Guccione-Waldman-McCulloch Model Card 1. This card is only defined if ACTYPE $=1$.

Card 4.1a	1	2	3	4	5	6	7	8
Variable	TO	CAION	CAIONM	N	TAUMAX	ST	B	L0
Type	F	F	F	F	F	F	F	F

Guccione-Waldman-McCulloch Model Card 2. This card is only defined if ACTYPE = 1 .

Card 4.2a	1	2	3	4	5	6	7	8
Variable	L	DTMAX	MR	TR				
Type	F	F	F	F				

VARIABLE

T0
CA2ION
CA2IONM
N
TAUMAX
ST

B
L0 Sarcomere length with no active tension
L

DESCRIPTION

Starting time of active stress development
Intercellular calcium ion concentration
Maximum intercellular calcium ion concentration
Hill coefficient
Peak isometric tension under maximum activation Remark 9)

Shape coefficient

Reference (stress-free) sarcomere length

Active fiber stress scaling factor in the transverse directions (see

VARIABLE

DTMAX
MR Slope of linear relaxation versus sarcomere length relation
TR Time intercept of linear relaxation as a function of sarcomere length relation

Guccione-Waldman-McCulloch and Hunter-Nash-Sands Model Card 1. This card is only defined if $\mathrm{ACTYPE}=2$.

Card 4.1b	1	2	3	4	5	6	7	8
Variable	T0	CA2ION	CA2IONM	N	TAUMAX	ST	B	L0
Type	F	F	F	F	F	F	F	F

Guccione-Waldman-McCulloch and Hunter-Nash-Sands Model Card 2. This card is only defined if $\mathrm{ACTYPE}=2$.

Card 4.2b	1	2	3	4	5	6	7	8
Variable	L	ETA						
Type	F	F						

VARIABLE

T0
CA2ION Intercellular calcium ion concentration
CA2IONM Maximum intercellular calcium ion concentration
N
TAUMAX
ST

B

DESCRIPTION

Starting time of active stress development

Hill coefficient
Peak isometric tension under maximum activation
Active fiber stress scaling factor in the transverse directions (see Remark 9)

Shape coefficient

VARIABLE

L0

L Reference (stress-free) sarcomere length

DESCRIPTION

Sarcomere length with no active tension

Scaling parameter

Hunter-Nash-Sands Model Card 1. This card is only defined if ACTYPE $=3$.

Card 4.1c	1	2	3	4	5	6	7	8
Variable	TO	CA2ION	CA2ION50	N	TAUMAX	ST	L	ETA
Type	F	F	F	F	F	F	F	F

VARIABLE

T0
CA2ION
CA2ION50

N
TAUMAX
ST

L
ETA

DESCRIPTION

Starting time of active stress development
Intercellular calcium ion concentration
Intercellular calcium ion concentration at half of peak isometric tension

Hill coefficient
Peak isometric tension under maximum activation
Active fiber stress scaling factor in the transverse directions (see Remark 9)

Reference (stress-free) sarcomere length
Scaling parameter
*MAT_ANISOTROPIC_HYPERELASTIC
Hunter-Nash-Sands and Hunter-McCullogh-ter Keurs Model Card A. This card is only defined if ACTYPE $=4$.

Card 4.1d	1	2	3	4	5	6	7	8
Variable	TO	CA2ION50	CA2IONM	N	TAUMAX	ST	CA2IONO	TCA
Type	F	F	F	F	F	F	F	F

Hunter-Nash-Sands and Hunter-McCullogh-ter Keurs Model Card B. This card is only defined if ACTYPE $=4$.

Card 4.2d	1	2	3	4	5	6	7	8
Variable	L	ETA						
Type	F	F						

VARIABLE
T0
CA2ION50

CA2IONM
N
TAUMAX
ST

CA2ION0 Intercellular calcium ion concentration at rest
TCA
L
ETA

DESCRIPTION

Starting time of active stress development
Intercellular calcium ion concentration at half of peak isometric tension

Maximum intercellular calcium ion concentration
Hill coefficient
Peak isometric tension under maximum activation
Active fiber stress scaling factor in the transverse directions (see Remark 9)

Shape coefficient
Reference (stress-free) sarcomere length
Scaling parameter

Martins-Pato-Pires Model Card A. This card is only defined if ACTYPE $=5$.

Card 4.1e	1	2	3	4	5	6	7	8
Variable	FSEID	FLID	FVID	ALPHAID				
Type	1	1	1	1				

VARIABLE

FSEID
FLID

FVID
ALPHAID

DESCRIPTION

Serial stress function ID (see Remark 10)
Normalized force-contractile stretch curve ID
Normalized force-contractile stretch rate curve ID

Local Coordinate System Card A. These cards are only defined in combination with the ANISOtropic module.

Card 5	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3	MACF	
Type	F	F	F	F	F	F	I	

Local Coordinate System Card B.

Card 6	1	2	3	4	5	6	7	8
Variable	V1	V2	V3	D1	D2	D3	BETA	REF
Type	F	F	F	F	F	F	F	F

VARIABLE

$\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad$ Coordinates of point P for $\mathrm{AOPT}=1$ and 4
A1, A2, A3
MACF

DESCRIPTION

Components of vector a for $\mathrm{AOPT}=2$

Material axes change flag for solid elements (see *MAT_002 for more details):

VARIABLE

V1, V2, V3 Components of vector \mathbf{v} for AOPT $=3$ and 4
D1, D2, D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2$
BETA

REF

DESCRIPTION

EQ.-4: Switch material axes b and c before BETA rotation
EQ.-3: Switch material axes a and c before BETA rotation
EQ.-2: Switch material axes a and b before BETA rotation
EQ.1: No change, default
EQ.2: Switch material axes a and b after BETA rotation
EQ.3: Switch material axes a and c after BETA rotation
EQ.4: Switch material axes b and c after BETA rotation

Material angle in degrees for AOPT $=0$ (shells and thick shells only) and AOPT = 3 (all element types). This angle may be overridden on the element card; see *ELEMENT_SHELL_BETA, *ELEMENT_TSHELL_BETA, and *ELEMENT_SOLID_ORTHO.

Use reference geometry to initialize the stress tensor. The reference geometry is defined by the keyword: *INITIAL_FOAM_REFERENCE_GEOMETRY.

EQ.0.0: Off
EQ.1.0: On

Remarks:

1. Volumetric Strain Energy Function. The pure volumetric part of the strain energy function is defined as part of the ISOtropic module.
2. Compressible and Nearly-Incompressible Models. Depending on the sign of ITYPE and ATYPE, several formulations are available. Negative model numbers indicate that the corresponding part of the strain energy function is considered isochoric. Furthermore, the sign of FTYPE and INTYPE is directly linked to ATYPE. For example, if ATYPE is negative, both fiber and fiber interaction models are in their isochoric form. Consequently, compressible and nearly-incompressible anisotropy is obtained by using both INTYPE and ATYPE with or without a sign, respectively.
3. Incompressibility Limit. While there is no strict lower bound on the Poisson's ratio $\left(v_{L}\right)$, for nearly-incompressible materials, LS-DYNA will issue a warning message if $v<v_{L}=0.49$.
4. Special Cases of the Compressible/Nearly-Incompressible Ogden Model. The following described special cases of the OGDEN Model (ITYPE $= \pm 1$).
a) The (nearly-in)compressible neo-Hookean model is obtained as special case of ITYPE $=(-) 1$ with $\mu_{1}>0, \alpha_{1}=1$.
b) The Mooney-Rivlin model is obtained as a special case of ITYPE $=-1$ with $\mu_{i} \alpha_{i}>0$ for $i=1,2, \alpha_{1}=2$, and $\alpha_{2}=-2$.
c) By setting $\beta=-1$ and ITYPE $=-1$, one obtains an equivalent formulation with *MAT_077_O.
5. General Structure Tensor. Considering the anisotropic part of the strain energy function, one may distinguish angular integration (AI) and general structure tensor (GST) based models. Owing to their numerical efficacy, currently all models in LS-DYNA rely on the general structure tensor [7], [8]. Parameters defining the structure tensor and fiber models need to be provided for each fiber family. Consequently, one may use different structure tensors and/or fiber models to describe the behavior of the individual fiber families.

The model proposed by Freed et al. [3] is a special case of the general structure tensor-based models assuming rotational symmetric fiber dispersion, determining the parameters A and B using a normal distribution, and invoking the fiber model introduced by Freed and Doehring [2].
6. Fiber Families. Characteristic material directions within the plane are defined by fiber families. The number of fiber families for INTYPE $=0$ is currently limited to 3 . If INTYPE $=1$, the number of fiber families is limited to 2 that represent the fiber and sheet directions, respectively. The fiber and sheet directions form an orthonormal basis.
7. Coupling (Quasi-)Invariants. To further enhance the material model, coupling (quasi-) invariants associated with pairs of directions may be included in the strain-energy function. Following the formulation in Holzapfel and Ogden [7] and Eriksson et al. [1], a single coupling invariant defined between the orthonormal fiber and sheet directions is included with INTYPE $=1$.
8. Onset of Active Stress. The input for this model gives you several different methods for triggering the activation and deactivation of the active stress development.
a) For ACTYPE $=1,2,3$, and 4 , T 0 specifies the time at which active stress development is activated. This method does not include deactivation. The other methods take priority over setting T 0 .
b) For all ACTYPE options, you can specify ACID and ACTHR. ACID represents the evolution of either the calcium ion concentration (ACTYPE $=1,2$, 3, or 5$)$ or the transmembrane potential $(\mathrm{ACTYPE}=4)$ over time. ACTHR is a threshold value for one of these quantities depending on ACTYPE. When the calcium ion concentration or transmembrane potential from the curve exceeds the threshold, the active stress development is activated. When it is less than the threshold, the active stress development is deactivated. With this method, the active stress development can be reactivated again when the value in the curve exceeds the threshold.
c) For all ACTYPE methods, if you set up a coupled problem with the electrophysiology solver, ACTHR again gives the threshold value for the calcium ion concentration (ACTYPE $=1,2,3$, or 5) or transmembrane potential (ACTYPE $=4$). The electrophysiology solver provides the value to compare to the threshold to activate and deactivate the active stress development. As with ACID, the active stress development is activated when the value exceeds ACTHR and deactivates when the value is less than ACTHR. With this method, the active stress development can be reactivated again when the value exceeds the threshold.
9. Active stress development. Active stress is developed along direction(s) defined by ACDIR and may be scaled using the scaling factors SF, SS, and SN. For ACTYPE <5, if SS and SN are zero, they are reset internally to ST.

Depending on ACDIR active stress may develop along one or multiple fiber families. Consider a single fiber family with unit fiber orientation vector \mathbf{e}_{f}. Let τ_{A} be the active stress. Then, the active stress tensor in the local fiber frame is:

$$
\boldsymbol{\tau}_{A}=\tau_{A}\left(\mathrm{SF} \mathbf{e}_{f} \otimes \mathbf{e}_{f}+\mathrm{SS} \mathbf{e}_{s} \otimes \mathbf{e}_{s}+\mathrm{SN} \mathbf{e}_{n} \otimes \mathbf{e}_{n}\right)
$$

Here \mathbf{e}_{s} and \mathbf{e}_{n} are the unit vectors in the sheet and normal directions that form a basis with \mathbf{e}_{f}.

If active tension develops along multiple fiber families, then the active stress tensor is:

$$
\boldsymbol{\tau}_{A}=\sum_{i=1}^{\mathrm{NF}} \boldsymbol{\tau}_{A_{i}}
$$

In the above NF is the number of fiber families and $\tau_{A_{i}}$ is the active stress tensor for the $i^{\text {th }}$ fiber family.
10. Serial stress function. The serial stress function needs to be expressed in terms of the fiber stretch λ and contractile stretch λ^{CE}. Thus, the elastic stretch in the serial element λ^{SE} needs to be eliminated using the multiplicative decomposition of the fiber stretch, that is, $\lambda=\lambda^{\mathrm{CE}} \lambda^{\mathrm{SE}}$.
11. History Variables. The history variables are listed in the table below. The default number of history variables depends on the used modules. If only the mandatory ISOtropic module is used, the number of history variables is 9. Including the ANISOtropic and ACTIVE modules in a hierarchical fashion yields an additional 12 and 9 history variables, that is, making the total number of history variables 21 and 30, respectively.

History Variable \#	Definition
$1-9$	Deformation gradient (column-wise storage) First two rows of the rotation matrix defining the material coordinate system a-b-c
$16-16$	Fiber stretch in each fiber family
$19-21$	Fiber stress in each fiber family
$22-24$	Active fiber stress in each fiber family 25 26
Calcium ion concentration at t^{n} if ACTYPE $\left.=1,2,3,5\right)$ Transmembrane potential at t^{n} if ACTYPE $=4$ Calcium ion concentration at $\mathrm{t}^{\mathrm{n}-1}$ if AC- TYPE $=1,2,3,5)$ Transmembrane potential at $\mathrm{t}^{\mathrm{n}-1}$ if ACTYPE $=4$ 27	Time since onset of activation Contractile stretch in the dashpot at t^{n} if AC- TYPE $=5$
$28-30$	

References:

[1] Eriksson T.S.E., Prassl A.J., Plank G., and Holzapfel G.A., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Mathematics and Mechanics of Solids (2013) 18:592-606
[2] Freed A.D. and Doehring T.C., Elastic response of crimped collagen fibrils. Journal of Biomechanical Engineering (2005) 127:587-593
[3] Freed A.D., Einstein D.R., and Vesely I., Invariant formulation for dispersed transverse isotropy in aortic heart valves. Biomechanics and Modeling in Mechanobiology (2005) 4:100-117
[4] Guccione J.M., Waldman L.K., McCulloch A.D., Mechanics of active contraction in cardiac muscle: Part II - Cylindrical Models of the systolic left ventricle. Journal of Biomechanical Engineering (1993) 115:82-90
[5] Gültekin O., Sommer G., and Holzapfel G.A., An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Computer Methods in Biomechanics and Biological Engineering (2016) 15:1647-1664
[6] Holzapfel G.A., Gasser T.C., and Ogden R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity (2000) 61:1-48
[7] Holzapfel G.A. and Ogden R.W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A (2009) 367:3445-3475
[8] Holzapfel G.A., Niestrawska J.A., Ogden R.W., Reinisch A.J., and Schriefl A.J., Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of the Royal Society Interface (2015) 12:1-14
[9] Hunter P.J., Nash, M.P., and Sands, G.B., Computational Electromechanics of the Heart, Computational Biology of the Heart. John Wiley and Sons, London (1997) 346-407
[10] Hunter P.J., McCulloch A.D., and ter Keurs H.E.D.J., Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology (1998) 69:289-331
[11] Nolan D.R., Gower A.L., Destrade M., Ogden R.W., and McGarry J.P., A robust anisotropic hyperelastic formulation for the modeling of soft tissue. Journal of the Mechanical Behavior of Biomedical Materials (2014) 29:48-60
[12] Ogden, R.W., Non-linear Elastic Deformations, Dover Publishing Inc., New York (1997).
[13] Yeoh O.H., Characterization of elastic properties of carbon-black filled rubber vulcanizates. Rubber Chemistry and Technology (1990) 63:792-805
[14] Martins J.A.C, Pato P.M.P, and Pires E.B, A finite element model of skeletal muscles, Virtual and Physical Prototyping (2006) 1:159-170

*MAT_ANAND_VISCOPLASTICITY

This is Material Type 296. This visco-plastic model by Professor Anand uses a set of evolution equations instead of a loading-unloading criterion to describe dislocation motion and the hardening or softening behavior of materials. This model can be applied to simulate solders used in electronic packaging.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	YM	PR	ALPHA	A1	RATIOQR	XI
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	M	S0	H0	A2	SBAR	N		TREF
Type	F	F	F	F	F	F		F

VARIABLE

MID

RO Mass density
YM Young's Modulus
PR Poisson's ratio
ALPHA Coefficient of thermal expansion, α
A1 Pre-exponential factor, A
RATIOQR Ratio of the activation energy, $Q(\mathrm{~J} / \mathrm{mol})$, to the universal gas constant, $R(\mathrm{~J} / \mathrm{mol} / \mathrm{K})$

XI Multiplier of stress, ξ

M Strain rate sensitivity, m

S0 Initial value of deformation resistance, s_{0}

VARIABLE

H0
A2

SBAR

N
TREF

DESCRIPTION

Hardening/softening constant, H_{0}
Strain rate sensitivity of hardening or softening, a
Coefficient of deformation resistance saturation value, \bar{s}
Strain rate sensitivity of deformation resistance saturation value, n Reference temperature, $T_{\text {ref }}$

Remarks:

In the Anand model, the equivalent stress σ is proportional to the deformation resistance s and depends upon the temperature T and the equivalent elastic strain $\dot{\varepsilon}^{p}$ as

$$
\sigma=c\left(T, \dot{\varepsilon}^{p}\right) s,
$$

where c is a material parameter defined by

$$
c=\frac{1}{\xi} \sinh ^{-1}\left[\left(\frac{\dot{\varepsilon}^{p}}{A} \exp \left(\frac{Q}{R T}\right)\right)^{m}\right] .
$$

The material parameter c depends on material constants defined in the variable list above and the universal gas constant R.

The above equations can be rearranged to express the equivalent inelastic strain rate $\dot{\varepsilon}^{p}$ in terms σ, T, and s as

$$
\dot{\varepsilon}^{p}=A \exp \left(-\frac{Q}{R T}\right)\left[\sinh \left(\xi \frac{\sigma}{s}\right)\right]^{1 / m}
$$

This is called the flow equation.
The rate of deformation resistance \dot{s} is defined as

$$
\dot{s}=H \dot{\varepsilon}^{p},
$$

where

$$
H=H_{0}\left|1-\frac{s}{s_{s}}\right|^{a} \operatorname{sign}\left(1-\frac{s}{s_{s}}\right) .
$$

In the above equation, s_{s} is the deformation resistance saturation value which is defined as

$$
s_{s}=\bar{s}\left[\frac{\dot{\varepsilon}^{p}}{A} \exp \left(\frac{Q}{R T}\right)\right]^{n} .
$$

With the equivalent inelastic strain rate $\dot{\varepsilon}^{p}$, the inelastic strain components can be computed based on a normality hypothesis of the Prandtl-Reuss flow law:

$$
\dot{\varepsilon}^{p}=\sqrt{\frac{3}{2}} \dot{\varepsilon}^{p} \mathbf{N}
$$

In the above equation, the direction of plastic flow \mathbf{N} is defined as

$$
\mathbf{N}=\sqrt{\frac{3}{2}} \frac{\mathbf{S}}{\sigma}
$$

where \mathbf{S} is the deviatoric part of the stress σ.
The Cauchy Stress \mathbf{T} for this model is

$$
\mathbf{T}=J^{e-1} \mathbf{R}^{e} \mathbf{M}^{e} \mathbf{R}^{e^{T}}
$$

where

$$
\mathbf{M}^{e}=\mathbf{C}\left[\mathbf{E}^{e}-\alpha\left(T-T_{0}\right)\right] .
$$

T_{0} is the initial temperature. \mathbf{C} is defined as

$$
\mathbf{C} \stackrel{\text { def }}{=} 2 G\left(\mathbb{I}^{s}-\frac{1}{3} \mathbf{I} \otimes \mathbf{I}\right)+K \mathbf{I} \otimes \mathbf{I}
$$

References:

[1] Brown, Stuart B., Kwon H. Kim, and Lallit Anand. "An internal variable constitutive model for hot working of metals." International journal of plasticity 5.2 (1989): 95-130.
[2] Lallit Anand, Constitutive equations for hot-working of metals, International Journal of Plasticity, (1985), 213-231.

*MAT_DMN_COMPOSITE_FRC

This is Material Type 303. It is a machine learning-based multiscale material model for analysis of injection-molded fiber-reinforced composites (FRC). The multiscale material model can predict the macroscopic material responses (stress, equivalent plastic strain, etc.) based on the microscopic material information. To use this material model, you need to provide the geometric descriptors for material microstructures (i.e., fiber orientation tensor, fiber volume fraction, etc.) and the material properties of each base material (i.e., fiber and matrix), respectively. In the current version, only certain constitutive laws described in Remarks 2 and 3 are supported for the base materials. To obtain the geometrical information for the microstructures, use an injection molding simulation software, such as Moldex3D. LS-PrePost can import the injection molding results into LS-DYNA models (see Remark 4 and Workflow to import fiber data from Moldex3D).

This model is available in R14 or newer versions of MPP/SMP double precision LS-DYNA. Currently, this 3D multiscale material model supports explicit dynamic finite element analysis using eight-node hexahedron solid elements, four-node tetrahedron solid elements, and type 25 four-node shell elements.

Card Summary:

Card 1. This card is required.

MID							

Card 2. This card is required.

FVF	RO	RF	RM	FL	FD		

Card 3. This card is required.

F_E	F_PR	ISO					

Card 3.1. Include this card if $\mathrm{ISO}=1$ in Card 3.

F_EL	F_ET	F_PRTL	F_PRTT	F_GLT			

Card 4. This card is required.

M_E	M_PR	M_SY	M_H1	M_H2	M_H3	ITC	

Card 4.1. Include this card if ITC $=1$ or 3 in Card 4.

M_EC	M_PRC	M_SYC	M_H1C	M_H2C	M_H3C	PT	PC

Card 5. This card is required.

LCIDT	LCIDC						

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID							
Type	A							
Default	none							

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see *PART).

Card 2	1	2	3	4	5	6	7	8
Variable	FVF	RO	RF	RM	FL	FD		
Type	F	F	F	F	F	F		
Default	none	none	none	none	none	none		

VARIABLE

DESCRIPTION

FVF $\quad \varphi^{f}$, fiber volume fraction. If RF and RM are given, a nonzero FVF must be specified to calculate the mass density of the overall fiberreinforced composite. This value can be overwritten by ${ }^{*}$ INITIAL_STRESS_SHELL or *INITIAL_STRESS_SOLID. See Remark 4.

RO $\quad \rho^{c}$, mass density of the overall fiber-reinforced composite. This value will be neglected if RF and RM are given, respectively.

RF ρ^{f}, mass density of the fiber phase

VARIABLE

RM

FL

FD

DESCRIPTION

ρ^{m}, mass density of the matrix phase
Fiber length. Alternatively, if you want to specify the fiber aspect ratio, set FL to the fiber aspect ratio and FD to 1.0.

Fiber diameter. Alternatively, if you want to directly specify the fiber aspect ratio, set FD to 1.0 and FL to the fiber aspect ratio.

Card 3	1	2	3	4	5	6	7	8
Variable	F_E	F_PR	ISO					
Type	F	F	I					
Default	none	none	0					

VARIABLE

DESCRIPTION

F_E E $\quad E^{f}$, Young's modulus of the fiber phase if the fiber property is isotropic. See Remark 2.

F_PR $\quad v_{t l}^{f}$, Poisson's ratio of the fiber phase if the fiber property is isotropic.

ISO Flag for anisotropy of the fiber phase:
EQ.O: Isotropic fiber material property
EQ.1: Transversely isotropic fiber material property

Transversely Isotropic Fiber Material Card. Include this card if ISO = 1 on Card 3.

Card 3.1	1	2	3	4	5	6	7	8
Variable	F_EL	F_ET	F_PRTL	F_PRTT	F_GLT			
Type	F	F	F	F	F			
Default	none	none	none	none	none			

VARIABLE

F_EL

F_ET $\quad E_{t}^{f}$, Young's modulus of the fiber phase along the fiber's transverse direction t. Note that the transversely isotropic model becomes isotropic by setting $E_{t}^{f}=E_{l}^{f}, v_{t t}^{f}=v_{t l}^{f}$, and $G_{l t}^{f}=E_{l}^{f} /\left[2\left(1+v_{t l}^{f}\right)\right]$.

F_PRTL $^{V_{t}} \quad v_{t l}^{f}$ Poisson's ratio of the fiber phase
F_PRTT $\quad v_{t t}^{f}$ 'Poisson's ratio of the fiber phase. Note that the transversely isotropic model becomes isotropic by setting $E_{t}^{f}=E_{l}^{f}, v_{t t}^{f}=v_{t l}^{f}$, and $G_{l t}^{f}=E_{l}^{f} /\left[2\left(1+v_{t l}^{f}\right)\right]$.

F_GLT
$G_{l t^{\prime}}^{f}$ shear modulus of the fiber phase in the $l t$ direction. Note that the transversely isotropic model becomes isotropic by setting $E_{t}^{f}=$ $E_{l}^{f}, v_{t t}^{f}=v_{t l}^{f}$, and $G_{l t}^{f}=E_{l}^{f} /\left[2\left(1+v_{t l}^{f}\right)\right]$.

Card 4	1	2	3	4	5	6	7	8
Variable	M_E	M_PR	M_S1	M_S2	M_S3	M_S4	ITC	
Type	F	F	F	F	F	F	1	
Default	none	none	none	none	none	none	0	

VARIABLE

DESCRIPTION

M_E $\quad E^{m}$, Young's modulus of the matrix phase. See Remark 3.
M_PR
v^{m}, Poisson's ratio of the matrix phase
M_S1 s_{1}^{m}, plastic yielding parameter of the matrix phase
M_S2 s_{2}^{m}, plastic yielding parameter of the matrix phase
M_S3 s_{3}^{m}, plastic yielding parameter of the matrix phase
M_S4 $\quad h_{0}^{m}$, plastic yielding parameter of the matrix phase

VARIABLE

DESCRIPTION

ITC
Option for the elastoplastic material law for the matrix phase.
EQ.0: No tension-compression asymmetry in material properties

EQ.1: Use tension-compression asymmetric material properties
EQ.2: Use a viscoplastic formulation to account for strain rate effects, where a table can define the yield strength as a function of the equivalent plastic strain for various strain rates

EQ.3: Use tension-compression asymmetric material properties in a viscoplastic formulation to account for strain rate effects

Tension-Compression Asymmetry Card. Include this card if ITC $=1$ or 3 .

Card 4.1	1	2	3	4	5	6	7	8
Variable	M_EC	M_PRC	M_S1C	M_S2C	M_S3C	M_S4C	PT	PC
Type	F							
Default	none	none	none	none	none	none	0.0	0.0

VARIABLE
M_EC
M_PRC
M_S1C
M_S2C
M_S3C
M_S4C
PT

DESCRIPTION

E^{m}, Young's modulus of the matrix phase in compression
v^{m}, Poisson's ratio of the matrix phase in compression
s_{1}^{m}, plastic yielding parameter of the matrix phase in compression
s_{2}^{m}, plastic yielding parameter of the matrix phase in compression
s_{3}^{m}, plastic yielding parameter of the matrix phase in compression h_{0}^{m}, plastic yielding parameter of the matrix phase in compression Absolute value of the tensile mean stress threshold beyond which the tensile material properties are adopted. If the mean stress $\left(\sigma_{X X}+\sigma_{Y Y}+\sigma_{Z Z}\right) / 3$ falls within the range [-PC, PT$]$, a weighted average of the tensile and compressive material properties is used for the matrix phase. See Remark 3.

VARIABLE

PC

DESCRIPTION

Absolute value of the compressive mean stress threshold beyond which compressive material properties are adopted.

Card 5	1	2	3	4	5	6	7	8
Variable	LCIDT	LCIDC						
Type	1	1						
Default	0	0						

VARIABLE

LCIDT

DESCRIPTION

Load curve or table ID. The load curve is available for ITC $=0$ and 1 while the table is available for ITC $=2$ and 3 .
Load Curve. When LCIDT is a load curve ID, data points representing the accumulated equivalent plastic strain and the corresponding yield strength for the matrix phase are respectively given in the first column and the second column of the corresponding load curve in *DEFINE_CURVE. If ITC $=1$ is specified in Card 4, this load curve describes the matrix material in tension only. See Remark 3.

Tabular Data. If ITC $=2$ or 3 is specified in Card 4, LCIDT is treated as a table ID. Data points representing different strain rates are given in one column of the corresponding table in *DEFINE_TABLE, followed by the definitions of load curves for the yield strength for the matrix phase as a function of effective plastic strain at each given strain rate value. See *DEFINE_TABLE. Linear interpolation of the yield strengths at different given strain rates is used by default. If the strain rate values fall out of range, extrapolation is not used; instead, either the first or last curve determines the yield strength as a function of effective plastic strain, which depends on whether the strain rate falls below the minimum given value or exceeds the maximum given value, respectively. If ITC $=3$ is specified in Card 4, this table describes the matrix material in tension only.

Logarithmically-Defined Tables. If ITC $=2$ or 3 is specified in Card 4, LCIDT refers to a table ID. In addition, if the first value in the table is negative, all data points in the table represent the natural logarithm of strain rates, and logarithmic interpolation of the

Figure M303-1. Schematic of the simulation framework for concurrent multiscale nonlinear analysis of injection-molded fiber-reinforced composite structures.

VARIABLE

DESCRIPTION

yield strengths at discrete given strain rates is used. Note that this option works only when the lowest strain rate has a value less than 1.0. For values greater than or equal to 1.0 , use the LOG_INTERPOLATION option.

LCIDC ID for the user-defined load curve or table. Similar to LCIDT, LCIDC is the ID of a load curve or table that contains the accumulated equivalent plastic strain and the yield strength for the matrix phase in compression. This parameter is available for ITC $=1$ (load curve) and 3 (table). The description for the load curve and table is the same as for LCIDT but for compression. See Remark 3.

Remarks:

1. Mechanistic machine learning-based multiscale simulation. The core algorithm of this multiscale simulation is the DMN (Deep Material Network) based upon a mechanistic machine learning technique $[1,2,3,4,5,6]$. As described in [$4,5,6$], the machine learning model creation requires an "offline" training process, which involves the learning of composite material physics hidden in the high-fidelity RVE simulation-based data. To cover a wide variety of material microstructures of fiber-reinforced composites, we adopted a transfer learning method $[3,4,6]$ to generate different networks based on the actual material microstructure information at each integration point of the finite element mesh. In LS-DYNA, we have implemented a trained DMN database. It can effectively
predict the highly nonlinear macroscopic material behaviors. The computational cost of DMN is orders-of-magnitude lower than finite element simulation of high-fidelity 3D RVEs containing complex material microstructures. The overall concurrent multiscale simulation framework enabled by DMN is depicted in Figure M303-1.

Different from conventional material models, this machine learning-based multiscale material model is data-driven, so its simulation capability can be continuously enhanced as more high-quality training data for fiber-reinforced composites are supplied in the future. Enhanced DMN databases with new functions will be available in the future release of LS-DYNA.
2. Constitutive laws for fiber materials. By default, the constitutive behaviors of the fiber material are modeled with isotropic elasticity. If you set ISO to 1 on Card 3, then the fiber material is modeled with a transversely isotropic elasticity. Its symmetric compliance matrix takes the following form:

$$
\left[\begin{array}{cccccc}
1 / E_{l}^{f} & -v_{t l}^{f} / E_{t}^{f} & -v_{t l}^{f} / E_{t}^{f} & 0 & 0 & 0 \\
-v_{t l}^{f} / E_{t}^{f} & 1 / E_{t}^{f} & -v_{t t}^{f} / E_{t}^{f} & 0 & 0 & 0 \\
-v_{t l}^{f} / E_{t}^{f} & -v_{t t}^{f} / E_{t}^{f} & 1 / E_{t}^{f} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / G_{l t}^{f} & 0 & 0 \\
0 & 0 & 0 & 0 & 2\left(1+v_{t l}^{f}\right) / E_{l}^{f} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / G_{l t}^{f}
\end{array}\right]
$$

Here E_{l}^{f} and E_{t}^{f} are the Young's moduli along the fiber's longitudinal (l) and transverse (t) directions, respectively; $v_{t l}^{f}$ and $v_{t t}^{f}$ are the Poisson's ratios; and $G_{l t}^{f}$ is the shear modulus. If the five material parameters given in Card 3.1 satisfy $E_{l}^{f}=E_{t}^{f}, v_{t l}^{f}=v_{t t}^{f}$, and $G_{l t}^{f}=E_{l}^{f} /\left[2\left(1+v_{t l}^{f}\right)\right]$, then the elastic fiber's material model becomes isotropic which is the same as simply providing the two material constants in Card 3.
3. Constitutive laws for matrix materials. The matrix materials are modeled with an associated elastoplastic constitutive model. If ITC $=0$ in Card 4 , then the material properties given in Card 4 and/or LSIDT in Card 5 will be used for the matrix material, and Card 4.1 should not appear in the input file. However, if ITC $=1$ or 3 is specified in Card 4, the model for matrix material considers ten-sion-compression asymmetry. In this case, Card 4 and / or LCIDT specify tensile material properties while Card 4.1 and /or LCIDC specify compressive material properties. By default, the sign of the mean stress $\left(\sigma_{X X}+\sigma_{Y Y}+\sigma_{Z Z}\right) / 3$ determines tension with a positive sign indicating that the material is in tension. Numerically, an abrupt transition from the tensile and compressive yield surfaces may cause convergence difficulty. To avoid this numerical issue, we can assign small positive numbers (e.g., a small percentage of the yield strength) to PT and

PC in Card 4.1 which define a mean stress range [$-\mathrm{PC}, \mathrm{PT}$] for which weighted averaged values of the tensile and compressive properties are used in the simulation.

Three von Mises yield functions with different hardening laws are available, including:
a) A yield function based on the following isotropic hardening law:

$$
s_{Y}^{m}=s_{1}^{m}+s_{2}^{m} \bar{\varepsilon}_{P}^{m}-s_{3}^{m} \exp \left(-h_{0}^{m} \bar{\varepsilon}_{P}^{m}\right)
$$

where s_{Y}^{m} denotes the current yield strength for the matrix phase, $\bar{\varepsilon}_{P}^{m}$ denotes the accumulated equivalent plastic strain of the matrix material, and plastic yielding parameters $h_{0}^{m}, s_{1}^{m}, s_{2}^{m}$, and s_{3}^{m} are defined in Card 4 or Card 4.1. If $s_{3}^{m}=0$, the yield function becomes equivalent to a linear hardening law with a hardening coefficient s_{2}^{m} an initial yield strength s_{1}^{m}. Otherwise, $s_{1}^{m}-s_{3}^{m}$ represents the initial yield strength.
b) A yield function based on an input hardening curve. The curve ID is given as LCIDT or LCIDC in Card 5, where the curve data's first and second columns represent, respectively, the accumulated equivalent plastic strain, $\bar{\varepsilon}_{P}^{m}$, and the corresponding yield strength, s_{Y}^{m}.
c) A yield function based on an input hardening table. The table ID is given as LCIDT or LCIDC in Card 5, where the associated curves provide the accumulated equivalent plastic strain $\bar{\varepsilon}_{P}^{m}$ and the corresponding yield strength s_{Y}^{m} at different strain rates.

If a curve or table is provided in Card 5, the corresponding yield strength and hardening parameters defined in Card 4 or 4.1 are ignored.

Based on feedback and requests, we will develop other constitutive laws for the base materials to capture more complex behaviors of composites, such as material failures.
4. Heterogeneous distributions of fiber orientations and fiber volume fractions. Due to the manufacturing process, fiber-reinforced composites contain heterogeneous distributions of material microstructures, such as different fiber orientations, fiber volume fractions, and thermally/chemically-induced residual stresses at different locations of the composite structure. This information can be obtained from either experimental measurements or injection molding simulation software packages. If these microstructure data are available, they can be used as initial conditions in LS-DYNA by defining the keyword *INITIAL_STRESS_SOLID or *INITIAL_STRESS_SHELL, depending on the finite element formulations adopted in the macroscale numerical model.
a) If solid finite elements (e.g., eight-node hexahedron or four-node tetrahedron elements) are used, the *INITIAL_STRESS_SOLID keyword can be used to define the fiber information. As shown in the following example, 6 history variables initialize the components of the symmetric fiber orientation tensor, $\left(A_{X X}\right)_{e^{\prime}}^{p},\left(A_{Y Y}\right)_{e^{\prime}}^{p}\left(A_{X Y}\right)_{e^{\prime}}^{p}\left(A_{Y Z}\right)_{e^{\prime}}^{p}\left(A_{X Z}\right)_{e^{\prime}}^{p}$, and the fiber volume fraction, $(f \circ f)_{e}^{p}$, at each integration point of the finite element mesh. The subscript $e=1,2,3, \ldots$ denotes the finite element index, and the superscript $p=1,2,3, \ldots$ denotes the integration point index. Note that, the component $\left(A_{Z Z}\right)_{e}^{p}$ of the fiber orientation tensor is not provided in this keyword because it can be easily calculated based on its relationship with the $\left(A_{X X}\right)_{e}^{p}$ and $\left(A_{Y Y}\right)_{e}^{p}$ components, i.e., $\left(A_{Z Z}\right)_{e}^{p}=1.0-\left(A_{Y Y}\right)_{e}^{p}-\left(A_{X X}\right)_{e}^{p}$. Starting with R15, *MAT_303 offers an effective method of capturing the effects of the manufacturing-process-induced residual stress field on the mechanical performance. If the residual stress effects need to be considered, *INITIAL_STRESS_SOLID can provide the six residual stress components at each integration point. See *INITIAL_STRESS_SOLID for details.

b) If shell finite elements (shell formulation 25 that supports the use of 3D constitutive laws) are used, the *INITIAL_STRESS_SHELL keyword can be used to define the fiber information. If we assume that the one-point quadrature scheme is adopted in the in-plane direction while 3 integration points exist along the shell thickness direction (note: you can define the number of through-thickness integration points), then we need to define 6 history variables at each of the 3 integration points of every shell finite element. These history variables include the components of the symmetric fiber orientation tensor, $\left(A_{X X}\right)_{e^{\prime}}^{p},\left(A_{Y Y}\right)_{e^{\prime}}^{p}\left(A_{X Y}\right)_{e^{\prime}}^{p}\left(A_{Y Z}\right)_{e^{\prime}}^{p}\left(A_{X Z}\right)_{e^{\prime}}^{p}$ and the fiber volume fraction, $(f v f)_{e}^{p}$. The subscript $e=1,2,3, \ldots$ denotes the finite element index, and the superscript $p=1,2,3, \ldots$ denotes the integration point index. Please refer to the following example. Starting with R15, *MAT_303 offers an effective method of capturing the effects of the manufacturing-process-induced residual stress field on the mechanical performance. If the residual stress effects need to be considered, *INITIAL_STRESS_SHELL can provide the six residual stress components at each integration point. See *INITIAL_STRESS_SHELL for details.


```
    (A AXX)
$ HISV6
    (fvf)e
...
$
* END
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
```


Workflow to import fiber data from Moldex3D:

LS-PrePost 4.10 or newer versions support the mapping of Moldex3D injection molding simulation results (fiber orientation tensor $A_{i j}$ and the fiber concentration c) onto LS-DYNA mechanical models. The mapped fiber distributions will be exported as material history state variables in the initial stress keyword cards *INITIAL_STRESS_SHELL or *INITIAL_STRESS_SOLID (see Remark 4). These keywords will be read by LS-DYNA when the multiscale material model for fiber-reinforced composites, *MAT_DMN_COMPOSITE_FRC, is used in the finite element analysis.

After performing a injection molding simulation in Moldex3D, the result files can be exported as .k (element connectivity and nodal coordinates), .o2d (fiber orientation tensor at each element), and .fcd (fiber concentration at each node) files by doing the following:

1. Click "Results" in the top toolbar of Moldex3D software and select "FEA interface."
2. In "FEA Interface Function Option," choose "LS-Dyna" as the stress solver, and then select "fiber concentration output" and "fiber orientation output." Next, click "Export" to create the .k, .o2d, and .fcd files, which are located in the project folder.

Note that the above procedure creates two .k files (LS-DYNA format mesh files) simultaneously. One of them contains material constants and treats each element as a unique part. It should be discarded in the subsequent LS-PrePost mapping procedure. The other .k file contains only the finite element mesh information and will be used by LS-PrePost.

To map the fiber information from these Moldex3D files to an LS-DYNA finite element model, the following procedure can be performed in LS-PrePost:

1. Click "Misc." in the top toolbar of LS-PrePost and select "Moldex3D". A Moldex3D dialog box will appear, as shown in Figure M303-2.
2. Click the Browse button under Target Mesh and select the .k file for the LS-DYNA mechanical model. The .k file must contain the element connectivity and nodal coordinates for the 'target' parts to be used in the structural analysis in LS-DYNA.

Figure M303-2. Moldex3D mapping GUI in LS-PrePost 4.9 (available in March 2022).
3. Click the Browse button under Moldex3D Mesh and select the .k file exported from Moldex3D. The .k file must contain the element connectivity and nodal coordinates for the 'source' parts that are used in the injection molding analysis in Moldex3D.
4. Click the Browse button under Moldex3D O2D and select the .o2d file exported from Moldex3D. The . o2d file contains the fiber orientation tensor distribution in the 'source' part.
5. Click the Browse button under Moldex3D FCD and select the .fcd file exported from Moldex3D. The .fcd file contains the fiber concentration (meaning fiber volume fraction $\times 100$) distribution in the 'source' part. If the .fcd file is not available, then this step can be skipped, and the fiber volume fraction distribution will be considered homogeneous in the target part based on the parameter FVF given in *MAT_DMN_COMPOSITE_FRC.
6. Click Import so that all the previously selected files will be read in LS-PrePost. The source model and the target model are both visualized in the same global coordinate system, as shown in Figure M303-3.

Figure M303-3. After importing the files chosen in steps 2-5, the source model and target model will be visualized automatically in the same global coordinate system in LS-PrePost v4.9. In this illustration, the source model is discretized by solid finite elements, and the target model is discretized by shell finite elements.

Figure M303-4. The source part and the target part are not always oriented in the same direction in the global coordinate system, but mapping fiber information in LS-PrePost requires that the rigid body transformation between the parts be known. With "Transform Model", you define planes in the source and target so that the rigid body rotation can be determined.
7. Choose "Solid to Shell", if the target part is discretized by shell finite elements. Alternatively, choose "Solid to Solid", if the target part is discretized by solid finite elements. Note that, in the current LS-PrePost mapping function, only solid elements can be used as the source part from Moldex3D.
8. If the source part and the target part are oriented in the same direction in the global coordinate system, then this step should be skipped. Otherwise, a rigid

Figure M303-5. For the "Solid to Shell" mapping, select two opposite sides of the source part that correspond to the top and bottom surfaces of the target shell model.
body rotation should be performed to rotate the source part into the same orientation as the target part. To do so, as shown in Figure M303-4, click "Transform Model", and select three nodes in the source model that define a plane (plane A), and then select three nodes in the target model that define a plane (plane B). LS-PrePost then automatically applies a 3D rigid body rotation that transforms plane A to plane B when it maps the fiber information from the source part to the target part in subsequent steps.
9. In "Pick Parts", click "From", then select the part from the Moldex3D source model.
10. In "Pick Parts", click "To", then select the part from the LS-DYNA target model.
11. If "Solid to Solid" is chosen in Step 8, then skip this step. Otherwise, in "Pick Segments", select two surfaces from the source part as "Side 1" and "Side 2", as shown in Figure M303-5. These two surfaces of the solid model should, respectively, correspond to the top and bottom surfaces of shell finite element mesh in the target part.
12. If "Solid to Shell" is chosen in Step 8, the number of through-thickness integration points defined in the keyword card *SECTION_SHELL for shell finite elements in the target part will be recognized automatically by LS-PrePost. If the number of through-thickness integration points is not defined for the target part, 3 through-thickness integration points will be used by LS-PrePost in the solid-to-shell mapping.
13. Click "Map" to map the data from the source part to the target part.
14. Under "Save *INITIAL to", click "Browser" to specify the path and filename for the new keyword file. Then click "Save" so that the keyword cards *INITIAL_STRESS_SHELL or *INITIAL_STRESS_SOLID will be created in the specified file. This file should be included for the LS-DYNA finite element analysis.
15. Click "Done" to exit the Moldex3D mapping function.
16. Click "Post", choose "Fringe Component", and select either the source part or the target part to view contour plots of the original data or mapped data, respectively.

References:

[1] Liu, Z., C.T. Wu, and M. Koishi, "A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials," Computer Methods in Applied Mechanics and Engineering, Vol. 345, pp. 1138-1168, (2019).
[2] Liu, Z. and C.T. Wu, "Exploring the 3D architectures of deep material network in data-driven multiscale mechanics," Journal of the Mechanics and Physics of Solids, Vol. 127, pp. 20-46, (2019).
[3] Liu, Z., C.T. Wu, and M. Koishi, "Transfer learning of deep material network for seamless structureproperty predictions," Computer Mechanics, Vol. 64, pp. 451-465, (2019).
[4] Liu, Z., H. Wei, T. Huang, and C.T. Wu, "Intelligent multiscale simulation based on process-guided composite database," (2020). https://arxiv.org/abs/2003.09491
[5] Wei, H., C.T. Wu, D. Lyu, W. Hu, F.H. Rouet, K. Zhang, P. Ho, H. Oura, M. Nishi, T. Naito, and L. Shen, "Multiscale simulation of short-fiber-reinforced composites from computational homogenization to mechanistic machine learning in LS-DYNA," $13^{\text {th }}$ European LS-DYNA Conference, Ulm, Germany (2021). Vol. 64, pp. 451-465, (2019). https://www.dynalook.com/conferences/13th-european-Is-dyna-conference-2021
[6] Wei, H., Wu, C. T., Hu, W., Su, T. H., Oura, H., Nishi, M., Naito, T., Chung, S., Shen, L., "LS-DYNA Machine Learning-Based Multiscale Method for Nonlinear Modeling of Short Fiber-Reinforced Composites." Journal of Engineering Mechanics, 149(3), 04023003, (2023).

*MAT_HOT_PLATE_ROLLING

This is Material Type 305. This model is for hot rolling of steel. It can only be used with solid elements for explicit simulation. The model contains the following features: work hardening, dynamic softening, static recovery, and static recrystallization. Input parameters are calibrated from Gleeble tests at various deformation rates and temperatures; see Schill et. al. [2021] and references therein.

Card Summary:

Card 1. This card is required.

MID	RO	E	PR	ALPHAT	BETA	VP	TOL

Card 2. This card is required.

YB	QDEF	R	A	B	MINRT	POST	ODESOL

Card 3. This card is required.

ASIGO	BSIGO	ASIGS	BSIGS	ASIGSS	BSIGSS	AEPS	BEPS

Card 4. This card is required.

THRES	M	ALPHA	NUD	UO	K	NU	BNU

Card 5. This card is required.

T50	N	A50	D	GSF	P	Q	QREX

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	E	PR	ALPHAT	BETA	VP	TOL
Type	A	F	F	F	F	F	F	F
Default	none	none	none	none	none	0.0	0.0	1.0

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be specified (see*PART).
RO	Mass density
E	Young's modulus
PR	Poisson's ratio
ALPHAT	Thermal expansion coefficient, α_{T}.
BETA	Mixed hardening parameter, $0 \leq \beta \leq 1 . \beta=0$ for isotropic and $\beta=$ 1 for kinematic hardening.
VP	Formulation for rate effects in plasticity update: EQ.0.0: No plastic strain rate dependence in yield stress (default)
	EQ.1.0: Plastic strain rate dependence in yield stress. Slower but more stable (recommended).
TOL	Multiplication factor (must be >0.0) on tolerance criteria for plasticity and annealing iterations.
	LT.1.0: Increases accuracy at greater computational cost
	EQ.1.0: Default value
	GT.1.0: Decreases accuracy at less computational cost

Work Hardening and Dynamic Softening Parameters Card.

Card 2	1	2	3	4	5	6	7	8
Variable	YB	QDEF	R	A	B	MINRT	POST	ODESOL
Type	F	F	F	F	F	F	F	F
Default	none	none	none	none	none	0.0	0.0	0.0

VARIABLE

BY

DESCRIPTION

Work hardening parameter, B_{y}. See Work Hardening and Dynamic Softening.
$\frac{\text { VARIABLE }}{\text { QDEF }}$

R Work hardening gas constant, R. See Work Hardening and Dynamic Softening.

A Dynamic softening parameter, a. See Work Hardening and Dynamic Softening.

B Dynamic softening parameter, b. See Work Hardening and Dynamic Softening.

MINRT Work hardening minimum (plastic) strain rate, $\dot{\varepsilon}_{\text {min }}$, in Zener-Hollomon parameter. See Work Hardening and Dynamic Softening.

POST Save additional history variables for post-processing with POST = 1

ODESOL Solver for static recovery stress:
EQ.0.0: Trapezoidal rule (default)
EQ.1.0: Heun's method:Faster but less stable.

Second Work Hardening and Dynamic Softening Parameters Card.

Card 3	1	2	3	4	5	6	7	8
Variable	ASIGO	BSIGO	ASIGS	BSIGS	ASIGSS	BSIGSS	AEPS	BEPS
Type	F							
Default	none							

VARIABLE
ASIG0,
ASIGS

BSIG0, BSIGS

DESCRIPTION

Parameters $a_{i}, i=0, s, s s$, to calculate σ_{0}, σ_{s}, and $\sigma_{s s}$, respectively, from the Zener-Hollomon parameter. See Work Hardening and Dynamic Softening.

Parameters $b_{i}, i=0, s, s s$, to calculate σ_{0}, σ_{s}, and $\sigma_{s s}$, respectively, from the Zener-Hollomon parameter. See Work Hardening and Dynamic Softening.

VARIABLE

AEPS

BEPS

DESCRIPTION

Parameter $a_{\varepsilon_{s}}$ used to calculate the saturation strain, ε_{s}, for dy namic relaxation from the Zener-Hollomon parameter. See Work Hardening and Dynamic Softening.

Parameter $a_{\varepsilon_{s}}$ used to calculate the saturation strain, ε_{s}, for dynamic relaxation from the Zener-Hollomon parameter. See Work Hardening and Dynamic Softening.

Static Recovery Parameters Card. See Static Recovery and Static Recrystallization.

Card 4	1	2	3	4	5	6	7	8
Variable	THRES	M	ALPHA	NUD	U0	K	NU	BNU
Type	F	F	F	F	F	F	F	F
Default	none							

VARIABLE

THRES

M Taylor factor, M, for static recovery stress

NUD Debye frequency, v_{D}, for static recovery stress
U0 Activation energy, U_{0}, for static recovery stress
K Boltzmann constant, k
NU Interaction volume, v, for static recovery stress
BNU \quad Burger's vector, b_{v}, for static recovery stress

Static Recrystallization Parameters Card. See Static Recovery and Static Recrystallization.

Card 5	1	2	3	4	5	6	7	8
Variable	T50	N	A50	D	GSF	P	Q	QREX
Type	F	F	F	F	F	F	F	F
Default	none							

VARIABLE

DESCRIPTION

T50
N
A50

D
GSF

P

Q

QREX

Length parameter for strain dependent recrystallization time
Exponent for strain dependent recrystallization time
Exponent for strain dependent recrystallization time
Exponent for strain dependent recrystallization time
Activation energy for strain dependent recrystallization time

Material Model:

This material model uses a hypo-elastoplastic formulation

$$
\dot{\sigma}=\mathbf{C} \dot{\varepsilon}_{e}=\mathbf{C}\left(\dot{\varepsilon}-\dot{\varepsilon}_{T}-\dot{\varepsilon}_{p}\right),
$$

with thermal strain rate

$$
\dot{\varepsilon}_{T}=\alpha_{T} \dot{T} \mathbf{I},
$$

and plastic strain rate

Figure M305-1. Stress-strain with work hardening and dynamic softening

$$
\dot{\varepsilon}_{p}=\dot{\varepsilon}_{p} \frac{3 \mathbf{s}-\alpha}{2},
$$

where \boldsymbol{s} is the deviatoric stress, α is the back stress, ε_{p} is the effective plastic strain, and

$$
\sigma_{\mathrm{VM}}=\sqrt{\frac{3}{2}(\mathrm{~s}-\alpha):(\mathrm{s}-\alpha)},
$$

is the Von Mises stress.
Using a mixed kinematic isotropic-kinematic hardening with mixing factor $\beta \in[0,1]$ and a nonlinear hardening function $h\left(T, \varepsilon_{p}, \dot{\varepsilon}_{p}\right)$, the back stress evolves according to

$$
\dot{\alpha}=\beta H \dot{\varepsilon}_{p} \frac{\mathbf{s}-\alpha}{\sigma_{\mathrm{VM}}}
$$

where $H=\partial h / \partial \varepsilon_{p}$ is the material hardening. The yield stress becomes

$$
\sigma_{y}=h+\beta\left(\sigma_{0}-h\right)
$$

where σ_{0} is the initial yield stress. We will discuss the nonlinear hardening function in Work Hardening and Dynamic Softening below.

We will next discuss the models for work hardening, dynamic recrystallization, static recovery, and static recrystallization.

Work Hardening and Dynamic Softening

To begin this discussion, we need to introduce the Zener-Hollomon parameter. The initial yield stress $\left(\sigma_{0}\right)$, the saturation or peak stress $\left(\sigma_{s}\right)$, the steady state stress $\left(\sigma_{s s}\right)$, and the saturation strain $\left(\varepsilon_{s}\right)$ which describe the stress-strain curve in the work hardening and dynamic softening regime (see Figure M305-1) can depend on the deformation temperature and strain rate. The Zener-Hollomon provides this dependence. The parameter is given by

$$
Z=\max \left(\dot{\varepsilon}, \dot{\varepsilon}_{\min }\right) \exp \left(\frac{Q_{\mathrm{def}}}{R T}\right)
$$

The stresses then have the general form of:

$$
\sigma_{i}=a_{i} \ln Z+b_{i}, \quad i=0, s, s s,
$$

and the saturation strain, similarly, is given by

$$
\varepsilon_{s}=a_{\varepsilon_{s}} \ln Z+b_{\varepsilon_{s}} .
$$

In the above, $\dot{\varepsilon}$ is the effective strain rate, and $\dot{\varepsilon}_{\text {min }}$ is the minimum strain rate for which the parameter fit is done to prevent unphysical values of σ_{i} and ε_{s}. If $\mathrm{VP}=1$ the effective plastic strain rates are used here. $Q_{\text {def }}$ is the activation energy, R is the gas constant, and T is the temperature.

The work hardening model is based on the interplay between storage and annihilation of dislocations described by the Estrin and Mecking model

$$
\sigma_{\mathrm{EM}}=\sqrt{\sigma_{s}^{2}-\left(\sigma_{s}^{2}-\sigma_{0}^{2}\right) \exp \left(-2 B_{y} \varepsilon_{p}\right)}
$$

where B_{y} is a material parameter and ε_{p} is the effective plastic strain.
We include the effect of softening due to dynamic recrystallization in the prediction of the flow stress beyond a saturation strain, ε_{s}. To model this effect, we introduce the dynamic recrystallization fraction

$$
X_{d r x}=\left\{\begin{array}{cl}
0, & \varepsilon_{p}<\varepsilon_{s} \\
1-\exp \left(-a\left(\varepsilon_{p}-\varepsilon_{s}\right)^{b}\right), & \varepsilon_{p} \geq \varepsilon_{s}
\end{array}\right.
$$

The transient flow stress due to work hardening and dynamic softening is, then, predicted using a mixture law between the steady state stress, $\sigma_{\text {ss }}$, and the Estrin Mecking stress, σ_{EM} :

$$
\sigma=\sigma_{\mathrm{EM}}-X_{\mathrm{drx}}\left(\sigma_{s}-\sigma_{s s}\right)
$$

The resulting hardening function then becomes

$$
h=\left(1-X_{\mathrm{drx}}\right) \sigma_{\mathrm{EM}}+X_{\mathrm{drx}} \sigma_{\mathrm{ss}} .
$$

Static Recovery and Static Recrystallization

After deformation, the material softens due to static recovery and static recrystallization. The static recovery stress, $\sigma_{\text {srx }}$, is modeled by

$$
\sigma_{\mathrm{srx}}=\sigma_{0}+\Delta \sigma
$$

where σ_{0} is the initial yield stress and $\Delta \sigma$ is the change in stress due to dislocation climb. $\Delta \sigma$ changes with time by

$$
\frac{d \Delta \sigma}{d t}=-\frac{64 \Delta \sigma^{2}}{9 M^{3} \alpha^{2} E(T)} v_{D} \exp \left(-\frac{U_{0}}{R T}\right) \sinh \left(\frac{\Delta \sigma v b_{v}^{3}}{k T}\right) .
$$

At the start of recovery $\Delta \sigma=\sigma_{\mathrm{VM}}-\sigma_{0} \cdot M, \alpha, v_{D}$, and b_{v} are physical constants related to the properties of the FCC iron lattice, U_{0} is the activation energy for climb, v is the
interaction volume, and R and k are the universal gas constant and Boltzmann constant, respectively.

Static recovery starts when the material is under plastic load and the plastic strain rate is lower than THRES. It stops when the plastic strain rate is higher than THRES.

Softening is assumed to be caused by recrystallized grain growth. Deformed structure with high dislocation density is replaced with new grains with a low dislocation density and constant stress σ_{0}. The recrystallized fraction is described by the static recrystallization fraction $X_{\text {srx }}$ which is described via a standard JMAK expression

$$
X_{\mathrm{srx}}=1-\exp \left(-0.693\left(\frac{t-t_{\mathrm{start}}}{t_{50}}\right)^{n}\right)
$$

where t is the total time, $t_{\text {start }}$ is the start time of the recovery and t_{50} is the time required to reach 50% recrystallization.

Finally, the combined recovery stress state is expressed by a law of mixtures

$$
\sigma_{r}=X_{\mathrm{srx}} \sigma_{0}+\left(1-X_{\mathrm{srx}}\right) \sigma_{\mathrm{srx}} .
$$

If $A 50 \neq 0$, the recrystallization time t_{50} may be calculated from

$$
t_{50}=\left|A_{50}\right|\left(\varepsilon_{p}^{\text {tstart }}\right)^{p}\left(\dot{\varepsilon}_{p}^{\text {tstart }} \exp \left(\frac{Q_{\mathrm{def}}}{R T}\right)\right)^{q} d^{G_{\mathrm{sf}}} \exp \left(\frac{Q_{\mathrm{rex}}}{R T}\right)
$$

where $\varepsilon_{p}^{\text {tstart }}$ is the plastic strain at start of recovery. For A50 >0, the parameter T50 is ignored, and the material routine calculates t_{50} with the above expression. For $\mathrm{A} 50<0$, the material routine uses the parameter T50, but, if POST $=1$, LS-DYNA additionally calculates history variables $X_{\mathrm{srx}}^{\mathrm{post}}$ and $\sigma_{r}^{\text {post }}$ with t_{50} from the expression above.

During static recovery, stress and effective plastic strain is annealed, meaning stress and back stress is scaled with

$$
\gamma=\frac{\sigma_{r}-\sigma_{0}}{\sigma_{\mathrm{VM}}-\sigma_{0}}, \quad 0 \leq \gamma \leq 1
$$

and the annealed plastic strain solves

$$
\sigma_{y}\left(\varepsilon_{p}^{\text {annealed }}\right)=\gamma \sigma_{y}\left(\varepsilon_{p}\right)
$$

History variables:

The following history variables are available by default:

History Variable \#		Description
$1-6$	Back stress	

History Variable \#	Description
7	Temperature
8	Plastic strain rate
9	Plastic strain at start of recovery
10	Time since start of recovery $\left(t-t_{\text {start }}\right)$. It is set to -1 when inactive. 11
Static recovery stress, $\sigma_{\text {srx }}$	
12	Combined recovery stress, σ_{r}

The following additional variables are available if $\operatorname{POST}=1$:

History Variable \#	Description
13	Initial yield stress, σ_{0}
14	Saturation stress, σ_{s}
15	Steady state stress, $\sigma_{s s}$
16	Saturation strain, ε_{s}
17	Dynamic recrystallization fraction, X_{drx}
18	Yield stress, σ_{y}
19	Static recrystallization fraction, X_{srx}

The following additional variables are available if $\mathrm{POST}=1$ and $\mathrm{A} 50<0$:

History Variable \#	Description
20	Derived static recrystallization fraction, $X_{\mathrm{srx}}^{\text {post }}$
21	Derived combined recovery stress, $\sigma_{r}^{\text {post }}$

References:

Schill, M., Karlsson, J., Magnusson, H., Huyan, F., Nosar, N.S., Lagergren, J., Narström, T., and Johansson, F. "Simulation of Hot Plate Rolling using LS-DYNA," $13^{\text {th }}$ European LS-DYNA Conference (2021).

*MAT_GENERALIZED_ADHESIVE_CURING

This is Material Type 307. It incorporates a modular approach for modeling adhesive materials during chemical curing. This material model provides a general viscoelastic Maxwell model defined by its Prony series expansion of up to 18 terms that considers the effects of temperature and degree of cure. It is supported for solid and cohesive solid elements.

Card Summary:

Card 1. This card is required.

MID	RO	GASC	IDOC	INCR	QCURE	TZERO	

Card 2. This card is required.

CKOPT	CK1	CK2	CK3	CK4	CK5	CK6	CK7

Card 2.1. Include this card if CKOPT > 3 and CKOPT < 11.

CK8	CK9	CK10	CK11	CK12	CK13	CK14	CK15

Card 2.2. Include this card if $\mathrm{CKOPT}=5,6,9$, or 10.

CK16	CK17	CK18	CK19	CK20	CK21	CK22	CK23

Card 3. This card is required.

CEOPT	CE1	CE2	CE3	CE4			

Card 4. This card is required.

TEOPT	TE1	TE2					

Card 5. This card is required.

THOPT	TH1	TH2	TH3	TH4	TH5	TH6	TH7

Card 6. This card is required.

TVOPT	TV1	TV2					

Card 7. This card is required.

PHOPT	PH1	PH2	PH3	PH4	PH5	PH6	

Card 8. This card is required.

PVOPT	PV1	PV2	PV3	PV4			

Card 9. This card is required.

PL10PT	PL11	PL12	PL13	PL14	PL15		

Card 10. This card is required.

PL20PT	PL21	PL22	PL23	PL24	PL25	PL26	

Card 11. This card is required.

DAOPT	DAEV0	DATRIA	DA1	DA2	DA3	DA4	DA5

Card 12. This card is required.

DA6	DA7	DA8	DA9	DA10	DA11	PDA1	PGEL

Card 13a. The keyword reader assumes the input deck includes this version of Card 13 if, in the first instantiation of this card, the value in the first entry is ≥ 0.0. Input up to 18 instantiations of this card. The next keyword ("*") card terminates this input if using fewer than 18 cards. The number of terms for the shear behavior may differ from that for the bulk behavior: insert zero to exclude a term.

Gi	BETAGi	Ki	BETAKi				

Card 13b. The keyword reader assumes the input deck includes this version of Card 13 if the value in the first entry is <0.0

VIOPT	NUE						

Card 14a. Include this card if VISOPT =-1 on Card 13b. Input up to 13 instantiations of this card. The next keyword ("*") card terminates this input if using fewer than 13 cards.

Ei	BETAi	Ej	BETAj				

Card 14b. Include this card if VISOPT $=-2$. Include up to 13 instantiations of this card. The next keyword ("*") card terminates this input if using fewer than 13 cards.

Gi	BETAi	Gj	BETAj				

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	GASC	IDOC	INCR	QCURE	TZERO	
Type	A	F	F	F	F	F	F	

VARIABLE

MID

RO Mass density
GASC Gas constant, R
IDOC Initial degree of cure, p_{I}
INCR Switch between incremental and total stress formulation:
EQ.1: Incremental form (default, recommended)
EQ.2: Total form

QCURE

TZERO Temperature value with respect to the temperature scale used in the input deck for a temperature of 0 K . See Remark 1.

Card 2	1	2	3	4	5	6	7	8
Variable	CK0PT	CK1	CK2	CK3	CK4	CK5	CK6	CK7
Type	I	F	F	F	F	F	F	F

VARIABLE
CKOPT Curing kinetics option (see Remark 2 for details):
EQ.0: No curing kinetics
EQ.1: Generalized model, with load curves for pre-exponential factors

VARIABLE

DESCRIPTION

EQ.2: Extended Kamal model
EQ.3: Kamal model
EQ.4: Three-species reaction kinetics model
EQ.5: Five-species reaction kinetics model
EQ.6: Five-species reaction kinetics model
EQ.7: Three-species reaction kinetics model
EQ.8: Three-species reaction kinetics model
EQ.9: Four-species reaction kinetics model
EQ.10: Five-species reaction kinetics model
EQ.11. Model-free kinetics
$\mathrm{CK} i \quad i^{\text {th }}$ curing kinetics model parameter. The meaning of the parameter depends on the choice of CKOPT. For details, see Remark 2.

Curing Kinetics Card 2. Additional card for CKOPT > 3 and CKOPT < 11.

Card 2.1	1	2	3	4	5	6	7	8
Variable	CK8	CK9	CK10	CK11	CK12	CK13	CK14	CK15
Type	F	F	F	F	F	F	F	F

VARIABLE

CKi

DESCRIPTION

$i^{\text {th }}$ curing kinetics model parameter. The meaning of the parameter depends on the choice of CKOPT. For details, see Remark 2.

Curing Kinetics Card 3. Additional card for $\mathrm{CKOPT}=5,6,9$, or 10.

Card 2.2	1	2	3	4	5	6	7	8
Variable	CK16	CK17	CK18	CK19	CK20	CK21	CK22	CK23
Type	F	F	F	F	F	F	F	F

VARIABLE

CKi

DESCRIPTION

$i^{\text {th }}$ curing kinetics model parameter. The meaning of the parameter depends on the choice of CKOPT. For details, see Remark 2.

Card 3	1	2	3	4	5	6	7	8
Variable	CEOPT	CE1	CE2	CE3	CE4			
Type	I	F	F	F	F			

VARIABLE

CEOPT Chemical expansion option (see Remark 3 for details):
EQ.O: No chemical expansion
EQ.1: Differential form with load curve input
EQ.2: Secant form with load curve input
EQ.3: Secant form with a polynomial expression
CE i

DESCRIPTION

$i^{\text {th }}$ chemical expansion model parameter. The meaning of the pa- rameter depends on the choice of CEOPT. For details, see Remark 3.

Card 4	1	2	3	4	5	6	7	8
Variable	TEOPT	TE1	TE2					
Type	I	F	F					

VARIABLE
TEOPT

DESCRIPTION

Thermal expansion option (see Remark 4):
EQ.O: No thermal expansion
EQ.1: Differential form with load curve input
EQ.2: Secant form with load curve input
TE $i \quad i^{\text {th }}$ thermal expansion parameter. The meaning of the parameter depends on the choice of TEOPT. For details, see Remark 4.

Card 5	1	2	3	4	5	6	7	8
Variable	TH0PT	TH1	TH2	TH3	TH4	TH5	TH6	TH7
Type	I	F	F	F	F	F	F	F

VARIABLE

THOPT

THi $\quad i^{\text {th }}$ shifting parameter. The meaning of the parameter depends on the choice of THOPT. For details, see Remark 6.

Card 6	1	2	3	4	5	6	7	8
Variable	TVOPT	TV1	TV2					
Type	I	F	F					

VARIABLE

DESCRIPTION

TVOPT Option for the vertical temperature shift of the master viscoelastic curve as given by the Prony series expansion. See Remarks 5 and 7 for details.

EQ.O: No temperature shift

VARIABLE

DESCRIPTION

EQ.1: Shifting of the complete master curves $G(t)$
EQ.2: Shifting of all terms G_{i} and K_{i}, but not G_{∞} and K_{∞}
The meaning of the shifting parameters depends on the choice of TVOPT. For details, see Remark 7.

Card 7	1	2	3	4	5	6	7	8
Variable	PHOPT	PH1	PH2	PH3	PH4	PH5	PH6	
Type	I	F	F	F	F	F	F	

VARIABLE

PHOPT

Card 8	1	2	3	4	5	6	7	8
Variable	PVOPT	PV1	PV2	PV3	PV4			
Type	I	F	F	F	F			

DESCRIPTION

Option for the horizontal shift due to curing effects of the master viscoelastic curve as given by the Prony series expansion (see Remarks 5 and 8):

EQ.0: No shift
EQ.1: Eom model
EQ.2: Direct input of shift factors as function of the degree of cure

PHi
$i^{\text {th }}$ shifting parameter. The meaning of the parameter depends on the choice of PHOPT. For details, see Remark 8.

VARIABLE

PVOPT

DESCRIPTION

Option for the vertical shift of the master viscoelastic curve due to curing effects as given by the Prony series expansion (see Remarks 5 and 9 for details):

EQ.0: No shift

VARIABLE

DESCRIPTION

EQ.1: Input of instantaneous moduli G_{0} and K_{0} as a function of degree of cure p. Assumption of constant ratios $G_{i}(p) / G_{0}(p)$ and $K_{i}(p) / K_{0}(p)$.

EQ.2: Input of long-term moduli $G_{\infty}(p)$ and $K_{\infty}(p)$ as functions of degree of cure p and of scaling functions for other moduli G_{i} and K_{i}.

PVi $\quad i^{\text {th }}$ shifting parameter. The meaning of the parameter depends on the choice of PVOPT. For details, see Remark 9.

Card 9	1	2	3	4	5	6	7	8
Variable	PL10PT	PL11	PL12	PL13	PL14	PL15		
Type	I	F	F	F	F	F		

VARIABLE

PL1OPT

PL1 $i \quad i^{\text {th }}$ yield surface parameter. The meaning of the parameter depends on the choice of PL1OPT. For details, see Remark 11.

Card 10	1	2	3	4	5	6	7	8
Variable	PL20PT	PL21	PL22	PL23	PL24	PL25	PL26	PL27
Type	I	F	F	F	F	F	F	F

VARIABLE

PL2OPT

PL2 $i \quad i^{\text {th }}$ yield stress parameter. The meaning of the parameter depends
PL2 $i \quad i^{\text {th }}$ yield stress parameter. The meaning of the parameter depends on the choice of PL2OPT. For details, see Remark 12.

Card 11	1	2	3	4	5	6	7	8
Variable	DAOPT	DAEVO	DATRIA	DA1	DA2	DA3	DA4	DA5
Type	I	I	I	F	F	F	F	F

DESCRIPTION
Option for yield stress description (see Remarks 10 and 12 for details):

EQ.O: No plasticity
EQ.1: Tabular input for yield stress as a function of curing, temperature, and plastic strains.
EQ.2: Tabular input for initial yield stress as a function of curing and temperature and hardening as a function of curing, temperature, and plastic strains.
EQ.3: Load curve inputs for effects of curing on initial yield stress and on hardening. Load curve input for temperature dependence of initial yield stress. Tabular input for hardening as a function of temperature and strain

EQ.4: Load curve inputs for effects of curing and temperature on the parameters for the yield stress definitions in the Toughened Adhesive Polymer model (TAPO)

EQ.5: Yield stress definitions in the Toughened Adhesive Polymer model (TAPO). No influence of temperature or curing.

VARIABLE

DAOPT

DESCRIPTION

Material damaging option (damage parameter D_{1}), defines the strain thresholds γ_{c} and γ_{f} for damage initiation and rupture (see Remark 13):

EQ.O: No material damage
EQ.1: Version of Toughened Adhesive Polymer model (TAPO): Strain threshold exponential function of triaxiality. Load curve inputs for temperature and cure dependence.

VARIABLE

DAEVO

DATRIAX

DA i

DESCRIPTION

EQ.2: Version of Toughened Adhesive Polymer model (TAPO). Same as 1, but without temperature and cure dependence.
EQ.3: Version of Toughened Adhesive Polymer model (TAPO). Same as 1, but with additional strain rate dependency.

Effective strain measure used for material damage evolution (see Remark 13):

EQ.O: Arc length of damage plastic strain
EQ.1: Arc length of plastic strain
EQ.2: Arc length of viscoelastic-plastic strain rate
Triaxiality flag for calculation of strain thresholds γ_{c} and γ_{f} for damage initiation and rupture of material damage option (see Remark 13):

EQ.O: Use triaxiality factor only in tension
EQ.1: Use triaxiality factor in tension and compression
$i^{\text {th }}$ material damage parameter. The meaning of the parameter depends on the choice of DAOPT for the evolution of damage parameter D_{1}. For details, see Remark 13.

Card 12	1	2	3	4	5	6	7	8
Variable	DA6	DA7	DA8	DA9	DA10	DA11	PDA1	PDA2
Type	F	F	F	F	F	F	F	F

VARIABLE
DA i

PDA1 Parameter for the (pre-) damage formulation due to for example viscous fingering. It defines the damage parameter D_{2} as function of the thickness strain ε_{33} and the degree of cure p. For details, see Remark 14.

EQ.0: No damage

VARIABLE

PGEL

DESCRIPTION

GT.O: Use exponential approach
LT.0: Load curve input with ID |PDA1| input for $D_{2}\left(\varepsilon_{33}\right)$
Gelation point $p_{\text {gel }}$ as needed to switch between evolution of damage parameters D_{1} and D_{2}. For details, see Remark 13 and Remark 14.

Viscoelastic Constant Card. The keyword reader assumes the input deck includes this version of Card 13 if, in the first instantiation of this card, the value in the first entry is \geq 0.0. Input up to 18 instantiations of this card. The next keyword ("*") card terminates this input if using fewer than 18 cards. The number of terms for the shear behavior may differ from that for the bulk behavior: insert zero to exclude a term.

Card 13a	1	2	3	4	5	6	7	8
Variable	Gi	BETAG i	Ki	BETAKi				
Type	F	F	F	F				

VARIABLE

DESCRIPTION

Gi
Shear relaxation modulus for the $i^{\text {th }}$ term
BETAG $i \quad$ Shear decay constant for the $i^{\text {th }}$ term
$\mathrm{Ki} \quad$ Bulk relaxation modulus for the $i^{\text {th }}$ term
BETAK $i \quad$ Bulk decay constant for the $i^{\text {th }}$ term
Viscoelastic Option Card. The keyword reader assumes the input deck includes this version of Card 13 if the value in the first entry is <0.0.

Card 13b	1	2	3	4	5	6	7	8
Variable	VISOPT	PR						
Type	F	F						

VARIABLE

VISOPT Viscous option determining the input of the Prony series:
EQ.-1: Prony series input for Young's modulus $E(t)$. Prony series for shear modulus $G(t)$ and bulk modulus $K(t)$ are derived from it, assuming a constant Poisson's ratio.

EQ.-2: Prony series input for shear modulus $G(t)$. The Prony series for the bulk modulus $K(t)$ is derived from it, assuming a constant Poisson's ratio.

PR Constant Poisson's ratio v

Viscoelastic Constant Cards for VISOPT =-1. Include up to 13 instantiations of this card if VISOPT $=-1$. See Remark 5.

Card 14a	1	2	3	4	5	6	7	8
Variable	E i	BETA i	Ej	BETA j				
Type	F	F	F	F				

VARIABLE

DESCRIPTION

Ei
Relaxation modulus for the $i^{\text {th }}$ term
BETA $i \quad$ Decay constant for the $i^{\text {th }}$ term
E $j \quad$ Relaxation modulus for the $j^{\text {th }}$ term
BETA $j \quad$ Decay constant for the $j^{\text {th }}$ term
Viscoelastic Constant Cards for VISOPT = -2. Include up to 13 instantiations of this card if VISOPT $=-2$. See Remark 5 .

Card 14b	1	2	3	4	5	6	7	8
Variable	Gi	BETA i	Gj	BETA j				
Type	F	F	F	F				

VARIABLE

DESCRIPTION

$\mathrm{G} i \quad$ Shear relaxation modulus for the $i^{\text {th }}$ term

VARIABLE

BETA i

Gj Shear relaxation modulus for the $j^{\text {th }}$ term
DESCRIPTION
Decay constant for the $i^{\text {th }}$ term

Decay constant for the $j^{\text {th }}$ term

Remarks:

1. Temperature scale. This material formulation requires providing the material data with respect to a consistent temperature unit. For all the curing kinetics models described in Remark 2, except CKOPT $=1$, it is necessary to define the temperature T in Kelvin. Consequently, if considering curing, all temperaturedependent input should be given for temperature data in Kelvin.

TZERO enables including this material model in a simulation set up in the Celsius temperature scale. It defines the temperature value $T_{0 K}$ in the user system for 0 K . Thus, to run a simulation with the Celsius scale, set $T_{0 K}$ to approximately -273. For a model using the Kelvin scale, $T_{0 K}$ is 0 .

For all temperature-dependent values in this material, LS-DYNA uses the modified temperature

$$
T=T_{\text {user }}-T_{0 K}
$$

where $T_{\text {user }}$ refers to the temperature value in the simulation.
2. Curing kinetics. This material formulation includes an internal variable p to represent the degree of cure for the adhesive. In all cases it is the result of a set of chemical reactions. The number of species in the reaction, the number of reaction steps, and the reactions kinetics applied depend on the choice for the curing kinetics option CKOPT.

All options of CKOPT, except CKOPT = 1, use the Arrhenius formula:

$$
K_{i}(T)=k_{i} \exp \left(-\frac{Q_{i}}{R T}\right)
$$

In the above, R is the universal gas constant. GASC in Card 1 sets R. A table at the end of this remarks gives the input structure for the parameters used by the different CKOPT options.
a) Two-species reaction kinetics model $(C K O P T=1,2$, and 3)

We can directly give the evolution equation in terms of the degree of cure p by identifying it with the product c_{2} of a chemical reaction with two chemical species. In the most general form it reads

$$
\dot{p}=K_{1}(T)(1-p)^{n_{1}}+K_{2}(T) p^{m_{2}}(1-p)^{n_{2}} .
$$

The functions $K_{1}(T)$ and $K_{2}(T)$ are the load curves for CKOPT $=1$ or follow the above Arrhenius equation for CKOPT $=2$ and 3. The standard Kamal model (CKOPT $=3$) introduces a simplification to the above equations with $n_{1}=n_{2}=n$.
b) Three-species reaction kinetics model $(C K O P T=4)$

This option represents a system of chemical reactions involving three chemical species A, B, and C with two reactions steps ($n^{\text {th }}$ order with autocatalysis). We denote the concentrations of the species with c_{1}, c_{2}, and c_{3}. The following gives the evolution equations for the concentrations of the reactant, c_{1}, and intermediate, c_{2} :

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}} \\
& \dot{c}_{2}=K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}}-K_{2}(T)\left(1 .+k_{c 2} c_{3}\right) c_{2}^{n_{2}}
\end{aligned}
$$

with input parameters $k_{c i}$ and n_{i}. The identity $c_{3}=1 .-c_{1}-c_{2}$ eliminates the concentration c_{3} of product species C from the equations. Therefore, the algorithm internally only uses the concentrations c_{1} and c_{2}. Thus, this model requires initial values $c_{1,0}$ and $c_{2,0}$.

Finally, we determine the degree of cure by a linear combination:

$$
\begin{aligned}
p & =F_{1}\left(1 .-c_{1}\right)+\left(1 .-F_{1}\right)\left(1 .-c_{1}-c_{2}\right) \\
& =1 .-c_{1}-c_{2}+F_{1} c_{2}
\end{aligned}
$$

with an additional factor F_{1}.
c) Five-species reaction kinetics models $(C K O P T=5$ and 6$)$

These options represent systems of chemical reactions with five chemical species $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E with concentrations $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}. The four reaction steps ($n^{\text {th }}$ order with autocatalysis) of the system result in evolution equations for the reactant c_{1} and intermediates c_{2}, c_{3}, and c_{4} as follows

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}} \\
& \dot{c}_{2}=K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}}-K_{2}(T)\left(1 .+k_{c 2} \tilde{c}_{\mathrm{Opt}}\right) c_{2}^{n_{2}} \\
& \dot{c}_{3}=K_{2}(T)\left(1 .+k_{c 2} \tilde{c}_{\mathrm{Opt}}\right) c_{2}^{n_{2}}-K_{3}(T)\left(1 .+k_{c 3} c_{4}\right) c_{3}^{n_{3}} \\
& \dot{c}_{4}=K_{3}(T)\left(1 .+k_{c 3} c_{4}\right) c_{3}^{n_{3}}-K_{4}(T)\left(1 .+k_{c 4} c_{5}\right) c_{4}^{n_{4}}
\end{aligned}
$$

with input parameters $k_{c i}$ and n_{i}. The identity $c_{5}=1 .-c_{1}-c_{2}-c_{3}-c_{4}$ eliminates the concentration c_{5} of the product E from the system. Consequently, the algorithm internally only uses the concentrations c_{1}, c_{2}, c_{3}, and c_{4} internally and requires input of their initial values $c_{1,0}, c_{2,0}, c_{3,0}$ an, $d c_{4,0}$.

The options CKOPT $=5$ and 6 only differ in the species used in the autocatalysis in the second reaction step. For option $\mathrm{CKOPT}=5$, we implemented
an autocatalysis by D . Thus, the value of \tilde{c}_{Opt} in the above equations is the concentration $c_{4}\left(\tilde{c}_{\mathrm{CKOPT}=5}=c_{4}\right)$. We use an autocatalysis by C as the second reaction step for $\mathrm{CKOPT}=6$. Consequently, \tilde{c}_{Opt} is $c_{3}\left(\tilde{c}_{\mathrm{CKOPT}=6}=c_{3}\right)$.

Finally, we determine the degree of cure p by a linear combination of the concentrations with scaling factors F_{1}, F_{2}, and F_{3} :

$$
p=\left(1 .-c_{1}-c_{2}-c_{3}-c_{4}\right)+F_{1}\left(c_{2}+c_{3}+c_{4}\right)+F_{2}\left(c_{3}+c_{4}\right)+F_{3}\left(c_{4}\right)
$$

d) Three-species reaction kinetics model $(C K O P T=7)$

This option implements another system of chemical reactions involving three chemical species A, B, and C (concentrations denoted by c_{1}, c_{2}, and $\left.c_{3}\right)$. It involves three reaction steps. The first reaction step $(\mathrm{A} \rightarrow \mathrm{B})$ is an $n^{\text {th }}$ order reaction with autocatalysis by B. The reaction from the intermediate B to the product C follows the extended Kamal model. The evolution equations thus read

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}} \\
& \dot{c}_{2}=K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}}-K_{2}(T) c_{2}^{n_{2}} c_{3}^{m_{2}}-K_{3}(T) c_{2}^{n_{3}}
\end{aligned}
$$

with input parameters $k_{c 1}, m_{2}$ and n_{i}. The identity $c_{3}=1 .-c_{1}-c_{2}$ removes concentration c_{3} of the product C from the equations. Therefore, the algorithm internally only uses the concentrations c_{1} and c_{2} and requires initial values $c_{1,0}$ and $c_{2,0}$.

Finally, a linear combination with the factor F_{1} determines the degree of cure:

$$
p=1 .-c_{1}-c_{2}+F_{1} c_{2}
$$

e) Three-species reaction kinetics model $(C K O P T=8)$

This option represents the third system of chemical reactions with three chemical species A, B, and C (concentrations denoted by c_{1}, c_{2}, c_{3}). It involves two reaction steps. The first reaction step $(A \rightarrow B)$ follows the ProutTompkins equation, the second $(B \rightarrow C)$ is described by an $n^{\text {th }}$ order reaction. The evolution equations read as:

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T) c_{1}^{n_{1}} c_{2}^{\mathrm{m}_{1}} \\
& \dot{c}_{2}=K_{1}(T) c_{1}^{n_{1}} c_{2}^{\mathrm{m}_{1}}-K_{2}(T) c_{2}^{n_{2}}
\end{aligned}
$$

with input parameters m_{1} and n_{i}. The identity $c_{3}=1 .-c_{1}-c_{2}$ replaces the concentration c_{3} of the product. Thus, the internal calculation does not use c_{3}. The calculation requires initial values $c_{1,0}$ and $c_{2,0}$.

Finally, a linear combination determines the degree of cure:

$$
p=1 .-c_{1}-c_{2}+F_{1} c_{2}
$$

with an additional factor F_{1}.
f) Four-species reaction kinetics model $(C K O P T=9)$

This option implements a reduced version of the system of chemical reactions defined by CKOPT $=6$. This option only considers four chemical species $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D and three reaction steps. The following gives the evolution equations for the reactant c_{1} and intermediates c_{2} and c_{3} as:

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}} \\
& \dot{c}_{2}=K_{1}(T)\left(1 .+k_{c 1} c_{2}\right) c_{1}^{n_{1}}-K_{2}(T)\left(1 .+k_{c 2} c_{3}\right) c_{2}^{n_{2}} \\
& \dot{c}_{3}=K_{2}(T)\left(1 .+k_{c 2} c_{3}\right) c_{2}^{n_{2}}-K_{3}(T)\left(1 .+k_{c 3} c_{4}\right) c_{3}^{n_{3}}
\end{aligned}
$$

with input parameters $k_{c i}$ and n_{i}. The identity $c_{4}=1 .-c_{1}-c_{2}-c_{3}$ eliminates the concentration c_{4} of the product D , which allows expressing the system in terms of the concentrations c_{1}, c_{2} and c_{3}. Initial values $c_{1,0}, c_{2,0}$ and $c_{3,0}$ are needed to solve the system.

A linear combination determines the degree of cure p :

$$
p=\left(1 .-c_{1}-c_{2}-c_{3}\right)+F_{1}\left(c_{2}+c_{3}\right)+F_{2}\left(c_{3}\right) .
$$

g) Five-species reaction kinetics model $(C K O P T=10)$

Option CKOPT $=10$ models a system of chemical reactions with five chemical species: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E with concentrations $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}. The first reaction involves the reactant A and the product D ($n^{\text {th }}$ order with autocatalysis). The second reaction changes species B into species E through an intermediate species C. Modeling this reaction involves two reaction steps ($n^{\text {th }}$ order with autocatalysis by C and an $n^{\text {th }}$ order reaction). The evolution equations are:

$$
\begin{aligned}
& \dot{c}_{1}=-K_{1}(T)\left(1 .+k_{c 1} c_{4}\right) c_{1}^{n_{1}} \\
& \dot{c}_{2}=-K_{2}(T)\left(1 .+k_{c 2} c_{3}\right) c_{2}^{n_{2}} \\
& \dot{\dot{c}_{3}}=K_{2}(T)\left(1 .+k_{c 2} c_{3}\right) c_{2}^{n_{2}}-K_{3}(T) c_{3}^{n_{3}}
\end{aligned}
$$

with input parameters $k_{c i}$ and n_{i}. The equations $c_{4}=1 .-c_{1}$ and $c_{5}=$ 1. $-c_{2}-c_{3}$ give the concentrations c_{4} and c_{5} of the products D and E . Consequently, these equations reduce the system to three unknown concentrations, c_{1}, c_{2}, and c_{3}. Therefore, solving the system requires the input of initial values $c_{1,0}, c_{2,0}$ and $c_{3,0}$.

The following equation determines the degree of cure p from the concentrations and factors F_{1} and F_{2} :

$$
p=F_{1}\left(1 .-c_{1}\right)+\left(1 .-F_{1}\right)\left(F_{2}\left(1 .-c_{2}\right)+\left(1 .-F_{2}\right)\left(1 .-c_{2}-c_{3}\right)\right)
$$

h) Model-free kinetics approach $(C K O P T=11)$

This option allows for a direct, tabulated input of the evolution equation governing the curing process. This choice for CKOPT requires inputting
load curves for a logarithmic scaling function $\ln \left(A^{\prime}(p)\right)$ and the activation energy $Q(p)$ as functions of the degree of cure p. The differential equation then reads:

$$
\dot{p}=\exp \left(\ln \left(A^{\prime}(p)\right)\right) \times \exp \left(-\frac{Q(p)}{R T}\right)
$$

CKOPT	1	2	3	4	5	6	7	8	9	10	11
CK1	$K_{1}(T)$	k_{1}	$\ln A^{\prime}(p)$								
CK2	$K_{2}(T)$	k_{2}	$Q(p)$								
CK3	m_{2}	Q_{1}	Q_{1}	Q_{1}	k_{3}	k_{3}	k_{3}	Q_{1}	k_{3}	k_{3}	
CK4	n_{1}	Q_{2}	Q_{2}	Q_{2}	k_{4}	k_{4}	Q_{1}	Q_{2}	Q_{1}	Q_{1}	
CK5	n_{2}	m_{2}	m_{2}	n_{1}	Q_{1}	Q_{1}	Q_{2}	n_{1}	Q_{2}	Q_{2}	
CK6		n_{1}	n	n_{2}	Q_{2}	Q_{2}	Q_{3}	m_{1}	Q_{3}	Q_{3}	
CK7		n_{2}		$k_{c 1}$	Q_{3}	Q_{3}	n_{1}	n_{2}	n_{1}	n_{1}	
CK8				$k_{c 2}$	Q_{4}	Q_{4}	n_{2}	F_{1}	n_{2}	n_{2}	
CK9				F_{1}	n_{1}	n_{1}	m_{2}	$c_{1,0}$	n_{3}	n_{3}	
CK10				$c_{1,0}$	n_{2}	n_{2}	n_{3}	$c_{2,0}$	$k_{c 1}$	$k_{c 1}$	
CK11				$c_{2,0}$	n_{3}	n_{3}	$k_{c 1}$		$k_{c 2}$	$k_{c 2}$	
CK12					n_{4}	n_{4}	F_{1}		$k_{c 3}$	F_{1}	
CK13					$k_{c 1}$	$k_{c 1}$	$c_{1,0}$		F_{1}	F_{2}	
CK14					$k_{c 2}$	$k_{c 2}$	$c_{2,0}$		F_{2}	$c_{1,0}$	
CK15					$k_{c 3}$	$k_{c 3}$			$c_{1,0}$	$c_{2,0}$	
CK16					$k_{c 4}$	$k_{c 4}$			$c_{2,0}$	$c_{3,0}$	
CK17					F_{1}	F_{1}			$c_{3,0}$		
CK18					F_{2}	F_{2}					
CK19					F_{3}	F_{3}					
CK20					$c_{1,0}$	$c_{1,0}$					

CKOPT	1	2	3	4	5	6	7	8	9	10	11
CK21					$c_{2,0}$	$c_{2,0}$					
CK22					$c_{3,0}$	$c_{3,0}$					
CK23					$c_{4,0}$	$c_{4,0}$					

3. Chemical Shrinkage. The chemical reaction of the curing process results in shrinkage of the material. Three options are available to model this behavior.

For CEOPT = 1 and 2 , the coefficient of chemical shrinkage, $\gamma(p)$, is specified with a load curve. For CEOPT = 3, the coefficient is given by the following quadratic expression:

$$
\gamma(p)=\gamma_{2} p^{2}+\gamma_{1} p+\gamma_{0} .
$$

For CEOPT = 1, this load curve is used to compute the chemical strains by the following differential form:

$$
d \varepsilon^{\mathrm{ch}}=\gamma(p) d p
$$

CEOPT $=2$ and 3 invoke a secant form, such that the strains are computed as:

$$
\varepsilon^{\mathrm{ch}}=\gamma(p) \times\left(p-p_{R}\right)-\gamma\left(p_{I}\right) \times\left(p_{I}-p_{R}\right),
$$

with a reference degree of cure p_{R} and initial degree of cure p_{I}.
The following table summarizes the input structure.

CEOPT	CE1	CE2	CE3	CE4
1	$\gamma(p)$			
2	$\gamma(p)$	p_{R}		
3	γ_{0}	γ_{1}	γ_{2}	p_{R}

4. Thermal Expansion. Like the strains resulting from chemical shrinkage discussed in Remark 3, the thermal strains are either defined in a secant or differential form. In both cases the coefficient of thermal expansion $\eta(p, T)$ can be given as function of degree of cure p and temperature T and requires the input by of two-dimensional tabular data.

Option TEOPT = 1 refers to the differential form

$$
d \varepsilon^{\text {th }}=\eta(p, T) d T
$$

TEOPT $=2$ invokes the secant formulation which requires the specification of an additional reference temperature T_{R}

$$
\varepsilon^{\mathrm{th}}=\eta(p, T) \times\left(T-T_{R}\right)-\eta\left(p, T_{I}\right) \times\left(T_{I}-T_{R}\right) .
$$

Coefficient $\eta(p, T)$ is specified with a 2D table (${ }^{*}$ DEFINE_TABLE_2D) whose ID is provided by parameter TE1. The values given in the table input correspond to the degree of cure and the abscissa of the referenced curve to temperature. If a load curve is reference by parameter TE1, the coefficient η is assumed to be a function of temperature.

The following table summarizes the input structure.

TEOPT	TE1	TE2
1	$\eta(p, T)$	
2	$\eta(p, T)$	T_{R}

5. Stress Relaxation. The Cauchy stress, $\sigma_{i j}$, is related to the strain rate by:

$$
\sigma_{i j}(t)=\int_{0}^{t} g_{i j k l}(t-\tau) \frac{\partial \varepsilon_{k l}(\tau)}{\partial \tau} d \tau .
$$

The relaxation functions $g_{i j k l}(t-\tau)$ are represented in this material formulation by terms of the Prony series for the shear modulus G and the bulk modulus K as functions of time t. For the shear modulus G, the series expansion is given by:

$$
G(t)=G_{\infty}+\sum_{i=1}^{n_{G}} G_{i} e^{-\beta_{i}^{G} t}=G_{0}-\sum_{i=1}^{n_{G}} G_{i}+\sum_{i=1}^{n_{G}} G_{i} e^{-\beta_{i}^{G} t}
$$

with shear relaxation moduli G_{i} and decay constants β_{i}^{G}. The relation between the shear equilibrium modulus G_{∞} and the instantaneous shear modulus G_{0} is given by

$$
G_{\infty}=G_{0}-\sum_{i} G_{i} .
$$

A similar Prony series definition is expected for the bulk modulus $K(t)$:

$$
K(t)=K_{\infty}+\sum_{i=1}^{n_{K}} K_{i} e^{-\beta_{i}^{K} t}=K_{0}-\sum_{i=1}^{n_{K}} K_{i}+\sum_{i=1}^{n_{K}} K_{i} e^{-\beta_{i}^{K} t}
$$

with bulk relaxation moduli K_{i} and decay constants β_{i}^{K}.
This material model provides several options for inputting the Prony series data. If the first entry in Card 13 is non-negative, the input strategy defaults to VI$\mathrm{SOPT}=0$. For this option, provide the terms for individual Prony series for $G(t)$ and $K(t)$ with up to 18 Prony series terms for each ($n_{G} \leq 18, n_{K} \leq 18$).

If the first entry in Card 13 is negative, it represents the option VISOPT. A negative value VISOPT < 0 implies the following coupling between the Prony series terms G_{i} and K_{i} :

$$
K_{i}=\frac{2+2 v}{3(1-2 v)} G_{i} \quad \text { and } \quad \beta_{i}^{K}=\beta_{i}^{G} .
$$

Note that Poisson's ratio v in the above equation is constant. This approach allows accounting for up to 25 Prony series terms ($n_{G}=n_{K} \leq 25$). For VIOPT = 1, LS-DYNA interprets the input relaxation constants as terms E_{i} for Young's modulus $E(t)$ and internally translates them into the necessary constants G_{i}. For VIOPT $=-2$, LS-DYNA assumes a direct input of the shear relaxation moduli G_{i}.

In most applications the viscoelastic properties depend on temperature and degree of cure. In this material, shifting functions acting on the moduli G_{i}, G_{0} and G_{∞} (vertical shifting) and on the decay constants β_{i} (horizontal shifting) apply these dependencies. Note that, if not stated otherwise, LS-DYNA applies the same shifting operations to the shear and bulk moduli. Cards 5 to 8 set the shifting functions. We discuss these functions in Remarks 6, 7, 8 and 9.
6. Horizontal Temperature Shift. You can account for a possible temperature effect on the stress relaxation (see Remark 5) by a horizontal shift operation on the relaxation curve, implemented by the scaling of the decay constants β_{i} with a factor $a_{T}(T)$.

For THOPT = 1, the Williams-Landel-Ferry (WLF) shift function is used:

$$
\ln \left(a_{T}(T)\right)=\frac{-A\left(T-T_{R}\right)}{B+T-T_{R}}
$$

with constant parameters A and B and the reference temperature T_{R}.
THOPT $=2$ invokes the Arrhenius shift function which requires the input of a reference temperature T_{R} and one parameter C :

$$
\ln \left(a_{T}(T)\right)=C\left(\frac{1}{T}-\frac{1}{T_{R}}\right)
$$

For many adhesive materials, the qualitative behavior of the temperature dependence changes with the glass transition temperature T_{G} from an Arrheniusto a WLF-type description of the shifting. THOPT $=3$ provides this behavior:

$$
\ln \left(a_{T}(T)\right)= \begin{cases}C\left(\frac{1}{T}-\frac{1}{T_{G}}\right) & T \leq T_{G} \\ \frac{-A\left(T-T_{G}\right)}{B+T-T_{G}} & T>T_{G}\end{cases}
$$

It has been proposed in literature to extend this option by a curing that depends on the glass transition temperature $T_{G}=T_{G}(p)$, such that the shifting factor reads

$$
\ln \left(a_{T}(T, p)\right)= \begin{cases}C\left(\frac{1}{T}-\frac{1}{T_{G}(p)}\right) & T \leq T_{G}(p) \\ \frac{-A\left(T-T_{G}(p)\right)}{B+T-T_{G}(p)} & T>T_{G}(p)\end{cases}
$$

This feature corresponds to $\mathrm{THOPT}=4$. The glass transition temperature must be input as a load curve.

THOPT $=6$ replaces the Arrhenius shift function with an exponential approach. Above the glass transition temperature T_{G}, an extension of the WLF-type shift function is used:

$$
a_{T}(T, p)= \begin{cases}\left(1-D\left(T-T_{G}(p)\right)\right)^{C} & T \leq T_{G}(p) \\ \exp \left(\min \left(\frac{-A_{1}\left(T-T_{G}(p)\right)}{B_{1}+T-T_{G}(p)}, \frac{-A_{2}\left(T-T_{G}(p)\right)}{B_{2}+T-T_{G}(p)}\right)\right) & T>T_{G}(p)\end{cases}
$$

For the options discussed so far, no difference in temperature dependence is made between the shear and bulk moduli. The same scaling is applied to both Prony series expansions.

Finally, THOPT $=5$ allows defining direct input for scaling factors a_{T}^{G} and a_{T}^{K} for the shear and bulk moduli, respectively. Load curve or table IDs are expected as input. The load curves (either referenced by the table or by the input) define the logarithm of the factors, that is, $\ln \left(a_{T}^{G}\right)$ and $\ln \left(a_{T}^{G}\right)$, as functions of temperature. In case of a table ID input, an additional dependence on the degree of cure can be accounted for.

The parameters input for the different options are shown in the following table.

THOPT	TH1	TH2	TH3	TH4	TH5	TH6	TH7
1	A	B	T_{R}				
2	C	T_{R}					
3	A	B	C	T_{G}			
4	A	B	C	$T_{G}(p)$			
5	$\ln \left(a_{T}^{G}(T)\right) /$	$\ln \left(a_{T}^{K}(T)\right) /$					
	$\ln \left(a_{T}^{G}(p, T)\right)$	$\ln \left(a_{T}^{K}(p, T)\right)$					
6	A_{1}	B_{1}	C	D	A_{2}	B_{2}	$T_{G}(p)$

7. Vertical Temperature Shift. To model the effect of temperature on the viscoelastic response, you can apply a vertical shift to the master relaxation curve (see Remark 5). The shear relaxation moduli (G_{i} and G_{∞}) and bulk relaxation moduli (K_{i} and K_{∞}) are scaled by temperature dependent scaling factors $b_{T}^{G}(T)$ and $b_{T}^{K}(T)$, respectively, to achieve this shift. The input parameters for the factors need to be load curves. Here, parameter TV1 refers to $b_{T}^{G}(T)$ and TV2 to $b_{T}^{K}(T)$.

For TVOPT = 1 the entire relaxation curve is scaled. In contrast, TVOPT $=2$ causes shifting of only the time dependent terms of the Prony series and, consequently, only the moduli G_{i} and K_{i} are scaled.
8. Horizontal p-Shift. The effect of curing on the viscoelastic property of an adhesive material can be modelled by a horizontal shift of the relaxation curve (see Remark 5), meaning by scaling the decay moduli β_{i}. The scaling factors are denoted in this case by a_{c}.

For PHOPT = 1, an analytical expression based on Eom et al is implemented

$$
\log \left(a_{c}(p)\right)= \begin{cases}c\left(p-p_{\text {gel }}\right)+a_{\text {gel }} & p<p_{\text {gel }} \\ a_{\mathrm{gel}} H^{\left(p-p_{\mathrm{gel}}\right)}\left(\frac{p_{f}-p}{p_{f}-p_{\mathrm{gel}}}\right)^{m} & p \geq p_{\mathrm{gel}}\end{cases}
$$

with $p_{\text {gel }}$ and $a_{\text {gel }}$ being properties at the gelation point of the material. This shift is applied to both the shear and bulk moduli.

PHOPT $=2$ offers the possibility of a direct input of the scaling factors as functions of degree of cure. Here, load curves defining $\log \left(a_{c}^{G}\right)$ for shifting the shear curve and $\log \left(a_{c}^{K}\right)$ for shifting the bulk curve are expected.

The set of input parameters is summarized in the following table.

PHOPT	PH1	PH2	PH3	PH4	PH5	PH6
1	$p_{\text {gel }}$	$a_{\text {gel }}$	c	H	p_{f}	m
2	$\log \left(a_{c}^{G}(p)\right)$	$\log \left(a_{c}^{K}(p)\right)$				

9. Vertical \boldsymbol{p}-Shift. We have implemented two different approaches to represent the effect of curing on the viscoelasticity through vertical shifting operations. The vertical shifting operations apply to the master curves $G(t)$ and $K(t)$ as defined in Remark 5.

The first approach (PVOPT =1) is taken from *MAT_277 and assumes a constant ratio $G_{i}(p) / G_{0}(p)$ for all degrees of cure. Consequently, it suffices to define one
term $G_{0}(p)$ as a function of the degree of cure and further coefficients for the fully cured state of the adhesive:

$$
G(t, p)=G_{0}(p)\left(1-\sum_{i} \frac{G_{i, p=1.0}}{G_{0, \mathrm{p}=1.0}}\left(1-e^{-\beta_{i} t}\right)\right)
$$

PVOPT $=2$ distinguishes the effect of curing on the equilibrium moduli from its effect on the time-depending terms of the Prony series. Consequently, load curve IDs are expected to define $G_{\infty}(p)$ and $K_{\infty}(p)$ as well as scaling factors $b_{c}^{G}(p)$ and $b_{c}^{K}(p)$. The latter are applied to all G_{i} and K_{i}, respectively. This is also reflected by the input structure shown in the following table.

PVOPT	PV1	PV2	PV3	PV4
1	$G_{0}(p)$	$K_{0}(p)$		
2	$G_{\infty}(p)$	$K_{\infty}(p)$	$b_{c}^{G}(p)$	$b_{c}^{K}(p)$

10. Plasticity. This material features an isotropic plasticity formulation with a nonassociated flow rule closely related to the TAPO model implemented in *MAT_252. Both, the yield criterion F as well as the flow potential F^{*}, are defined in terms of invariants \tilde{I}_{1} and \tilde{J}_{2} of the effective stress tensor:

$$
\widetilde{\boldsymbol{\sigma}}=\sigma /\left(1-D_{1}\right)\left(1-D_{2}\right),
$$

where the evolution of the damage parameters D_{1} and D_{2} is defined separately.
The general form of F and F^{*} in this model is given by

$$
\begin{aligned}
F & =f\left(\tilde{I}_{1}, \tilde{J}_{2}, r, T\right)-\tau_{Y}^{2}(p, T, r)=0 \\
F^{*} & =f^{*}\left(\tilde{I}_{1}, \tilde{J}_{2}\right)-\tau_{Y}^{2}(p, T, r)
\end{aligned}
$$

The yield surface f and yield strength τ_{Y} are functions of the arc length of the damage plastic strain rate \dot{r}, which is defined by means of the arc length of the plastic strain rate $\dot{\gamma}_{\mathrm{v}}$ as in Lemaitre [1992]:

$$
\dot{r}=\left(1-D_{1}\right) \dot{\gamma}_{\mathrm{v}}=\left(1-D_{1}\right) \sqrt{2 \operatorname{tr}\left(\dot{\varepsilon}^{\mathrm{p}}\right)^{2}} .
$$

The plastic strain rate $\dot{\varepsilon}^{p}$ is given by the non-associated flow rule

$$
\dot{\boldsymbol{\varepsilon}}^{\mathrm{p}}=\lambda \frac{\partial F^{*}}{\partial \sigma} .
$$

The expressions for f and f^{*} or in other words the form of yield surface and flow potential are determined by the choice of parameters in Card 9. The yield strength computation is defined by Card 10. For details, see Remarks 11, 12, 13, and 14.
11. Yield Surface. The yield surface definition is controlled by choice of parameter PL1OPT in Card 9. For the currently available options PL1OPT = 1, 2 or 3, the same flow potential is assumed:

$$
f^{*}\left(\tilde{I}_{1}, \tilde{J}_{2}\right)=\tilde{J}_{2}+\frac{a_{2}^{*}}{3}\left\langle\tilde{I}_{1}\right\rangle^{2},
$$

where a_{2}^{*} is a user-defined material parameter.
Choosing PL1OPT $=1$ results in a cap model in tension and nonlinear Drucker \& Prager in compression with a distortional hardening under plastic flow. There is no temperature dependence for function f in this case, which reads:

$$
f\left(\tilde{I}_{1}, \tilde{J}_{2}, r\right)=\tilde{J}_{2}+\frac{1}{\sqrt{3}} a_{1}(r) \tau_{0} \tilde{I}_{1}+\frac{a_{2}(r)}{3}\left\langle\tilde{I}_{1}\right\rangle^{2}
$$

Distortional hardening is introduced by phenomenological descriptions for parameters $a_{1}(r)$ and $a_{2}(r)$:

$$
\begin{aligned}
& a_{1}(r)=a_{10}+a_{1}^{\mathrm{H}} r \\
& a_{2}(r)=\max \left(a_{20}+a_{2}^{\mathrm{H}} r, 0.0\right)
\end{aligned}
$$

PL1OPT = 2 does not consider distortional hardening and refers to a cap model in tension and a von Mises yield function in compression:

$$
f\left(\tilde{I}_{1}, \tilde{I}_{2}\right)=\tilde{J}_{2}+\frac{a_{20}}{3}\left\langle\tilde{I}_{1}+\frac{\sqrt{3} a_{10} \tau_{0}}{2 a_{20}}\right\rangle^{2}-\frac{a_{10}^{2} \tau_{0}^{2}}{4 a_{20}}
$$

Finally, PL1OPT $=3$ refers to a temperature dependent yield surface. Equivalently to PL1OPT = 1 a cap model in tension and nonlinear Drucker \& Prager in compression is used, but the distortional hardening is defined with respect to the current temperature:

$$
f\left(\tilde{I}_{1}, \tilde{J}_{2}, T\right)=\tilde{J}_{2}+\frac{1}{\sqrt{3}} a_{10} \tau_{0} \tilde{I}_{1}+\frac{a_{2}(T)}{3}\left\langle\tilde{I}_{1}\right\rangle^{2}
$$

with the simple linear temperature dependence

$$
a_{2}(T)=a_{20}\left(1-m_{a 2}\left(T-T_{0}\right)\right) .
$$

Input parameters for the different options can be found in the following table:

PL1OPT	PL11	PL12	PL13	PL14	PL15
1	a_{10}	a_{20}	a_{2}^{*}	a_{1}^{H}	a_{2}^{H}
2	a_{10}	a_{20}	a_{2}^{*}		
3	a_{10}	a_{20}	a_{2}^{*}	$m_{a 2}$	T_{0}

12. Yield strength. The yield strength τ_{Y} is defined by the parameters in Card 10. Different options are available to define temperature and degree of cure dependent hardening behavior. The most general option (PL2OPT $=1$) is a three-dimensional tabular input for $\tau_{\gamma}(p, T, r)$, employing *DEFINE_TABLE_3D. Here p is the degree of cure, T is the temperature, and r is the damage plastic strain.

For PL2OPT $=2$, initial strength τ_{0} and hardening R are defined independently with tabular data. Their sum represents the current yield strength:

$$
\tau_{Y}(p, T, r)=\tau_{0}(p, T)+R(p, T, r) .
$$

A two-dimensional table (${ }^{(D E F I N E}$ _TABLE_2D) is required to define $\tau_{0}(p, T)$ as a function of degree of cure p and temperature T. The hardening part $R(p, T, r)$ naturally requires a three-dimensional table (${ }^{*}$ DEFINE_TABLE_3D).

PL2OPT $=3$ employs the same split between initial and hardening part as the second option, but it is further assumed, that the effect of curing can be modelled by different scaling operations $\chi_{c}(p)$ and $\phi_{c}(p)$:

$$
\tau_{Y}(p, T, r)=\tau_{0 \theta}(T) \chi_{c}(p)+R_{\theta}(T, r) \phi_{c}(p) .
$$

The input only requires a two-dimensional tabular input for the hardening $R_{\theta}(T, r)$ and three load curve definitions (see *DEFINE_CURVE) for $\tau_{0 \theta}(T)$, $\chi_{c}(p)$ and $\phi_{c}(p)$.

PL2OPT $=4$ only differs from PL2OPT $=3$ in the input of the temperature dependent hardening part $R_{\theta}(T, r)$. Instead of tabular data, an exponential hardening behavior is assumed. When $\mathrm{PL} 2 \mathrm{OPT}=4$ is invoked, the following analytical expression for $R_{\theta}(T, r)$ is used:

$$
R_{\theta}(T, r)=H_{\theta}(T) r+q_{\theta}(T)\left(1-e^{-b_{\theta}(T) r}\right) .
$$

Temperature dependencies for the parameters H_{θ}, q_{θ}, and b_{θ} requires load curve input.

The simplest version is invoked by PL2OPT $=5$, where the yield strength $\tau_{Y}(r)$ is a function solely of the plastic strain data. Again, an exponential hardening is assumed:

$$
\tau_{Y}(r)=\tau_{0}+H r+q\left(1-e^{-b r}\right)
$$

The input of the parameters is shown in the following table.

PL2OPT	PL21	PL22	PL23	PL24	PL25	PL26

1	$\tau_{Y}(p, T, r)$	
2	$\tau_{0}(p, T)$	$R(p, T, r)$

PL2OPT	PL21	PL22	PL23	PL24	PL25	PL26
3	$\tau_{0 \theta}(T)$	$\chi_{c}(p)$	$R_{\theta}(T, r)$	$\phi_{c}(p)$		
4	$\tau_{0 \theta}(T)$	$\chi_{c}(p)$	$q_{\theta}(T)$	$b_{\theta}(T)$	$H_{\theta}(T)$	$\phi_{c}(p)$
5	τ_{0}	q	B	H		

13. Material damage. Material damage can occur for this material when in a solidlike state. The material becomes solid-like when the current degree of cure p reaches the gelation point $p_{\text {gel }}$, given by parameter PGEL. A different damage mechanism occurs in the liquid phase, as discussed in Remark 14.

The material damage is described in terms of the damage parameter D_{1}. Its evolution is based on the approach in Lemaitre [1985]. For $p \geq p_{\text {gel }}$, the general formulation can be defined in terms of a chosen strain measure ζ as follows:

$$
\dot{D}_{1}=\dot{D}_{1}(\zeta, \dot{\zeta})=n\left\langle\frac{\zeta-\gamma^{\mathrm{c}}}{\gamma^{\mathrm{f}}-\gamma^{\mathrm{c}}}\right\rangle^{n-1} \frac{\dot{\zeta}}{\gamma^{\mathrm{f}}-\gamma^{\mathrm{c}}} .
$$

The parameter DAEVO defines the strain measure ζ. For DAEVO $=0$, the arc length of the damage plastic strain rate is used: $\dot{\zeta}=\dot{r}$. The arc length of plastic strain rate $\dot{\gamma}_{\mathrm{v}}$ governs the damage evolution for $\mathrm{DAEVO}=1$, that is, $\dot{\zeta}=\dot{\gamma}_{\mathrm{v}}$. $\mathrm{DAEVO}=2$ employs the viscoelastic-plastic strain rate $\dot{\gamma}$ as strain rate measure:

$$
\dot{\zeta}=\dot{\gamma}=\sqrt{2 \operatorname{tr}\left(\left(\dot{\varepsilon}^{\mathrm{vp}}\right)^{2}\right),} \quad \dot{\varepsilon}^{\mathrm{vp}}=\dot{\varepsilon}-\dot{\varepsilon}^{\mathrm{th}}-\dot{\varepsilon}^{\mathrm{ch}} .
$$

The strains at the thresholds γ_{c} and γ_{f} for damage initiation and rupture depend on a function $\xi(\eta)$ of the triaxiality η. This function $\xi(\eta)$ determines if triaxiality is considered only under tensile loading or under tensile and compressive loading. Consequently, there are two choices available: For DATRIAX $=0$, the Macauley bracket is used $(\xi(\eta)=\langle\eta\rangle)$, whereas DATRIX $=1$ reduces ξ to the identity $(\xi(\eta)=\eta)$.

The particular equations for the strain thresholds γ_{c} and γ_{f} are determined by the damage option parameter DAOPT. Choosing DAOPT $=1$ allows for temperature and degree of cure dependence:

$$
\begin{aligned}
& \gamma^{\mathrm{c}}=\left(d_{1}^{\mathrm{c}}+d_{2}^{\mathrm{c}}\left(e^{-d_{3} \xi(\eta)}\right)\right) d_{\theta}(T) \beta(p) \\
& \gamma^{\mathrm{f}}=\left(d_{1}+d_{2}\left(e^{-d_{3} \tilde{\xi}(\eta)}\right)\right) d_{\theta}(T) \delta(p)
\end{aligned}
$$

Functions $d_{\theta}(T), \beta(p)$, and $\delta(p)$ each require a load curve input. These functions are omitted in the simplified option DAOPT $=2$, for which the strain thresholds reduce to

$$
\begin{aligned}
& \gamma^{\mathrm{c}}=\left(d_{1}^{\mathrm{c}}+d_{2}^{\mathrm{c}}\left(e^{-d_{3} \tilde{\zeta}(\eta)}\right)\right) \\
& \gamma^{\mathrm{f}}=\left(d_{1}+d_{2}\left(e^{-d_{3} \xi(\eta)}\right)\right)
\end{aligned}
$$

Strain rate effects for the definition of the thresholds are incorporated into option DAOPT $=3$ following Johnson and Cook [1985], which leads to

$$
\begin{aligned}
& \gamma^{\mathrm{c}}=\left(d_{1}^{\mathrm{c}}+d_{2}^{\mathrm{c}}\left(e^{-d_{3} \xi(\eta)}\right)\right) d_{\theta}(T) \beta(p)\left(1+d_{4}\left\langle\ln \dot{\gamma} / \dot{\gamma}_{0}\right\rangle\right) \\
& \gamma^{\mathrm{f}}=\left(d_{1}+d_{2}\left(e^{-d_{3} \xi(\eta)}\right)\right) d_{\theta}(T) \delta(p)\left(1+d_{4}\left\langle\ln \dot{\gamma} / \dot{\gamma}_{0}\right\rangle\right)
\end{aligned}
$$

The parameter input is summarized in the following table:

DAOPT	DA1	DA2	DA3	DA4	DA5	DA6
1	n	d_{1}^{c}	d_{2}^{c}	d_{1}	d_{2}	d_{3}
2	n	d_{1}^{c}	d_{2}^{c}	d_{1}	d_{2}	d_{3}
3	n	d_{1}^{c}	d_{2}^{c}	d_{1}	d_{2}	d_{3}
DAOPT	DA7	DA8	DA9	DA10	DA11	
1	$d_{\theta}(T)$	$\beta(p)$	$\delta(p)$			
2						
3	$d_{\theta}(T)$	$\beta(p)$	$\delta(p)$	d_{4}	$\dot{\gamma}_{0}$	

14. Viscous fingering. Viscous fingering can occur if the connected partners (partially) separate while the connecting adhesive is still in the liquid phase, resulting in an incomplete bonding of the partners. For this material model we implemented a rather simple phenomenological approach. An additional damage parameter D_{2} models the effect of viscous fingering. D_{2} accounts for the reduction of the effective adhesive area. Furthermore, we assume that D_{2} can be expressed as function $\delta_{A}\left(\varepsilon_{33}\right)$ of the thickness strain ε_{33} of the element.

In the liquid phase (meaning $p<p_{\text {gel }}$), this damage mechanism is active if parameter PDA1 is nonzero. For positive values of PDA1, the parameter is interpreted as scalar input β_{A} for an exponential approach:

$$
D_{2}=\delta_{A}\left(\varepsilon_{33}\right)=1-\exp \left(-\beta_{A} \varepsilon_{33}\right)
$$

Alternatively, a negative input for PDA1 implies a direct input of $D_{2}=\delta_{A}\left(\varepsilon_{33}\right)$ as a load curve with ID $=\mid$ PDA1 \mid.

As soon as the degree of cure exceeds the gelation point $p_{\text {gel }}$, the mechanism is stopped and the damage parameter D_{2} remains constant. The value for $p_{\text {gel }}$ is to be given as input parameter PGEL.
15. Histories Variables. The most important history variables are listed in the following table:

History Variable \#	Description
1	Temperature, T
2	Degree of cure, p
3	Chemical expansion
4	Thermal expansion
5	Initial temperature, T_{0}
6	Material damage parameter, D_{1}
7	Effective strain measure, ζ, for material damage fingering damage parameter, D_{2}
9	Thickness strain ε_{33}
10	Current effective shear modulus, $G(t)$
11	Current effective bulk modulus, $K(t)$
12	Concentration c_{1} of species A
13	Concentration c_{2} of species B
14	Concentration c_{3} of species C
15	Concentration c_{4} of species D

*MAT_RRR_POLYMER

This is Material Type 317. It is for analysis of isotropic polymers, such as thermoplastics. This rheological network model was developed to incorporate rate, relaxation, and recovery effects in plastics up to yield plateau. Damping and creep effects spanning from milliseconds to years can be represented. It works for both the explicit and implicit solver and uses a numerically efficient implementation. Only solid elements are supported.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0						
Type	A	F						

Card 2	1	2	3	4	5	6	7	8
Variable	ESTR1	EEND1	EELIM1	PR1				
Type	F	F	F	F				

Card 3	1	2	3	4	5	6	7	8
Variable	ESTR2	EEND2	EELIM2	PR2				
Type	F	F	F	F				

Card 4	1	2	3	4	5	6	7	8
Variable	ESTR3	EEND3	EELIM3	PR3				
Type	F	F	F	F				

Card 5	1	2	3	4	5	6	7	8
Variable	MSTR1	MEND1	ECLIM1	SGLIM1	A1			
Type	F	F	F	F	F			

Card 6	1	2	3	4	5	6	7	8
Variable	MSTR2	MEND2	ECLIM2	SGLIM2	A2			
Type	F	F	F	F	F			

VARIABLE

MID

RO Mass density

EEND $i \quad$ Ending Young's modulus, $E_{e_{i}}$ in link $i, i=1,2,3$.
EELIM $i \quad$ Elastic limit, $\overline{\bar{e}}_{e^{\prime}}$ in link $i, i=1,2,3$.
PRi Poisson ratio, v_{i}, in link $i, i=1,2,3$.
MSTR $i \quad$ Starting exponent, $m_{s_{i}}$ in link $i, i=1,2$.
MEND $i \quad$ Ending exponent, $m_{e_{i}}$ in link $i, i=1,2$.
ECLIM $i \quad$ Creep strain limit, $\bar{\varepsilon}_{c_{i}}$, in link $i, i=1,2$.
SGLIM $i \quad$ Effective stress limit, $\bar{\sigma}_{i}$, in link $i, i=1,2$.
A $i \quad$ Reference creep strain rate, α_{i}, in link $i, i=1,2$.

Remarks:

1. Material model. The material model is due to M. Lindvall and is composed of two viscoelastic links and one purely elastic link. Each link is characterized by
its own set of parameters resulting in a Cauchy stress, σ_{i} with $i=1,2,3$, so the complete stress is given by:

$$
\sigma=\sigma_{1}+\sigma_{2}+\sigma_{3} .
$$

Each link is a hypo-elasto-viscoelastic model with a stress rate on the form ${ }^{5}$

$$
\dot{\boldsymbol{\sigma}}=\mathbf{C}\left(\varepsilon_{e}\right)\left(\dot{\varepsilon}-\dot{\varepsilon}_{c}\right) .
$$

Here $\mathbf{C}\left(\varepsilon_{e}\right)$ is the isotropic Hooke tensor which depends on the effective elastic strain:

$$
\varepsilon_{e}=\sqrt{\frac{2}{3} \varepsilon_{e}^{\mathrm{dev}}: \varepsilon_{e}^{\mathrm{dev}}} .
$$

The elastic strain quantities are given by $\varepsilon_{e}=\varepsilon-\varepsilon_{c}, \varepsilon_{e}^{\text {mean }}=\frac{1}{3} \varepsilon_{e}: \mathbf{I}$, and $\varepsilon_{e}^{\text {dev }}=$ $\varepsilon_{e}-\varepsilon_{e}^{\text {mean }} \mathbf{I}$. The exact expression for $\mathbf{C}\left(\varepsilon_{e}\right)$ is indirectly defined by a strain dependent Young's modulus $E\left(\varepsilon_{e}\right)$ and constant Poisson ratio v

$$
E\left(\varepsilon_{e}\right)=E_{s}+\left(E_{e}-E_{s}\right) \tanh \left(\frac{\varepsilon_{e}}{\bar{\varepsilon}_{e}}\right) .
$$

$\bar{\varepsilon}_{e}$ is the elastic limit, and E_{s} and E_{e} are the starting and ending Young's moduli. These are all input on Cards 2 through 4.

The creep strain tensor evolves as ${ }^{6}$

$$
\dot{\varepsilon}_{c}=a\left(\frac{\sigma^{\text {eff }}}{\bar{\sigma}}\right)^{m\left(\varepsilon_{c}\right)} \frac{3}{2} \frac{\mathbf{s}}{\sigma^{\text {eff }}},
$$

where

$$
\begin{aligned}
p & =-\frac{1}{3} \sigma: \mathbf{I} \\
\mathbf{s} & =\sigma+p \mathbf{I} \\
\sigma^{\mathrm{eff}} & =\sqrt{\frac{3}{2} \mathbf{s}: \mathbf{s}}
\end{aligned}
$$

$\sigma^{\text {eff }}$ is the von Mises effective stress. $\bar{\sigma}$ is the effective stress limit and a is the reference creep strain rate. These are both input on Cards 5 and 6 . The exponent $m\left(\varepsilon_{c}\right)$ depends on the effective creep strain as

$$
m\left(\varepsilon_{c}\right)=m_{s}+\left(m_{e}-m_{s}\right) \tanh \left(\frac{\varepsilon_{c}}{\bar{\varepsilon}_{c}}\right),
$$

where

[^2]$$
\varepsilon_{c}=\sqrt{\frac{2}{3} \varepsilon_{c}: \varepsilon_{c}} .
$$

In the above, m_{s}, m_{e}, and $\bar{\varepsilon}_{c}$ are input parameters (see Cards 5 and 6). m_{s} and m_{e} are the starting and ending exponents. $\bar{\varepsilon}_{c}$ is the creep strain limit.
2. History variables. This material model outputs 10 history variables. To output the history variables, set the variable NEIPH in *DATABASE_EXTENT_BINARY.

History Variable \#	Definition
1	Effective elastic strain for link $1, \varepsilon_{e}^{1}$
2	Effective elastic strain for link $2, \varepsilon_{e}^{2}$
3	Effective elastic strain for link $3, \varepsilon_{e}^{3}$
4	Effective creep strain for link $1, \varepsilon_{c}^{1}$
5	Effective creep strain for link 2, ε_{c}^{2}
6	Effective exponent for link $1, m\left(\varepsilon_{c}^{1}\right)$
7	Effective exponent for link 2, $m\left(\varepsilon_{c}^{2}\right)$
8	Effective von Mises stress for link 1, $\sigma_{1}^{\text {eff }}$
9	Effective von Mises stress for link 2, $\sigma_{2}^{\text {eff }}$
10	Effective von Mises stress for link 3, $\sigma_{3}^{\text {eff }}$

References:

Borrvall, T., and Lindvall, M. "A Pragmatic Approach to the Modelling of Nonlinear Rheological Networks for Polymers," North American LS-DYNA User Forum 2023.

*MAT_TNM_POLYMER

This is Material Type 318. It is for analysis of isotropic polymers, such as thermoplastics. It works for both the explicit and implicit solvers. This keyword is supported for solid elements and some thick shell elements ($E L F O R M=3,5$, and 7).

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO						
Type	A	F						

Card 2	1	2	3	4	5	6	7	8
Variable	MUA	THETAH	LAMBL	KAPPA	TAUHA	A	MA	N
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	MUBI	MUBF	BETA	TAUHB	MB	MUC	0	ALPHA
Type	F	F	F	F	F	F	F	F

Card 4	1	2	3	4	5	6	7	8
Variable	THETAO	IBULK	IG	TSSTIF	GAMMAO			
Type	F	F	F	F	F			

VARIABLE

MID

RO
MUA

DESCRIPTION

Material identification. A unique number or label be specified (see *PART).

Mass density
Shear modulus for network A, μ_{A}

VARIABLE	DESCRIPTION
THETAH	Temperature factor, $\hat{\theta}$
LAMBL	Locking stretch, λ_{L}
KAPPA	Bulk modulus, κ
TAUHA	Flow resistance of network $\mathrm{A}, \hat{\tau}_{A}$
A	Pressure dependence of flow, a
MA	Stress exponential of network A, m_{A}
N	Temperature exponential, n
MUBI	Initial shear modulus for network $\mathrm{B}, \mu_{B i}$
MUBF	Final shear modulus for network $\mathbf{B}, \mu_{B f}$
BETA	Evolution rate of shear modulus for network B, β
TAUHB	Flow resistance of network $\mathrm{B}, \hat{\tau}_{B}$
MB	Stress exponential of network B, m_{B}
MUC	Shear modulus for network $\mathrm{C}, \mu_{\mathrm{C}}$
Q	Relative contribution of I_{1} and I_{2} on network C, q
ALPHA	Thermal expansion coefficient
THETA0	Reference temperature, θ_{0}
IBULK	Internal bulk modulus
IG	Internal shear modulus
TSSTIF	Transversal stiffness for shells
GAMMA0	Reference strain rate

Remarks:

1. Material Model. The material model is due to J. Bergström and consists of a rheologic network of three hyperelastic springs A, B, and C. The springs act in parallel so that the total deformation gradient $\left(\mathbf{F}^{\text {tot }}\right)$, and thus the total strain, is the same for each of them. The deformation gradient is made up of both a
thermal part, $\mathbf{F}^{\text {th }}$, and a mechanical part, \mathbf{F}, in a multiplicative manner $\mathbf{F}^{\text {tot }}=$ $\mathbf{F F}^{\text {th }}$. The thermal part takes the form $\mathbf{F}^{\text {th }}=\left(1+\alpha\left(\theta-\theta_{0}\right)\right) \mathbf{I}$, with α as the thermal expansion coefficient, θ as the temperature, θ_{0} as a reference temperature, and I as the unit tensor. The mechanical part, F, depends on the network.

In network A, F is multiplicatively decomposed into elastic and viscoplastic parts

$$
\mathbf{F}=\mathbf{F}_{A}^{e} \mathbf{F}_{A}^{v} .
$$

The Cauchy stress is defined by a temperature dependent variant of the ArrudaBoyce eight chain model

$$
\sigma_{A}=\frac{\mu_{A}}{J_{A}^{e} \overline{\lambda_{A}^{e}}}\left(1+\frac{\theta-\theta_{0}}{\hat{\theta}}\right) \frac{\mathcal{L}^{-1}\left(\frac{\overline{\lambda_{A}^{e}}}{\lambda_{L}}\right)}{\mathcal{L}^{-1}\left(\frac{1}{\lambda_{L}}\right)} \operatorname{dev}\left(\mathbf{b}_{A}^{e}\right)+\kappa\left(J_{A}^{e}-1\right) \mathbf{I}
$$

where μ_{A} is the (constant) shear modulus, and κ is the bulk modulus. \mathcal{L}^{-1} is the inverse of the Langevin function $\mathcal{L}(x)=\operatorname{coth}(x)-1 / x$. In the above,

$$
\begin{aligned}
J_{A}^{e} & =\operatorname{det}\left(\mathbf{F}_{A}^{e}\right) \\
\mathbf{b}_{A}^{e} & =\left(J_{A}^{e}\right)^{-\frac{2}{3}} \mathbf{F}_{A}^{e}\left(\mathbf{F}_{A}^{e}\right)^{T} \\
\overline{\lambda_{A}^{e}} & =\sqrt{\frac{\operatorname{tr}\left(\mathbf{b}_{A}^{e}\right)}{3}}
\end{aligned}
$$

\mathbf{b}_{A}^{e} is the Cauchy-Green strain tensor. $\overline{\lambda_{A}^{e}}$ is the so-called chain stretch while λ_{L} is the chain locking stretch.

Similar to network A, the Cauchy stress for network B is given by the eight chain model

$$
\sigma_{B}=\frac{\mu_{B}}{J_{B}^{e} \overline{\lambda_{B}^{e}}}\left(1+\frac{\theta-\theta_{0}}{\hat{\theta}}\right) \frac{\mathcal{L}^{-1}\left(\frac{\overline{\lambda_{B}^{e}}}{\lambda_{L}}\right)}{\mathcal{L}^{-1}\left(\frac{1}{\lambda_{L}}\right)} \operatorname{dev}\left(\mathbf{b}_{B}^{e}\right)+\kappa\left(J_{B}^{e}-1\right) \mathbf{I}
$$

where now

$$
\begin{aligned}
\mathbf{F} & =\mathbf{F}_{B}^{e} \mathbf{F}_{B}^{v} \\
\mathbf{b}_{B}^{e} & =\left(J_{B}^{e}\right)^{-\frac{2}{3}} \mathbf{F}_{B}^{e}\left(\mathbf{F}_{B}^{e}\right)^{T} \\
J_{B}^{e} & =\operatorname{det}\left(\mathbf{F}_{B}^{e}\right) \\
\overline{\lambda_{B}^{e}} & =\sqrt{\frac{\operatorname{tr}\left(\mathbf{b}_{B}^{e}\right)}{3}}
\end{aligned}
$$

However, unlike in network A , the shear modulus, μ_{B}, in network B evolves with plastic strain from a starting value $\mu_{B i}$ to a final value $\mu_{B f}$ according to

$$
\dot{\mu}_{B}=-\beta\left(\mu_{B}-\mu_{B f}\right) \dot{\gamma}_{A},
$$

Here, $\dot{\gamma}_{A}$ is the viscoplastic flow rate in network A defined by

$$
\dot{\gamma}_{A}=\dot{\gamma}_{0}\left(\frac{\tau_{A}}{\hat{\tau}_{A}+a R\left(p_{A}\right)}\right)^{m_{A}}\left(\frac{\theta}{\theta_{0}}\right)^{n}
$$

with pressure $p_{A}=-\operatorname{tr}\left(\sigma_{A}\right) / 3$ and von Mises like stress $\tau_{A}=$ $\sqrt{\operatorname{dev}\left(\sigma_{A}\right): \operatorname{dev}\left(\sigma_{A}\right)} . \hat{\tau}_{A}$ is the flow resistance, and a, β, m_{A}, n, and $\dot{\gamma}_{0}$ are other given material parameters. $R(x)=(x+|x|) / 2$ is a ramp function.

The viscoplastic deformation gradient in network A is

$$
\dot{\mathbf{F}}_{A}^{v}=\dot{\gamma}_{A} \mathbf{F}_{A}^{e}-1 \operatorname{dev}\left(\sigma_{A}\right) \mathbf{F} / \tau_{A},
$$

and a similar relation holds for \mathbf{F}_{B}^{v}.
In network C, the Cauchy stress is, again, defined by a variant of the eight chain model

$$
\begin{aligned}
(1+q) \sigma_{C}=\frac{\mu_{C}}{J \bar{\lambda}}\left(1+\frac{\theta-\theta_{0}}{\hat{\theta}}\right) \frac{\mathcal{L}^{-1}\left(\frac{\bar{\lambda}}{\lambda_{L}}\right)}{\mathcal{L}^{-1}\left(\frac{1}{\lambda_{L}}\right)} \operatorname{dev}(\mathbf{b}) & +\kappa\left(J_{B}^{e}-1\right) \mathbf{I} \\
& +q \frac{\mu_{C}}{J}\left(I_{1} \mathbf{b}-\frac{2 I_{2}}{3} \mathbf{I}-\mathbf{b}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{b} & =(J)^{-\frac{2}{3}} \mathbf{F}(\mathbf{F})^{T} \\
J & =\operatorname{det}(\mathbf{F}) \\
\bar{\lambda} & =\sqrt{\frac{\operatorname{tr}(\mathbf{b})}{3}}
\end{aligned}
$$

I_{1} and I_{2} are the $1^{\text {st }}$ and $2^{\text {nd }}$ invariants of \mathbf{b}. The influence of these invariants is controlled by the parameter q. μ_{C} is the (constant) shear modulus.

The total stress is the sum of the stress in network A, B, and C

$$
\sigma=\sigma_{A}+\sigma_{B}+\sigma_{C}
$$

2. History Variables. This material model outputs 21 history variables. To output the history variables, set the variable NEIPH in *DATABASE_EXTENT_BINARY. History variables \#1-9 are the components of the viscoplastic deformation gradient, \mathbf{F}_{A}^{v}, in network A. Similarly, history variables \#10-18 are the components of \mathbf{F}_{B}^{v}. History variable \#19 is the shear modulus, μ_{B}. In addition, for implicit simulations, history variables \#20 and \#21 are the accumulated plastic strains γ_{A} and γ_{B}.

*MAT_IFPD

This is Material Type 319. It is for modeling fluid particles for incompressible free surface flow with incompressible SPG. It was developed to predict the shape evolution of solder joints during the electronic reflow process. See Pan et al 2020 for details.

WARNING: The *MAT_319 keyword name cannot be used in the input deck in R13. For R13, you must use *MAT_IFPD as the keyword name. For releases after September 2021, *MAT_319 can be used in the input deck.

NOTE: This material only works for ISPG element formulations set on *SECTION_FPD.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	DYNVIS	SFTEN				
Type	A	F	F	F				

VARIABLE

MID

RO Fluid density
DYNVIS Dynamic viscosity of the fluid
SFTEN Surface tension coefficient of the fluid

References:

Pan, X., Wu, C.T., and Hu, W. "Incompressible Smoothed Particle Galerkin (ISPG) Method for an Efficient Simulation of Surface Tension and Wall Adhesion Effects in the 3D Reflow Soldering Process," $16{ }^{\text {th }}$ International LS-DYNA Users Conference (2020).

*MAT_COHESIVE_GASKET

This is Material Type 326 developed for analysis of gaskets. This material model can only be used with cohesive elements. Also, a gasket thickness must be set; see the variable ELFORM and GASKETT in *SECTION_SOLID.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	ROFLG	INTFAIL				
Type	A	F	F	I				

Card 2	1	2	3	4	5	6	7	8
Variable	LC	UC	ETEN					
Type	F	F	F					

Card 3	1	2	3	4	5	6	7	8
Variable	ETSR							
Type	F							

Card 4	1	2	3	4	5	6	7	8
Variable	EMEM	PR	PS					
Type	F	F	F					

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label be specified (see *PART).
	Mass density

Remarks:

1. Cohesive Elements for Modeling Gaskets. A gasket is a mechanical seal placed between two mating surfaces to prevent leakage. A gasket is typically thin in comparison to the length and width of its surface. This makes it cumbersome to model with solid elements, since these require good aspect ratios. Cohesive elements, however, are less sensitive to this kind of geometric quality and are, therefore, better suited for modeling gaskets. To use cohesive elements for modeling gaskets, the normal (the local 3-direction) of the cohesive element must be aligned with the gasket thickness direction, and the mid-surface of the cohesive element (the local 1-, and 2-direction) must coincide with the gasket surface.
2. Material Model. The strains pertaining to the normal are defined by: $\varepsilon_{13}=\delta_{1}$, $\varepsilon_{23}=\delta_{2}$, and $\varepsilon_{33}=\delta_{3} . \delta_{i}$ is the separation in local direction $i=1,2,3$, meaning
the relative displacement between the top and bottom face of the cohesive element measured along local direction i. In particular, $-\varepsilon_{33}$ is the so-called gasket closure, c. The so-called membrane strains, $\varepsilon_{11}, \varepsilon_{12}$, and ε_{22}, in the plane orthogonal to the normal follow the usual definition $\varepsilon_{i j}=\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right) / 2$, where $u_{i}, i=$ 1,2 , is the local displacement of the mid-surface.

The cohesive gasket material model is comprised of the following three uncoupled material models:
a) Isotropic linear elastic membrane stress:

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right]=D\left[\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
2 \varepsilon_{12}
\end{array}\right]
$$

with D as the constitutive matrix for either plane strain or stress.
b) Isotropic linear elastic transverse stress:

$$
\sigma_{i 3}=E_{T S R} \delta_{i}, \quad i=1,2
$$

c) A user defined pressure-closure relation of the form (see Remark 3):

$$
\begin{aligned}
-\sigma_{33} & \equiv p=f(c), & & c>0 \\
\sigma_{33} & =0, & & \text { otherwise }
\end{aligned}
$$

3. Pressure-Closure Relation. The pressure-closure relation, f, is an important feature of the material model. It can be used to include mechanical effects that are typical for gaskets, such as hysteresis. It consists of a main loading curve and one or more unloading curves.

Figure M326-1. Schematic pressure-closure response

Figure M326-1 gives a schematic of a pressure-closure response. As the gasket is compressed the closure, c, increases and the pressure, p, follows the main loading curve from A to, say, B. Now, if the gasket for some reason is unloaded at B, c will then decrease and p follows the unloading curve BCA back to the initial configuration A. If the gasket is then reloaded it will follow the path ACB back to B. Then, when c exceeds the closure value at point B, it will continue on the main loading curve until some new point D , where unloading takes place. The new unloading then follows the path DEA back to A. If unloading occurs between two unloading curves, interpolation is used to determine the pressure.

Which unloading path to follow and where to switch to the main loading curve is determined by keeping track of the maximum value of c, called $c_{\max }$, at the last unloading point. If the closure becomes negative, that is, the gasket is subject to tension rather than compression, its stiffness is given by $E_{T E N}$. This is mostly for numerical stability. The unloading curves must be input using *DEFINE_TABLE_2D, with the first dependency being maximum closure and the second closure, meaning $p=p\left(c_{\max }, c\right)$. Also, the unloading curves should be in a normalized form giving zero pressure for zero closure and unit pressure for unit closure.
4. History Variables. This material model outputs the maximum closure as history variable \#1 to the post-processing database. Therefore, NEIPH and NEIPS must be set in *DATABASE_EXTENT_BINARY.

*MAT_ALE_VACUUM

See *MAT_VACUUM or *MAT_140.

*MAT_ALE_GAS_MIXTURE

See *MAT_GAS_MIXTURE or *MAT_148.

*MAT_ALE_VISCOUS

This may also be referred to as MAT_ALE_03. This "fluid-like" material model is very similar to Material Type 9 (*MAT_NULL). It allows the modeling of non-Newtonian fluids with constant or variable viscosity. The variable viscosity is a function of an equivalent deviatoric strain rate. If inviscid material is modeled, the deviatoric or viscous stresses are zero, and the equation of state supplies the pressures (or diagonal components of the stress tensor). All *MAT_ALE_ cards apply only to ALE elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	PC	MULO	MUHI	RK		RN
Type	A	F	F	F	F	F		F
Defaults	none	none	0.0	0.0	0.0	0.0		0.0

VARIABLE

MID

RO Mass density
$P C \quad$ Pressure cutoff (≤ 0.0). See Remark 4.
MULO Dynamic viscosity (see Remark 1):
EQ.O.0: Inviscid fluid is assumed.
GT.0.0: If $\mathrm{MUHI}=0.0$ or is not defined, then this is the traditional constant dynamic viscosity coefficient, μ. Otherwise if MUHI >0.0, then MULO and MUHI are the lower and upper dynamic viscosity limit values for a power-law-like variable viscosity model.
LT.O.O: -MULO is a load curve ID defining dynamic viscosity as a function of equivalent strain rate.

MUHI Dynamic viscosity:
EQ.0.0: Only MULO is used to define the dynamic viscosity, default

LT.0.0: The viscosity can be defined by the user in the file dyn21.F with a routine called f3dm9ale_userdef1. The

VARIABLE

RK

RN Variable dynamic viscosity exponent. See Remark 6.

Remarks:

1. Deviatoric viscous stress. The null material must be used with an equation-of-state. Pressure cutoff is negative in tension. A (deviatoric) viscous stress of the form

$$
\begin{gathered}
\sigma_{i j}^{\prime}=2 \mu \dot{\varepsilon}_{i j}^{\prime} \\
{\left[\frac{N}{m^{2}}\right] \sim\left[\frac{N}{m^{2}} s\right]\left[\frac{1}{s}\right]}
\end{gathered}
$$

is computed for nonzero μ where $\dot{\varepsilon}_{i j}^{\prime}$ is the deviatoric strain rate. μ is the dynamic viscosity. For example, in SI unit system, μ has a unit of [$\mathrm{Pa} \times \mathrm{s}$].
2. Hourglass control issues. The null material has no shear stiffness and hourglass control must be used with care. In some applications, the default hourglass coefficient might lead to significant energy losses. In general for fluid(s), the hourglass coefficient QM should be small (in the range 10^{-4} to 10^{-6} for the standard default IHQ choice).
3. Null material properties. Null material has no yield strength and behaves in a fluid-like manner.
4. Numerical cavitation. The pressure cut-off, PC, must be defined to allow for a material to "numerically" cavitate. In other words, when a material undergoes dilatation above certain magnitude, it should no longer be able to resist this dilatation. Since dilatation stress or pressure is negative, setting PC limit to a very small negative number would allow for the material to cavitate once the pressure in the material goes below this negative value.
5. Issues with small values of viscosity exponent. If the viscosity exponent is less than $1.0(\mathrm{RN}<1.0)$, then $\mathrm{RN}-1.0<0.0$. In this case, at very low equivalent strain rate, the viscosity can be artificially very high. MULO is then used as the viscosity value.
6. Empirical dynamic viscosity. The empirical variable dynamic viscosity is typically modeled as a function of equivalent shear rate based on experimental data.

$$
\mu\left(\dot{\bar{\gamma}}^{\prime}\right)=\mathrm{RK} \times \dot{\bar{\gamma}}^{\prime(\mathrm{RN}-1)}
$$

For an incompressible fluid, this may be written equivalently as

$$
\mu\left(\dot{\bar{\varepsilon}}^{\prime}\right)=\mathrm{RK} \times \dot{\bar{\varepsilon}}^{\prime(\mathrm{RN}-1)}
$$

The "overbar" denotes a scalar equivalence. The "dot" denotes a time derivative or rate effect. And the "prime" symbol denotes deviatoric or volume preserving components. The equivalent shear rate components may be related to the basic definition of (small-strain) strain rate components as follows:

$$
\begin{aligned}
& \dot{\varepsilon}_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \Rightarrow \dot{\varepsilon}_{i j}^{\prime}=\dot{\varepsilon}_{i j}-\delta_{i j}\left(\frac{\dot{\varepsilon}_{k k}}{3}\right) \\
& \dot{\gamma}_{i j}=2 \dot{\varepsilon}_{i j}
\end{aligned}
$$

Typically, the $2^{\text {nd }}$ invariant of the deviatoric strain rate tensor is defined as:

$$
I_{2 \dot{\varepsilon}^{\prime}}=\frac{1}{2}\left[\dot{\varepsilon}_{i j}^{\prime} \dot{\varepsilon}_{i j}^{\prime}\right]
$$

The equivalent (small-strain) deviatoric strain rate is defined as:

$$
\dot{\bar{\varepsilon}}^{\prime} \equiv 2 \sqrt{I_{2 \varepsilon^{\prime}}}=\sqrt{2\left[\dot{\varepsilon}_{i j}^{\prime} \dot{\varepsilon}_{i j}^{\prime}\right]}=\sqrt{4\left[\dot{\varepsilon}_{12}^{\prime 2}+\dot{\varepsilon}_{23}^{\prime}{ }^{2}+\dot{\varepsilon}_{31}^{\prime}{ }^{2}\right]+2\left[{\dot{\varepsilon_{11}^{\prime}}}^{2}+\dot{\varepsilon}_{22}^{\prime}+\dot{\varepsilon}_{33}^{\prime}{ }^{2}\right]}
$$

In non-Newtonian literatures, the equivalent shear rate is sometimes defined as

$$
\dot{\bar{\gamma}} \equiv \sqrt{\frac{\dot{\gamma}_{i j} \dot{\gamma}_{i j}}{2}}=\sqrt{2 \dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}=\sqrt{4\left[\dot{\varepsilon}_{12}^{2}+\dot{\varepsilon}_{23}^{2}+\dot{\varepsilon}_{31}^{2}\right]+2\left[\dot{\varepsilon}_{11}^{2}+\dot{\varepsilon}_{22}^{2}+\dot{\varepsilon}_{33}^{2}\right]}
$$

It turns out that, (a) for incompressible materials ($\dot{\varepsilon}_{k k}=0$), and (b) the shear terms are equivalent when $i \neq j \rightarrow \dot{\varepsilon}_{i j}=\dot{\varepsilon}_{i j}^{\prime}$, the equivalent shear rate is algebraically equivalent to the equivalent (small-strain) deviatoric strain rate.

$$
\dot{\bar{\varepsilon}}^{\prime}=\dot{\bar{\gamma}}^{\prime}
$$

*MAT_ALE_MIXING_LENGTH

This may also be referred to as *MAT_ALE_04. This viscous "fluid-like" material model is an advanced form of *MAT_ALE_VISCOUS. It allows the modeling of fluid with constant or variable viscosity and a one-parameter mixing-length turbulence model. The variable viscosity is a function of an equivalent deviatoric strain rate. The equation of state supplies the pressures for the stress tensor. All *MAT_ALE_cards apply only to ALE elements.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	PC	MULO	MUHI	RK		RN
Type	A8	F	F	F	F	F		F
Defaults	none	0.0	0.0	0.0	0.0	0.0		0.0

Internal Flow Card.

Card 2	1	2	3	4	5	6	7	8
Variable	LCl	C0	C1	C2	C3	C4	C5	C6
Type	F	F	F	F	F	F	F	F
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

External Flow Card.

Card 3	1	2	3	4	5	6	7	8
Variable	LCX	D0	D1	D2	E0	E1	E2	
Type	F	F	F	F	F	F	F	
Defaults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

VARIABLE

MID

RO
PC
MULO

MUHI

RK

RN
LCI
C0-C6

LCX
D0-D2

E0-E2

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

Mass density
Pressure cutoff (≤ 0.0)
Dynamic viscosity:
GE.0.0: if $\mathrm{MUHI}=0.0$ or is not defined, then this is the traditional constant dynamic viscosity coefficient, μ. Otherwise if MUHI >0.0, then MULO and MUHI are the lower and upper dynamic viscosity limit values.
LT.O.O: -MULO is a load curve ID defining dynamic viscosity as a function of equivalent strain rate.

Upper dynamic viscosity limit (default $=0.0$) if MULO >0. This is defined only if RK and RN are defined for the variable viscosity case.

Variable dynamic viscosity multiplier (see Remark 6 of MAT_ALE_VISCOUS). The viscosity is computed as $\mu\left(\overline{\dot{\varepsilon}^{\prime}}\right)=R K \times$ ${\overline{\dot{\varepsilon}^{\prime}}}^{(\mathrm{RN}-1)}$, where the equivalent deviatoric strain rate is

$$
\overline{\dot{\varepsilon}^{\prime}}=\sqrt{\frac{2}{3}\left[\dot{\varepsilon}_{11}^{\prime}{ }^{2}+\dot{\varepsilon}_{22}^{\prime}{ }^{2}+\dot{\varepsilon}_{33}^{\prime}{ }^{2}+2\left(\dot{\varepsilon}_{12}^{\prime}{ }^{2}+\dot{\varepsilon}_{23}^{\prime}{ }^{2}+\dot{\varepsilon}_{31}^{\prime}{ }^{2}\right)\right]} .
$$

Variable dynamic viscosity exponent (see RK)
Characteristic length, l_{ci}, of the internal turbulent domain
Internal flow mixing length polynomial coefficients. The one-parameter turbulent mixing length is computed as

$$
l_{\mathrm{m}}=l_{\mathrm{ci}}\left[C_{0}+C_{1}\left(1-\frac{y}{l_{c i}}\right)+\cdots+C_{6}\left(1-\frac{y}{l_{c i}}\right)^{6}\right]
$$

Characteristic length, l_{cx}, of the external turbulent domain
External flow mixing length polynomial coefficients. If $y \leq l_{\text {cx }}$, then the mixing length is computed as $l_{m}=\left[D_{0}+D_{1} y+D_{2} y^{2}\right]$.
External flow mixing length polynomial coefficients. If $y>l_{\mathrm{cx}}$, then the mixing length is computed as $l_{m}=\left[E_{0}+E_{1} y+E_{2} y^{2}\right]$.

Remarks:

1. Deviatoric Viscous Stress. The null material must be used with an equation of-state. Pressure cutoff is negative in tension. A (deviatoric) viscous stress of the form

$$
\begin{aligned}
\sigma_{i j}^{\prime} & =\mu \dot{\varepsilon}_{i j}^{\prime} \\
{\left[\frac{N}{m^{2}}\right] } & \approx\left[\frac{N}{m^{2}} s\right]\left[\frac{1}{s}\right]
\end{aligned}
$$

is computed for nonzero μ where $\dot{\varepsilon}_{i j}^{\prime}$ is the deviatoric strain rate. μ is the dynamic viscosity with unit of $[\mathrm{Pa} \times \mathrm{s}]$.
2. Hourglass Control Issues. The null material has no shear stiffness and hourglass control must be used with care. In some applications, the default hourglass coefficient might lead to significant energy losses. In general for fluid(s), the hourglass coefficient QM should be small (in the range 10^{-4} to 10^{-6} for the standard default IHQ choice).
3. Null Material Properties. The null material has no yield strength and behaves in a fluid-like manner.
4. Numerical Cavitation. The pressure cut-off, PC, must be defined to allow for a material to "numerically" cavitate. In other words, when a material undergoes dilatation above certain magnitude, it should no longer be able to resist this dilatation. Since dilatation stress or pressure is negative, setting PC limit to a very small negative number would allow for the material to cavitate once the pressure in the material goes below this negative value.
5. Issues with Small Value of Viscosity Exponent. If the viscosity exponent is less than $1.0(\mathrm{RN}<1.0)$ then $\mathrm{RN}-1.0<0.0$. In this case, at very low equivalent strain rate, the viscosity can be artificially very high. MULO is then used as the viscosity value.
6. Turbulent Viscosity. Turbulence is treated simply by considering its effects on viscosity. Total effective viscosity is the sum of the laminar and turbulent viscosities, $\mu_{\text {eff }}=\mu_{l}+\mu_{t}$ where $\mu_{\text {eff }}$ is the effective viscosity, and μ_{t} is the turbulent viscosity. The turbulent viscosity is computed based on the Prandtl's Mixing Length Model,

$$
\mu_{t}=\rho l_{m}^{2}|\nabla \mathbf{v}| .
$$

*MAT_ALE_05

*MAT_ALE_INCOMPRESSIBLE

See *MAT_160.

*MAT_ALE_HERSCHEL

This may also be referred to as MAT_ALE_06. This is the Herschel-Buckley model. It is an enhancement to the power law viscosity model in *MAT_ALE_VISCOUS (*MAT_ALE_03). Two additional input parameters, the yield stress threshold and critical shear strain rate, can be specified to model "rigid-like" material for low strain rates.

It allows the modeling of non-viscous fluids with constant or variable viscosity. The variable viscosity is a function of an equivalent deviatoric strain rate. All *MAT_ALE_cards apply only to ALE element formulation.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	PC	MULO	MUHI	RK		RN
Type	A	F	F	F	F	F		F
Defaults	none	none	0.0	0.0	0.0	0.0		0.0

Card 2	1	2	3	4	5	6	7	8
Variable	GDOTC	TA00						
Type	F	F						
Default	none	none						

VARIABLE
MID Material identification. A unique number or label must be specified (see *PART).

Mass density
Pressure cutoff (≤ 0.0); see Remark 4.
There are 4 possible cases (see Remark 1):

1. If $\mathrm{MULO}=0.0$, then an inviscid fluid is assumed.
2. If $\mathrm{MULO}>0.0$, and $\mathrm{MUHI}=0.0$ or is not defined, then this is the traditional constant dynamic viscosity coefficient μ.

VARIABLE

3. If MULO >0.0, and $\mathrm{MUHI}>0.0$, then MULO and MUHI are lower and upper viscosity limit values for a power-law-like variable viscosity model.
4. If MULO is negative (for example, $\mathrm{MULO}=-1$), then a user-input data load curve (with LCID $=1$) defining dynamic viscosity as a function of equivalent strain rate is used.

MUHI Upper dynamic viscosity limit (default = 0.0). This is defined only if RK and RN are defined for the variable viscosity case.

RK $\quad k$, consistency factor (see Remark 6)
RN n, power law index (see Remark 6)
GDOTC $\quad \dot{\gamma}_{c}$, critical shear strain rate (see Remark 6)
TAO0 $\quad \tau_{0}$, yield stress (see Remark 6)

Remarks:

1. Viscous stress. The null material must be used with an equation-of-state. Pressure cutoff is negative in tension. A (deviatoric) viscous stress of the form

$$
\begin{gathered}
\sigma_{i j}^{\prime}=2 \mu \dot{\varepsilon}^{\prime}{ }_{i j} \\
{\left[\frac{N}{m^{2}}\right] \sim\left[\frac{N}{m^{2}} s\right]\left[\frac{1}{s}\right]}
\end{gathered}
$$

is computed for nonzero μ where $\dot{\varepsilon}^{\prime}{ }_{i j}$ is the deviatoric strain rate. μ is the dynamic viscosity. For example, in SI unit system, μ has a unit of [Pa-s].
2. Hourglass control. The null material has no shear stiffness and hourglass control must be used with care. In some applications, the default hourglass coefficient might lead to significant energy losses. In general, for fluid(s), the hourglass coefficient QM should be small (in the range of 10^{-4} to 10^{-6} for the standard default IHQ choice).
3. Yield strength. Null material has no yield strength and behaves in a fluid-like manner.
4. Pressure cut-off. The pressure cut-off, PC, must be defined to allow for a material to "numerically" cavitate. In other words, when a material undergoes dilatation above a certain magnitude, it should no longer be able to resist this
dilatation. Since dilatation stress or pressure is negative, setting PC limit to a very small negative number would allow for the material to cavitate once the pressure in the material goes below this negative value.
5. Viscosity. If the viscosity exponent is less than 1.0, $R N<1.0$, then $R N-1.0<$ 0.0. In this case, at very low equivalent strain rate, the viscosity can be artificially very high. MULO is then used as the viscosity value.
6. Herschel-buckley model. The Herschel-Buckley model employs a large viscosity to model the "rigid-like" behavior for low shear strain rates $\left(\dot{\gamma}<\dot{\gamma}_{c}\right)$.

$$
\mu(\dot{\gamma})=\tau_{0} \frac{\left(2-\dot{\gamma}_{1} \dot{\gamma}_{-} c\right)}{\dot{\gamma}_{c}}+k\left[(2-n)+(n-1) \frac{\dot{\gamma}}{\dot{\gamma}_{c}}\right]
$$

A power law is used once the yield stress is passed.

$$
\mu(\dot{\gamma})=\frac{\tau_{0}}{\dot{\gamma}}+k\left(\frac{\dot{\gamma}}{\dot{\gamma}_{c}}\right)^{n-1}
$$

The shear strain rate is:

$$
\dot{\gamma} \equiv \sqrt{\frac{\dot{\gamma}_{i j} \dot{\gamma}_{i j}}{2}}=\sqrt{2 \dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}=\sqrt{4\left[\dot{\varepsilon}_{12}^{2}+\dot{\varepsilon}_{23}^{2}+\dot{\varepsilon}_{31}^{2}\right]+2\left[\dot{\varepsilon}_{11}^{2}+\dot{\varepsilon}_{22}^{2}+\dot{\varepsilon}_{33}^{2}\right]}
$$

*MAT_ISPG_CARREAU

This is Material Type 1 for ISPG. The Carreau model attempts to describe a wide range of fluids by establishing a curve-fit to piece together functions for both Newtonian and shear-thinning ($n<1$) non-Newtonian laws.

NOTE: This material only works for ISPG element formulations set on *SECTION_ISPG. It may only be in the ISPG input deck included in the LS-DYNA input deck with *INCLUDE_ISPG.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	VISC0	SFTEN	VISC_LIM	LAMBDA	N	
Type	A	F	F	F	F	F	F	

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA	TREF						
Type	F	F						

VARIABLE

MID

RO
VISC0
SFTEN

VISC_LIM
LAMBDA

N

ALPHA Ratio of the activation energy to thermodynamic constant

DESCRIPTION

Reference temperature in Kelvin, T_{α}. The defaults is 273.15 K .

Remarks:

In the Carreau model, the viscosity is described as:

$$
\eta=\eta_{\infty}+\left(\eta_{0}-\eta_{\infty}\right)\left(1+\dot{\gamma}^{2} \lambda^{2}\right)^{(n-1) / 2}
$$

where $\dot{\gamma}=\sqrt{\frac{1}{2} \mathbf{D}: \mathbf{D}}$ is the second invariant of the rate-of-deformation tensor $\mathbf{D}=$ $\frac{1}{2}\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial j}\right) \mathbf{e}_{i} \otimes \mathbf{e}_{j}, \lambda$ is a time constant, n is the power-law index, and η_{0} and η_{∞} are the zero- and infinite- shear viscosities, respectively. The total viscosity is calculated as

$$
\mu=H(T) \eta(\dot{\gamma}),
$$

where $H(T)$ is the temperature dependence. It is described by an Arrhenius law as:

$$
H(T)=\exp \left[\alpha\left(\frac{1}{T-T_{0}}-\frac{1}{T_{\alpha}-T_{0}}\right)\right] .
$$

where α is the ratio of the activation energy to the thermodynamic constant. T_{α} is a reference temperature in Kelvin with a default value of $273.15 \mathrm{~K} . T_{0}$ is the temperature shift in Kelvin. It is hard-coded as 0 K . Temperature dependence is only considered when the keyword *LOAD_THERMAL_LOAD_CURVE is enabled in the LS-DYNA input deck. If the parameter α is set to 0 , the temperature dependence will be ignored because $H(T)=$ 1.

*MAT_ISPG_CROSSMODEL

This is Material Type 2 for ISPG. The Cross model attempts to describe the shear-rate dependence across the Newtonian region and the shear-thinning region.

NOTE: This material only works for ISPG element formulations set on *SECTION_ISPG. It may only be in the ISPG input deck included in the LS-DYNA input deck with *INCLUDE_ISPG.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	VISCO	SFTEN		LAMBDA	n	
Type	A	F	F	F		F	F	

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA	TREF						
Type	F	F						

VARIABLE	DESCRIPTION
MID	Material identification. A unique number or label must be speci- fied (see *PART).
VISC0	Fluid density
SFTEN	Zero-shear viscosity of the fluid, η_{0}
LAMBDA	Natural time. λ
N	Power-law index, n
ALPHA	Ratio of the activation energy to thermodynamic constant, α
TREF	Reference temperature in Kelvin, T_{α}. The default value is 273.15 K.

Remarks:

The Cross model describes the viscosity as:

$$
\eta=\frac{\eta_{0}}{1+(\lambda \dot{\gamma})^{1-n}}
$$

where $\dot{\gamma}=\sqrt{\frac{1}{2} \mathbf{D}: \mathbf{D}}$ is the second invariant of the rate-of-deformation tensor $\mathbf{D}=$ $\frac{1}{2}\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial j}\right) \mathbf{e}_{i} \otimes \mathbf{e}_{j}, \lambda$ is a time constant, n is the power-law index, and η_{0} is the zero-shear-rate viscosity. The total viscosity is calculated as

$$
\mu=H(T) \eta(\dot{\gamma})
$$

where $H(T)$ is the temperature dependence. It is described by an Arrhenius law as:

$$
H(T)=\exp \left[\alpha\left(\frac{1}{T-T_{0}}-\frac{1}{T_{\alpha}-T_{0}}\right)\right]
$$

where α is the ratio of the activation energy to the thermodynamic constant. T_{α} is a reference temperature in Kelvin with a default value of $273.15 \mathrm{~K} . T_{0}$ is the temperature shift in Kelvin. It is hardcoded as 0 K . Temperature dependence is only considered when the keyword *LOAD_THERMAL_LOAD_CURVE is enabled in the LS-DYNA input deck. If the parameter α is set to 0 , the temperature dependence will be ignored because $H(T)=$ 1.

*MAT_ISPG_ISO_NEWTONIAN

This is Material Type 3 for ISPG. This material type models the Newtonian flow behavior of an incompressible free surface flow. We developed it to predict the shape evolution of solder joints during the electronic reflow process. See Pan et al. 2020 for details.

NOTE: This material only works for ISPG element formulations set on *SECTION_ISPG. It may only be in the ISPG input deck included in the LS-DYNA input deck with *INCLUDE_ISPG.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	DYNVIS	SFTEN				
Type	A	F	F	F				

Card 2	1	2	3	4	5	6	7	8
Variable	ALPHA	TREF						
Type	F	F						

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see *PART).

RO Fluid density
DYNVIS Dynamic viscosity of the fluid, η
SFTEN Surface tension coefficient of the fluid
ALPHA Ratio of the activation energy to thermodynamic constant, α
TREF \quad Reference temperature in Kelvin, T_{α}. The default value is 273.15 K .

Remarks:

The total viscosity is calculated as

$$
\mu=H(T) \eta
$$

where $H(T)$ is the temperature dependence. It is described by an Arrhenius law as:

$$
H(T)=\exp \left[\alpha\left(\frac{1}{T-T_{0}}-\frac{1}{T_{\alpha}-T_{0}}\right)\right]
$$

where α is the ratio of the activation energy to the thermodynamic constant. T_{α} is a reference temperature in Kelvin with a default value of $273.15 \mathrm{~K} . T_{0}$ is the temperature shift in Kelvin. It is hardcoded as 0 K . Temperature dependence is only considered when the keyword *LOAD_THERMAL_LOAD_CURVE is enabled in the LS-DYNA input deck. If the parameter α is set to 0 , the temperature dependence will be ignored because $H(T)=$ 1.

References:

Pan, X., Wu, C.T., and Hu, W. "Incompressible Smoothed Particle Galerkin (ISPG) Method for an Efficient Simulation of Surface Tension and Wall Adhesion Effects in the 3D Reflow Soldering Process," $16^{\text {th }}$ International LS-DYNA Users Conference (2020).

*MAT_SPH_VISCOUS

This may also be referred to as *MAT_SPH_01. This "fluid-like" material model is very similar to Material Type 9 (*MAT_NULL). It models viscous fluids with constant or variable viscosity. The variable viscosity is a function of an equivalent deviatoric strain rate. If an inviscid material is modeled, the deviatoric or viscous stresses are zero, and the equation of state supplies the pressures (or diagonal components of the stress tensor).

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	PC	MUL0	MUHI	RK	RC	RN
Type	A	F	F	F	F	F	F	F
Defaults	none	none	0.0	0.0	0.0	0.0	0.0	0.0

VARIABLE
 MID

RO Mass density
PC \quad Pressure cutoff (≤ 0.0). See Remark 4.
MULO Dynamic viscosity (see Remark 1):
EQ.0.0: Inviscid fluid is assumed.
GT.0.0: If $\mathrm{MUHI}=0.0$ or is not defined, then this is the traditional constant dynamic viscosity coefficient, μ. Otherwise, if MUHI > 0.0, then MULO and MUHI are the lower and upper dynamic viscosity limit values for a power-law-like variable viscosity model.

LT.O.O: -MULO is a load curve ID defining dynamic viscosity as a function of equivalent strain rate.

MUHI Dynamic viscosity:
EQ.0.0: Only MULO is used to define the dynamic viscosity, default

LT.0.0: The viscosity can be defined by the user in the file dyn21.F with a routine called f3dm9ale_userdef1. The file is part of the general usermat package. Note that in

VARIABLE

RK
RC
Cross viscosity model:
RC.GT.0.0: Use the Cross viscosity model which overwrites all other options. The values of MULO, MUHI, RK, and RN are used in the Cross viscosity model. See Remark 7.

RC.LE.0.0: Use a viscosity model based on the above fields. See Remark 6.

RN
Variable dynamic viscosity exponent. See Remark 6.

Remarks:

1. Deviatoric viscous stress. This material must be used with an equation of state. Pressure cutoff is negative in tension. A (deviatoric) viscous stress of the form

$$
\begin{gathered}
\sigma_{i j}^{\prime}=2 \mu \dot{\varepsilon}_{i j}^{\prime} \\
{\left[\frac{N}{m^{2}}\right] \sim\left[\frac{N}{m^{2}} s\right]\left[\frac{1}{s}\right]}
\end{gathered}
$$

is computed for nonzero μ where $\dot{\varepsilon}_{i j}^{\prime}$ is the deviatoric strain rate. μ is the dynamic viscosity. For example, in the SI unit system, μ has units of [$\mathrm{Pa} \times \mathrm{s}$].
2. Hourglass control issues. This material has no shear stiffness and hourglass control must be used with care. In some applications, the default hourglass coefficient might lead to significant energy losses. In general, for fluid(s), the hourglass coefficient QM should be small (in the range of 10^{-4} to 10^{-6} for the standard default IHQ choice).
3. Null material properties. This material has no yield strength and behaves in a fluid-like manner because it is based on the null material.
4. Numerical cavitation. The pressure cut-off, PC, must be defined to allow for a material to "numerically" cavitate. In other words, when a material undergoes dilatation above certain magnitude, it should no longer be able to resist this dilatation. Since dilatation stress or pressure is negative, setting PC limit to a very
small negative number would allow for the material to cavitate once the pressure in the material goes below this negative value.
5. Issues with small values of viscosity exponent. If the viscosity exponent is less than $1.0(\mathrm{RN}<1.0)$, then $\mathrm{RN}-1.0<0.0$. In this case, at very low equivalent strain rate, the viscosity can be artificially very high. MULO is then used as the viscosity value.
6. Empirical dynamic viscosity. The empirical variable dynamic viscosity is typically modeled as a function of equivalent shear rate based on experimental data:

$$
\mu\left(\dot{\bar{\gamma}}^{\prime}\right)=\mathrm{RK} \times \dot{\bar{\gamma}}^{\prime(\mathrm{RN}-1)} .
$$

For an incompressible fluid, this may be written equivalently as

$$
\mu\left(\dot{\bar{\varepsilon}}^{\prime}\right)=\mathrm{RK} \times \dot{\bar{\varepsilon}}^{(\mathrm{RN}-1)} .
$$

The "overbar" denotes a scalar equivalence, the "dot" denotes a time derivative or rate effect, and the "prime" symbol denotes deviatoric or volume preserving components. The equivalent shear rate components may be related to the basic definition of (small-strain) strain rate components as follows:

$$
\begin{aligned}
& \dot{\varepsilon}_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \Rightarrow \dot{\varepsilon}_{i j}^{\prime}=\dot{\varepsilon}_{i j}-\delta_{i j}\left(\frac{\dot{\varepsilon}_{k k}}{3}\right) \\
& \dot{\gamma}_{i j}=2 \dot{\varepsilon}_{i j}
\end{aligned}
$$

Typically, the $2^{\text {nd }}$ invariant of the deviatoric strain rate tensor is defined as:

$$
I_{2 \dot{\varepsilon}^{\prime}}=\frac{1}{2}\left[\dot{\varepsilon}_{i j}^{\prime} \dot{\varepsilon}_{i j}^{\prime}\right] .
$$

The equivalent (small-strain) deviatoric strain rate is defined as:

$$
\dot{\bar{\varepsilon}}^{\prime} \equiv 2 \sqrt{I_{2 \dot{\varepsilon}^{\prime}}}=\sqrt{2\left[\dot{\varepsilon}_{i j}^{\prime} \dot{\varepsilon}_{i j}^{\prime}\right]}=\sqrt{4\left[\dot{\varepsilon}_{12}^{\prime}+\dot{\varepsilon}_{23}^{\prime}{ }^{2}+\dot{\varepsilon}_{31}^{\prime}{ }^{2}\right]+2\left[\dot{\varepsilon}_{11}^{\prime}{ }^{2}+\dot{\varepsilon}_{22}^{\prime}{ }^{2}+\dot{\varepsilon}_{33}^{\prime}{ }^{2}\right]} .
$$

In non-Newtonian literatures, the equivalent shear rate is sometimes defined as

$$
\dot{\bar{\gamma}} \equiv \sqrt{\frac{\dot{\gamma}_{i j} \dot{\gamma}_{i j}}{2}}=\sqrt{2 \dot{\varepsilon}_{i j} \dot{\varepsilon}_{i j}}=\sqrt{4\left[\dot{\varepsilon}_{12}^{2}+\dot{\varepsilon}_{23}^{2}+\dot{\varepsilon}_{31}^{2}\right]+2\left[\dot{\varepsilon}_{11}^{2}+\dot{\varepsilon}_{22}^{2}+\dot{\varepsilon}_{33}^{2}\right]}
$$

It turns out that when (a) the material is incompressible material $\left(\dot{\varepsilon}_{k k}=0\right)$ and (b) the shear terms are equivalent (when $i \neq j \rightarrow \dot{\varepsilon}_{i j}=\dot{\varepsilon}_{i j}^{\prime}$), the equivalent shear rate is algebraically equivalent to the equivalent (small-strain) deviatoric strain rate:

$$
\dot{\bar{\varepsilon}}^{\prime}=\dot{\bar{\gamma}}^{\prime} .
$$

7. Cross viscous model. The Cross viscous model is one of simplest and most used model for shear-thinning behavior. With shear-thinning behavior, the fluid's viscosity decreases with increasing local shear rate, $\dot{\bar{\gamma}}$. Thus, using the Cross viscous model, the dynamic viscosity μ is defined as a function of $\dot{\gamma}$:

$$
\mu\left(\dot{\bar{\gamma}}^{\prime}\right)=\mathrm{MUHI}+(\mathrm{MULO}-\mathrm{MUHI}) /\left(1.0+\mathrm{RK} \times \dot{\bar{\gamma}}^{\prime}\right)^{\mathrm{RN}-1}
$$

Here RK and RN are two positive fitting parameters, and MULO and MUHI are the limiting values of the viscosity at low and high shear rates, respectively. RK, RN, MULO and MUHI are fields from the keyword input.

*MAT_SPH_INCOMPRESSIBLE_FLUID

This may also be referred to as *MAT_SPH_02. This material is only used for the implicit incompressible SPH formulation (FORM = 13 in *CONTROL_SPH).

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	MU	GAMMA1	GAMMA2	STENS		
Type	A	F	F	F	F	F		
Defaults	none	none	0.0	0.0	0.0	0.0		

This card is optional.

Card 2	1	2	3	4	5	6	7	8
Variable	CP	LAMBDA						
Type	F	F						
Default	0.0	0.0						

VARIABLE

MID

RO Mass density
MU Dynamic viscosity
LT.O.O: $|\mathrm{MU}|$ is a load curve of dynamic viscosity as a function of temperature. See *DEFINE_CURVE.

GAMMA1 Numerical surface tension coefficient. For water, we recommend a coefficient of $\gamma_{1}=1000 \mathrm{~m} / \mathrm{s}^{2}$. GAMMA1 is only used if IMAT $=0$ in *CONTROL_SPH_INCOMPRESSIBLE.

GAMMA2 Numerical surface tension coefficient. For water, we recommend a coefficient of $\gamma_{2}=1 \mathrm{~m} / \mathrm{s}^{2}$. GAMMA2 is only used if IMAT $=0$ in

VARIABLE

STENS
Physical surface tension coefficient. It is only used if IMAT $=1$ in *CONTROL_SPH_INCOMPRESSIBLE.

CP Fluid specific heat. It is used to calculate heat transfer coefficients if IHTC = 1 in *CONTROL_SPH_INCOMPRESSIBLE.

LAMBDA Fluid thermal conductivity. It is used to calculate heat transfer coefficients if IHTC = 1 in *CONTROL_SPH_INCOMPRESSIBLE.

Remarks:

The surface tension coefficients, GAMMA1 and GAMMA2, are purely numerical and are based on a normalized version of the algorithm presented in [1]. If IMAT $=1$ in *CONTROL_SPH_INCOMPRESSIBLE, surface tension is calculated based on physical surface tension properties of the fluid.

References:

[1] Akinci, N., Akinci, G. \& Teschner, M. (2013). Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32.6182.

*MAT_SPH_INCOMPRESSIBLE_STRUCTURE

This may also be referred to as *MAT_SPH_03. This material is only used for the implicit incompressible SPH formulation (FORM $=13$ in *CONTROL_SPH) and should be assigned to structures sampled with the *DEFINE_SPH_MESH_SURFACE keyword.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	R0	BETA	ROUGH	ADH			
Type	A	F	F	F	F			
Defaults	none	none	0.0	0.0	0.0			

VARIABLE

MID

RO Mass density. This should be set to the rest density of the fluid. The actual mass of the structure will be calculated from the parent surfaces sampled with the *DEFINE_SPH_MESH_SURFACE keyword.

BETA Numerical surface adhesion coefficient. For water, a value of $\beta=$ $1000 \mathrm{~m} / \mathrm{s}^{2}$ is recommended. Only used if IMAT $=0$ in *CONTROL_SPH.

ROUGH Surface roughness coefficient. A friction force between the structure and the fluid is generated based on the viscosity of the fluid scaled by this coefficient. A value between 0.0 and 10.0 is usually recommended.

ADH Surface adhesion scaling coefficient. It is only used if IMAT = 1 in *CONTROL_SPH. An attractive force between fluid and structure is calculated based on surface tension forces in the fluid and then scaled by ADH.

Remarks:

The surface adhesion coefficient is purely numerical and is based on a normalized version of the algorithm presented in [1].

References:

[1] Akinci, N., Akinci, G. \& Teschner, M. (2013). Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32.6182.

*MAT_SPRING_ELASTIC

This is Material Type 1 for discrete elements (*ELEMENT_DISCRETE). This model provides a translational or rotational elastic spring located between two nodes. Only one degree of freedom is connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	K						
Type	A	F						

VARIABLE

MID

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

K Elastic stiffness (force/displacement) or (moment/rotation)

Remarks:

Rotational displacement is measured in radians.

*MAT_DAMPER_VISCOUS

This is Material Type 2 for discrete elements (*ELEMENT_DISCRETE). This material provides a linear translational or rotational damper located between two nodes. Only one degree of freedom is then connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	DC						
Type	A	F						

VARIABLE

MID

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

DC Damping constant (force/displacement rate) or (moment/rotation rate)

Remarks:

Rotational displacement is measured in radians.

*MAT_SPRING_ELASTOPLASTIC

This is Material Type 3 for discrete elements (*ELEMENT_DISCRETE). This material provides an elastoplastic translational or rotational spring with isotropic hardening located between two nodes. Only one degree of freedom is connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	K	KT	FY				
Type	A	F	F	F				

VARIABLE

MID

DESCRIPTION

Material identification. A unique number or label must be specified (see *PART).

K Elastic stiffness (force/displacement) or (moment/rotation)
KT Tangent stiffness (force/displacement) or (moment/rotation)
FY Yield (force) or (moment)

Remarks:

Rotational displacement is measured in radians.

*MAT_SPRING_NONLINEAR_ELASTIC

This is Material Type 4 for discrete elements (*ELEMENT_DISCRETE). This material provides a nonlinear elastic translational and rotational spring with arbitrary force as a function of displacement and moment as a function of rotation, respectively. Optionally, strain rate effects can be considered through a velocity dependent scale factor or defining a table of curves. With the spring located between two nodes, only one degree of freedom is connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCD	LCR					
Type	A	1	1					

VARIABLE

MID

LCD Load curve ID (see *DEFINE_CURVE) describing force as a function of displacement or moment as a function of rotation relationship. The load curve must define the response in the negative and positive quadrants and pass through point $(0,0)$. Negative data point(s) must come first in the curve definition, where negative values represent compression in the case of a translational spring.
LCD may also be a table ID (see *DEFINE_TABLE). The table gives for each loading rate a load curve ID defining the force-displacement (or moment-rotation) curve. Values between the data points are computed by linear interpolation. If a table ID is specified, LCR will be ignored.

LCR Optional load curve describing scale factor on force or moment as a function of relative velocity or rotational velocity, respectively.

Remarks:

Rotational displacement is measured in radians.

*MAT_DAMPER_NONLINEAR_VISCOUS

This is Material Type 5 for discrete elements (*ELEMENT_DISCRETE). This material provides a viscous translational damper with an arbitrary force as a function of velocity dependency or a rotational damper with an arbitrary moment as a function of rotational velocity dependency. With the damper located between two nodes, only one degree of freedom is connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCDR						
Type	A	1						

VARIABLE

MID

LCDR Load curve ID defining force as a function of rate-of-displacement relationship or a moment as a function of rate-of-rotation relationship. The load curve must define the response in the negative and positive quadrants and pass through point $(0,0)$.

Remarks:

Rotational displacement is measured in radians.

*MAT_SPRING_GENERAL_NONLINEAR

This is Material Type 6 for discrete elements (*ELEMENT_DISCRETE). This material provides a general nonlinear translational or rotational spring with arbitrary loading and unloading definitions. Optionally, hardening or softening can be defined. With the spring located between two nodes, only one degree of freedom is connected.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCDL	LCDU	BETA	TYI	CYI		
Type	A	I	I	F	F	F		

VARIABLE

MID

LCDL Load curve or table ID giving force/torque as a function of displacement/rotation (curve) or as a function of velocity and displacement/rotation (table) for loading; see Figure MS6-1.

LCDU Load curve or table ID giving force/torque as a function of displacement/rotation (curve) or as a function of velocity and displacement/rotation (table) for unloading; see Figure MS6-1.

BETA
Hardening parameter, β :
EQ.0.0: Tensile and compressive yield with strain softening (negative or zero slope allowed in the force as a function of displacement load curves). TYI and CYI are not implemented for this option.

NE.0.O: Kinematic hardening without strain softening
EQ.1.0: Isotropic hardening without strain softening
TYI Initial yield force in tension (>0)
CYI Initial yield force in compression (<0)

Remarks:

1. Load Curves. Load curve points are in the format (displacement, force) or (rotation, moment). The points must be in order starting with the most negative

Figure MS6-1. General Nonlinear material for discrete elements
(compressive) displacement or rotation and ending with the most positive (tensile) value. The curves need not be symmetrical.

The displacement origin of the "unloading" curve is arbitrary since it will be shifted as necessary as the element extends and contracts. On reverse yielding the "loading" curve will also be shifted along the displacement re or. rotation axis.
2. Initial Tensile and Compressive Yield Forces. The initial tensile and compressive yield forces (TYI and CYI) define a range within which the element remains elastic (meaning the "loading" curve is used for both loading and unloading). If at any time the force in the element exceeds this range, the element is deemed to have yielded, and at all subsequent times the "unloading" curve is used for unloading.
3. Rotational Displacement. Rotational displacement is measured in radians.

*MAT_SPRING_MAXWELL

This is Material Type 7 for discrete elements (*ELEMENT_DISCRETE). This material provides a three-parameter Maxwell viscoelastic translational or rotational spring. Optionally, a cutoff time with a remaining constant force/moment can be defined.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	K0	KI	BETA	TC	FC	COPT	
Type	A	F	F	F	F	F	F	
Default	none	none	none	none	10^{20}	0.0	0.0	

VARIABLE

DESCRIPTION

MID Material identification. A unique number or label must be specified (see *PART).

K0 $\quad K_{0}$, short-time stiffness
KI $\quad K_{\infty}$, long-time stiffness
BETA Decay parameter, β
TC Cut off time. After this time, a constant force/moment is transmitted.

FC Force/moment after cutoff time
COPT Time implementation option:
EQ.0.0: Incremental time change
NE.0.O: Continuous time change

Remarks:

1. Stiffness. The time-varying stiffness, $K(t)$, may be described in terms of the input parameters as

$$
K(T)=K_{\infty}+\left(K_{0}-K_{\infty}\right) \exp (-\beta \mathrm{t}) .
$$

This equation was implemented by Schwer [1991] as either a continuous function of time or incrementally following the approach of Herrmann and Peterson
[1968]. The continuous function of time implementation has the disadvantage of the energy absorber's resistance decaying with increasing time even without deformation. The advantage of the incremental implementation is that an energy absorber must undergo some deformation before its resistance decays, meaning there is no decay until impact, even in delayed impacts. The disadvantage of the incremental implementation is that very rapid decreases in resistance cannot be easily matched.
2. Rotational displacement. Rotational displacement is measured in radians.

*MAT_SPRING_INELASTIC

This is Material Type 8 for discrete elements (*ELEMENT_DISCRETE). This material provides an inelastic tension or compression only, translational or rotational spring. Optionally, a user-specified unloading stiffness can be taken instead of the maximum loading stiffness.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCFD	KU	CTF				
Type	A	I	F	F				

VARIABLE

MID

LCFD Load curve ID describing arbitrary force/torque as a function of displacement/rotation relationship. This curve must be defined in the positive force-displacement quadrant regardless of whether the spring acts in tension or compression.

KU Unloading stiffness (optional). The maximum of KU and the maximum loading stiffness in the force/displacement or the moment/rotation curve is used for unloading.

CTF Flag for compression/tension:
EQ.-1.0: Tension only
EQ.1.0: Compression only (default)

Remarks:

Rotational displacement is measured in radians.

*MAT_SPRING_TRILINEAR_DEGRADING

This is Material Type 13 for discrete elements (*ELEMENT_DISCRETE). This material allows concrete shearwalls to be modeled as discrete elements under applied seismic loading. It represents cracking of the concrete, yield of the reinforcement, and overall failure. Under cyclic loading, the stiffness of the spring degrades, but the strength does not.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	DEFL1	F1	DEFL2	F2	DEFL3	F3	FFLAG
Type	A	F	F	F	F	F	F	F

VARIABLE

MID

DEFL1 Deflection at the point where concrete cracking occurs
F1 Force corresponding to DEFL1
DEFL2 Deflection at the point where reinforcement yields
F2 Force corresponding to DEFL2
DEFL3 Deflection at complete failure
F3 Force corresponding to DEFL3
FFLAG Failure flag

*MAT_SPRING_SQUAT_SHEARWALL

This is Material Type 14 for discrete elements (*ELEMENT_DISCRETE). This material allows squat shear walls to be modeled using discrete elements. The behavior model captures concrete cracking, reinforcement yield, and ultimate strength followed by degradation of strength finally leading to collapse.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	A14	B14	C14	D14	E14	LCID	FSD
Type	A	F	F	F	F	F	I	F

VARIABLE

MID

A14
B14 Material coefficient B
C14 Material coefficient C
D14 Material coefficient D
E14 Material coefficient E
LCID Load curve ID referencing the maximum strength envelope curve
FSD Sustained strength reduction factor

Remarks:

Material coefficients A, B, C, and D are empirically defined constants for setting the shape of the polynomial curves that govern the cyclic behavior of the discrete element. The loading and unloading paths use different polynomial relationships, allowing energy absorption through hysteresis. Coefficient E determines the "jump" from the loading path to the unloading path (or vice versa) when a full hysteresis loop is not completed. The load curve referenced is used to define the force-displacement characteristics of the shear wall under monotonic loading. The polynomials defining the cyclic behavior refer to this curve. On the second and subsequent loading/unloading cycles, the shear wall has reduced strength. The variable FSD is the sustained strength reduction factor.

*MAT_SPRING_MUSCLE

This is Material Type S15 for discrete elements (*ELEMENT_DISCRETE). This material is a Hill-type muscle model with activation. The LS-DYNA implementation is due to Dr. J. A. Weiss.

Card 1	1	2	3	4	5	6	7	8
Variable	MID	L0	VMAX	SV	A	FMAX	TL	TV
Type	A	F	F	F	F	F	F	F
Default	none	1.0	none	1.0	none	none	1.0	1.0
Card 2	1	2	3	4	5	6	7	8
Variable	FPE	LMAX	KSH					
Type	F	F	F					
Default	0.0	none	none					

VARIABLE

MID

L0 Initial muscle length, L_{0}
VMAX Maximum CE shortening velocity, $V_{\max }$
SV Scale factor, S_{v}, for $V_{\max }$ as a function of active state:
LT.0.0: Absolute value gives load curve ID.
GE.0.0: Constant value of 1.0 is used.

A
Activation level as a function of time function $a(t)$:

LT.0.0: Absolute value gives load curve ID.
GE.0.0: Constant value of A is used.

VARIABLE	DESCRIPTION
FMAX	Peak isometric force, $F_{\max }$
TL	Active tension as a function of length function, $f_{\mathrm{TL}}(L)$:
	LT.0.0: Absolute value gives load curve ID.
	GE.0.0: Constant value of 1.0 is used.
TV	Active tension as a function of velocity function, $f_{\mathrm{TV}}(V)$:
	LT.0.0: Absolute value gives load curve ID.
	GE.0.0: Constant value of 1.0 is used.
FPE	Normalized force, $f_{\text {PE }}$, as a function of length for parallel elastic element:
	LT.0.0: Absolute value gives load curve ID.
	EQ.0.0: Exponential function is used (see Remarks).
	GT.0.0: Constant value of 0.0 is used.
LMAX	Relative length when F^{PE} reaches $F_{\max }$. Required if $\mathrm{FPE}=0.0$ above. See Remarks.
KSH	Constant, $K_{\text {sh }}$, governing the exponential rise of F^{PE}. Required if $\mathrm{FPE}=0.0$ above. See Remarks.

Remarks:

The material behavior of the muscle model is adapted from the original model proposed by Hill [1938]. Reviews of this model and extensions can be found in Winters [1990] and Zajac [1989]. The most basic Hill-type muscle model consists of a contractile element (CE) and a parallel elastic element (PE) (Figure MS15-1). An additional series elastic element (SEE) can be added to represent tendon compliance.

The main assumptions of the Hill model are that the contractile element is entirely stress free and freely distensible in the resting state and is described exactly by Hill's equation (or some variation). When the muscle is activated, the series and parallel elements are elastic, and the whole muscle is a simple combination of identical sarcomeres in series and parallel. The main criticism of Hill's model is that the division of forces between the parallel elements and the division of extensions between the series elements is arbitrary and cannot be made without introducing auxiliary hypotheses. However, these criticisms apply to any discrete element model. Despite these limitations, the Hill model has
become extremely useful for modeling musculoskeletal dynamics, as illustrated by its widespread use today.

Figure MS15-1. Discrete model for muscle contraction dynamics, based on a Hill-type representation. The total force is the sum of passive force F^{PE} and active force F^{CE}. The passive element (PE) represents energy storage from muscle elasticity, while the contractile element (CE) represents force generation by the muscle. The series elastic element (SEE), shown in dashed lines, is often neglected when a series tendon compliance is included. Here, $a(t)$ is the activation level, L^{M} is the length of the muscle, and V^{M} is the shortening velocity of the muscle.

When the contractile element (CE) of the Hill model is inactive, the entire resistance to elongation is provided by the PE element and the tendon load-elongation behavior. As activation is increased, force then passes through the CE side of the parallel Hill model, providing the contractile dynamics. The original Hill model accommodated only full activation - this limitation is circumvented in the present implementation by using the modification suggested by Winters (1990). The main features of his approach were to realize that the CE force-velocity input force equals the CE tension-length output force. This yields a three-dimensional curve to describe the force-velocity-length relationship of the CE. If the force-velocity y-intercept scales with activation, then given the activation, length and velocity, the CE force can be determined.

Without the SEE, the total force in the muscle FM is the sum of the force in the CE and the PE because they are in parallel:

$$
F^{\mathrm{M}}=F^{\mathrm{PE}}+F^{\mathrm{CE}} .
$$

The relationships defining the force generated by the CE and PE as a function of L^{M} (length of the muscle), V^{M} (shortening velocity of the muscle) and $a(t)$ are often scaled by $F_{\text {max }}$, the peak isometric force (p. 80, Winters 1990), L_{0}, the initial length of the muscle (p. 81, Winters 1990), and $V_{\text {max }}$ the maximum unloaded CE shortening velocity (p. 80, Winters 1990). From these, dimensionless length and velocity can be defined as:

$$
\begin{aligned}
L & =L^{M} / L_{0} \\
V & =\frac{V^{M}}{V_{\max } \times S_{v}[a(t)]}
\end{aligned}
$$

Here, S_{v} scales the maximum CE shortening velocity $V_{\max }$ and changes with activation level $a(t)$. This has been suggested by several researchers, that is, Winters and Stark [1985]. The activation level specifies the level of muscle stimulation as a function of time. Both have values between 0 and 1 . The functions $S_{v}[a(t)]$ and $a(t)$ are specified using load curves in LS-DYNA, but the default values of $S_{\mathrm{v}}=1$ and $a(t)=0$ can also be used. Note that L is always positive and that V is positive for lengthening and negative for shortening.

The relationship between F^{CE}, V and L was proposed by Bahler et al. [1967]. A threedimensional relationship between these quantities is now considered standard for computer implementations of Hill-type muscle models [Winters 1990]. It can be written in dimensionless form as:

$$
F^{\mathrm{CE}}=a(t) \times F_{\max } \times f_{\mathrm{TL}}(L) \times f_{\mathrm{TV}}(V)
$$

Here, $f_{\mathrm{TL}}(L)$ and $f_{\mathrm{TV}}(V)$ are the tension-length and tension-velocity functions for active skeletal muscle. Thus, if current values of $L^{\mathrm{M}}, V^{\mathrm{M}}$, and $a(t)$ are known, then F^{CE} can be determined (Figure MS15-1).

If $\mathrm{FPE}=0.0$, the force in the parallel elastic element, F^{PE}, is determined directly from the current length of the muscle using an exponential relationship [Winters 1990]:

$$
f_{\mathrm{PE}}=\frac{F^{\mathrm{PE}}}{F_{\mathrm{MAX}}}=\left\{\begin{array}{cc}
0 & L \leq 1 \\
\frac{1}{\exp \left(K_{\mathrm{sh}}\right)-1}\left\{\exp \left[\frac{K_{\mathrm{sh}}}{L_{\max }}(L-1)\right]-1\right\} & L>1
\end{array}\right.
$$

Here, $L_{\max }$ is the dimensionless length at which the force $F_{\max }$ occurs, and K_{sh} is a dimensionless shape parameter controlling the rate of rise of the exponential. Alternatively, the user can define a custom $f_{\text {PE }}$ curve giving tabular values of normalized force as a function of dimensionless length as a load curve.

For computation of the total force developed in the muscle F^{M}, the functions for the ten-sion-length $f_{\mathrm{TL}}(L)$ and force-velocity f_{TV} relationships used in the Hill element must be defined. These relationships have been available for over 50 years but have been refined to allow for behavior such as active lengthening. The active tension-length curve $f_{\mathrm{TL}}(L)$ describes the fact that isometric muscle force development is a function of length, with the maximum force occurring at an optimal length. According to Winters, this optimal length is typically around $L=1.05$, and the force drops off for shorter or longer lengths, approaching zero force for $L=0.4$ and $L=1.5$. Thus the curve has a bell-shape. Because of the variability in this curve between muscles, the user must specify the function $f_{T L}(L)$ using a load curve, specifying pairs of points representing the normalized force (with values between 0 and 1) and normalized length L. See Figure MS15-2.

Figure MS15-2. Typical normalized tension-length (TL) and tension-velocity (TV) curves for skeletal muscle.

The active tension-velocity relationship $f_{\mathrm{TV}}(V)$ used in the muscle model is mainly due to the original work of Hill. Note that the dimensionless velocity V is used. When $V=$ 0.0 , the normalized tension is typically chosen to have a value of 1.0 . When V is greater than or equal to 0.0 , muscle lengthening occurs. As V increases, the function is typically designed so that the force increases from a value of 1.0 and asymptotes towards a value near 1.4 ass shown in Figure MS15-2. When V is less than zero, muscle shortening occurs and the classic Hill equation hyperbola is used to drop the normalized tension to 0.0 as shown in Figure MS15-2. The user must specify the function $f_{\mathrm{TV}}(V)$ using a load curve, specifying pairs of points representing the normalized tension (with values between 0.0 and 1.0) and normalized velocity V.
*MAT_SEATBELT_\{OPTION\}
This is Material Type B01. It defines a seat belt material.
Available options include:
2D

Card 1	1	2	3	4	5	6	7	8
Variable	MID	MPUL	LLCID	ULCID	LMIN	CSE	DAMP	E
Type	A	F	I	I	F	F	F	F
Default	0	0.0	0	0	0.0	0.0	0.1	0.0

Bending/Compression Parameter Card. Additional card for E >0.0.

Card 2	1	2	3	4	5	6	7	8
Variable	A	I	J	AS	F	M	R	
Type	F	F	F	F	F	F	F	
Default	0.0	0.0	2^{\star}	A	10^{20}	10^{20}	0.05	

2D Card. Additional $1^{\text {st }}$ card for the 2D keyword option.

Card 3	1	2	3	4	5	6	7	8
Variable	P1DOFF	FORM	ECOAT	TCOAT	SCOAT	EB	PRBA	PRAB
Type	I	I	F	F	F	F	F	F
Default	0	0	0.0	0.0	0.0	-0.1	0.3	PRBA

2D Card. Optional $2^{\text {nd }}$ card for the 2D keyword option.

Card 4	1	2	3	4	5	6	7	8
Variable	GAB							
Type	F							
Default	\downarrow							

VARIABLE
MID

MPUL

LLCID

ULCID

LMIN

CSE Compressive stress elimination option which applies to shell elements only, available since r137465/dev for non-zero FORM. The old recommended option of CSE $=2$, available since R8, still works if and only if $\mathrm{FORM}=0$. For non-zero FORM:

EQ.O.O: don't eliminate compressive stresses in shell fabric.
EQ.1.0: eliminate compressive stresses in shell fabric.
DAMP Optional Rayleigh damping coefficient, which applies to shell elements only. A coefficient value of 0.10 is the default corresponding to 10% of critical damping. Sometimes smaller or larger values work better.

E Young's modulus for bending/compression stiffness, when positive, the optional card is invoked. See Remark 5.

A
Cross sectional area for bending/compression stiffness; see re- marks.

VARIABLE

I

EB

FORM Formulation of the translated fabric material; see FORM of *MAT_FABRIC for details. FORM $=0$ was used since R8 and non-zero FORM is available since $\mathrm{r} 137465 / \mathrm{dev}$.

ECOAT Young's modulus of coat material for $\operatorname{FORM}=-14$; see ${ }^{*} \mathrm{MAT}_{-}$FABRIC for details.

EQ.0.0: ECOAT is the Young's modulus determined by LS-DYNA.

GT.0.0: ECOAT is the Young's modulus to be used for coat material.
LT.0.0: \mid ECOAT| is the ratio of coat material's Young's modulus to that of the fabric shell which is determined by LS-DYNA.

TCOAT Thickness of coat material for FORM $=-14$; see *MAT_FABRIC for details.

DESCRIPTION

Area moment of inertia for bending/ compression stiffness; see Remark 5.

Torsional constant for bending/compression stiffness; see Remark 5.

Shear area for bending/compression stiffness; see Remark 5.
Maximum force in compression/tension; see Remark 5.
Maximum torque; see Remark 5.
Rotational mass scaling factor; see Remark 5.
Part ID offset for internally created 1D, bar-type, belt parts for 2D seatbelt of this material, that is, the IDs of newly created 1D belt parts will be P1DOFF +1 , P1DOFF $+2, \ldots$ If zero, the maximum ID of user-defined parts is used as the part ID offset.

Yield stress of coat material for FORM $=-14$; see ${ }^{*}$ MAT_FABRIC for details. If not defined, the coat material is assumed to be elastic.

Young's modulus along transverse direction; see *MAT_FABRIC for details.

VARIABLE

DESCRIPTION

EQ.0.0: The Young's modulus along transverse direction is 10% of the Young's determined by LS-DYNA based on the loading curve, LLCID.
LT.O.O: $|\mathrm{EB}|$ is the ratio of Young's modulus along the transverse direction to the Young's modulus determined by LSDYNA based on the loading curve, LLCID.

GT.0.0: EB is the Young's modulus along the transverse direction.

PRBA Minor (Major) Poisson's ratio ba (ab) direction
(PRAB)
GAB Shear modulus in the $a b$ direction. Set to a very small value for an isotropic elastic material; see *MAT_FABRIC. If defined to be zero, a default value of EA/ $(2 \times(1+$ PRBA $))$ will be used where EA is the Young's modulus along the longitudinal direction and is set to 1% of the Young's modulus determined by LS-DYNA according to the loading curve, LLCID.

Remarks:

1. Loading and Unloading. Each belt material defines stretch characteristics and mass properties for a set of belt elements. The user enters a load curve for loading, the points of which are (Strain, Force). Strain is defined as engineering strain, that is,

$$
\text { Strain }=\frac{\text { current length }}{\text { initial length }}-1.0
$$

Another similar curve is entered to describe the unloading behavior. Both load curves should start at the origin $(0,0)$ and contain positive force and strain values only. The belt material is tension only with zero forces being generated whenever the strain becomes negative. The first non-zero point on the loading curve defines the initial yield point of the material. On unloading, the unloading curve is shifted along the strain axis until it crosses the loading curve at the "yield" point from which unloading commences. If the initial yield has not yet been exceeded or if the origin of the (shifted) unloading curve is at negative strain, the original loading curves will be used for both loading and unloading. If the strain is less than the strain at the origin of the unloading curve, the belt is slack and no force is generated. Otherwise, forces will then be determined by the unloading curve for unloading and reloading until the strain again exceeds yield after which the loading curves will again be used.
2. Damping. A small amount of damping is automatically included. This reduces high frequency oscillation, but, with realistic force-strain input characteristics and loading rates, does not significantly alter the overall forces-strain performance. The damping forced opposes the relative motion of the nodes and is limited by stability:

$$
D=\frac{0.1 \times \text { mass } \times \text { relative velocity }}{\text { time step size }}
$$

In addition, the magnitude of the damping force is limited to one-tenth of the force calculated from the force-strain relationship and is zero when the belt is slack. Damping forces are not applied to elements attached to sliprings and retractors.
3. Nodal Masses. MPUL, the mass per unit length, is used to calculate the nodal masses during initialization.
4. Minimum Length. LMIN, the "minimum" length, controls the shortest length allowed in any element. It also determines when an element passes through sliprings or is absorbed into the retractors. A large LMIN causes elements to easily pass through the sliprings. A small LMIN leads to a smaller time step and possible instability for 2D belts. One tenth of a typical initial element length is a good choice for a 1D belt. For a 2D belt, a larger value of 0.3 can be used for better robustness and a larger time step.
5. Bending and Compression Stiffness for 1D Elements. Since one-dimensional elements do not possess any bending or compression stiffness, dynamic analysis is mandatory during an implicit analysis that includes belts. However, one dimensional belt elements can be used in implicit statics by associating them with bending/compression properties with the first optional card. Two-dimensional belt elements are not supported with this feature.

To achieve bending and compression stiffness in one-dimensional belts, the belt element is overlayed with a Belytschko-Schwer beam element (see *SECTION_BEAM, ELFORM $=2$, for a more comprehensive description of fields A, I, J and AS) with circular cross section. These elements have 6 degrees of freedom including rotational degrees of freedom. The material used in this context is an elastic-ideal-plastic material where the elastic part is governed by the Young's modulus, E. Two yield values, F (the maximum compression/tension force) and M (the maximum torque), are used as upper bounds for the resultants. The bending/compression forces and moments from this contribution are accumulated to the force from the seatbelt itself. Since the main purpose is to eliminate the singularities in bending and compression, it is recommended to choose the bending and compression properties in the optional card carefully so as to not significantly influence the overall response.

For the sake of completeness, this feature is also supported by the explicit integrator; therefore, a rotational nodal mass is needed. Each of the two nodes of an element gets a contribution from the belt that is calculated as RMASS $=$ $\mathrm{R} \times(\mathrm{MASS} / 2) \times \mathrm{I} / \mathrm{A}$, where MASS indicates the total translational mass of the belt element and R is a scaling factor input by the user. The translational mass is not modified. The bending and compression properties do not affect the stable time step. If the belts are used without sliprings, then incorporating this feature is virtually equivalent to adding Belytschko-Schwer beams on top of conventional belt elements as part of the modelling strategy. If sliprings are used, this feature is necessary to properly support the flow of material through the sliprings and swapping of belt elements across sliprings. Retractors cannot be used with this feature.

*MAT_THERMAL

The *MAT_THERMAL cards allow thermal properties to be defined in coupled structural/thermal and thermal only analyses; see *CONTROL_SOLUTION. Thermal properties must be defined for all elements in such analyses.

Thermal material properties are specified by a thermal material ID number (TMID). This number is independent of the material ID number (MID) defined on all other *MAT_... property cards. In the same analysis identical TMID and MID numbers may exist. The TMID and MID numbers are related through the *PART card.

Available thermal materials are:

*MAT_THERMAL_ISOTROPIC
*MAT_THERMAL_ORTHOTROPIC
*MAT_THERMAL_ISOTROPIC_TD
*MAT_THERMAL_ORTHOTROPIC_TD
*MAT_THERMAL_DISCRETE_BEAM
*MAT_THERMAL_CHEMICAL_REACTION
*MAT_THERMAL_CWM
*MAT_THERMAL_ORTHOTROPIC_TD_LC
*MAT_THERMAL_ISOTROPIC_PHASE_CHANGE
*MAT_THERMAL_ISOTROPIC_TD_LC
*MAT_THERMAL_USER_DEFINED
*MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC

*MAT_THERMAL_ISOTROPIC

This is Thermal Material Type 1. With this material, isotropic thermal properties can be defined.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TR0	TGRLC	TGMULT	TLAT	HLAT		
Type	A	F	F	F	F	F		

Card 2	1	2	3	4	5	6	7	8
Variable	HC	TC						
Type	F	F						

VARIABLE

TMID

TRO

TGRLC

TGMULT Thermal generation rate multiplier:
EQ.0.0: No heat generation
TLAT Phase change temperature
HLAT Latent heat

HC
Specific heat
TC Thermal conductivity

Remarks:

1. Supported Load Curves. *DEFINE_CURVE_FUNCTION is fully supported for *MAT_THERMAL_ISOTROPIC (added in revision 113488).
2. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION. It has units W/m³ in the SI units system.

Example:

```
*MAT_THERMAL_ISOTROPIC
        1 2700. 210 1.0
        904. 222.
    *define_curve_function
    210
    if(lc211,lc10,lc12,lc11)
    *define_curve
    211
    0,-200
    2.0,-200
    *define_curve
    10
    0,1.43e+07
    100,1.43e+07
    *define_curve
    11
    0,2.43e+07
    100,2.43e+07
    *define_curve
    12
    0,3.43e+07
    100,3.43e+07
```


*MAT_THERMAL_ORTHOTROPIC

This is Thermal Material Type 2. It allows orthotropic thermal properties to be defined.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TR0	TGRLC	TGMULT	AOPT	TLAT	HLAT	
Type	A	F	F	F	F	F	F	

Card 2	1	2	3	4	5	6	7	8
Variable	HC	K1	K2	K3				
Type	F	F	F	F				

Card 3	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

Card 4	1	2	3	4	5	6	7	8
Variable	D1	D2	D3					
Type	F	F	F					

VARIABLE

TMID Thermal material identification. A unique number or label must be specified (see *PART).

TRO Thermal density:
EQ.0.0: Default to structural density

TGMULT Thermal generation rate multiplier:
EQ.0.0: No heat generation

AOPT Material axes definition:
EQ.0.0: Locally orthotropic with material axes by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point in space and global location of element center
EQ.2.0: Globally orthotropic with material axes determined by vectors

EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N4) and to a vector \mathbf{d}. The third material direction corresponds to element normal.
EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis.

TLAT Phase change temperature
HLAT Latent heat

HC Specific heat
K1
Thermal conductivity, K_{1}, in local x-direction
K2 Thermal conductivity, K_{2}, in local y-direction
K3 Thermal conductivity, K_{3}, in local z-direction
$\mathrm{XP}, \mathrm{YP}, \mathrm{ZP} \quad$ Coordinates of point p for $\mathrm{AOPT}=1$ and 4

DESCRIPTION

A1, A2, A3 Components of vector a for AOPT $=2$
D1, D2, D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2,3$ and 4

Remarks:

1. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION. It has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system.

*MAT_THERMAL_ISOTROPIC_TD

This is Thermal Material Type 3. The isotropic properties can be temperature dependent. The temperature dependency is defined by specifying a minimum of two and a maximum of eight data points. You should define the properties for the temperature range that the material will see in the analysis.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TR0	TGRLC	TGMULT	TLAT	HLAT		
Type	A	F	F	F	F	F		

Card 2	1	2	3	4	5	6	7	8
Variable	T1	T2	T3	T4	T5	T6	T7	T8
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	C1	C2	C3	C4	C5	C6	C7	C8
Type	F	F	F	F	F	F	F	F

Card 4	1	2	3	4	5	6	7	8
Variable	K1	K2	K3	K4	K5	K6	K7	K8
Type	F	F	F	F	F	F	F	F

VARIABLE

TMID

DESCRIPTION

Thermal material identification. A unique number or label must be specified (see *PART).

DESCRIPTION

TRO

TGRLC

TGMULT Thermal generation rate multiplier:
EQ.0.0: No heat generation
TLAT Phase change temperature
HLAT Latent heat
T1, ..., T8 Temperatures: T1, ..., T8
$\mathrm{C} 1, \ldots, \mathrm{C} 8 \quad$ Specific heat at: $\mathrm{T} 1, \ldots, \mathrm{~T} 8$
$\mathrm{K} 1, \ldots, \mathrm{~K} 8 \quad$ Thermal conductivity at: $\mathrm{T} 1, \ldots, \mathrm{~T} 8$

Remarks:

1. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION. It has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system.

*MAT_THERMAL_ORTHOTROPIC_TD

This is Thermal Material Type 4. It allows temperature dependent orthotropic properties to be defined. The temperature dependency is defined by specifying a minimum of two and a maximum of eight data points. The properties must be defined for the temperature range that the material will see in the analysis.

Card Summary:

Card 1. This card is required.

TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	

Card 2. This card is required.

T 1	T 2	T 3	T 4	T 5	T 6	T 7	T 8

Card 3. This card is required.

C1	C2	C3	C4	C5	C6	C7	C8

Card 4. This card is required.

$(\mathrm{K} 1) 1$	$(\mathrm{~K} 1) 2$	$(\mathrm{~K} 1) 3$	$(\mathrm{~K} 1) 4$	$(\mathrm{~K} 1)_{5}$	$(\mathrm{~K} 1) 6$	$(\mathrm{~K} 1) 7$	$(\mathrm{~K} 1) 8$

Card 5. This card is required.

$(\mathrm{K} 2) 1$	(K2)2	(K2)3	(K2)4	(K2)5	(K2)6	(K2)7	(K2)8

Card 6. This card is required.

$(\mathrm{K} 3) 1$	$(\mathrm{~K} 3) 2$	$(\mathrm{~K} 3) 3$	$(\mathrm{~K} 3) 4$	$(\mathrm{~K} 3) 5$	$(\mathrm{~K} 3) 6$	$(\mathrm{~K} 3) 7$	$(\mathrm{~K} 3) 8$

Card 7. This card is required.

$X P$	YP	ZP	A1	A2	A3		

Card 8. This card is required.

D1	D2	D3					

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	
Type	A	F	F	F	F	F	F	

VARIABLE

TMID

TRO

TGRLC

TGMULT Thermal generation rate multiplier:
EQ.0.0: No heat generation
AOPT Material axes definition (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point in space and global location of element center
EQ.2.0: Globally orthotropic with material axes determined by vectors
EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N 4) and to a vector \mathbf{d} - Third material direction corresponds to element normal.

VARIABLE

DESCRIPTION

EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis.

TLAT Phase change temperature
HLAT Latent heat

Card 2	1	2	3	4	5	6	7	8
Variable	T1	T2	T3	T4	T5	T6	T7	T8
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION
T1, ..., T8 Temperatures: T1, ..., T8

Card 3	1	2	3	4	5	6	7	8
Variable	C1	C2	C3	C4	C5	C 6	C 7	C 8
Type	F	F	F	F	F	F	F	F

VARIABLE
DESCRIPTION
$\mathrm{C} 1, \ldots, \mathrm{C} 8 \quad$ Specific heat at $\mathrm{T} 1, \ldots, \mathrm{~T} 8$

Card 4	1	2	3	4	5	6	7	8
Variable	$(\mathrm{K} 1) 1$	$(\mathrm{~K} 1) 2$	$(\mathrm{~K} 1) 3$	$(\mathrm{~K} 1) 4$	$(\mathrm{~K} 1) 5$	$(\mathrm{~K} 1) 6$	$(\mathrm{~K} 1) 7$	$(\mathrm{~K} 1) 8$
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION
(K1)1, ..., Thermal conductivity K_{1} in the local x-direction at T1, ..., T8 (K1)8

Card 5	1	2	3	4	5	6	7	8
Variable	(K2)1	$(\mathrm{K} 2) 2$	$(\mathrm{~K} 2) 3$	$(\mathrm{~K} 2) 4$	$(\mathrm{~K} 2) 5$	$(\mathrm{~K} 2) 6$	$(\mathrm{~K} 2) 7$	$(\mathrm{~K} 2) 8$
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

(K2)1, ..., Thermal conductivity K_{2} in the local y-direction at T1, ..., T8
(K2)8

Card 6	1	2	3	4	5	6	7	8
Variable	$(\mathrm{K} 3) 1$	$(\mathrm{~K} 3) 2$	$(\mathrm{~K} 3) 3$	$(\mathrm{~K} 3) 4$	$(\mathrm{~K} 3) 5$	$(\mathrm{~K} 3) 6$	$(\mathrm{~K} 3) 7$	$(\mathrm{~K} 3) 8$
Type	F	F	F	F	F	F	F	F

VARIABLE
(K3)1, ...,
(K3)8

Card 7	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

VARIABLE

XP, YP, ZP
A1, A2, A3

DESCRIPTION

Coordinates of point p for AOPT = 1 and 4
Components of vector a for $\mathrm{AOPT}=2$

Card 8	1	2	3	4	5	6	7	8
Variable	D1	D2	D3					
Type	F	F	F					

VARIABLE
D1, D2, D3

Remarks:

1. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION and has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system.

*MAT_THERMAL_DISCRETE_BEAM

This is Thermal Material Type 5. It defines properties for discrete beams. It is only applicable when used with ELFORM $=6$ on *SECTION_BEAM.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TR0						
Type	A	F						

Card 2	1	2	3	4	5	6	7	8
Variable	HC	TC						
Type	F	F						

VARIABLE

TMID

TRO

HC

TC \quad Thermal conductance (SI units are W / K)

Remarks:

A beam cross-sectional area is not defined on *SECTION_BEAM for an ELFORM $=6$ discrete beam. Heat transfer calculations require a beam cross-sectional area. Therefore, the cross-sectional area is lumped into the value entered for HC.

*MAT_THERMAL_CHEMICAL_REACTION

This is thermal material type 6 . The chemical species making up this material undergo specified chemical reactions. A maximum of 8 species and 8 chemical reactions can be defined. The thermal material properties of a finite element undergoing chemical reactions are calculated based on a mixture law consisting of those chemical species currently present in the element. The dependence of the chemical reaction rate on temperature is described by the Arrhenius equation. Time step splitting is used to couple the system of ordinary differential equations describing the chemical reaction kinetics to the system of partial differential equations describing the diffusion of heat.

Card Summary:

Card 1. This card is required.

TMID	NCHSP	NCHRX	ICEND	CEND	GASC	FID	MF

Card 2. This card must be included but all parameters can be set to 0 if no filler material is present.

RHOf	LCCf	LCKf	VFf				

Card 3. Include one card for each of the NCHSP species.

RHO i	LCC i	LCK i	VFi	MWi			

Card 4. Include one card for each of the NCHSP species.

RCi1	RCi2	RCi3	RCi4	RCi5	RCi6	RCiI	RCi8

Card 5. Include one card for each of the NCHSP species.

RXi1	RXi2	RXi3	RXi4	RXi5	RXi6	RXi7	RXi8

Card 6. This card is required.

LCZ1	LCZ2	LCZ3	LCZ4	LCZ5	LCZ6	LCZ7	LCZ8

Card 7. This card is required.

E1	E2	E3	E4	E5	E6	E7	E8

Card 8. This card is required.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	NCHSP	NCHRX	ICEND	CEND	GASC	FID	MF
Type	A	I	I	I	F	F	I	1

VARIABLE

TMID

NCHSP \quad Number of chemical species (maximum 8)
NCHRX Number of chemical reactions (maximum 8)
ICEND Species number controlling reaction termination
CEND Concentration for reaction termination. Reactions are terminated when concentration of species ICEND exceeds CEND.

GASC Gas constant: $1.987 \mathrm{cal} /(\mathrm{mol} \mathrm{K}), 8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
FID Function ID for user specified chemical reaction rate equation for a single reaction model with two species

MF ODE solver method:
EQ.0: Default
EQ.1: An alternative ODE solver for stiff differential equations

Filler Material Properties. This card is used to the material properties for the filler material, such as carbon fiber mat. This card must be included but all parameters can be set to 0 if no filler material is present.

Card 2	1	2	3	4	5	6	7	8
Variable	RHOf	LCCf	LCKf	VFf				
Type	F	I	I	F				

VARIABLE

RHOf
LCCf

LCKf

VFf

DESCRIPTION

Density of the filler material
Load curve ID specifying the specific heat as a function of temperature for the filler material

Load curve ID specifying the thermal conductivity as a function of temperature for the filler material

Volume fraction of the filler material. The remaining volume is occupied by the reacting chemicals.

Chemical Species Cards. Include one card for each of the NCHSP species. These cards set species properties. The dummy index i is the species number and is equal to 1 for the first species card, 2 for the second, and so on.

Card 3	1	2	3	4	5	6	7	8
Variable	RHOi	LCCi	LCK i	VFi	MWi			
Type	F	I	I	F	F			

Reaction Cards. Include one card for each of the NCHSP species. Each field contains the species's coefficient for one of the NCHRX chemical reactions. See Card 3 for explanation of the species index i.

Card 4	1	2	3	4	5	6	7	8
Variable	RCi1	RCi2	RCi3	RCi4	RCi5	RCi6	RCi7	RCi8
Type	F	F	F	F	F	F	F	F

Reaction Rate Exponent Cards. Include one card for each of the NCHSP species. Each field contains the specie's rate exponent for one of the NCHRX chemical reactions. See Card 3 for explanation of the species index i.

Card 5	1	2	3	4	5	6	7	8
Variable	RXi1	$\mathrm{RX} i 2$	$\mathrm{RX} i 3$	$\mathrm{RX} i 4$	$\mathrm{RX} / 5$	$\mathrm{RX} / 6$	RX 17	RX i8
Type	F	F	F	F	F	F	F	F

VARIABLE
RHO i
LCC i

LCK i

VFi

MWi
RCij

RXij

DESCRIPTION

Density of the $i^{\text {th }}$ species
Load curve ID specifying the specific heat as a function of temperature for the $i^{\text {th }}$ species

Load curve ID specifying the thermal conductivity as a function of temperature for the $i^{\text {th }}$ species

Initial fraction of the $i^{\text {th }}$ species relative to the other reacting chemicals. Note that $\sum_{i} \mathrm{VF}_{i}=1$.

Molecular weight of the $i^{\text {th }}$ species
Reaction coefficient $n_{i j}$ for species i in reaction j. Leave blank for undefined reactions

Rate exponent $p_{i j}$ for species i in reaction j. Leave blank for undefined reactions.

Pre-exponential Factor Card. Each field contains the natural logarithm of its corresponding reaction's pre-exponential factor.

Card 6	1	2	3	4	5	6	7	8
Variable	LCZ1	LCZ2	LCZ3	LCZ4	LCZ5	LCZ6	LCZ7	LCZ8
Type	।	1	1	1	1	1	1	1

VARIABLE
LCZ ${ }^{j}$

DESCRIPTION

Load curve defining data pairs of (temperature, $\ln Z_{j}$) where Z_{j} is the pre-exponential factor for reaction j. Leave blank for undefined reactions.

Activation Energy Card. Each field contains the activation energy value for its corresponding reaction.

Card 7	1	2	3	4	5	6	7	8
Variable	E1	E2	E3	E4	E5	E6	E7	E8
Type	F	F	F	F	F	F	F	F

VARIABLE

Ej Activation energy for reaction j. Leave blank for undefined reactions.

Heat of Reaction Card. Each field contains the heat of reaction value for its corresponding reaction.

Card 8	1	2	3	4	5	6	7	8
Variable	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Type	F	F	F	F	F	F	F	F

VARIABLE

Q j

DESCRIPTION

Heat of reaction for reaction j. Leave blank for undefined reactions.

Rate Model for a Single Reaction:

Chemical reactions are usually expressed in chemical equation notation; for example, a chemical reaction involving two reactants and two products is

$$
\begin{equation*}
a \mathrm{~A}+b \mathrm{~B} \rightarrow g \mathrm{G}+h \mathrm{H}, \tag{MT6.1}
\end{equation*}
$$

where A, B, G, and H are chemical species such as NaOH or HCl , and a, b, g, and h are integers called stoichiometric numbers, indicating the number of molecules involved in a single reaction.

The rate of reaction is the number of individual reactions per unit time. Using a stoichiometric identity, which is just an accounting relation, the rate of reaction is proportional to the rate of change in the concentrations of the species involved in the reaction. For the chemical reaction in Equation (MT6.1), the relation between concentration and rate, r, is,

$$
\begin{equation*}
r=-\frac{1}{a} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{d} t}=-\frac{1}{b} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{d} t}=+\frac{1}{g} \frac{\mathrm{~d}[\mathrm{G}]}{\mathrm{d} t}=+\frac{1}{h} \frac{\mathrm{~d}[\mathrm{H}]}{\mathrm{d} t}, \tag{MT6.2}
\end{equation*}
$$

where $[\mathrm{X}]$ denotes the concentration of species X , and the sign depends on whether or not the species is an input, in which case the sign is negative, or a product, in which case the sign is positive.

The Model

This thermal material model (T06) is built on the assumption that the reaction rate r_{j} of reaction j depends on the concentration of the input species according to

$$
r_{j}=k_{j}(T) \prod_{i}\left[\mathrm{X}_{i}\right]^{p_{i j}},
$$

where i ranges over all species, and, for each species, the exponent, $p_{i j}$, is determined by empirical measurement but may be approximated by the stoichiometric number associated with X_{i}. The proportionality constant, k_{j}, is related to the cross-section for the reaction, and it depends on temperature through the Arrhenius equation:

$$
k_{j}=Z_{j}(T) \exp \left(-\frac{E_{j}}{R T}\right),
$$

where $Z_{j}(T)$ is experimentally determined (see Card 6), E_{j} is the activation energy (see Card 7), R is the gas constant, and T is temperature.

As an example, for the chemical reaction of Equation (MT6.1)

$$
r=\mathrm{Z}(T) \exp \left(-\frac{E}{R T}\right)[\mathrm{A}]^{\alpha}[\mathrm{B}]^{\beta},
$$

where the stoichiometric numbers have been used instead of experimentally determined exponents.

The rate of heat generation (exothermic) and absorption (endothermic) associated with a reaction is calculated by multiplying the heat of reaction, Q_{i}, by its rate.

User-Defined Single Reaction Model:

In addition to the standard model described in the previous section this material model also allows the user to specify a chemical reaction rate equation. In case of a single reaction model with two species, the equation can be defined using the *DEFINE_FUNCTION keyword. Here, the equation can be given as function of the current temperature and concentration of the second species. Consequently, the input may read as follows:

```
*DEFINE_FUNCTION
1, reaction rate
chemrx (temp, conc) = ..
```

Note that in this case the actual argument names are used for the interpretation of the function: the material model expects the temperature argument to be names "temp" and the concentration of the second species to be denoted by "conc".

Rate Model for a System of Reactions:

For a system of coupled chemical reactions, the change in concentration of a species is the sum of all the contributions from each individual chemical reaction:

$$
\frac{\mathrm{d}\left[\mathrm{X}_{i}\right]}{\mathrm{d} t}=\sum_{j} n_{i j} r_{j}
$$

The index j runs over all reactions; $n_{i j}$ is the stoichiometric number for species X_{i} in reaction j; and r_{j} is the rate of reaction j. The sign of $n_{i j}$ is positive for reactions that have X_{i} as a product and negative for reactions that involve X_{i} as an input.

Example:

Consider the following system of reactions (three reactions and three species):

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \Rightarrow r_{1}=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=\frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{d} t}=k_{1}[\mathrm{~A}] \quad \Rightarrow \begin{array}{l}
\overline{[\dot{\mathrm{A}}]}=-k_{1}[\mathrm{~A}] \\
\dot{[\mathrm{B}]}=+k_{1}[\mathrm{~A}]
\end{array} \\
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C} \Rightarrow r_{2}=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{d} t}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=k_{2}[\mathrm{~A}][\mathrm{B}] \Rightarrow \begin{array}{l}
\dot{[\dot{\mathrm{A}}]}=-k_{2}[\mathrm{~A}][\mathrm{B}] \\
\dot{[\dot{\mathrm{B}}]}=-k_{2}[\mathrm{~A}][\mathrm{B}] \\
\dot{[\dot{C}]}=+k_{2}[\mathrm{~A}][\mathrm{B}]
\end{array} \\
& 2 \mathrm{~B} \rightarrow \mathrm{C} \Rightarrow r_{3}=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{d} t}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=k_{3}[\mathrm{~B}]^{2} \quad \Rightarrow \begin{array}{l}
{\left[\dot{\dot{\mathrm{B}}]}=-2 k_{3}[\mathrm{~B}]^{2}\right.} \\
\dot{[\mathrm{C}}]=+k_{3}[\mathrm{~B}]^{2}
\end{array}
\end{aligned}
$$

The identities $X_{1}=A, X_{2}=B$, and $X_{3}=C$ allow deducing the rate exponents $p_{i j}$, where both indices i (species) and j (reaction) range from 1 to 3 . The nonzero values are

$$
\begin{align*}
& p_{11}=1.0 \\
& p_{12}=1.0 \\
& p_{22}=1.0 \tag{MT6.3}\\
& p_{23}=2.0
\end{align*}
$$

These values are needed as input parameters $\mathrm{RX}_{i j}$ (see card 5 in example input below).

The time evolution equations are,

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{d} t}=\sum n_{2 j} r_{j}=+k_{1}[\mathrm{~A}]-k_{2}[\mathrm{~A}][\mathrm{B}]-2 k_{3}[\mathrm{~B}]^{2} \\
& \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{d} t}=\sum n_{3 j} r_{j}=\quad+k_{2}[\mathrm{~A}][\mathrm{B}]+k_{3}[\mathrm{~B}]^{2} .
\end{aligned}
$$

Equivalent Units (Normalized Units):

The concentrations are often scaled so that each unit of reactant yields one unit of product. Systems for which each species is assigned its own unit of concentration based on stoichiometric considerations are equivalent unit systems.

Being unit-agnostic, LS-DYNA is capable of working in equivalent units. However, care must be taken so that units are treated consistently, as applying a unit scaling to the time evolution equations can be nontrivial.

1. For each reaction, the experimentally measured pre-exponential coefficients carry units that depend on the reaction itself. For instance, the pre-exponential factors Z_{1}, Z_{2}, and Z_{3} for the reactions $A \rightarrow B, A+B \rightarrow C$, and $2 B \rightarrow C$ respectively will have units of

$$
\begin{aligned}
& {\left[Z_{1}\right]=\frac{1}{[\text { time }]} \times \frac{1}{[\text { Concentration of } \mathrm{A}]}} \\
& {\left[Z_{2}\right]=\frac{1}{[\text { time }]} \times \frac{1}{[\text { Concentration of } \mathrm{A}]} \times \frac{1}{[\text { Concentration of } \mathrm{B}]}} \\
& {\left[Z_{3}\right]=\frac{1}{[\text { time }]} \times\left\{\frac{1}{[\text { Concentration of } \mathrm{B}]}\right\}^{2} .}
\end{aligned}
$$

Note that each pre-factor has a different dimensionality.
2. The equations in (MT6.2), which relate rate to concentration change, are logically inconsistent unless all species are measured using the same units for concentration. A species-dependent system of equivalent units would require the insertion of additional conversion factors into (MT6.2) thereby changing the form of the time-evolution equations.

To avoid unit consistency issues, we recommend that reactions be defined in the same unit system that was used to measure their empirical values.

Example of Equivalent Units:

The following system of reactions:

$$
\begin{aligned}
\mathrm{A} & \rightarrow \mathrm{~B} \\
\mathrm{~A}+\mathrm{B} & \rightarrow \mathrm{C} \\
2 \mathrm{~B} & \rightarrow \mathrm{C}
\end{aligned}
$$

changes species A into species C through an intermediate which is species B. For each unit of species C that is produced, the reaction consumes two units of species A (1 unit from the $1^{\text {st }}$ and 1 unit from the $2^{\text {nd }}$ equation). Since this set of chemical formulae corresponds to the curing of epoxy, which is a nearly volume-preserving process, it is customary to work in a system of equivalent units that correspond to species volume fractions.

The following set of equivalent units, then, is used in the published literature:

1. Whatever the starting concentration of species A is, all units are uniformly rescaled so that $[\mathrm{A}]=1$ at time zero. Per the boxed remark above, since the constants were measured with respect to these units, this consideration does not introduce new complexity.
2. Since the process preserves volume, and since one particle of species C replaces two particles of species A (and one particle of B replace one of A), the units of concentration for species C are doubled.

$$
\tilde{C}=2[C]
$$

Under this transformation the rate relation for C is

$$
r_{2}=r_{3}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=\frac{1}{2} \frac{\mathrm{~d} \tilde{C}}{\mathrm{~d} t}
$$

The time evolution Equations (MT6.4) become, (note [C] has been replaced by \tilde{C}):

$$
\begin{array}{rlrl}
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t} & =\sum n_{1 j} r_{j} & & =-k_{1}[\mathrm{~A}]-k_{2}[\mathrm{~A}][\mathrm{B}] \\
\frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{d} t} & =\sum n_{2 j} r_{j} & & =+k_{1}[\mathrm{~A}]-k_{2}[\mathrm{~A}][\mathrm{B}]-2 k_{3}[\mathrm{~B}]^{2} \\
\frac{\mathrm{~d} \tilde{C}}{\mathrm{~d} t}=2 \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{d} t} & =2 \sum n_{3 j} r_{j}=\sum \tilde{n}_{3 j} r_{j} & =+2 k_{2}[\mathrm{~A}][\mathrm{B}]+2 k_{3}[\mathrm{~B}]^{2}
\end{array}
$$

The coefficients $n_{i j}$ or $\tilde{n}_{i j}$, respectively, should be identically copied from the above system as reaction coefficients $\mathrm{RC}_{i j}$ (for Card 4):

Variable	RC 11	RC 12	RC 13	RC 14	RC 15	RC 16	RC 17	RC 18
Value	-1	-1	0					

Variable	RC21	RC22	RC23	RC24	RC25	RC26	RC27	RC28
Value	+1	-1	-2					
Variable	RC31	RC 32	RC 33	RC 34	RC 35	RC 36	RC 37	RC 38
Value	0	+2	+2					

The exponents $\mathrm{RX}_{i j}$ are likewise picked off (Equations (MT6.3)) for next set of cards in format 5:

Variable	RX11	RX12	RX13	RX14	RX15	RX16	RX17	RX18
Value	+1	+1	0					
Variable	RX21	RX22	RX23	RX24	RX25	RX26	RX27	RX28
Value	0	+1	+2					
Variable	RX31	RX32	RX33	RX34	RX35	RX36	RX37	RX38
Value	0	0	0					

*MAT_THERMAL_CWM

This is Thermal Material Type 7. It is a thermal material with temperature dependent properties that allows for material creation triggered by temperature. The acronym CWM stands for Computational Welding Mechanics and the model is intended to be used for simulating multistage weld processes in combination with the mechanical counterpart, ${ }^{*}$ MAT_CWM.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TRO	TGRLC	TGMULT	HDEAD	TDEAD	TLAT	HLAT
Type	A	F	F	F	F	F	F	F

Card 2	1	2	3	4	5	6	7	8
Variable	LCHC	LCTC	TLSTART	TLEND	TISTART	TIEND	HGHOST	TGHOST
Type	F	F	F	F	F	F	F	F

VARIABLE

TMID

TRO

TGRLC Thermal generation rate (see *DEFINE_CURVE):
GT.0: Load curve ID defining thermal generation rate as a function of time

EQ.0: Thermal generation rate is the constant multiplier, TGMULT.

LT.O: |TGRLC| is a load curve ID defining thermal generation rate as a function of temperature.

This feature is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION and has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system.

VARIABLE	DESCRIPTION
TGMULT	
Thermal generation rate multiplier:	
HDEAD	
EQ.O.0: No heat generation	

Remarks:

This material is initially in a quiet state, sometimes referred to as a ghost material. In this state the material has the thermal properties defined by the quiet specific heat (HGHOST) and quiet thermal conductivity (TGHOST). These should represent the void, for example, by picking a relatively small thermal conductivity.

However, the ghost specific heat must be chosen with care since the temperature must be allowed to increase at a reasonable rate due to the heat from the weld source. When the temperature reaches the birth temperature, a history variable representing the indicator of the welding material is incremented. This variable follows

$$
\gamma(t)=\min \left[1, \max \left(0, \frac{T_{\max }-T_{l}^{\text {start }}}{T_{l}^{\text {end }}-T_{l}^{\text {start }}}\right)\right],
$$

where $T_{\max }=\max \{T(s) \mid s<t\}$.

The effective thermal material properties are interpolated as

$$
\begin{aligned}
\tilde{c}_{p} & =c_{p}\left(T, T_{\max }\right) \gamma+c_{p}^{\text {quiet }}(1-\gamma) \\
\tilde{\mu} & =\mu(T) \gamma+\mu^{\text {quiet }}(1-\gamma)
\end{aligned}
$$

where c_{p} and μ are the specific heat and thermal conductivity, respectively. Here, the specific heat, c_{p}, is either a temperature dependent curve, or a collection of temperature dependent curves, ordered in a table according to maximum temperature $T_{\max }$.

The time parameters for creating the material provide additional formulae for the final values of the thermal properties. Before the birth time $t_{i}^{\text {start }}$ of the material has been reached, the specific heat $c_{p}^{\text {dead }}$ and thermal conductivity $\mu^{\text {dead }}$ are used. The default values, that is, the values used if no user input is given, are

$$
\begin{aligned}
& c_{p}^{\text {dead }}=10^{10} c_{p}\left(T, T_{\max }\right) \\
& \mu^{\text {dead }}=0
\end{aligned}
$$

Thus, the final values of the thermal properties read

$$
\begin{aligned}
& c_{p}=\left\{\begin{array}{lr}
c_{p}^{\text {dead }} & t \leq t_{i}^{\text {start }} \\
\tilde{c}_{p} \frac{t-t_{i}^{\text {start }}}{t_{i}^{\text {end }}-t_{i}^{\text {start }}}+c_{p}^{\text {dead }} \frac{t-t_{i}^{\text {end }}}{t_{i}^{\text {start }}-t_{i}^{\text {end }}} & t_{i}^{\text {start }}<t \leq t_{i}^{\text {end }} \\
\tilde{c}_{p} & t_{i}^{\text {end }}<t
\end{array}\right. \\
& \mu= \begin{cases}\mu^{\text {dead }} & t \leq t_{i}^{\text {start }} \\
\tilde{\mu} \frac{t-t_{i}^{\text {start }}}{t_{i}^{\text {end }}-t_{i}^{\text {start }}+\mu^{\text {dead }} \frac{t-t_{i}^{\text {end }}}{t_{i}^{\text {start }}-t_{i}^{\text {end }}}} t_{i}^{\text {start }<t \leq t_{i}^{\text {end }}} \\
\tilde{\mu} & t_{i}^{\text {end }}<t\end{cases}
\end{aligned}
$$

These parameters allow you to control when the welding layer becomes active and thereby define a multistage welding process. Prior to the birth time, the temperature is kept more or less constant due to the large specific heat, and, thus, the material is prevented from being created

*MAT_THERMAL_ORTHOTROPIC_TD_LC

This is Thermal Material Type 8. With this model, orthotropic thermal properties that are dependent on temperature (and/or mechanical history variables) can be specified with load curves. The properties must be defined for the temperature (and/or history variable) range that the material will see in the analysis.

Card Summary:

Card 1a. This card is included if ITGHSV $=0$ (see Card 2).

TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	

Card 1b. This card is included if \mid ITGHSV| > 0 (see Card 2).

TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	

Card 2. This card is required.

LCC	LCK1	LCK2	LCK3	ILCCHSV	ILCKHSV	ITGHSV	

Card 3. This card is required.

$X P$	YP	ZP	A1	A2	A3		

Card 4. This card is required.

D1	D2	D3					

Data Card Definitions:

This card is included if ITGHSV $=0$ (see Card 2).

Card 1a	1	2	3	4	5	6	7	8
Variable	TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	
Type	A	F	I	F	F	F	F	

VARIABLE

DESCRIPTION

TMID Thermal material identification. A unique number or label must be specified (see *PART).

TLAT Phase change temperature
HLAT Latent heat

TRO

TGRLC

TGMULT

AOPT

Thermal generation rate multiplier.
EQ.0.0: No heat generation
Material axes definition (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axe by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point in space and global location of element center
EQ.2.0: Globally orthotropic with material axes determined by vectors

EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N 4) and to a vector \mathbf{d} - Third material direction corresponds to element normal.
EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis

This card is included if \mid ITGHSV| >0 (see Card 2).

Card 1b	1	2	3	4	5	6	7	8
Variable	TMID	TRO	TGRLC	TGMULT	AOPT	TLAT	HLAT	
Type	A	F	I	F	F	F	F	

VARIABLE

TMID

TRO

TGRLC

TGMULT Thermal generation rate multiplier. Defines a volumetric heat rate ($\mathrm{W} / \mathrm{m}^{3}$ in SI units system).

EQ.O.O: No heat generation
AOPT Material axes definition (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.O.O: Locally orthotropic with material axes by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point in space and global location of element center
EQ.2.0: Globally orthotropic with material axes determined by vectors

VARIABLE
DESCRIPTION
EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N4) and to a vector d- Third material direction corresponds to element normal.

EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis.

TLAT Phase change temperature
HLAT Latent heat

Card 2	1	2	3	4	5	6	7	8
Variable	LCC	LCK1	LCK2	LCK3	ILCCHSV	ILCKHSV	ITGHSV	
Type	1	1	1	1	1	1	1	

DESCRIPTION

LCC
Load curve ID defining specific heat as a function of temperature, or if \mid ILCCHSV| >0 :

GT.0: Load curve as function of mechanical history variable specified by ILCCHSV.
LT.O: Table of load curves for different temperatures. Each curve is a function of the mechanical history variable specified by ILCCHSV.

LCK $i \quad$ Load curve ID defining thermal conductivity, $K_{i}(i=1,2,3)$, in the local (x, y, z)-direction as a function of temperature, or if |ILCKHSV| > 0:

GT.0: Load curve giving thermal conductivity in the local direction as a function of the mechanical history variable specified by ILCKHSV.

LT.0: Table of load curves for different temperatures. Each curve gives thermals conductivity in the local direction as a function of the mechanical history variable specified by ILCKHSV.

VARIABLE

ILCCHSV

DESCRIPTION

Optional:
GT.0: Mechanical history variable \# used by LCC.
LT.O: As above but \mid ILCCHSV $=1$ through 6 means the history variable is one of the six stress components, \mid ILCCHSV| $=7$ means the history variable is the plastic strain, and \mid ILCCHSV| $=7+k$ means the history variable is history variable k.

ILCKHSV Optional:

GT.0: Mechanical history variable \# used by LCK1, LCK2, LCK3.
LT.O: As above but \mid ILCKHSV| $=1$ through 6 means the history variable is one of the six stress components, |ILCKHSV| $=7$ means the history variable is the plastic strain, and \mid ILCKHSV $\mid=7+k$ means the history variable is history variable k.

ITGHSV Optional:

GT.0: Mechanical history variable \# used by TGRLC.
LT.O: As above but |ITGHSV| = 1 through 6 means the history variable is one of the six stress components, |ITGHSV| = 7 means the history variable is the plastic strain, and \mid ITGHSV| $=7+k$ means the history variable is history variable k.

Card 3	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		
Card 4	1	2	3	4	5	6	7	8
Variable	D1	D2	D3					
Type F	F	F						

XP, YP, ZP \quad Coordinates of point p for AOPT $=1$ and 4
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for AOPT $=2$
D1, D2, D3 Components of vector \mathbf{d} for AOPT $=2,3$ and 4

Remarks:

1. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION and has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system

*MAT_THERMAL_ISOTROPIC_PHASE_CHANGE

This is Thermal Material Type 9. With this material, temperature dependent isotropic properties with phase change can be defined. The latent heat of the material is defined together with the solid and liquid temperatures. The temperature dependency is defined by specifying a minimum of two and a maximum of eight data points. The properties must be defined for the temperature range that the material will see in the analysis.

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	TR0	TGRLC	TGMULT				
Type	A	F	F	F				

Card 2	1	2	3	4	5	6	7	8
Variable	T1	T2	T3	T4	T5	T6	T7	T8
Type	F	F	F	F	F	F	F	F

Card 3	1	2	3	4	5	6	7	8
Variable	C1	C2	C3	C4	C5	C6	C7	C8
Type	F	F	F	F	F	F	F	F

Card 4	1	2	3	4	5	6	7	8
Variable	K1	K2	K3	K4	K5	K6	K7	K8
Type	F	F	F	F	F	F	F	F

Card 5	1	2	3	4	5	6	7	8
Variable	SOLT	LIQT	LH					
Type	F	F	F					

VARIABLE
TMID

TRO

TGRLC

TGMULT

T1, ..., T8
C1, ..., C8
K1, ..., K8 Thermal conductivity at T1, ..., T8
SOLT Solid temperature, T_{S} (must be $<T_{L}$)
LIQT Liquid temperature, T_{L} (must be $>T_{S}$)
LH Latent heat

Remarks:

1. Phase Change. During phase change, meaning between the solid and liquid temperatures, the specific heat of the material will be enhanced to account for the latent heat as follows:

$$
c(t)=m\left[1-\cos 2 \pi\left(\frac{T-T_{S}}{T_{L}-T_{S}}\right)\right], \quad T_{S}<T<T_{L}
$$

Here m is a multiplier such that the latent heat λ is given by:

$$
\lambda=\int_{T_{S}}^{T_{L}} c(T) d T
$$

Here $c(T)$ is the specific heat.
2. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION and has units $\mathrm{W} / \mathrm{m}^{3}$ in the SI units system.

*MAT_THERMAL_ISOTROPIC_TD_LC

This is Thermal Material Type 10. With this model, isotropic thermal properties that are dependent on temperature (and/or mechanical history variables) can be specified with load curves. The properties must be defined for the temperature (and/or history variable) range that the material will see in the analysis.

Card Summary:

Card 1a. This card is included if TGHSV $=0$.

TMID	TRO	TGRLC	TGMULT	TLAT	HLAT		

Card 1 b . This card is included if TGHSV $\neq 0$.

TMID	TRO	TGRLC	TGMULT	TLAT	HLAT		

Card 2. This card is required.

HCLC	TCLC	HCHSV	TCHSV	TGHSV			

Data Card Definitions:

This card is included if TGHSV $=0$ (see Card 2).

Card 1a	1	2	3	4	5	6	7	8
Variable	TMID	TR0	TGRLC	TGMULT	TLAT	HLAT		
Type	A	F	I	F	F	F		

VARIABLE

TMID

TRO

TGRLC Thermal generation rate (see *DEFINE_CURVE). See Remark 1.
GT.0: Load curve ID defining thermal generation rate as a function of time

VARIABLE

TGMULT Thermal generation rate multiplier.
EQ.0.0: No heat generation
TLAT Phase change temperature
HLAT Latent heat

This card is included if \mid TGHSV $\mid>0$ (see Card 2).

Card 1b	1	2	3	4	5	6	7	8
Variable	TMID	TRO	TGRLC	TGMULT	TLAT	HLAT		
Type	A	F	I	F	F	F		

VARIABLE

TMID

TRO

TGRLC Thermal generation rate curve/table ID (see *DEFINE_CURVE). See Remark 1.

GT.0: Load curve specifying thermal generation rate as a function of the mechanical history variable specified by TGHSV.

EQ.0: Use mechanical history variable specified by ITGHSV times constant multiplier value TGMULT.

LT.O: Table of load curves for different temperatures. Each curve specifies the thermal generation rate as a function of the mechanical history variable specified by TGHSV.

VARIABLE
TGMULT
Thermal generation rate multiplier. Defines a volumetric heat rate ($\mathrm{W} / \mathrm{m}^{\wedge} 3$ in SI units system).

EQ.O.O: No heat generation
TLAT Phase change temperature
HLAT Latent heat

Card 2	1	2	3	4	5	6	7	8
Variable	HCLC	TCLC	HCHSV	TCHSV	TGHSV			
Type	I	I	1	1	1			

VARIABLE
HCLC

TCLC

HCHSV Optional:
GT.0: Mechanical history variable \# used by HCLC.

VARIABLE

DESCRIPTION

LT.O: As above but $|\mathrm{HCHSV}|=1$ through 6 means that the variable is one of the six stress components, $|\mathrm{HCHSV}|=7$ means that the variable is the plastic strain, and $|\mathrm{HCHSV}|=7+k$ means that the variable is history variable k.

TCHSV Optional:

GT.O: Mechanical history variable \# used by TCLC.
LT.O: As above but \mid TCHSV| $=1$ through 6 means the variable is one of the six stress components, \mid TCHSV $\mid=7$ means the variable is the plastic strain, and $|\mathrm{TCHSV}|=7+k$ means that the variable is history variable k.

TGHSV Optional:
GT.0: Mechanical history variable \# used by TGRLC.
LT.O: As above but \mid TGHSV| $=1$ through 6 means the variable is one of the six stress components, \mid TGHSV| $=7$ means the variable is the plastic strain, and $|\mathrm{TGHSV}|=7+k$ means that the variable is history variable k.

Remarks:

1. Thermal Generation Rate. TGRLC is similar to the volumetric heat generation rate in *LOAD_HEAT_GENERATION. It has units W/m ${ }^{3}$ in the SI units system.

*MAT_THERMAL_USER_DEFINED

These are Thermal Material Types 11-15. You can supply your own subroutines. Please consult Appendix H for more information.

Card Summary:

Card 1. This card is required.

TMID	RO	MT	LMC	NVH	AOPT	IORTHO	IHVE

Card 1.1. This card is included if IORTHO $=1$.

$X P$	$Y P$	ZP	A1	A2	A3		

Card 1.2. This card is included if IORTHO $=1$.

D1	D2	D3					

Card 2. Up to 4 of this card can be included to set LMC parameters. This input ends at the next keyword ("*") card.

P1	P2	P3	P4	P5	P6	P7	P8

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	R0	MT	LMC	NVH	AOPT	IORTHO	IHVE
Type	A	F	F	F	F	F	F	F

VARIABLE

TMID

RO Thermal mass density
MT User material type (11-15 inclusive)
LMC Length of material constants array. LMC must not be greater than 32.

VARIABLE
NVH
AOPT

IORTHO
IHVE

DESCRIPTION

Number of history variables
Material axes option of orthotropic materials (see MAT_OPTIONTROPIC_ELASTIC for more details). Set if IORTHO =1.0.

EQ.0.0: Locally orthotropic with material axes by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point, P, in space and global location of element center
EQ.2.0: Globally orthotropic with material axes determined by vectors

EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N4) and to a vector d- Third material direction corresponds to element normal.

EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis.
LT.0.0: The absolute value of AOPT is a coordinate system ID number (CID on *DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or *DEFINE_COORDINATE_VECTOR).

Set to 1.0 if the material is orthotropic.
Set to 1.0 to activate exchange of history variables between mechanical and thermal user material models.

Orthotropic Card 1. Additional card read in when IORTHO $=1$.

Card 1.1	1	2	3	4	5	6	7	8
Variable	XP	YP	ZP	A1	A2	A3		
Type	F	F	F	F	F	F		

VARIABLE
XP, YP, ZP
A1, A2, A3
Components of vector \mathbf{a} for $\mathrm{AOPT}=2$

Orthotropic Card 2. Additional card read in when IORTHO $=1$.

Card 1.2	1	2	3	4	5	6	7	8
Variable	D1	D2	D3					
Type	F	F	F					

VARIABLE

D1, D2, D3
Components of vector \mathbf{d} for $\mathrm{AOPT}=2,3$ and 4

Material Parameter Cards. Set up to 8 parameters per card. Include up to 4 cards. This input ends at the next keyword ("*") card.

Card 2	1	2	3	4	5	6	7	8
Variable	P1	P2	P3	P4	P5	P6	P7	P8
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

P1
First material parameter

PLMC $\quad \mathrm{LMC}^{\text {th }}$ material parameter

Remarks:

1. IHVE. The IHVE $=1$ option makes it possible for a thermal user material subroutine to read the history variables of a mechanical user material subroutine defined for the same part and vice versa. If the integration points for the thermal and mechanical elements are not coincident, then extrapolation/interpolation is used to calculate the value when reading history variables.
2. TITLE. Option TITLE is supported
3. Units Transformation. Transformation of units using *INCLUDE_TRANSFORM is only supported for the RO field and the vectors on Cards 1.1 and 1.2.

*MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC

This is Thermal Material Type 17. The chemical species making up this material undergo specified chemical reactions. The chemical reaction kinetics is the same as for thermal material *MAT_T06, but the thermal conductivity is assumed to be orthotropic. A maximum of 8 species and 8 chemical reactions can be defined. The orthotropic thermal material properties of a finite element undergoing chemical reactions are calculated based on a mixture law consisting of those chemical species currently present in the element. The dependence of the chemical reaction rate on temperature is described by the Arrhenius equation. Time step splitting is used to couple the system of ordinary differential equations describing the chemical reaction kinetics to the system of partial differential equations describing the diffusion of heat.

Card Summary:

Card 1. This card is required.

TMID	NCHSP	NCHRX	ICEND	CEND	GASC	FID	MF

Card 2. This card is required.

AOPT	XP	YP	ZP	A1	A2	A3	

Card 3. This card is required.

D1	D2	D3					

Card 4. This card must be included, but all parameters can be set to 0 if no filler material is present.

RHOf	LCCf	LCK1f	LCK2f	LCK3f	VFf		

Card 5. Include one card for each of the NCHSP species.

RHO i	LCC i	LCK1i	LCK2 i	LCK3i	VFi	MWi	

Card 6. Include one card for each of the NCHSP species.

RCi1	RCi2	RCi3	RCi4	RCi5	RCi6	RCiI	RCi8

Card 7. Include one card for each of the NCHSP species.

RXi1	RXi2	RXi3	RXi4	RXi5	RXi6	$R X i 7$	$R X i 8$

Card 8. This card is required.

LCZ1	LCZ2	LCZ3	LCZ4	LCZ5	LCZ6	LCZ7	LCZ8

Card 9. This card is required.

E1	E2	E3	E4	E5	E6	E7	E8

Card 10. This card is required.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Data Card Definitions:

Card 1	1	2	3	4	5	6	7	8
Variable	TMID	NCHSP	NCHRX	ICEND	CEND	GASC	FID	MF
Type	A	I	1	1	F	F	1	1

VARIABLE

TMID

NCHSP
NCHRX Number of chemical reactions (maximum 8)
ICEND Species number controlling reaction termination
CEND Concentration for reaction termination
GASC Gas constant: $1.987 \mathrm{cal} /(\mathrm{mol} \mathrm{K}), 8314 . \mathrm{J} /(\mathrm{mol} \mathrm{K})$
FID

MF ODE solver method:
EQ.0: Default
EQ.1: An alternative ODE solver

Material axis definition. This card sets the material axes for the orthotropic heat conduction properties.

Card 2	1	2	3	4	5	6	7	8
Variable	AOPT	XP	YP	ZP	A1	A2	A3	
Type	I	F	F	F	F	F	F	

Card 3	1	2	3	4	5	6	7	8
Variable	D1	D2	D3					
Type	F	F	F					

VARIABLE

AOPT

DESCRIPTION

Material axes definition (see *MAT_OPTIONTROPIC_ELASTIC for a more complete description):

EQ.0.0: Locally orthotropic with material axes by element nodes N1, N2 and N4

EQ.1.0: Locally orthotropic with material axes determined by a point in space and global location of element center

EQ.2.0: Globally orthotropic with material axes determined by vectors

EQ.3.0: Locally orthotropic with first material axis orthogonal to element normal (defined by element nodes N1, N2 and N4) and to a vector \mathbf{d} - Third material direction corresponds to element normal.

EQ.4.0: Local orthogonal in cylindrical coordinates with the material axes determined by a vector \mathbf{d}, and an originating point, P, which define the centerline axis.

XP, YP, ZP \quad Coordinates of point p for $\mathrm{AOPT}=1$ and 4
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \quad$ Components of vector a for $\mathrm{AOPT}=2$
D1, D2, D3 Components of vector \mathbf{d} for $\mathrm{AOPT}=2,3$ and 4

Filler Material Properties. This card sets the material properties for the filler material, such as carbon fiber. This card must be included, but all parameters can be set to 0 if no filler material is present.

Card 4	1	2	3	4	5	6	7	8
Variable	RHOf	LCCf	LCK1f	LCK2f	LCK3f	VFf		
Type	F	I	I	I	I	F		

VARIABLE

RHOf
Density of the filler material
LCCf Load curve ID specifying the specific heat as a function of temperature for the filler material

LCK1f Load curve ID specifying thermal conductivity K_{1}, in the local x direction, as a function of temperature for the filler material

LCK2f Load curve ID specifying thermal conductivity K_{2}, in the local y direction, as a function of temperature for the filler material

LCK3f Load curve ID specifying thermal conductivity K_{3}, in the local z direction, as a function of temperature for the filler material

VFf Volume fraction of the filler material. The remaining volume is occupied by the reacting chemicals.

Chemical Species Cards. Include one card for each of the NCHSP species. These cards set properties for each species. The dummy index i is the species number and is equal to 1 for the first species card, 2 for the second, and so on.

Card 5	1	2	3	4	5	6	7	8
Variable	RH0 i	LCC i	LCK1i	LCK2 i	LCK3i	VFi	MW i	
Type	F	I	I	I	I	F	F	

Reaction Cards. Include one card for each of the NCHSP species. Each field contains the species' coefficient for one of the NCHRX chemical reactions. See Card 5 for explanation of the species index i.

Card 6	1	2	3	4	5	6	7	8
Variable	RCi1	RCi2	RCi3	RCi4	RCi5	$\mathrm{RCi6}$	$\mathrm{RC} / 7$	$\mathrm{RC} / 8$
Type	F	F	F	F	F	F	F	F

Reaction Rate Exponent Cards. Include one card for each of the NCHSP species. Each field contains the species' rate exponent for one of the NCHRX chemical reactions. See Card 5 for explanation of the species index i.

Card 7	1	2	3	4	5	6	7	8
Variable	RXi1	$\mathrm{RX} i 2$	$\mathrm{RX} i 3$	$\mathrm{RX} i 4$	$\mathrm{RX} / 5$	$\mathrm{RX} i 6$	RX 17	$\mathrm{RX} i 8$
Type	F	F	F	F	F	F	F	F

VARIABLE

RHO i
LCCi

LCK1 i

LCK2i

LCK3i

VFi

MWi
RCij

DESCRIPTION

Density of the $i^{\text {th }}$ species
Load curve ID specifying the specific heat as a function of temperature for the $i^{\text {th }}$ species

Load curve ID specifying thermal conductivity K_{1}, in the local x direction, as a function of temperature for the $i^{\text {th }}$ species

Load curve ID specifying thermal conductivity K_{2}, in the local y direction, as a function of temperature for the $i^{\text {th }}$ species

Load curve ID specifying thermal conductivity K_{3}, in the local z direction, as a function of temperature for the $i^{\text {th }}$ species

Initial fraction of the $i^{\text {th }}$ species relative to the other reacting chemicals. Note that $\sum_{i} \mathrm{VF}_{i}=1$.

Molecular weight of the $i^{\text {th }}$ species
Reaction coefficient for species i in reaction j. Leave blank for undefined reactions.

VARIABLE

RXij

DESCRIPTION
Rate exponent for species i in reaction j. Leave blank for undefined reactions.

Pre-exponential Factor Card. Each field contains the natural logarithm of its corresponding reaction's pre-exponential factor.

Card 8	1	2	3	4	5	6	7	8
Variable	LCZ1	LCZ2	LCZ3	LCZ4	LCZ5	LCZ6	LCZ7	LCZ8
Type	।	।	1	1	1	1	1	1

VARIABLE

LCZ ${ }^{j}$

DESCRIPTION

Load curve defining data pairs of (temperature, $\ln Z_{j}$) where Z_{j} is the pre-exponential factor for reaction j. Leave blank for undefined reactions.

Activation Energy Card. Each field contains the activation energy value for its corresponding reaction.

Card 9	1	2	3	4	5	6	7	8
Variable	E1	E2	E3	E4	E5	E6	E7	E8
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

Ej

Activation energy for reaction j. Leave blank for undefined reactions.

Heat of Reaction Card. Each field contains the heat of reaction value for its corresponding reaction.

Card 10	1	2	3	4	5	6	7	8
Variable	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Type	F	F	F	F	F	F	F	F

VARIABLE

DESCRIPTION

Q j
Heat of reaction for reaction j. Leave blank for undefined reactions.

Remarks:

See the remarks for *MAT_T06.

[^0]: ${ }^{1}$ Error associated with advection inherently leads to state variables that may be inconsistent with nonlinear constitutive routines and thus may lead to nonphysical results, nonconservation of energy, and even numerical instability in some cases. Caution is advised, particularly when using the $2^{\text {nd }}$ tier of material models implemented for ALE multi-material solids (designated by [8B]) which are largely untested as ALE materials.
 ${ }^{2}$ These commands do not, by themselves, define a material model but rather can be used in certain cases to supplement material models.

[^1]: 10324 K [3] =
 (23000 cal/mole) \times
 (8.314 J/mole/K)

[^2]: ${ }^{5}$ For the sake of convenience, we drop the link subscripts and superscripts, and also emphasize that the rates are to be interpreted as objective.
 ${ }^{6}$ For elastic link \#3, $a=0$, meaning there is no creep strain.

